JP4928863B2 - Horizontal sensor - Google Patents

Horizontal sensor Download PDF

Info

Publication number
JP4928863B2
JP4928863B2 JP2006214255A JP2006214255A JP4928863B2 JP 4928863 B2 JP4928863 B2 JP 4928863B2 JP 2006214255 A JP2006214255 A JP 2006214255A JP 2006214255 A JP2006214255 A JP 2006214255A JP 4928863 B2 JP4928863 B2 JP 4928863B2
Authority
JP
Japan
Prior art keywords
light
level
bubble
horizontal sensor
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006214255A
Other languages
Japanese (ja)
Other versions
JP2007071870A (en
Inventor
浩司 阪本
幸彦 岡村
国法 中村
浩一 寺裏
弘治 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006214255A priority Critical patent/JP4928863B2/en
Publication of JP2007071870A publication Critical patent/JP2007071870A/en
Application granted granted Critical
Publication of JP4928863B2 publication Critical patent/JP4928863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

本発明は、設備、装置または器具などの水平度合いを検出したり傾斜度合いを検出するために用いられる水平センサに関する。   The present invention relates to a horizontal sensor used to detect a level of equipment, an apparatus, or an instrument, or to detect a degree of inclination.

一般に、水平センサでは、水準器内の気泡位置を検出して水平度合いや傾斜度合いを検知する。この気泡位置の検出方式としては、水準器に向かって光を照射し気泡の投影光の位置を受光素子で検出する光学透過式、水準器内に電極を備え、気泡位置によって変化する電極間の静電容量を検出する静電容量式、及び静電容量式と同様な構成で電極間の抵抗を検出する抵抗式などが挙げられる。これらの内、光学透過式は、水平度合いや傾斜度合いの検知精度や水準器の加工性等の点で優れていることから広く使用されている。   In general, a horizontal sensor detects a bubble level in a spirit level to detect the level and the degree of inclination. This bubble position detection method is an optical transmission type that irradiates light toward the level and detects the position of the projected light of the bubble with a light receiving element. An electrode is provided in the level, and between the electrodes that change depending on the bubble position. Examples thereof include a capacitance type for detecting capacitance, and a resistance type for detecting resistance between electrodes with the same configuration as the capacitance type. Of these, the optical transmission type is widely used because it is excellent in terms of the detection accuracy of the level and inclination, the workability of the level, and the like.

このような従来の光学透過式の水平センサとしては、特許文献1に示されるように、発光ダイオードから成る光源、水準器、4つの受光素子等の主な部品から構成され、光源と受光素子が水準器を挟んで対向し、かつ光源、水準器、受光素子の中心軸が略一直線上に並ぶように配置された水平センサが知られている。この水平センサでは、気泡の直径が一定の場合、光源と水準器の距離が近くなるほど気泡の投影光の直径が大きくなるため、その分、受光素子も大きくする必要がある。そのため、従来は光源と水準器の間にある一定以上の距離を設けて光線をできるだけ平行にすることにより、気泡の直径と気泡の投影光の直径がほぼ等しくなるようにし、この投影光を受光する受光素子も気泡の直径と同程度の大きさのものが用いられてきた。すなわち、各受光素子の受光面の大きさを、気泡の大きさとほぼ同じ程度にするには、できるだけ平行な光線が必要とされていた。このため、光源と水準器の間に一定以上の距離を設けて光経路を長くする必要があり、水平センサを小型化することが困難であった。   As shown in Patent Document 1, such a conventional optical transmission type horizontal sensor is composed of a main part such as a light source composed of a light emitting diode, a level, four light receiving elements, and the like. There is known a horizontal sensor that is opposed to each other with a spirit level and is arranged so that the central axes of the light source, the spirit level, and the light receiving element are arranged in a substantially straight line. In this horizontal sensor, when the bubble diameter is constant, the diameter of the projection light of the bubble increases as the distance between the light source and the level decreases, and accordingly, the light receiving element needs to be increased accordingly. Therefore, conventionally, by providing a certain distance or more between the light source and the level and making the rays as parallel as possible, the bubble diameter and the bubble projection light diameter are made almost equal, and this projection light is received. A light receiving element having the same size as the diameter of the bubble has been used. That is, in order to make the size of the light receiving surface of each light receiving element approximately the same as the size of the bubbles, parallel light rays are required as much as possible. For this reason, it is necessary to provide a certain distance or more between the light source and the level and make the optical path longer, and it is difficult to reduce the size of the horizontal sensor.

ここで、図19(a)、(b)を参照して、従来の水平センサにおける気泡103aと受光素子である受光部102との平面上の位置関係を説明する。光源は水平センサの上面から水準器101内の気泡103a(又は、移動した気泡103b)を照射し、この気泡103aの投影光(この影を気泡影と呼ぶ)を受光部102を構成する4個の略正方形の受光ダイオード102aで受光する。4個の受光ダイオード102aは、受光面が全体として正方形状になるように配列されて縦、横寸法が、気泡103aの直径の大きさとほぼ同じに設定され、受光面で受光した光の検出量に対応した電圧をそれぞれ出力し、これらの電圧を比較することにより、傾斜度を検出することができる。水平センサの水平度が保たれ、受光部102の受光面の中心に気泡103aの気泡影の中心が一致すると、4個の受光ダイオード102aの受光レベルが一致する。   Here, with reference to FIGS. 19A and 19B, the positional relationship on the plane between the bubble 103a and the light receiving unit 102 as the light receiving element in the conventional horizontal sensor will be described. The light source irradiates the bubble 103 a (or the moved bubble 103 b) in the level 101 from the upper surface of the horizontal sensor, and the projection light (this shadow is called a bubble shadow) of the bubble 103 a constitutes the light receiving unit 102. The light is received by a substantially square light receiving diode 102a. The four light receiving diodes 102a are arranged so that the light receiving surface is formed in a square shape as a whole, the vertical and horizontal dimensions are set to be substantially the same as the diameter of the bubble 103a, and the detected amount of light received by the light receiving surface. The slopes can be detected by outputting the voltages corresponding to each of these and comparing these voltages. When the level of the horizontal sensor is maintained and the center of the bubble shadow of the bubble 103a coincides with the center of the light receiving surface of the light receiving unit 102, the light reception levels of the four light receiving diodes 102a coincide.

上記水平センサにおいて、気泡103aが受光面中心から移動したとき、その移動前後における受光面の光量分布の変化を図19(b)に示す。受光量分布P3は、気泡103aの移動が無いときの分布であり、受光量分布P4(破線)は、気泡103aが気泡103bに移動したときの分布である。気泡103aが移動して気泡103bに移ったとき、気泡103bの投影光の位置が受光ダイオード102aの受光面からずれるため、受光ダイオード102aで受光する受光量が変化し、これにより移動が検知される。   In the horizontal sensor, when the bubble 103a moves from the center of the light receiving surface, the change in the light amount distribution on the light receiving surface before and after the movement is shown in FIG. The received light amount distribution P3 is a distribution when the bubble 103a does not move, and the received light amount distribution P4 (broken line) is a distribution when the bubble 103a moves to the bubble 103b. When the bubble 103a moves and moves to the bubble 103b, the position of the projection light of the bubble 103b deviates from the light receiving surface of the light receiving diode 102a, so that the amount of light received by the light receiving diode 102a changes, thereby detecting the movement. .

次に、上記水平センサの受光部102を小型化するため、受光部102の大きさを気泡103aの径よりさらに小さくした場合の前記と同様の内容を図20(a)、(b)に示す。受光ダイオード102bを前述の例より小さくすると、4つの受光素子の受光ダイオード102bの受光面積は、気泡103aの気泡影の面積より小さくなる。このため、4つの受光ダイオード102bは、気泡103aが気泡103bの位置に微小に移動しても、気泡103bの気泡影の中に入ったままとなる。従って、4つの受光ダイオード102bは、気泡103aと気泡103bのいずれの場合も気泡影に入ったままなので、受光量は変化せず傾斜度を検出することができない。このため、従来の水平センサでは、受光素子を気泡のサイズより小さくすることができず、水平センサの小型化をさらに困難にしていた。
特許第3370619号公報
Next, in order to reduce the size of the light receiving portion 102 of the horizontal sensor, the same contents as described above when the size of the light receiving portion 102 is made smaller than the diameter of the bubble 103a are shown in FIGS. . If the light receiving diode 102b is made smaller than the above example, the light receiving areas of the light receiving diodes 102b of the four light receiving elements are smaller than the area of the bubble shadow of the bubble 103a. For this reason, the four light receiving diodes 102b remain in the bubble shadow of the bubble 103b even if the bubble 103a moves minutely to the position of the bubble 103b. Therefore, since the four light receiving diodes 102b remain in the bubble shadow in both the bubbles 103a and 103b, the amount of received light does not change and the inclination cannot be detected. For this reason, in the conventional horizontal sensor, the light receiving element cannot be made smaller than the size of the bubbles, which makes it more difficult to reduce the size of the horizontal sensor.
Japanese Patent No. 3370619

本発明は、上記の問題を解決するためになされたものであり、受光部を小さくでき、また、光源と水準器間の距離を短くできることにより、微小な傾斜をも検出できる小型で高性能な光学透過式の水平センサを提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and is small and high-performance capable of detecting a minute inclination by reducing the light receiving portion and shortening the distance between the light source and the level. An object is to provide an optically transparent horizontal sensor.

上記目的を達成するために請求項1の発明は、気泡が残るように液体を封入した水準器と、光源と、受光した光を電気信号に変換する4つ以上の受光素子とを備え、前記光源からの光を前記水準器に向かって照射し前記気泡の陰影を前記受光素子に投影させ、前記受光素子上の投影光の位置を該受光素子で検出することにより、水平度合いや傾斜度合いを検知する水平センサにおいて、平行光によって前記気泡を投影したときにできる投影光の面積以上の大きさの発光面積を有する面発光部を備え、該面発光部から前記水準器に向かって拡散された光を照射し、前記受光素子上の投影光の光量分布が、前記気泡の中心軸付近に極小点を持ち、この気泡の半径と略同範囲において該気泡の中心軸から離れるにつれて単調増加する特性を持つようにしたものである。 In order to achieve the above object, the invention of claim 1 comprises a level that encloses a liquid so that bubbles remain, a light source, and four or more light receiving elements that convert received light into an electrical signal, By irradiating light from a light source toward the level, projecting the shadow of the bubble on the light receiving element, and detecting the position of the projected light on the light receiving element with the light receiving element, the degree of horizontality and the degree of inclination are increased. The horizontal sensor to detect includes a surface light emitting unit having a light emitting area larger than the area of the projected light generated when the bubbles are projected by parallel light, and diffused from the surface light emitting unit toward the level The light quantity distribution of the projection light on the light receiving element has a minimum point near the central axis of the bubble, and monotonously increases as the distance from the central axis of the bubble is approximately the same as the radius of the bubble. Like having One in which the.

請求項2の発明は、請求項1に記載の水平センサにおいて、前記受光素子上の投影光の光量分布が、電気的補正により前記気泡の中心軸付近に極小点を持ち、該気泡の半径と略同範囲において中心軸から離れるにつれて直線的増加する特性を持つようにしたものである。 According to a second aspect of the present invention, in the horizontal sensor according to the first aspect, the light amount distribution of the projection light on the light receiving element has a minimum point near the central axis of the bubble by electrical correction , and the radius of the bubble In the substantially same range, the characteristic increases linearly as the distance from the central axis increases.

請求項3の発明は、請求項1に記載の水平センサにおいて、光源から入射した光を反射・屈折させ略均一に面放射するように、透明部材に凹凸又は溝形状を有する導光板を前記面発光部として配設したものである。 A third aspect of the present invention, the horizontal sensor according to claim 1, so as to be substantially uniformly surface radiation is reflected and refracted light incident from the light source, the surface light guide plate having an uneven or grooved shape transparent member It is arranged as a light emitting part .

請求項4の発明は、請求項1又は請求項に記載の水平センサにおいて、前記水準器に対して光源と受光素子を対向させると共に、前記光源の光軸と前記水準器の中心軸と前記受光素子の光軸とを略一直線上になるように配置し、前記光源と前記水準器の間に、拡散効果を有するように凹凸が形成されたシート状の部材を配設したものである。 According to a fourth aspect of the present invention, in the horizontal sensor according to the first or third aspect , a light source and a light receiving element are opposed to the level, and an optical axis of the light source, a central axis of the level, and the level sensor The optical axis of the light receiving element is disposed so as to be substantially in a straight line, and a sheet-like member having irregularities formed so as to have a diffusion effect is disposed between the light source and the level .

請求項5の発明は、請求項1又は請求項3又は請求項4のいずれか一項に記載の水平センサにおいて、前記光源を2つ以上備え、該光源を前記水準器の中心軸に対し略回転対称な位置に配置し、かつ該水準器に対して前記光源と前記受光素子を対向させると共に、前記水準器の中心軸と前記受光素子の光軸が略一直線上になり、前記光源の光軸と前記受光素子の光軸が略平行になるように配置したものである。 According to a fifth aspect of the present invention, in the horizontal sensor according to any one of the first, third, and fourth aspects, the horizontal sensor includes two or more light sources, and the light sources are substantially arranged with respect to a central axis of the level. The light source and the light receiving element are disposed at rotationally symmetric positions, and the central axis of the level and the optical axis of the light receiving element are substantially in a straight line, and the light of the light source The axis and the optical axis of the light receiving element are arranged so as to be substantially parallel .

請求項6の発明は、請求項1乃至請求項3のいずれか一項に記載の水平センサにおいて、前記水準器に対して光源と受光素子とは同じ側に配置され、光源からの光を入射し、この光を前記水準器に向けて照射する位置にガイドするように透明部材から成る光ガイドを備え、この光ガイドは、光源からの光を全反射させる全反射面を有し、前記全反射面は、水平方向に対して傾斜した状態で、前記光源と対向するように配置されているものである。 According to a sixth aspect of the present invention, in the horizontal sensor according to any one of the first to third aspects, the light source and the light receiving element are disposed on the same side with respect to the level, and the light from the light source is incident. A light guide made of a transparent member so as to guide the light to a position where the light is irradiated toward the level, the light guide having a total reflection surface that totally reflects light from a light source, The reflecting surface is disposed so as to face the light source while being inclined with respect to the horizontal direction .

請求項7の発明は、請求項1乃至請求項6のいずれか一項に記載の水平センサにおいて、入射面、側壁内面及び出射面の少なくとも1つの水準器の面に、光を拡散する微小な凹凸を形成したものである。 A seventh aspect of the present invention is the horizontal sensor according to any one of the first to sixth aspects, wherein the light is diffused on the surface of at least one level of the incident surface, the inner surface of the side wall, and the output surface. Concavities and convexities are formed .

請求項8の発明は、請求項1又は請求項2又は請求項6又は請求項7のいずれか一項に記載の水平センサにおいて、前記水準器の側面の受光素子から遠い側に光源からの光が入射する入光部を設け、前記入光部から入射した光を反射・屈折させ略均一に面照射させるように、水準器の受光素子のある側の反対側の面に微小な凹凸又は溝形状を備え、前記入光部は、前記光源に近い前記側面端部が窪むように形成されているものである。 The invention according to claim 8 is the horizontal sensor according to claim 1, claim 2, claim 6, or claim 7 , wherein the light from the light source is disposed on the side far from the light receiving element on the side surface of the level. Is provided with a light incident part, and a minute unevenness or groove is formed on the surface opposite to the light receiving element side of the level so that the light incident from the light incident part is reflected and refracted to irradiate the surface substantially uniformly. It has a shape, and the light incident part is formed such that the side end part close to the light source is depressed .

請求項9の発明は、請求項に記載の水平センサにおいて、前記光ガイドは、光源から射出した光が該光ガイドの入光面において概ね平行になるように、該入光面が凸型の円筒形状部とされ、この円筒形状部の軸が、光源の光軸と、光源の光軸が前記光ガイドの全反射面に対して反射してできる軸とを含む平面の法線に平行であり、前記円筒形状部は、凸形の円筒形状の入光面を有することにより、凸レンズの働きをするものである。 According to a ninth aspect of the present invention, in the horizontal sensor according to the sixth aspect, the light guide has a convex shape so that the light emitted from the light source is substantially parallel to the light incident surface of the light guide. The axis of this cylindrical part is parallel to the normal line of the plane including the optical axis of the light source and the axis formed by reflecting the optical axis of the light source with respect to the total reflection surface of the light guide. The cylindrical portion functions as a convex lens by having a convex cylindrical light incident surface .

請求項10の発明は、請求項に記載の水平センサにおいて、前記光ガイドは、導光板状の面発光部を備え、前記光ガイドの全反射面は、光源の光軸と、光源の光軸が該全反射面に対して反射してできる軸とを含む平面での断面形状が放物面を成し、この放物面の焦点が、前記面発光部の入り口付近になるように形成され、前記面発光部は、光を反射する凹凸や溝を有する反射面と、その平面より光を出射する光出射面とを有するものである。 According to a tenth aspect of the present invention, in the horizontal sensor according to the ninth aspect, the light guide includes a light-emitting plate-like surface light emitting portion, and the total reflection surface of the light guide includes an optical axis of the light source and light of the light source. A cross-sectional shape in a plane including an axis formed by reflection with respect to the total reflection surface forms a parabolic surface, and the focal point of the parabolic surface is formed in the vicinity of the entrance of the surface light emitting unit. The surface light emitting unit has a reflective surface having irregularities and grooves for reflecting light, and a light emitting surface for emitting light from the plane .

請求項11の発明は、請求項9又は請求項10に記載の水平センサにおいて、前記光ガイドは、前記円筒形状部の円筒面に沿って、前記円筒形状部の軸方向に光を拡散させる複数の溝が形成され、前記複数の溝の各溝は、前記円筒形状部の軸と直交する平面上にあり、かつ、前記円筒形状部の軸方向略等間隔に円筒面のほぼ全体に配設されているものである。 The invention of claim 11 is the horizontal sensor according to claim 9 or claim 10 , wherein the light guide diffuses light in the axial direction of the cylindrical portion along the cylindrical surface of the cylindrical portion. And each groove of the plurality of grooves is on a plane orthogonal to the axis of the cylindrical portion, and is disposed on substantially the entire cylindrical surface at substantially equal intervals in the axial direction of the cylindrical portion. It is what has been .

請求項12の発明は、請求項9乃至請求項11のいずれか一項に記載の水平センサにおいて、前記光ガイドは、前記面発光部の反射面に、前記円筒形状部の円筒の軸に平行に断面形状が三角形状の複数の溝が形成されており、かつ、その溝の光の入射側面の底角が20〜40°であり、前記光ガイドの面発光部の射出面と前記水準器の間に、頂角90°の三角プリズムが形成されたシート状部材を、プリズムの稜線が前記光ガイドの溝の稜線と平行になるように配置し、前記反射面の外側に、該反射面に平行に補助反射板が設けられているものである。 A twelfth aspect of the present invention is the horizontal sensor according to any one of the ninth to eleventh aspects, wherein the light guide is parallel to a reflection surface of the surface light emitting portion and a cylindrical axis of the cylindrical portion. A plurality of grooves having a triangular cross section are formed, and the base angle of the light incident side surface of the grooves is 20 to 40 °, and the exit surface of the surface light emitting portion of the light guide and the level The sheet-like member on which a triangular prism with an apex angle of 90 ° is formed is arranged so that the ridge line of the prism is parallel to the ridge line of the groove of the light guide, and the reflection surface is disposed outside the reflection surface. Auxiliary reflector is provided in parallel .

請求項13の発明は、請求項10乃至請求項12のいずれか一項に記載の水平センサにおいて、前記光ガイドの面発光部は、前記光ガイドの設計により大きさを自由に替えることができる構成を有し、前記面発光部の厚みが、0.7〜1.5mmであるものである。 According to a thirteenth aspect of the present invention, in the horizontal sensor according to any one of the tenth to twelfth aspects, the size of the surface light emitting portion of the light guide can be freely changed depending on the design of the light guide. It has a structure, and the thickness of the surface light emitting portion is 0.7 to 1.5 mm .

請求項14の発明は、請求項12又は請求項13に記載の水平センサにおいて、前記光ガイドの面発光部の反射面に形成された三角形状の溝と溝との間に、該面発光部に入射してきた光を全反射して、この光を該面発光部の入口付近から奥へと進行させる、該面発光部に平行な平面を形成したものである。 According to a fourteenth aspect of the present invention, in the horizontal sensor according to the twelfth or thirteenth aspect of the present invention, the surface light emitting portion is formed between the triangular grooves formed on the reflection surface of the surface light emitting portion of the light guide. A plane parallel to the surface light emitting portion is formed by totally reflecting the light incident on the surface of the surface light and causing the light to travel from the vicinity of the entrance of the surface light emitting portion to the back .

本発明によれば、受光素子上の投影光の光量分布が、気泡の中心軸付近に極小点を持ち、この気泡の半径と略同範囲において気泡の中心軸から離れるにつれて単調増加する特性を持つので、受光素子を小さくしても、気泡の移動時の光量変化を良好に検知することが可能となり、小型で高精度な光学透過式の水平センサを得ることができる。   According to the present invention, the light quantity distribution of the projection light on the light receiving element has a minimum point near the central axis of the bubble, and has a characteristic that monotonously increases as the distance from the central axis of the bubble is approximately the same as the radius of the bubble. Therefore, even if the light receiving element is made small, it is possible to satisfactorily detect a change in the amount of light when the bubble moves, and a small and highly accurate optical transmission type horizontal sensor can be obtained.

以下、本発明の第1の実施形態に係る水平センサについて、図1乃至図4を参照して説明する。図1及び図2において、水平センサは、光源である発光ダイオード1と、気泡21が残るように略透明な液体2wを封入した円筒容器2aを持つ水準器2と、気泡21の平行光による投影光(これを気泡影と呼ぶ)より小さい受光面積を持ち4つの受光素子31〜34(図4参照)からなる受光部3と、発光ダイオード1から入射した光を水準器2に導く導光板4とを備える。導光板4は、透明部材で形成され、光源からの光が入る入光面44と、入射光を全反射させガイドする光ガイドとなる反射面41と、入射光を面発光とするための微小な凹凸又は溝形状の凹凸形状部46を表面に備えた反射面42と、導光板4から光を出射する出光面43と、終端面45とを有する。この凹凸形状部46は、光を拡散するための加工がさらに施されている。ここで、導光板4は、導光板4を形成する透明部材の少なくとも1つの面に、面発光のための微小な凹凸又は溝形状を持っていればよい。また、発光ダイオード1と受光部3は、共に1つのプリント基板5に実装され、水準器2に対して同じ側に配置される。   Hereinafter, a horizontal sensor according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2, the horizontal sensor includes a light emitting diode 1 as a light source, a level 2 having a cylindrical container 2a in which a substantially transparent liquid 2w is sealed so that bubbles 21 remain, and projection of bubbles 21 by parallel light. A light receiving section 3 having a light receiving area smaller than light (referred to as bubble shadow) and comprising four light receiving elements 31 to 34 (see FIG. 4), and a light guide plate 4 for guiding light incident from the light emitting diode 1 to the level 2 With. The light guide plate 4 is formed of a transparent member, and includes a light incident surface 44 on which light from a light source enters, a reflection surface 41 serving as a light guide for totally reflecting and guiding incident light, and a minute light for making incident light surface emission. A reflective surface 42 having a rough surface or a groove-shaped uneven portion 46 on the surface, a light output surface 43 that emits light from the light guide plate 4, and a termination surface 45. The uneven portion 46 is further processed to diffuse light. Here, the light guide plate 4 should just have the micro unevenness | corrugation or groove | channel shape for surface light emission in the at least 1 surface of the transparent member which forms the light guide plate 4. FIG. The light emitting diode 1 and the light receiving unit 3 are both mounted on one printed circuit board 5 and arranged on the same side with respect to the level 2.

水準器2は、その中心軸と受光部3の光軸とが略一直線上に配設され、かつ受光部3と導光板4の出光面43との間に配置されている。水準器2の円筒容器2aは、その内側が空洞で、かつその内側の面の少なくとも1つの面が略回転対称の曲面形状を有し、受光部3に対向する出射面23を持つ上底部2bと、その底厚の両面に光の入射面22と出射面26を有する下底部2cと、側壁部2dとを備えている。また、導光板4の出光面43の面積は、対向する水準器2の入射面22の面積とほぼ同じになるように設定している。   The level 2 has its central axis and the optical axis of the light receiving unit 3 arranged in a substantially straight line, and is arranged between the light receiving unit 3 and the light exit surface 43 of the light guide plate 4. The cylindrical container 2a of the level 2 has a hollow inside, and at least one of the inside surfaces has a substantially rotationally symmetric curved surface shape, and has an upper bottom 2b having an emission surface 23 facing the light receiving unit 3. And a bottom part 2c having a light incident surface 22 and a light exit surface 26 on both sides of the bottom thickness, and a side wall part 2d. Further, the area of the light exit surface 43 of the light guide plate 4 is set to be substantially the same as the area of the incident surface 22 of the opposing level 2.

上記構成において、発光ダイオード1から照射された光は、導光板4の入光面44に入射される。この入射光は、導光板4内の光経路において、光を水準器2にガイドするための反射面41で全反射され、図中右向きに進行方向を変更させられて、反射面42と出光面43に挟まれた領域に入射する。この入射した光は、反射面42の表面に微小な凹凸ないしは溝状の凹凸形状部46が形成されているため、反射面42に当たった光は、反射面42で決定される方向へ反射して出光面43から出射され、水準器2に向かって進行する。この時、反射面42は、発光ダイオード1からの入射光を拡散し、出光面43全体から略均一な光量を持って、広い角度の光量分布を有する拡散光を照射する。このように、導光板4の出光面43は、面全体より拡散光を照射する面発光部を形成することになる。この出光面43の面発光部は、気泡21を平行光によって投影したときにできる気泡影の面積以上の大きさの発光面積を有し、水準器2に向かって拡散光を照射する。ここで、導光板4の反射面42と出光面43の間は0.5mm〜1.5mm程度あればよいため、導光板4の厚さを薄くできることにより、導光板4が水平センサの大型化の要因とはならずに済み、受光部を小型化しつつ、水平センサの厚さ(円筒形水準器の軸方向の大きさ)も小さく抑えることができる。   In the above configuration, the light emitted from the light emitting diode 1 enters the light incident surface 44 of the light guide plate 4. This incident light is totally reflected by the reflection surface 41 for guiding the light to the level 2 in the light path in the light guide plate 4 and the traveling direction is changed to the right in the figure, and the reflection surface 42 and the light exit surface The light enters the region sandwiched by 43. Since the incident light has minute irregularities or groove-shaped irregularities 46 formed on the surface of the reflecting surface 42, the light hitting the reflecting surface 42 is reflected in the direction determined by the reflecting surface 42. The light exits from the light exit surface 43 and travels toward the level 2. At this time, the reflecting surface 42 diffuses incident light from the light emitting diode 1 and irradiates diffused light having a light amount distribution with a wide angle from the entire light emitting surface 43 with a substantially uniform light amount. As described above, the light exit surface 43 of the light guide plate 4 forms a surface light emitting portion that irradiates diffused light from the entire surface. The surface light emitting portion of the light exit surface 43 has a light emission area larger than the area of the bubble shadow formed when the bubble 21 is projected by parallel light, and irradiates diffused light toward the level 2. Here, since it is sufficient that the distance between the reflective surface 42 and the light exit surface 43 of the light guide plate 4 is about 0.5 mm to 1.5 mm, the thickness of the light guide plate 4 can be reduced, so that the light guide plate 4 is increased in size of the horizontal sensor. The thickness of the horizontal sensor (the size in the axial direction of the cylindrical level) can be kept small while reducing the size of the light receiving unit.

上記出光面43全体から射出した拡散光は、出光面43に対向する水準器2の入射面22に入射し、水準器2内の液体2wと気泡21との界面に当たり、この界面で屈折又は全反射され、水準器2の出射面23から射出され、受光部3の受光素子31〜34に入射する。この拡散光によって照射された気泡21の投影光は、受光部3に投影され、受光素子31〜34で受光される。そして、水準器2が傾斜し水準器2内の気泡21が移動すると、受光素子31〜34に投影された気泡21の気泡影の位置が変化し、その結果、受光素子31〜34の受光量が変化する。従って、この変化量を読み取ることにより傾斜角を検出することができる。   The diffused light emitted from the entire light exit surface 43 is incident on the entrance surface 22 of the level 2 opposite to the light exit surface 43 and hits the interface between the liquid 2w and the bubble 21 in the level 2 and is refracted or totally reflected at this interface. The light is reflected, emitted from the emission surface 23 of the level 2, and enters the light receiving elements 31 to 34 of the light receiving unit 3. The projection light of the bubble 21 irradiated with the diffused light is projected onto the light receiving unit 3 and received by the light receiving elements 31 to 34. When the level 2 tilts and the bubble 21 in the level 2 moves, the position of the bubble shadow of the bubble 21 projected on the light receiving elements 31 to 34 changes, and as a result, the amount of light received by the light receiving elements 31 to 34. Changes. Therefore, the inclination angle can be detected by reading the amount of change.

図3(a)、(b)を参照して、本実施形態の水平センサの受光部3における受光分布状態を説明する。図3(a)は、受光部3における平面上の2次元的受光量分布(白黒の濃淡分布)を示し、図3(b)は、気泡21の中心を基準とする水平方向の1次元的光量分布を示す。   With reference to FIG. 3 (a), (b), the light reception distribution state in the light-receiving part 3 of the horizontal sensor of this embodiment is demonstrated. FIG. 3A shows a two-dimensional received light amount distribution (black and white distribution) on a plane in the light receiving unit 3, and FIG. 3B shows a one-dimensional horizontal direction with the center of the bubble 21 as a reference. The light quantity distribution is shown.

2次元的光量分布は、出光面43からの拡散光により照射された気泡21の投影光を受光素子31〜34により検出した光量により定まり、受光量が多いほど白く、少ないほど黒く示される。出光面43からの拡散光は、平行光と異なり出光面43から前方に、ほぼあらゆる角度で照射される。従って、この拡散光は、水準器2の入射面22から、広い角度範囲を持って水準器2内の気泡21に入射する。このとき、この入射光は、気泡21表面で反射、屈折されるが、気泡21が球形なので、その球面上の接線に直角に入射した光は直進するが、それ以外は液体2wと気泡21の間で屈折、反射される。このため、2次元受光量分布は、図3(a)のように、気泡21の中心と外周部で小さく(黒い部分)、中心と外周部の間に最大点(白い部分)を持つリング状の分布となる。   The two-dimensional light amount distribution is determined by the amount of light detected by the light receiving elements 31 to 34 for the projection light of the bubble 21 irradiated by the diffused light from the light exit surface 43, and is whiter as the received light amount is larger and black as the smaller the received light amount. Diffused light from the light exit surface 43 is irradiated forward from the light exit surface 43 at almost any angle unlike parallel light. Therefore, this diffused light enters the bubble 21 in the level 2 from the incident surface 22 of the level 2 with a wide angle range. At this time, the incident light is reflected and refracted on the surface of the bubble 21, but since the bubble 21 is spherical, light incident at right angles to the tangent on the spherical surface travels straight, but otherwise the liquid 2 w and the bubble 21 Refracted and reflected between. Therefore, as shown in FIG. 3A, the two-dimensional received light amount distribution is small (black part) at the center and outer peripheral part of the bubble 21, and has a maximum point (white part) between the center and outer peripheral part. Distribution.

これにより、投影光の水平方向位置での光量分布は、図3(b)に示すように、気泡21の中心軸付近に極小点をもち、略気泡21の半径と同範囲において気泡21の中心軸(気泡の中心)から離れるにつれて単調増加するような特性を得ることができる。この特性によって、受光部3を気泡21の直径の気泡影21aより小さくしても、気泡21の微小移動時において、受光素子31〜34により受光量変化を検出することが可能となる。また、この単調増加特性を中心軸から離れるにつれて直線的増加する特性を持つように構成(例えば、電気的補正等を含む)することにより、気泡の位置による変化を直線的に検出できるので、検知の直線性が良くなり、傾斜検知精度の誤差をより少なくすることが可能となる。   Thereby, the light quantity distribution at the horizontal position of the projection light has a minimum point near the central axis of the bubble 21 as shown in FIG. 3B, and the center of the bubble 21 in the same range as the radius of the bubble 21. A characteristic that monotonously increases as the distance from the axis (the center of the bubble) increases can be obtained. With this characteristic, even if the light receiving unit 3 is smaller than the bubble shadow 21a having the diameter of the bubble 21, it is possible to detect a change in the amount of received light by the light receiving elements 31 to 34 during the minute movement of the bubble 21. In addition, by configuring this monotonically increasing characteristic to have a characteristic that increases linearly as it moves away from the central axis (including electrical correction, etc.), changes due to the position of bubbles can be detected linearly. As a result, the inclination detection accuracy error can be reduced.

図4(a)、(b)を参照して、上記受光量分布を持つ水平センサの気泡21移動時における受光量検出の様子をさらに詳細に説明する。図4(a)は、上記本実施形態の水平センサの上面から見た場合における平面上の気泡21と受光部3の受光素子31〜34との位置関係を示す。導光射4の出光面43の面発光部からの拡散光は、水準器2内の気泡21を照射し、受光部3を構成する4個の略正方形の受光素子である受光ダイオード31〜34で受光される。4個の受光ダイオード31〜34は、受光面が全体として正方形状になるように受光面の中心に対して対称に配列されて縦、横寸法が、気泡21の直径の大きさより小さくなるように設定されている。そして、受光面で受光した光の検出量に対応した電圧をそれぞれ出力し、これらの電圧を比較することにより、傾斜度を検出することができる。水平センサの水平度が保たれ、受光部3の受光面の中心に気泡21の気泡影の中心が一致すると、4個の受光ダイオード31〜34の受光レベルが一致する。   With reference to FIGS. 4 (a) and 4 (b), the manner in which the received light amount is detected when the bubble 21 of the horizontal sensor having the received light amount distribution moves will be described in more detail. FIG. 4A shows a positional relationship between the bubble 21 on the plane and the light receiving elements 31 to 34 of the light receiving unit 3 when viewed from the upper surface of the horizontal sensor of the present embodiment. The diffused light from the surface light emitting part of the light exit surface 43 of the light guide 4 irradiates the bubble 21 in the level 2, and the light receiving diodes 31 to 34 which are four substantially square light receiving elements constituting the light receiving part 3. Is received. The four light receiving diodes 31 to 34 are arranged symmetrically with respect to the center of the light receiving surface so that the light receiving surface becomes a square shape as a whole, so that the vertical and horizontal dimensions are smaller than the diameter of the bubble 21. Is set. And the voltage corresponding to the detection amount of the light received by the light receiving surface is output, and the inclination can be detected by comparing these voltages. When the level of the horizontal sensor is maintained and the center of the bubble shadow of the bubble 21 coincides with the center of the light receiving surface of the light receiving unit 3, the light receiving levels of the four light receiving diodes 31 to 34 match.

図4(b)は、上記水平センサにおいて、受光部3を気泡影21aより小さくした場合において、気泡影21aが受光面中心から移動したとき、その移動前後における受光面の光量分布の変化を示す。受光量分布P1は、気泡21の移動が無いときの分布であり、受光量分布P2(破線)は、気泡21が移動し、気泡影21aが気泡影21bにシフトしたときの分布である。受光量分布P1は、図3(a)、(b)で示したように、気泡21の中心軸付近に極小点を持ち、この気泡の半径と略同範囲において気泡21の中心軸から離れるにつれて直線的に単調増加する特性を持ち、中心から左右に増加する略V字カーブの形をなす。従って、受光量分布P1は、受光面の中心で最小となり、中心から離れると必ず、受光レベルが変化する。水平状態で気泡21の移動前は、受光素子31〜34の受光量は、すべて同じで、受光量分布P1のレベルl1でバランスが取られている。一方、気泡21が移動した移動後は、受光量分布P1が受光量分布P2にシフトするので、受光素子31〜32の受光量は、受光量分布P2のレベルl2となり、受光素子33〜34の受光量は、受光量分布P2のレベルl3となり大きくずれてくる。このように、受光素子31〜32と受光素子33〜34で受光レベルが異なってくることにより、受光ダイオード31〜34のそれぞれで受光する受光量が変化し、これにより移動が検知される。これは、他の方向にずれても同様に検知される。   FIG. 4B shows a change in the light amount distribution on the light receiving surface before and after the movement of the bubble shadow 21a when the light receiving unit 3 is smaller than the bubble shadow 21a in the horizontal sensor. . The received light amount distribution P1 is a distribution when the bubble 21 does not move, and the received light amount distribution P2 (broken line) is a distribution when the bubble 21 moves and the bubble shadow 21a shifts to the bubble shadow 21b. As shown in FIGS. 3A and 3B, the received light amount distribution P1 has a minimum point in the vicinity of the central axis of the bubble 21, and as the distance from the central axis of the bubble 21 increases in the same range as the radius of the bubble. It has the characteristic of increasing monotonously in a straight line, and forms a substantially V-shaped curve that increases from the center to the left and right. Accordingly, the received light amount distribution P1 is minimum at the center of the light receiving surface, and the received light level always changes with distance from the center. Before the bubble 21 moves in the horizontal state, the light receiving amounts of the light receiving elements 31 to 34 are all the same and balanced at the level 11 of the light receiving amount distribution P1. On the other hand, after the movement of the bubble 21, the received light amount distribution P1 shifts to the received light amount distribution P2, so that the received light amount of the light receiving elements 31 to 32 becomes the level 12 of the received light amount distribution P2, and the light receiving elements 33 to 34 The amount of received light is greatly shifted to level 13 of the received light amount distribution P2. Thus, when the light receiving levels of the light receiving elements 31 to 32 and the light receiving elements 33 to 34 are different, the amount of light received by each of the light receiving diodes 31 to 34 is changed, thereby detecting the movement. This is detected in the same way even if it deviates in other directions.

従って、気泡21の微小移動に対して、各受光素子31〜34における受光量の変化を細かく検出することができる。そして、各受光素子31〜34において、受光された光量に対応した電圧をそれぞれ出力し、これらの電圧を比較することにより、より微小な傾斜度を検出することが可能となる。   Therefore, the change in the amount of light received by each of the light receiving elements 31 to 34 can be finely detected with respect to the minute movement of the bubble 21. Each of the light receiving elements 31 to 34 outputs a voltage corresponding to the amount of light received, and compares these voltages to detect a finer inclination.

上記のように、本実施形態の水平センサは、大きい実装面積を占める受光部3を、気泡21の気泡影21aより小さくし、拡散光の照射できる薄型の面発光部を形成したことにより、受光素子上の投影光の光量分布が、気泡21の中心軸付近に極小点を持ち、この気泡21の半径と略同範囲において気泡21の中心軸から離れるにつれて単調増加する光分布特性を得る光学系を実現することができ、小型で高精度のセンサを得ることができる。   As described above, the horizontal sensor according to the present embodiment is configured so that the light receiving unit 3 occupying a large mounting area is made smaller than the bubble shadow 21a of the bubble 21 and a thin surface light emitting unit capable of irradiating diffused light is formed. An optical system in which the light amount distribution of the projection light on the element has a minimum point near the central axis of the bubble 21 and obtains a light distribution characteristic that monotonously increases as the distance from the central axis of the bubble 21 is approximately the same as the radius of the bubble 21. Therefore, a small and highly accurate sensor can be obtained.

また、上記水平センサにおいて、拡散光の形成において、導光板4の出光面43と水準器2の入射面22の間に光を拡散する機能を有する微小な凹凸が設けられたシート状の部材6(以下、シート状部材と略す)(後述の図5(a)参照)を配置することにより、導光板4の反射面42の凹凸形状又は溝状の凹凸形状部46に拡散用の加工をすることが不要となり、その分、出光面43全体からの照射光量をより均一にすることが可能となる。   In the horizontal sensor, in the formation of diffused light, a sheet-like member 6 provided with minute irregularities having a function of diffusing light between the light exit surface 43 of the light guide plate 4 and the incident surface 22 of the level 2. By disposing (hereinafter abbreviated as a sheet-like member) (see FIG. 5A described later), the concavo-convex shape of the reflective surface 42 of the light guide plate 4 or the groove-shaped concavo-convex shape portion 46 is processed for diffusion. Therefore, the amount of light emitted from the entire light exit surface 43 can be made more uniform.

また、上記シート状部材6を配置する代わりに、水準器2の入射面22を粗面にすることにより拡散光を形成してもよい。   Further, instead of arranging the sheet-like member 6, diffused light may be formed by making the incident surface 22 of the level 2 rough.

さらに、導光板4の反射面41や反射面42にシート状又は板状の高反射部材を配設することで、入光面44に入射する光量と出光面43から射出する光量の比を大きくすることができる。これにより、必要な傾斜検知精度を得るため光源となる発光ダイオード1の電流を小さくすることができ、水平センサの低消費電力化が可能となる。また、本実施形態のように、発光ダイオード1と受光部3を水準器2に対して同じ側に配置し、一般的に平板状をなす導光板4を、光源から面発光部まで全反射面を持つ光ガイド部分(ここでは、反射面41を含む入光面44から反射板42に至る部分)を増設した構成にすれば、水準器軸方向のセンサの大きさ(厚さ)を大幅に小さくすることが可能となる。また、ここでは、発光ダイオード1と受光部3を水準器2に対して同じ側に配置した例を示したが、これに限定されるものでない。例えば、前記両者を水準器軸方向に略一直線上に配置した場合は、水準器2の軸方向と直交する水平方向における水平センサの大きさを小さくすることができる。   Further, by arranging a sheet-like or plate-like highly reflecting member on the reflecting surface 41 or the reflecting surface 42 of the light guide plate 4, the ratio of the amount of light incident on the light incident surface 44 and the amount of light emitted from the light emitting surface 43 is increased. can do. As a result, the current of the light emitting diode 1 serving as a light source can be reduced in order to obtain the required tilt detection accuracy, and the power consumption of the horizontal sensor can be reduced. Further, as in the present embodiment, the light-emitting diode 1 and the light-receiving unit 3 are arranged on the same side with respect to the level 2, and the light guide plate 4 generally having a flat plate shape is a total reflection surface from the light source to the surface light-emitting unit. If the construction of the light guide portion having a portion (here, the portion from the light incident surface 44 including the reflection surface 41 to the reflection plate 42) is increased, the size (thickness) of the sensor in the direction of the level of the spirit level is greatly increased. It can be made smaller. Moreover, although the example which has arrange | positioned the light emitting diode 1 and the light-receiving part 3 on the same side with respect to the level 2 was shown here, it is not limited to this. For example, when both are arranged on a substantially straight line in the level axis direction, the size of the horizontal sensor in the horizontal direction perpendicular to the axis direction of the level 2 can be reduced.

次に、本発明の第2の実施形態に係る水平センサについて、図5(a)、(b)を参照して説明する。水平センサは、光源である発光ダイオード1と、気泡21が残るように略透明な液体2wを封入した円筒容器2aを持つ水準器2と、気泡21の平行光による投影光より小さい受光面積を持つ4つの受光素子31〜34からなる受光部3と、上記シート状部材6で構成される。発光ダイオード1の光軸と、水準器2の中心軸と、受光部3の光軸は、略一直線上になるように配設され、かつ水準器2が発光ダイオード1と受光部3の間に配置されている。さらに、光拡散用のシート状部材6が、発光ダイオード1と水準器2の間に配置され、面発光部として機能する。   Next, a horizontal sensor according to a second embodiment of the present invention will be described with reference to FIGS. The horizontal sensor has a light receiving area smaller than the projection light produced by the parallel light of the bubble 21, the light emitting diode 1 as a light source, the level 2 having a cylindrical container 2 a filled with a substantially transparent liquid 2 w so that the bubble 21 remains. The light receiving unit 3 includes four light receiving elements 31 to 34 and the sheet-like member 6. The optical axis of the light emitting diode 1, the central axis of the level 2, and the optical axis of the light receiving unit 3 are arranged so as to be substantially in a straight line, and the level 2 is interposed between the light emitting diode 1 and the light receiving unit 3. Has been placed. Further, a light diffusing sheet-like member 6 is disposed between the light emitting diode 1 and the level 2 and functions as a surface light emitting portion.

水準器2の円筒容器2aは、その内側が空洞で、かつその内側の面の少なくとも1つの面が略回転対称の曲面形状を有し、受光部3に対向する出射面23を持つ上底部2bと、その底厚の両面に光の入射面22と出射面26を有する下底部2cと、側壁部2dとを備えている。なお、発光ダイオード1、シート状部材6、水準器2及び受光素子31〜34は、図示していないフレームにより組み立てられる。   The cylindrical container 2a of the level 2 has a hollow inside, and at least one of the inside surfaces has a substantially rotationally symmetric curved surface shape, and has an upper bottom 2b having an emission surface 23 facing the light receiving unit 3. And a bottom part 2c having a light incident surface 22 and a light exit surface 26 on both sides of the bottom thickness, and a side wall part 2d. The light emitting diode 1, the sheet-like member 6, the level 2 and the light receiving elements 31 to 34 are assembled by a frame not shown.

上記構成において、発光ダイオード1から照射された光11は、シート状部材6で拡散されて拡散光12となる。この拡散光12は、水準器2の入射面22に入射され、水準器2内の液体2wと気泡21の界面に当たり、その界面で屈折又は全反射し水準器2の出射面23から射出されて、受光素子31〜34に入射する。これにより、気泡21の投影光が受光素子31〜34に投影され、受光量が検出される。   In the above configuration, the light 11 emitted from the light emitting diode 1 is diffused by the sheet-like member 6 to become diffused light 12. The diffused light 12 is incident on the incident surface 22 of the level 2, hits the interface between the liquid 2 w and the bubble 21 in the level 2, is refracted or totally reflected at the interface, and is emitted from the exit surface 23 of the level 2. , Enters the light receiving elements 31 to 34. Thereby, the projection light of the bubble 21 is projected on the light receiving elements 31 to 34, and the amount of received light is detected.

このとき、気泡21が照射される光は、発光ダイオード1の光をシート状部材6により拡散された拡散光であるため、受光部3において、前記図3(a)、(b)に示されたのと同様の光量分布特性が得られる。従って、水準器2が傾斜し、水準器2内の気泡21が微小移動すると、前記同様、その変化量を読み取ることができ、傾斜角を検出することができる。   At this time, the light irradiated by the bubbles 21 is diffused light obtained by diffusing the light of the light-emitting diode 1 by the sheet-like member 6, and therefore is shown in FIGS. 3A and 3B in the light receiving unit 3. The same light distribution characteristics as those obtained can be obtained. Therefore, when the level 2 is tilted and the bubbles 21 in the level 2 are slightly moved, the change amount can be read and the tilt angle can be detected as described above.

このように、本実施形態の水平センサは、発光ダイオード1と水準器2の間にシート状部材6を配設し、受光部3の受光面積を気泡21の気泡影より小さくすることにより、前記同様の光量分布特性が得られる。従って、この光量分布特性により、気泡21の微小移動時における受光素子31〜34の光量変化を検出でき、高精度の検知特性を得ることができる。   As described above, the horizontal sensor of the present embodiment includes the sheet-like member 6 between the light emitting diode 1 and the level 2, and makes the light receiving area of the light receiving unit 3 smaller than the bubble shadow of the bubble 21. Similar light quantity distribution characteristics can be obtained. Therefore, with this light quantity distribution characteristic, it is possible to detect a change in the light quantity of the light receiving elements 31 to 34 during the minute movement of the bubble 21, and to obtain a highly accurate detection characteristic.

また、上記の高精度の検知特性を確保しつつ、センサに用いる電子部品の中でも広い実装面積を必要とする受光部3を小さくすることができるため、実装基板の幅、長さを小さくでき、水平センサの小型化に寄与することができる。さらに、シート状部材6で効率よく拡散光を形成できるので、必要な傾斜検知精度を得るための発光ダイオード等の光源の電流を小さくでき、低消費電力化が可能となる。また、水準器2の入射面22を粗面にすることにより、水準器2の入射面22に入射する光の拡がり角を一層大きくすることができるため、より鮮明で受光感度の高い光量分布特性を得ることができ、受光部3をより小さくすることを可能とする。   In addition, since the light receiving unit 3 that requires a large mounting area among the electronic components used in the sensor can be reduced while ensuring the high-precision detection characteristics, the width and length of the mounting substrate can be reduced. This can contribute to downsizing of the horizontal sensor. Furthermore, since the diffused light can be efficiently formed by the sheet-like member 6, the current of a light source such as a light emitting diode for obtaining the required tilt detection accuracy can be reduced, and the power consumption can be reduced. Further, by making the incident surface 22 of the level 2 rough, it is possible to further increase the divergence angle of light incident on the incident surface 22 of the level 2, so that the light quantity distribution characteristics that are clearer and have higher light receiving sensitivity. Thus, the light receiving unit 3 can be made smaller.

次に、本発明の第3の実施形態に係る水平センサについて、図6(a)、(b)を参照して説明する。水平センサは、光源としての4つの発光ダイオード1と、気泡21が残るように略透明な液体2wを封入した円筒容器2aを持つ水準器2と、気泡21の平行光による投影光より小さい受光面積を持つ4つの受光素子31〜34からなる受光部3を備えている。4つの発光ダイオード1は、水準器2の中心軸に対して略回転対称になるように配置されている。   Next, a horizontal sensor according to a third embodiment of the present invention will be described with reference to FIGS. The horizontal sensor includes four light emitting diodes 1 as light sources, a level 2 having a cylindrical container 2a in which a substantially transparent liquid 2w is encapsulated so that bubbles 21 remain, and a light receiving area smaller than the projection light by the parallel light of the bubbles 21. The light-receiving part 3 which consists of the four light-receiving elements 31-34 having are provided. The four light emitting diodes 1 are arranged so as to be substantially rotationally symmetric with respect to the central axis of the level 2.

水準器2は、水準器2の中心軸と受光部3の光軸が略一直線上になるように配設され、かつ発光ダイオード1と受光部3の間に配置されている。水準器2の円筒容器2aは、その内側が空洞で、かつその内側の面の1つの面が略回転対称の曲面形状を有し、受光部3に対向する出射面23を持つ上底部2bと、その底厚の両面に光の入射面22と出射面26を有する下底部2cと、側壁部2dとを備えている。   The level 2 is disposed so that the central axis of the level 2 and the optical axis of the light receiving unit 3 are substantially in a straight line, and is disposed between the light emitting diode 1 and the light receiving unit 3. The cylindrical container 2a of the level 2 has an upper bottom portion 2b having a cavity on the inside and a curved surface shape in which one of the inner surfaces is substantially rotationally symmetric and having an emission surface 23 facing the light receiving portion 3. In addition, a lower bottom portion 2c having a light incident surface 22 and an output surface 26 and a side wall portion 2d are provided on both surfaces of the bottom thickness.

上記構成において、4つの発光ダイオード1から照射された各光11は、光源として複数の発光ダイオード1を使用することにより、水準器2の入射面22に入射する光の拡がり角を全体としてさらに大きくすることができ、拡散光を形成する。この拡散光12は、水準器2の入射面22に入射され、水準器2内の液体2wと気泡21の界面に当たり、その界面で屈折又は全反射し水準器2の出射面23から射出されて、受光素子31〜34に入射する。これにより、気泡21の投影光が受光素子31〜34に投影され、受光量が検出される。   In the above configuration, each light 11 emitted from the four light emitting diodes 1 uses a plurality of light emitting diodes 1 as light sources, thereby further increasing the spread angle of light incident on the incident surface 22 of the level 2 as a whole. Can form diffuse light. The diffused light 12 is incident on the incident surface 22 of the level 2, hits the interface between the liquid 2 w and the bubble 21 in the level 2, is refracted or totally reflected at the interface, and is emitted from the exit surface 23 of the level 2. , Enters the light receiving elements 31 to 34. Thereby, the projection light of the bubble 21 is projected on the light receiving elements 31 to 34, and the amount of received light is detected.

このとき、気泡21が照射される光は、複数の発光ダイオード1による拡散光であるため、受光部3において、前記図3(a)、(b)に示されたのと同様の光量分布特性が得られる。従って、水準器2が傾斜し、水準器2内の気泡21が微小移動すると、前記同様に、その変化量を読み取ることができ、傾斜角を検出することができる。   At this time, since the light irradiated by the bubbles 21 is diffused light from the plurality of light emitting diodes 1, the light amount distribution characteristics similar to those shown in FIGS. 3A and 3B in the light receiving unit 3. Is obtained. Accordingly, when the level 2 is tilted and the bubbles 21 in the level 2 are slightly moved, the change amount can be read and the tilt angle can be detected as described above.

このように、本実施形態の水平センサは、複数の発光ダイオード1を用いて入射光量を大きくし、光の拡がり角を大きくできるため、上記検知特性を確保しつつ、水平センサの電子部品の中でも広い実装面積が必要な受光部3をさらに小さくすることができるため、センサの高感度化、小型化に寄与することができる。また、光源の面積が実質広くなることにより、光源を水準器に接近させることができ、さらに薄型、小型化に寄与できる。   As described above, the horizontal sensor of the present embodiment can increase the amount of incident light and increase the light divergence angle by using the plurality of light emitting diodes 1. Therefore, among the electronic components of the horizontal sensor while ensuring the above detection characteristics. Since the light receiving portion 3 that requires a large mounting area can be further reduced, it is possible to contribute to high sensitivity and downsizing of the sensor. Further, since the area of the light source is substantially widened, the light source can be brought close to the level, and further contribute to reduction in thickness and size.

また、発光ダイオード1と水準器2の間に上記シート状部材6を配置したり、水準器2の入射面22を粗面にすることにより、水準器2に入射する光量の均一性を高め、傾斜検知精度をさらに向上させることが可能となる。   Further, by arranging the sheet-like member 6 between the light emitting diode 1 and the level 2 or by making the incident surface 22 of the level 2 rough, the uniformity of the amount of light incident on the level 2 is improved, It is possible to further improve the inclination detection accuracy.

次に、本発明の第4の実施形態に係る水平センサについて、図7(a)、(b)を参照して説明する。図7(a)、(b)において、水平センサ10は、光源である発光ダイオード1と、気泡21が残るように略透明な液体2wを封入した円筒容器2aを持つ水準器2と、発光ダイオード1からの光を水準器2まで誘導する透明部材よりなる光ガイド7と、上記シート状部材6と、気泡21の平行光による投影光より小さい受光面積を持つ4つの受光素子31〜34からなる受光部3を備えている。   Next, a horizontal sensor according to a fourth embodiment of the present invention will be described with reference to FIGS. 7A and 7B, the horizontal sensor 10 includes a light emitting diode 1 as a light source, a level 2 having a cylindrical container 2a in which a substantially transparent liquid 2w is sealed so that bubbles 21 remain, and a light emitting diode. A light guide 7 made of a transparent member that guides light from 1 to the level 2, the sheet-like member 6, and four light receiving elements 31 to 34 having a light receiving area smaller than the projection light by the parallel light of the bubbles 21. A light receiving unit 3 is provided.

光ガイド7は、発光ダイオード1からからの光を入射する入光面74と、この入射光を全反射させる反射面71、72と、反射光を出射する出光面73を有している。また、発光ダイオード1と受光部3は、同じプリント基板5に実装され、水準器2に対して同じ側に配置される。   The light guide 7 has a light incident surface 74 on which light from the light emitting diode 1 is incident, reflection surfaces 71 and 72 that totally reflect the incident light, and a light output surface 73 that emits the reflected light. The light emitting diode 1 and the light receiving unit 3 are mounted on the same printed circuit board 5 and arranged on the same side with respect to the level 2.

水準器2は、その中心軸と受光部3の光軸が略一直線上になるように配設され、かつ受光部3と光ガイド7の出光面73との間に配置されている。さらに、光ガイド7の出光面73と水準器2の間に、上記シート状部材6が配置されている。水準器2の円筒容器2aは、水準器2の円筒容器2aは、その内側が空洞で、かつその内側の面の少なくとも1つの面が略回転対称の曲面形状を有し、受光部3に対向する出射面23を持つ上底部2bと、その底厚の両面に光の入射面22と出射面26を有する下底部2cと、側壁部2dとを備えている。   The level 2 is disposed so that the central axis thereof and the optical axis of the light receiving unit 3 are substantially aligned, and is disposed between the light receiving unit 3 and the light exit surface 73 of the light guide 7. Further, the sheet-like member 6 is disposed between the light exit surface 73 of the light guide 7 and the level 2. The cylindrical container 2a of the spirit level 2 is opposite to the light receiving unit 3 in that the cylindrical container 2a of the spirit level 2 has a hollow inside, and at least one of the inner faces has a substantially rotationally symmetric curved shape. The upper bottom portion 2b having the outgoing surface 23, the lower bottom portion 2c having the light incident surface 22 and the outgoing surface 26 on both sides of the bottom thickness, and the side wall portion 2d are provided.

発光ダイオード1から照射された光は、光ガイド7の入光面74に入射し、入光面74に入射した光は、光ガイド7内の反射面71で全反射され、図中右向きに進行方向を変化させられ、さらに反射面72で全反射されて出光面73から射出する。出光面73から射出された光は、シート状部材6で拡散され、拡散光となって水準器2の入射面22に入射される。この拡散光は、液体2wと気泡21の界面に当たると、その界面で屈折又は全反射され、水準器2の出射面23から射出されて、受光素子31〜34に入射する。これにより、気泡21の陰影が発光ダイオード1からの光によって受光素子31〜34に投影され、受光量が検出される。   The light emitted from the light emitting diode 1 is incident on the light incident surface 74 of the light guide 7, and the light incident on the light incident surface 74 is totally reflected by the reflective surface 71 in the light guide 7 and proceeds rightward in the figure. The direction is changed, and the light is further totally reflected by the reflecting surface 72 and emitted from the light emitting surface 73. The light emitted from the light exit surface 73 is diffused by the sheet-like member 6 and becomes diffused light and enters the entrance surface 22 of the level 2. When this diffused light hits the interface between the liquid 2w and the bubble 21, it is refracted or totally reflected at the interface, exits from the exit surface 23 of the level 2, and enters the light receiving elements 31-34. Thereby, the shadow of the bubble 21 is projected onto the light receiving elements 31 to 34 by the light from the light emitting diode 1, and the amount of received light is detected.

このように、光ガイド7を設け、その出光面73と水準器2の間にシート状部材6を配設することにより、水準器2の入射面22に入射する光の拡がり角を大きくすることができ、前記と同様の光量分布特性を得ることができる。従って、この光量分布特性により、水準器2が傾斜し、水準器2内の気泡21が微小移動すると、前記同様に、その変化量を読み取ることができ、傾斜角を検出することができる。   Thus, by providing the light guide 7 and disposing the sheet-like member 6 between the light exit surface 73 and the level 2, the spread angle of light incident on the incident surface 22 of the level 2 is increased. The same light quantity distribution characteristics as described above can be obtained. Therefore, when the level 2 is tilted and the bubble 21 in the level 2 is slightly moved by this light quantity distribution characteristic, the change amount can be read and the tilt angle can be detected as described above.

これにより、本実施形態の水平センサは、上記検知特性を確保しつつ、水平センサに使用する電子部品の中でも広い実装面積が必要な受光部3を小さくすることができるため、水平センサの小型化に寄与することができる。また、光ガイド7を用いて入射光を効率良く伝送できるため、光ガイド7の入光面74から入射する光量と出光面73から射出する光量の比を大きくすることができると共に、シート状部材6で効率良く拡散光を形成できる。このため、必要な傾斜検知精度を得るための発光ダイオード1の電流を小さくすることができ、水平センサの低消費電力化が可能となる。また、光ガイド7の出光部分を平板状にして、いわゆる導光板のようにしてもよく、この場合は、第1の実施形態と同様のものが得られる。   As a result, the horizontal sensor of the present embodiment can reduce the size of the horizontal sensor because the light receiving unit 3 that requires a large mounting area among the electronic components used in the horizontal sensor can be reduced while ensuring the above detection characteristics. Can contribute. Further, since the incident light can be efficiently transmitted using the light guide 7, the ratio of the amount of light incident from the light incident surface 74 of the light guide 7 to the amount of light emitted from the light exit surface 73 can be increased, and a sheet-like member can be used. 6, diffused light can be efficiently formed. For this reason, the current of the light emitting diode 1 for obtaining the required tilt detection accuracy can be reduced, and the power consumption of the horizontal sensor can be reduced. In addition, the light output portion of the light guide 7 may be formed in a flat plate shape so as to be a so-called light guide plate. In this case, the same one as in the first embodiment is obtained.

次に、本発明の第5の実施形態に係る水平センサについて、図8を参照して説明する。図8において、水平センサは、光源である発光ダイオード1と、気泡21が残るように略透明な液体2wを封入した円筒容器2aを持つ水準器2と、気泡21の平行光による投影光より小さい受光面積を持つ4つの受光素子31〜34からなる受光部3を備え、水準器2の気泡が摺動する面以外の少なくとも1つの面に、光を拡散する微小な凹凸が形成されている。発光ダイオード1の光軸と、水準器2の中心軸と、受光部3の光軸とは、互いに略一直線上になるように配置され、かつ水準器2が発光ダイオード1と受光部3の間に配置されている。   Next, a horizontal sensor according to a fifth embodiment of the present invention will be described with reference to FIG. In FIG. 8, the horizontal sensor is smaller than the light emitted from the light emitting diode 1 as a light source, the level 2 having a cylindrical container 2 a in which a substantially transparent liquid 2 w is sealed so that the bubbles 21 remain, and the parallel light of the bubbles 21. A light receiving unit 3 including four light receiving elements 31 to 34 having a light receiving area is provided, and minute unevenness for diffusing light is formed on at least one surface other than the surface on which the bubble of the level 2 slides. The optical axis of the light emitting diode 1, the central axis of the level 2, and the optical axis of the light receiving unit 3 are arranged so as to be substantially in line with each other, and the level 2 is between the light emitting diode 1 and the light receiving unit 3. Is arranged.

水準器2は、気泡21が摺動する面以外の面、例えば、入射面22、側壁内面24、出射面26の少なくとも1つの面に、光を拡散させるための微小な凹凸が形成されている。従って、今、出射面26に微小な凹凸が形成されているとすると、発光ダイオード1から照射された光は、水準器2の入射面22に入射し、その出射面26で拡散されて、拡散光となって水準器2の中の気泡21を照射する。また、同様に、入射面22又は側壁内面24に微小な凹凸を形成しても同様の拡散光を発生させることができる。   The level 2 has minute irregularities for diffusing light on a surface other than the surface on which the bubbles 21 slide, for example, at least one of the incident surface 22, the side wall inner surface 24, and the exit surface 26. . Therefore, now if it is assumed that minute irregularities are formed on the exit surface 26, the light emitted from the light emitting diode 1 enters the entrance surface 22 of the level 2 and is diffused by the exit surface 26 to diffuse. It becomes light and irradiates the bubble 21 in the level 2. Similarly, even if minute irregularities are formed on the incident surface 22 or the side wall inner surface 24, similar diffused light can be generated.

このように、気泡21が照射される光は、水準器2内で拡散され拡散光となるため、前記図3(a)、(b)に示されたのと同様の光量分布特性を得ることができる。従って、受光部3は、水準器2が傾斜し、水準器2内の気泡21が微小移動すると、前記同様に、その変化量を読み取ることができ、傾斜角を検出することができる。   In this way, the light irradiated on the bubble 21 is diffused in the level 2 and becomes diffused light, so that the same light quantity distribution characteristic as shown in FIGS. 3A and 3B is obtained. Can do. Therefore, when the level 2 is tilted and the bubble 21 in the level 2 is slightly moved, the light receiving unit 3 can read the amount of change and detect the tilt angle as described above.

これにより、本実施形態の水平センサは、水準器2において、気泡21が摺動する面以外の少なくとも1つ面に光を拡散させるための微小な凹凸を形成したことにより、光を拡散させる効果を水準器2自体で形成することができる。従って、上記シート状部材6等を省略でき、部品点数の低減及びセンサの厚みを薄くすることが可能となり、センサの小型化に寄与することができる。   Thereby, the horizontal sensor of this embodiment has the effect of diffusing light by forming minute irregularities for diffusing light on at least one surface other than the surface on which the bubble 21 slides in the level 2. Can be formed by the level 2 itself. Therefore, the sheet-like member 6 and the like can be omitted, the number of parts can be reduced, and the thickness of the sensor can be reduced, thereby contributing to downsizing of the sensor.

次に、本発明の第6の実施形態に係る水平センサについて、図9(a)、(b)を参照して説明する。図9(a)、(b)において、水平センサは、光源となる発光ダイオード1と、気泡21が残るように略透明な液体2wを封入した円筒容器2aを持つ水準器2と、気泡21の平行光による投影光より小さい受光面積を持つ4つの受光素子31〜34からなる受光部3と、発光ダイオード1からの入射光を水準器2の側面に導く光ガイド7を備えている。   Next, a horizontal sensor according to a sixth embodiment of the present invention will be described with reference to FIGS. 9 (a) and 9 (b), the horizontal sensor includes a light emitting diode 1 serving as a light source, a level 2 having a cylindrical container 2a in which a substantially transparent liquid 2w is sealed so that the bubbles 21 remain, The light receiving unit 3 includes four light receiving elements 31 to 34 having a light receiving area smaller than that of the projected light by parallel light, and a light guide 7 that guides incident light from the light emitting diode 1 to the side surface of the level 2.

水準器2の中心軸と受光部3の光軸は、略一直線上になるように配設されている。水準器2は、側壁部2dの受光部3から遠い側に、光ガイド7からの光のが入射する入光部25を備え、下底部2cの底厚における受光部3から遠い側の面に、光を拡散する微小な凹凸又は溝形状を備えた反射面22aを備える。   The central axis of the level 2 and the optical axis of the light receiving unit 3 are arranged so as to be substantially in a straight line. The level 2 includes a light incident part 25 on which the light from the light guide 7 is incident on the side far from the light receiving part 3 of the side wall part 2d, and on the surface far from the light receiving part 3 in the bottom thickness of the lower bottom part 2c. The reflecting surface 22a having minute unevenness or groove shape for diffusing light is provided.

光ガイド7は、透明部材で形成され、光源からの入射光の入る入光面74と、入射光を全反射させる反射面71と、光ガイド7の端面において水準器2側面の入光部25に光を照射する出光面73とを有する。また、発光ダイオード1と受光部3は、同じプリント基板5に実装され、水準器2に対して同じ側に配置されている。   The light guide 7 is formed of a transparent member, and includes a light incident surface 74 on which incident light from a light source enters, a reflective surface 71 that totally reflects the incident light, and a light incident portion 25 on the side surface of the level 2 at the end surface of the light guide 7. And a light exit surface 73 for irradiating light. The light emitting diode 1 and the light receiving unit 3 are mounted on the same printed circuit board 5 and arranged on the same side with respect to the level 2.

発光ダイオード1から照射された光は、光ガイド7の入光面74に入射し、光ガイド7内の反射面71で全反射され、図中右向きに進行方向を変化させられた後、出光面73から射出され、水準器2の入光部25に入射される。水準器2の入光部25に入射された光は、反射面22aと出射面26で反射を繰り返しながら図中右方向へ進行する。   The light emitted from the light emitting diode 1 is incident on the light incident surface 74 of the light guide 7 and is totally reflected by the reflecting surface 71 in the light guide 7, and after changing the traveling direction to the right in the figure, the light emitting surface. The light is emitted from 73 and incident on the light incident part 25 of the level 2. The light incident on the light incident part 25 of the level 2 travels in the right direction in the figure while being repeatedly reflected by the reflecting surface 22a and the emitting surface 26.

ここで、反射面22aは、微小な凹凸又は溝形状による光の拡散形状をしているため、反射面22aに当たった光は、反射面22aの散乱形状で決定される方向へ反射されて出射面26から照射され、水準器2内の液体2w及び気泡21に向かって進行する。反射面22aに形成された凹凸形状又は溝形状は、出射面26全体から略均一な光量の光を射出し、この射出光された光の光量分布が拡がるように形成されている。このため、出射面26全体から射出された光は、拡散光となって、気泡21を照射することができる。   Here, since the reflecting surface 22a has a light diffusing shape due to minute unevenness or a groove shape, the light hitting the reflecting surface 22a is reflected and emitted in the direction determined by the scattering shape of the reflecting surface 22a. Irradiated from the surface 26, it proceeds toward the liquid 2 w and the bubbles 21 in the level 2. The concavo-convex shape or groove shape formed on the reflection surface 22a is formed so that a substantially uniform amount of light is emitted from the entire emission surface 26, and the light amount distribution of the emitted light is expanded. For this reason, the light emitted from the entire emission surface 26 becomes diffused light and can irradiate the bubble 21.

このように、気泡21が照射される光は、散乱形状を持った反射面22aからの照射により拡散光となるため、受光部3において、前記図3(a)、(b)に示されたのと同様の光量分布特性を得ることができる。従って、水準器2が傾斜し、水準器2内の気泡21が微小移動すると、前記同様に、その変化量を読み取ることができ、傾斜角を検出することができる。   Thus, since the light irradiated to the bubble 21 becomes diffused light by irradiation from the reflecting surface 22a having a scattering shape, the light receiving unit 3 is shown in FIGS. 3 (a) and 3 (b). It is possible to obtain the same light quantity distribution characteristic as that described above. Accordingly, when the level 2 is tilted and the bubbles 21 in the level 2 are slightly moved, the change amount can be read and the tilt angle can be detected as described above.

これにより、本実施形態の水平センサは、上記検知特性を確保しつつ、水平センサの電子部品の中でも広い実装面積が必要な受光部3を小さくすることができるため、水平センサの小型化に寄与することができる。また、光ガイド7からの光を水準器2の側面から入射し、凹凸形状又は溝形状を水準器2の反射面22aに形成することにより水準器2の外部に光の拡散部品を装着する必要がなく、水平センサの厚みをさらに薄くすることが可能となる。また、発光ダイオード1と受光部3は、同一基板上に実装さているが、それぞれを異なる基板に実装しても同等の効果が得られる。   As a result, the horizontal sensor according to the present embodiment can reduce the size of the horizontal sensor because the light receiving unit 3 that requires a large mounting area can be reduced among the electronic components of the horizontal sensor while ensuring the above-described detection characteristics. can do. In addition, light from the light guide 7 is incident from the side surface of the level 2, and a light diffusing component needs to be mounted outside the level 2 by forming an uneven shape or a groove shape on the reflection surface 22 a of the level 2. Therefore, the thickness of the horizontal sensor can be further reduced. Moreover, although the light emitting diode 1 and the light receiving part 3 are mounted on the same substrate, the same effect can be obtained even if they are mounted on different substrates.

次に、本発明の第7の実施形態に係る水平センサについて、図10(a)、(b)を参照して説明する。図10(a)、(b)において、水平センサは、光源となる発光ダイオード1と、気泡21が残るように略透明な液体2wを封入した円筒容器2aを持つ水準器2と、4つの受光素子31〜34からなる受光部3とを備える。受光素子31〜34はそれぞれ受光部3の光軸に最も近い頂点が、他の頂点と比較して水準器2の出射面23から遠い位置になるように配置されている。それらの光軸から見た等価的な受光部3の面積は、気泡21の平行光による投影光の面積と同等以下にしてある。   Next, a horizontal sensor according to a seventh embodiment of the present invention will be described with reference to FIGS. 10 (a) and 10 (b). 10 (a) and 10 (b), the horizontal sensor includes a light emitting diode 1 serving as a light source, a level 2 having a cylindrical container 2a in which a substantially transparent liquid 2w is sealed so that bubbles 21 remain, and four light receiving elements. A light receiving unit 3 including elements 31 to 34. Each of the light receiving elements 31 to 34 is arranged such that the vertex closest to the optical axis of the light receiving unit 3 is located farther from the emission surface 23 of the level 2 than the other vertexes. The area of the equivalent light receiving portion 3 viewed from the optical axes is equal to or smaller than the area of the projection light by the parallel light of the bubbles 21.

発光ダイオード1の光軸と、水準器2の中心軸と、受光部3の光軸とは、略一直線上になるように配置され、かつ水準器2が発光ダイオード1と受光部3の間に配置されている。水準器2の円筒容器2aは、その内側が空洞で、かつその内側の面の少なくとも1つの面が略回転対称の曲面形状を有し、受光部3に対向する出射面23を持つ上底部2bと、その底厚の両面に光の入射面22と出射面26を有する下底部2cと、側壁部2dとを備える。   The optical axis of the light emitting diode 1, the central axis of the level 2, and the optical axis of the light receiving unit 3 are arranged so as to be substantially in a straight line, and the level 2 is interposed between the light emitting diode 1 and the light receiving unit 3. Has been placed. The cylindrical container 2a of the level 2 has a hollow inside, and at least one of the inside surfaces has a substantially rotationally symmetric curved surface shape, and has an upper bottom 2b having an emission surface 23 facing the light receiving unit 3. And a lower bottom portion 2c having a light incident surface 22 and an output surface 26 on both sides of the bottom thickness, and a side wall portion 2d.

発光ダイオード1から照射された光は、水準器2の入射面22に入射し、液体2wと気泡21の界面に当たると、その界面で屈折又は全反射され、水準器2の出射面23から射出され、受光素子31〜34に入射する。これにより、気泡21の陰影が発光ダイオード1からの光によって受光素子31〜34に投影される。   The light emitted from the light emitting diode 1 enters the incident surface 22 of the level 2 and hits the interface between the liquid 2w and the bubble 21 and is refracted or totally reflected at the interface, and is emitted from the output surface 23 of the level 2. , Enters the light receiving elements 31 to 34. Thereby, the shadow of the bubble 21 is projected onto the light receiving elements 31 to 34 by the light from the light emitting diode 1.

ここで、受光部3の受光素子31〜34が、受光部3の光軸に最も近い頂点が、他の頂点と比較して水準器2の出射面23から遠い位置になるように配置されているので、各受光素子31〜34の受光面が、水準器2の出射面23から見て、等価的に菱形のような形状になる。従って各受光素子31〜34の中央部で面積が大きく、上下の両頂点に向かうほど面積が小さくなる。これにより、受光部3で受光する光量分布は、前記図3(a)、(b)と同様の光量分布特性を得ることができる。従って、この光量分布特性によって、気泡21の微小移動時における受光素子31〜34の光量変化を検出できる高精度の検知特性を得ることができる。   Here, the light receiving elements 31 to 34 of the light receiving unit 3 are arranged so that the vertex closest to the optical axis of the light receiving unit 3 is farther from the exit surface 23 of the level 2 than the other vertexes. Therefore, the light receiving surface of each of the light receiving elements 31 to 34 is equivalently shaped like a rhombus when viewed from the emission surface 23 of the level 2. Accordingly, the area is large at the center of each light receiving element 31 to 34, and the area decreases toward the top and bottom vertices. Thereby, the light quantity distribution received by the light receiving unit 3 can obtain the same light quantity distribution characteristics as in FIGS. 3 (a) and 3 (b). Therefore, with this light quantity distribution characteristic, it is possible to obtain a highly accurate detection characteristic capable of detecting a change in the light quantity of the light receiving elements 31 to 34 when the bubble 21 is slightly moved.

このように、本実施形態の水平センサは、受光部3のみで同様の光量分布特性が得られるので、入射光として拡散光が必ずしも必要でなく、構成が簡単にでき、センサの小型化に寄与できる。また、拡散光を必要としないことから、拡散用の反射面42を備えた導光板4や、上記シート状部材6等が不要となるので、部品点数の低減が可能になる。   As described above, the horizontal sensor according to the present embodiment can obtain the same light quantity distribution characteristic only by the light receiving unit 3, so that the diffused light is not necessarily required as the incident light, the configuration can be simplified, and the size of the sensor can be reduced. it can. In addition, since no diffused light is required, the light guide plate 4 having the reflection surface 42 for diffusion, the sheet-like member 6 and the like are not necessary, and the number of components can be reduced.

次に、本発明の第8の実施形態に係る水平センサについて、図11(a)、(b)を参照して説明する。本実施形態の水平センサは、図1乃至図4に示した第1の実施形態における導光板4を変形した部材を備えており、この部材を光ガイドと称して以下では説明する。なお、水平センサとしての水準器や受光部は、前述の実施形態と同様あるので、図示を省いている。光ガイド7は、光源から射出した光L1がこの光ガイドの入光面76において概ね平行になるように、その入光面76が凸型の円筒形状部75を備え、この円筒形状部75は、その円筒形の軸R1が、光源の光軸R2と、この光源の光軸R2が光ガイドの反射面71(全反射面)に対して反射してできる軸R3とを含む平面の法線に平行となるように形成されている。   Next, a horizontal sensor according to an eighth embodiment of the present invention will be described with reference to FIGS. The horizontal sensor of the present embodiment includes a member obtained by deforming the light guide plate 4 in the first embodiment shown in FIGS. 1 to 4, and this member will be referred to as a light guide and will be described below. Since the level sensor and the light receiving unit as the horizontal sensor are the same as those in the above-described embodiment, the illustration is omitted. The light guide 7 includes a cylindrical portion 75 having a convex shape so that the light L1 emitted from the light source is substantially parallel to the light incident surface 76 of the light guide. The cylindrical axis R1 is a plane normal line including the optical axis R2 of the light source and the axis R3 formed by reflecting the optical axis R2 of the light source with respect to the reflection surface 71 (total reflection surface) of the light guide. It is formed so that it may become parallel to.

上記円筒形状部75は、凸形の円筒形状の入光面76を有することにより、凸レンズの働きをする。これにより、光源から光ガイド7の入光面76に入射した光L1は、円筒形状部75の凸レンズ作用により、この凸レンズの光軸に沿う方向に屈折され、光ガイド7内でこの光軸に概ね平行な光L2となる。これにより、光ガイド7の反射面71で反射される光L2が全反射され易く成る。一方、図11(c)に示すように、光ガイド7が平面の入光面74を有する時は、入光面74はレンズ作用がないので入光面74から入射した光が、反射面71で全反射し難くなり、反射面71から光ガイドの外へ放射される光Lxが増え、光源からの光を水準器2に向けて照射する面発光部の位置にガイドする光量が低減してしまうことになる。   The cylindrical part 75 functions as a convex lens by having a convex cylindrical light incident surface 76. As a result, the light L1 incident on the light incident surface 76 of the light guide 7 from the light source is refracted in the direction along the optical axis of the convex lens by the convex lens action of the cylindrical portion 75, and this light axis in the light guide 7 It becomes the substantially parallel light L2. Thereby, the light L2 reflected by the reflecting surface 71 of the light guide 7 is easily totally reflected. On the other hand, as shown in FIG. 11 (c), when the light guide 7 has a flat light incident surface 74, the light incident surface 74 has no lens action, so that light incident from the light incident surface 74 is reflected by the reflective surface 71. The light Lx emitted from the reflecting surface 71 to the outside of the light guide increases, and the amount of light that guides the light from the light source toward the level 2 is reduced. Will end up.

本実施形態によれば、光ガイド7は、凸型の円筒形状の入光面76を有する円筒形状部75を備えたことにより、光ガイド7の反射面71で全反射の条件を満足しやすくなり、光ガイド7より外部に出射する光を抑え、光ガイドの伝送効率が上がる。これにより、面発光部から面出射する均一光の強度が向上し、このため、水平センサの分解能が向上し、光源の発光ダイオード1に印加する電力を低減でき、水平センサの低消費電流化が実現できる。   According to the present embodiment, the light guide 7 includes the cylindrical portion 75 having the convex cylindrical light incident surface 76, so that the reflection surface 71 of the light guide 7 can easily satisfy the condition of total reflection. Thus, the light emitted from the light guide 7 to the outside is suppressed, and the transmission efficiency of the light guide is increased. As a result, the intensity of the uniform light emitted from the surface light emitting unit is improved, so that the resolution of the horizontal sensor is improved, the power applied to the light emitting diode 1 of the light source can be reduced, and the current consumption of the horizontal sensor is reduced. realizable.

次に、本発明の第9の実施形態に係る水平センサについて、図12を参照して説明する。本実施形態において、光ガイド7は、導光板状の面発光部77を備え、光ガイド7の反射面71が、光源の光軸R2と、この光軸R2が反射面71で反射してできる軸R3との両軸を含む平面での断面形状が放物面を成し、この放物面の焦点が、光ガイド7の面発光部77の入り口付近になるように形成されている。   Next, a horizontal sensor according to a ninth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the light guide 7 includes a light guide plate-like surface light emitting portion 77, and the reflection surface 71 of the light guide 7 is formed by reflecting the optical axis R 2 of the light source and the optical axis R 2 by the reflection surface 71. A cross-sectional shape in a plane including both axes with the axis R3 forms a paraboloid, and the focal point of the paraboloid is formed near the entrance of the surface light emitting portion 77 of the light guide 7.

光ガイド7は、光を反射する凹凸や溝を有する反射面72と、その平面より光を出射する出光面73(出射面)とを有する導光板状の面発光部77を備え、光ガイド7の反射面71が、光源の光軸R2と、この光軸R2が反射面71で反射してできる軸R3との両軸を含む平面での断面形状が放物面を成し、この放物面の焦点が、光ガイド7の面発光部77の入り口付近になるように形成されている。   The light guide 7 includes a light guide plate-like surface light emitting portion 77 having a reflection surface 72 having irregularities and grooves for reflecting light and a light emission surface 73 (an emission surface) for emitting light from the plane. The reflecting surface 71 of the light source has a parabolic surface in a plane shape including both the optical axis R2 of the light source and the axis R3 formed by reflecting the optical axis R2 with the reflecting surface 71. The focal point of the surface is formed in the vicinity of the entrance of the surface light emitting portion 77 of the light guide 7.

上記構成において、光源の発光ダイオード1から光ガイド7の入光面76に入射した光L1は、凸レンズ作用を持つ円筒形状部75で光軸R2に沿う方向に屈折され、この光軸R2に概ね平行な光L2になって、放物面を成す反射面71で反射される。この平行な光L2は、この放物面で反射されると放物面の焦点(焦線)F1に絞られる。この焦点F1は、光ガイド7の面発光部77の入口付近に来るように位置されている。また、この面発光部77の厚さは、光ガイド7の光ガイド部分(入光面76から反射面71、面発光部77に至る部分)に比較して光ガイド7の中で最も薄い部分となっており、面発光部77の入口付近では光が入り難くなっている。従って、光ガイド7内の光L2を光ガイドの放物面を成す反射面71で反射して、最も厚みの薄い面発光部77の入口付近で集光させることにより、面発光部77に光が入り易くなる。   In the above-described configuration, the light L1 incident on the light incident surface 76 of the light guide 7 from the light emitting diode 1 of the light source is refracted in the direction along the optical axis R2 by the cylindrical portion 75 having a convex lens action, and is approximately aligned with the optical axis R2. The light becomes parallel light L2 and is reflected by the reflecting surface 71 that forms a paraboloid. When the parallel light L2 is reflected by this paraboloid, it is focused to the focal point (focal line) F1 of the paraboloid. The focal point F <b> 1 is positioned so as to be near the entrance of the surface light emitting unit 77 of the light guide 7. Further, the thickness of the surface light emitting portion 77 is the thinnest portion of the light guide 7 as compared with the light guide portion of the light guide 7 (the portion from the light incident surface 76 to the reflecting surface 71 and the surface light emitting portion 77). Thus, it is difficult for light to enter near the entrance of the surface light emitting portion 77. Accordingly, the light L2 in the light guide 7 is reflected by the reflecting surface 71 that forms the paraboloid of the light guide, and is condensed near the entrance of the surface light emitting portion 77 having the thinnest thickness. Is easier to enter.

本実施形態によれば、光ガイド7が放物面を成す反射面71を有し、この放物面で入光面76からの平行な光L2を反射させ、光を放物面の焦点に集めることができ、この焦点を面発光部77入り口付近としていることにより、面発光部77に入射する光量が増加する。これにより、面発光部77から射出する光の強度が向上するため、水平センサの分解能が向上し、また、光源に印加する電力を低減でき、低消費電流化を実現できる。   According to the present embodiment, the light guide 7 has a reflecting surface 71 that forms a paraboloid, and the parabolic surface reflects the parallel light L2 from the light incident surface 76 so that the light is focused on the paraboloid. The amount of light incident on the surface light emitting portion 77 is increased by setting the focal point near the entrance of the surface light emitting portion 77. Thereby, since the intensity | strength of the light inject | emitted from the surface emitting part 77 improves, the resolution | decomposability of a horizontal sensor improves, the electric power applied to a light source can be reduced, and low current consumption can be implement | achieved.

次に、本発明の第10の実施形態に係る水平センサについて、図13(a)〜(f)を参照して説明する。本実施形態において、光ガイド7は、円筒形状部75における入光面の円筒に沿って、三角形又は台形の断面形状を有する複数の拡散溝76a(溝)を備える。また、この拡散溝76a(溝)の各溝は、円筒形の軸R1と直交する平面上にあり、かつ、円筒の軸R1方向に略等間隔に円筒面のほぼ全体に配設されている。また、図13(e)、(f)に示すように、複数の拡散溝76a(溝)の形成された入光面76において、光源から射出された光L1が入射されると、この光L1は、前述のように、円筒形状の入光面76により、光源の光軸R2方向に平行化されると共に、複数の拡散溝76aの各溝で反射されることにより、円筒形の軸R1方向に拡散されて光ガイド7に入射される。従って、光ガイド7内において、光L2が円筒形の軸R1方向に広がるので、面発光部77の入口付近から入射された光L3は、面発光部77内において円筒形の軸R1と同じ方向に広がって導光される。これにより、面発光部77は、円筒面の軸R1方向における面発光均一性を向上することができる。   Next, a horizontal sensor according to a tenth embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the light guide 7 includes a plurality of diffusion grooves 76 a (grooves) having a triangular or trapezoidal cross-sectional shape along the cylinder of the light incident surface in the cylindrical portion 75. Further, each of the diffusion grooves 76a (grooves) is on a plane orthogonal to the cylindrical axis R1, and is disposed on substantially the entire cylindrical surface at substantially equal intervals in the direction of the cylindrical axis R1. . As shown in FIGS. 13E and 13F, when the light L1 emitted from the light source is incident on the light incident surface 76 where the plurality of diffusion grooves 76a (grooves) are formed, the light L1 As described above, the light is collimated in the direction of the optical axis R2 of the light source by the cylindrical light incident surface 76 and reflected by the grooves of the plurality of diffusion grooves 76a, so that the direction of the cylindrical axis R1 And is incident on the light guide 7. Accordingly, since the light L2 spreads in the direction of the cylindrical axis R1 in the light guide 7, the light L3 incident from the vicinity of the entrance of the surface light emitting portion 77 has the same direction as the cylindrical axis R1 in the surface light emitting portion 77. It is spread and guided. Thereby, the surface light emission part 77 can improve the surface emission uniformity in the axis | shaft R1 direction of a cylindrical surface.

本実施形態によれば、入光面76の円筒形状の円筒面に沿って、断面形状が三角形又は台形形状を有する複数の拡散溝76aを備えたことにより、面発光部77の軸R1方向の面発光均一性が向上し、気泡21が円筒面の軸R1方向に移動した場合における水平センサの分解能が向上する。   According to the present embodiment, the plurality of diffusion grooves 76 a having a triangular or trapezoidal cross-sectional shape are provided along the cylindrical surface of the light incident surface 76, whereby the surface light emitting unit 77 in the direction of the axis R <b> 1. The surface emission uniformity is improved, and the resolution of the horizontal sensor is improved when the bubble 21 moves in the direction of the axis R1 of the cylindrical surface.

次に、本発明の第11の実施形態に係る水平センサについて、図14(a)〜(e)を参照して説明する。本実施形態の光ガイド7は、面発光部77の反射面72に、断面形状が三角形状の複数の三角溝72a(溝)が形成され、光ガイド7の面発光部77の出光面73と水準器2の間に、頂角90°の三角プリズム6pが形成されたシート状部材6a、6bを備えている。三角溝72aは、円筒形状部75の円筒の軸R1に平行に配設され、面発光部77の反射板72において、光の入射側面72bの底角θが20〜40°を成す。また、三角プリズム6pと三角溝72aは、プリズム6pの稜線Q2が光ガイド7の三角溝72aの稜線Q1と平行になるように配置されている。また、反射面72の外側に、この反射面72に平行に補助反射板78が設けられている。   Next, a horizontal sensor according to an eleventh embodiment of the present invention will be described with reference to FIGS. In the light guide 7 of the present embodiment, a plurality of triangular grooves 72 a (grooves) having a triangular cross section are formed on the reflection surface 72 of the surface light emitting unit 77, and the light emitting surface 73 of the surface light emitting unit 77 of the light guide 7 Between the level 2 are provided sheet-like members 6a and 6b in which a triangular prism 6p having an apex angle of 90 ° is formed. The triangular groove 72a is disposed parallel to the cylindrical axis R1 of the cylindrical portion 75, and the base angle θ of the light incident side surface 72b of the reflecting plate 72 of the surface light emitting portion 77 forms 20 to 40 °. The triangular prism 6p and the triangular groove 72a are arranged so that the ridge line Q2 of the prism 6p is parallel to the ridge line Q1 of the triangular groove 72a of the light guide 7. An auxiliary reflecting plate 78 is provided outside the reflecting surface 72 in parallel with the reflecting surface 72.

本実施形態の光ガイド7において、光ガイド7の反射面71からの光L3が面発光部77に入射されると、入射された光L4は、面発光部77内を通過する際、面発光部77の反射面72において、三角溝72aの底角θが20〜40度を成す入射側面72bで反射されるので、出光面73の法線に対し20°〜40°で出射することになる。また、入射側面72bで反射されずに反射面72から出射面43と反対方向に出た光は、反射面72の下に設けられた補助反射板78で略全反射されて再度、面発光部77の反射面72に入射され、出光面73より出射される。これにより、面発光部77の面発光効率が高まる。   In the light guide 7 of the present embodiment, when the light L3 from the reflection surface 71 of the light guide 7 enters the surface light emitting unit 77, the incident light L4 emits surface light when passing through the surface light emitting unit 77. Since the reflection surface 72 of the portion 77 is reflected by the incident side surface 72b in which the base angle θ of the triangular groove 72a is 20 to 40 degrees, it is emitted at 20 ° to 40 ° with respect to the normal line of the light exit surface 73. . Further, the light that is not reflected by the incident side surface 72b and is emitted from the reflecting surface 72 in the direction opposite to the emitting surface 43 is substantially totally reflected by the auxiliary reflecting plate 78 provided below the reflecting surface 72, and again, the surface emitting unit. The light enters the reflection surface 72 of 77 and exits from the light exit surface 73. Thereby, the surface light emission efficiency of the surface light emission part 77 increases.

さらに、出射面43より出射された光は、シート状部材6a、6bに順次入射し、先ず、シート状部材6aの三角プリズム6pにより水準器2の円筒の中心軸方向に沿うように曲げられ、さらにシート状部材6bで再度、同様に曲げられるので、水準器2の中心軸とより平行に近い光線となる。これにより、シート状部材6a、6bの三角プリズム6pを通過した光の分布の中心が、面発光部77の出光面73に対して、概ね垂直となり、面発光分布は、水準器2の中心軸に対して略対称となる。この面発光分布が略対称な光となった光L5は、水準器2に入射され、水準器2の気泡21を通過して、受光部3における水準器2の中心軸に対して対称に配置された4分割のフォトダイオード(PD)の各受光素子31、32、33、34で受光され、光量が検出される。   Further, the light emitted from the emission surface 43 sequentially enters the sheet-like members 6a and 6b, and is first bent along the central axis direction of the cylinder of the level 2 by the triangular prism 6p of the sheet-like member 6a. Furthermore, since the sheet-like member 6b is bent again in the same manner, the light beam becomes more parallel to the central axis of the level 2. Thereby, the center of the distribution of the light that has passed through the triangular prism 6p of the sheet-like members 6a and 6b is substantially perpendicular to the light exit surface 73 of the surface light emitting unit 77, and the surface light emission distribution is the central axis of the level 2 Is substantially symmetric with respect to. The light L <b> 5 whose surface emission distribution is substantially symmetric is incident on the level 2, passes through the bubble 21 of the level 2, and is disposed symmetrically with respect to the central axis of the level 2 in the light receiving unit 3. The received light is received by the respective light receiving elements 31, 32, 33, and 34 of the four-divided photodiode (PD), and the amount of light is detected.

ここで、上記光ガイド7における面発光の改善前と上記第11の実施形態による改善後の面発光分布状態について、図15(a)、(b)を参照して説明する。図15(a)に示す改善前では、光ガイド7は、面発光部77の三角溝72aや三角プリズム6pを有するシート状部材6を備えていないので、出光面73から出射される光の向きは、出光面73に水準器2の中心軸に対して平行方向から傾いてずれた方向の面発光分布G1を形成している。従って、水準器2の気泡21に当たる光の方向が水準器2の中心軸に対して斜め方向となる。これにより、球形の気泡21を通過してきた光の受光光量は、A側の受光素子31、32とB側の受光素子33、34の左右で異なってくる。一方、図15(b)に示す改善後では、出光面73から出射される光の向きは、出光面73に水準器2の中心軸に対して略平行となり、面発光分布G2が略対称な光となっているので、水準器2の気泡21を通過してきた光の光量は、A側とB側の左右で略同じで対称となる。   Here, the surface light emission distribution state before the improvement of the surface light emission in the light guide 7 and after the improvement according to the eleventh embodiment will be described with reference to FIGS. Before the improvement shown in FIG. 15A, the light guide 7 does not include the sheet-like member 6 having the triangular groove 72a of the surface light emitting portion 77 or the triangular prism 6p, so the direction of the light emitted from the light exit surface 73 Forms a surface emission distribution G1 on the light exit surface 73 in a direction that is inclined and shifted from the parallel direction with respect to the central axis of the level 2. Therefore, the direction of light hitting the bubble 21 of the level 2 is oblique with respect to the central axis of the level 2. As a result, the amount of light received through the spherical bubble 21 differs between the left and right sides of the light receiving elements 31 and 32 on the A side and the light receiving elements 33 and 34 on the B side. On the other hand, after the improvement shown in FIG. 15B, the direction of the light emitted from the light exit surface 73 is substantially parallel to the light exit surface 73 with respect to the central axis of the level 2 and the surface emission distribution G2 is substantially symmetrical. Since it is light, the amount of light that has passed through the bubble 21 of the level 2 is substantially the same and symmetrical on the left and right sides of the A side and B side.

また、図16(a)、(b)は、水準器2の中心軸上の気泡21がある水平状態において、環境温度変化により温度が変化した場合、例えば、温度が上昇した場合の上記面発光分布の改善前と上記第11の実施形態による改善後における受光素子31、32、33、34のそれぞれの光量検出状態を示す。なお、水平状態のままで温度が上昇した場合は、気泡21の位置は水準器2の中心軸上で変わらないが、気泡21の径は小さくなる。改善前において、気泡21を通過してきた光のA側の受光素子31、32の受光量Laをとし、B側の受光素子33、34の受光量Lbとし、それらの温度変化前後の差をΔp1、Δp2とすると、改善前では面発光分布G1が傾いているので、Δp1、Δp2はいずれもゼロにはならない。この差Δp1、Δpは、水準器2の水平度(Δp1、Δpがゼロで水平)を示すので、この場合は、水準器2が水平であるにも拘わらず水平を示さないので誤差を生じることになる。一方、改善後は、面発光分布G2が水準器2の中心軸に対して対称なので、温度が変化しても各受光素子のA側の受光量Laと、B側の受光量Lbとの差Δq1、Δq2はいずれも略ゼロになる。これにより、温度変化しても、気泡21の位置変動はないことが確認され、水平状態あることを確度良く検出できる。   16 (a) and 16 (b) show the above surface light emission when the temperature changes due to the environmental temperature change in the horizontal state where the bubble 21 on the central axis of the level 2 is present, for example, when the temperature rises. The respective light quantity detection states of the light receiving elements 31, 32, 33, and 34 before the improvement of the distribution and after the improvement according to the eleventh embodiment are shown. When the temperature rises in the horizontal state, the position of the bubble 21 does not change on the central axis of the level 2 but the diameter of the bubble 21 becomes small. Before the improvement, the light receiving amount La of the light receiving elements 31 and 32 on the A side of the light passing through the bubble 21 is set as the light receiving amount Lb of the light receiving elements 33 and 34 on the B side, and the difference before and after the temperature change is Δp1. , Δp2, the surface emission distribution G1 is inclined before the improvement, and thus Δp1 and Δp2 are not zero. The differences Δp1 and Δp indicate the level of the level 2 (Δp1, Δp is zero and horizontal), and in this case, the level 2 does not indicate horizontal even though it is horizontal, and an error occurs. become. On the other hand, after the improvement, since the surface light emission distribution G2 is symmetrical with respect to the central axis of the level 2, even if the temperature changes, the difference between the light reception amount La on the A side and the light reception amount Lb on the B side of each light receiving element. Δq1 and Δq2 are both substantially zero. Thereby, even if the temperature changes, it is confirmed that the position of the bubble 21 does not change, and it is possible to accurately detect the horizontal state.

このように、上記第11の実施形態によれば、光ガイド7の面発光部77から射出する光の分布の中心が、面発光部77の出光面73の法線に対し20°〜40°となり、さらに頂角90°の三角プリズムを通過した光の分布の中心が面発光部の出光面73に対し概ね垂直となる。すなわち面発光分布が水準器2の中心軸に対称となるため、気泡21が4分割PDの受光素子31〜34の中心にある水平状態においては、気泡径が増減しても4分割PDの差分出力Δq1、Δq2が略ゼロに保たれる。これにより、温度変化によって気泡径が変化する場合においても水平を確実に検知し続けることができる。   As described above, according to the eleventh embodiment, the center of the distribution of light emitted from the surface light emitting portion 77 of the light guide 7 is 20 ° to 40 ° with respect to the normal line of the light emitting surface 73 of the surface light emitting portion 77. Further, the center of the distribution of light that has passed through the triangular prism having an apex angle of 90 ° is substantially perpendicular to the light emitting surface 73 of the surface light emitting portion. That is, since the surface emission distribution is symmetric with respect to the central axis of the level 2, in the horizontal state where the bubble 21 is at the center of the light receiving elements 31 to 34 of the 4-split PD, even if the bubble diameter increases or decreases, the difference of the 4-split PD The outputs Δq1 and Δq2 are kept substantially zero. As a result, even when the bubble diameter changes due to a temperature change, it is possible to reliably detect the level.

次に、本発明の第12の実施形態に係る水平センサについて、図17(a)を参照して説明する。本実施形態において、光ガイド7の面発光部77の厚みtは、光ガイド7の設計により大きさは自由に替えることができる。ここで、図17(b)に示すように、t=0.7〜1.5mmとした場合は、面発光部77から射出される光量の面発光分布G3は、振幅変動が少なく、一様で平坦に近くなり、tの大きさは適正となる。また、図17(c)に示すように、tが大きい場合は、面発光分布G4は、振幅変動が大きく、面発光部77からの射出光量において明部、暗部が発生し、適性とはならない。また、面発光部77において、厚さtが小さすぎると、面発光部77に入射する光量が低下し、このため、面発光部77から射出する光量が低下する。通常、光源位置の公差などで、光ガイド7の集光位置(焦点F1位置)が変動するが、面発光部77の厚さtが小さい場合は、集光位置が少しでもずれると、面発光部77に入射する光量が急激に低下してしまう。   Next, a horizontal sensor according to a twelfth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the thickness t of the surface light emitting portion 77 of the light guide 7 can be freely changed depending on the design of the light guide 7. Here, as shown in FIG. 17B, when t = 0.7 to 1.5 mm, the surface light emission distribution G3 of the amount of light emitted from the surface light emitting unit 77 has a small amplitude variation and is uniform. Becomes nearly flat and the size of t is appropriate. Further, as shown in FIG. 17C, when t is large, the surface light emission distribution G4 has a large amplitude variation, and a bright part and a dark part are generated in the amount of light emitted from the surface light emitting part 77, which is not appropriate. . In addition, in the surface light emitting unit 77, if the thickness t is too small, the amount of light incident on the surface light emitting unit 77 is decreased, and thus the amount of light emitted from the surface light emitting unit 77 is decreased. Normally, the condensing position (focal point F1 position) of the light guide 7 fluctuates due to tolerance of the light source position. The amount of light incident on the portion 77 is drastically reduced.

本実施形態によれば、面発光部77の厚みtを0.7〜1.5mmの範囲の値にすることにより、面発光部77に入射する光量を確保しながら面発光均一性が向上する。   According to the present embodiment, by setting the thickness t of the surface light emitting portion 77 to a value in the range of 0.7 to 1.5 mm, the surface light emission uniformity is improved while ensuring the amount of light incident on the surface light emitting portion 77. .

次に、本発明の第13の実施形態に係る水平センサについて、図18(a)、(b)を参照して説明する。同図においては、水平センサのうち光ガイド7の面発光部77の反射面72のみを図示している。面発光部77の反射面72の複数の三角溝72aの溝と溝との間に反射面72に平行な平面72cを有している。このように本実施形態においては、平面72cを設けたことにより、面発光部77に入射してきた光L4は、この平面72cに当たって全反射され、面発光部77の入口付近から奥へと進行する。これにより、面発光部77において入口側と奥側とに同程度の光量が届くため、面発光部77の発光均一性がより一層向上する。   Next, a horizontal sensor according to a thirteenth embodiment of the present invention will be described with reference to FIGS. In the figure, only the reflection surface 72 of the surface light emitting portion 77 of the light guide 7 in the horizontal sensor is illustrated. A plane 72 c parallel to the reflection surface 72 is provided between the grooves of the plurality of triangular grooves 72 a of the reflection surface 72 of the surface light emitting unit 77. As described above, in the present embodiment, by providing the flat surface 72c, the light L4 incident on the surface light emitting unit 77 is totally reflected by hitting the flat surface 72c and travels from the vicinity of the entrance of the surface light emitting unit 77 to the back. . Accordingly, since the same amount of light reaches the entrance side and the back side in the surface light emitting unit 77, the light emission uniformity of the surface light emitting unit 77 is further improved.

以上、本発明は各種の実施形態により実現されるが、これらに限られることなく、発明の趣旨を逸脱しない範囲において、任意に変更することができる。   As mentioned above, although this invention is implement | achieved by various embodiment, it can change arbitrarily in the range which is not restricted to these but does not deviate from the meaning of invention.

本発明の第1の実施形態による水平センサの構成図。The block diagram of the horizontal sensor by the 1st Embodiment of this invention. 上記水平センサの外観図。The external view of the said horizontal sensor. (a)は上記水平センサの受光面による光量分布を示す図、(b)は光量分布のグラフ。(A) is a figure which shows light quantity distribution by the light-receiving surface of the said horizontal sensor, (b) is a graph of light quantity distribution. (a)は上記水平センサの気泡と受光素子の平面上の位置関係を示す図、(b)は気泡の移動前後における受光素子の受光レベル変化を示す図。(A) is a figure which shows the positional relationship on the plane of the bubble of the said horizontal sensor, and a light receiving element, (b) is a figure which shows the light reception level change of the light receiving element before and behind the movement of a bubble. (a)は本発明の第2の実施形態による水平センサの構成図、(b)はその外観図。(A) is a block diagram of the horizontal sensor by the 2nd Embodiment of this invention, (b) is the external view. (a)は本発明の第3の実施形態による水平センサの構成図、(b)はその外観図。(A) is a block diagram of the horizontal sensor by the 3rd Embodiment of this invention, (b) is the external view. (a)は本発明の第4の実施形態による水平センサの構成図、(b)はその外観図。(A) is a block diagram of the horizontal sensor by the 4th Embodiment of this invention, (b) is the external view. 本発明の第5の実施形態における水平センサの構成図。The block diagram of the horizontal sensor in the 5th Embodiment of this invention. (a)は本発明の第6の実施形態による水平センサの構成図、(b)はその外観図。(A) is a block diagram of the horizontal sensor by the 6th Embodiment of this invention, (b) is the external view. (a)は本発明の第7の実施形態による水平センサの構成図、(b)は4つの受光素子と水準器の配置関係を示す図。(A) is a block diagram of the horizontal sensor by the 7th Embodiment of this invention, (b) is a figure which shows the arrangement | positioning relationship of four light receiving elements and a level. (a)は本発明の第8の実施形態による水平センサの構成図、(b)は光ガイドにおける光の反射を説明する図、(c)は光の反射を説明するための図。(A) is a block diagram of the horizontal sensor by the 8th Embodiment of this invention, (b) is a figure explaining reflection of the light in a light guide, (c) is a figure for demonstrating reflection of light. 本発明の第9の実施形態による水平センサの構成図。The block diagram of the horizontal sensor by the 9th Embodiment of this invention. (a)は本発明の第10の実施形態による水平センサの構成図、(b)は前記水平センサの正面図、(c)は(a)のA部の拡大図、(d)は(b)のB部の拡大図、(e)、(f)は前記水平センサの正面図及び部分斜視図における光の拡散を説明する図。(A) is the block diagram of the horizontal sensor by the 10th Embodiment of this invention, (b) is a front view of the said horizontal sensor, (c) is an enlarged view of the A section of (a), (d) is (b) (B) is an enlarged view of part B, and (e) and (f) are diagrams for explaining light diffusion in a front view and a partial perspective view of the horizontal sensor. (a)は本発明の第11の実施形態による水平センサの構成図、(b)は(a)のC部の拡大図、(c)は前記水平センサの光ガイドにおける光の反射を説明する図、(d)は(c)のD部の拡大図、(e)は(d)のE部の拡大図。(A) is the block diagram of the horizontal sensor by the 11th Embodiment of this invention, (b) is an enlarged view of the C section of (a), (c) demonstrates the reflection of the light in the light guide of the said horizontal sensor. The figure, (d) is an enlarged view of the D part of (c), (e) is an enlarged view of the E part of (d). (a)、(b)はそれぞれ上記センサの光ガイドの改善前と改善後の面発光分布を説明する図。(A), (b) is a figure explaining the surface-emission distribution before and after the improvement of the light guide of the said sensor, respectively. (a)、(b)はそれぞれ上記センサの光ガイドの改善前と改善後の受光素子の光量検出の温度による影響を説明する図。(A), (b) is a figure explaining the influence by the temperature of the light quantity detection of the light receiving element before and after improvement of the light guide of the said sensor, respectively. (a)は本発明の第12の実施形態による水平センサの構成図、(b)、(c)は上記センサにおける面発光部の厚さが適正な場合と大きい場合のそれぞれの面発光分布を説明する図。(A) is the block diagram of the horizontal sensor by the 12th Embodiment of this invention, (b), (c) is each surface emission distribution in the case where the thickness of the surface emitting part in the said sensor is appropriate, and when it is large. Illustration to explain. (a)は本発明の第13の実施形態による水平センサの構成図、(b)は(a)のF部の拡大図。(A) is a block diagram of the horizontal sensor by the 13th Embodiment of this invention, (b) is an enlarged view of F section of (a). (a)は従来の水平センサの気泡と受光素子の位置関係を示す図、(b)は前記気泡の移動による受光量の変化を示す図。(A) is a figure which shows the positional relationship of the bubble and light receiving element of the conventional horizontal sensor, (b) is a figure which shows the change of the light reception amount by the movement of the said bubble. (a)は従来の受光素子を小さくした状態の気泡と受光素子の位置関係を示す図、(b)は前記気泡の移動前後における受光状態を示す図。(A) is a figure which shows the positional relationship of the bubble and light receiving element of the state which made the conventional light receiving element small, (b) is a figure which shows the light receiving state before and behind the movement of the said bubble.

符号の説明Explanation of symbols

1 発光ダイオード(光源)
2 水準器
2w 液体
3 受光部
4 導光板
4a 面発光部(導光板)
5 プリント基板
6、6a、6b シート状の部材
6p 三角プリズム
7 光ガイド
21 気泡
31〜34 受光素子
41 反射板
42 導光板
71 反射板(全反射板)
72 反射面
72a 溝
72b 入力側面
72c 平面
75 円筒形状部
76 入光面
76a 拡散溝(溝)
77 面発光部
F1 焦点
R1、R2、R3 光軸
Q1、Q2 稜線
t 厚み
1 Light-emitting diode (light source)
2 Level 2w Liquid 3 Light receiving part 4 Light guide plate 4a Surface light emitting part (light guide plate)
DESCRIPTION OF SYMBOLS 5 Printed circuit board 6, 6a, 6b Sheet-like member 6p Triangular prism 7 Light guide 21 Bubble 31-34 Light receiving element 41 Reflecting plate 42 Light guide plate 71 Reflecting plate (total reflection plate)
72 Reflecting surface 72a Groove 72b Input side surface 72c Plane 75 Cylindrical portion 76 Light incident surface 76a Diffusion groove (groove)
77 Surface emitting portion F1 Focus R1, R2, R3 Optical axis Q1, Q2 Ridge line t Thickness

Claims (14)

気泡が残るように液体を封入した水準器と、光源と、受光した光を電気信号に変換する4つ以上の受光素子とを備え、前記光源からの光を前記水準器に向かって照射し前記気泡の陰影を前記受光素子に投影させ、前記受光素子上の投影光の位置を該受光素子で検出することにより、水平度合いや傾斜度合いを検知する水平センサにおいて、
平行光によって前記気泡を投影したときにできる投影光の面積以上の大きさの発光面積を有する面発光部を備え、該面発光部から前記水準器に向かって拡散された光を照射し、
前記受光素子上の投影光の光量分布が、前記気泡の中心軸付近に極小点を持ち、この気泡の半径と略同範囲において該気泡の中心軸から離れるにつれて単調増加する特性を持つようにしたことを特徴とする水平センサ。
A level that encloses liquid so that bubbles remain, a light source, and four or more light receiving elements that convert received light into an electrical signal, and irradiates light from the light source toward the level In a horizontal sensor that detects the degree of horizontality and inclination by projecting shadows of bubbles on the light-receiving element and detecting the position of projection light on the light-receiving element with the light-receiving element,
A surface light emitting unit having a light emitting area larger than the area of the projected light formed when projecting the bubble by parallel light, irradiating light diffused from the surface light emitting unit toward the level,
The light quantity distribution of the projection light on the light receiving element has a minimum point near the central axis of the bubble, and has a characteristic of increasing monotonously as the distance from the central axis of the bubble is approximately the same as the radius of the bubble. A horizontal sensor characterized by that.
前記受光素子上の投影光の光量分布が、前記気泡の中心軸付近に極小点を持ち、電気的補正により該気泡の半径と略同範囲において中心軸から離れるにつれて直線的増加する特性を持つようにしたことを特徴とする請求項1に記載の水平センサ。 The light quantity distribution of the projection light on the light receiving element has a minimum point in the vicinity of the central axis of the bubble, and has a characteristic of increasing linearly as the distance from the central axis is approximately the same as the radius of the bubble by electrical correction. The horizontal sensor according to claim 1, wherein 光源から入射した光を反射・屈折させ略均一に面放射するように、透明部材に凹凸又は溝形状を有する導光板を前記面発光部として配設したことを特徴とする請求項に記載の水平センサ。 So as to be substantially uniformly surface radiation is reflected and refracted light incident from the light source, a light guide plate having an uneven or grooved shape transparent member according to claim 1, characterized in that disposed as the surface-emitting portion Horizontal sensor. 前記水準器に対して光源と受光素子を対向させると共に、前記光源の光軸と前記水準器の中心軸と前記受光素子の光軸とを略一直線上になるように配置し、
前記光源と前記水準器の間に、拡散効果を有するように凹凸が形成されたシート状の部材を配設したことを特徴とする請求項又は請求項に記載の水平センサ。
A light source and a light receiving element are opposed to the level, and the optical axis of the light source, the central axis of the level and the optical axis of the light receiving element are arranged in a substantially straight line,
The horizontal sensor according to claim 1 or 3 , wherein a sheet-like member having irregularities formed so as to have a diffusion effect is disposed between the light source and the level.
前記光源を2つ以上備え、該光源を前記水準器の中心軸に対し略回転対称な位置に配置し、かつ該水準器に対して前記光源と前記受光素子を対向させると共に、前記水準器の中心軸と前記受光素子の光軸が略一直線上になり、前記光源の光軸と前記受光素子の光軸が略平行になるように配置したことを特徴とする請求項又は請求項又は請求項のいずれか一項に記載の水平センサ。 Two or more light sources are provided, the light sources are arranged in a rotationally symmetrical position with respect to the central axis of the level, and the light source and the light receiving element are opposed to the level. central axis becomes an optical axis on a substantially straight line of the light receiving element, according to claim 1, characterized in that the optical axis of the light receiving element and the optical axis of the light source is arranged substantially in parallel or claim 3 or The horizontal sensor according to claim 4 . 前記水準器に対して光源と受光素子とは同じ側に配置され、光源からの光を入射し、この光を前記水準器に向けて照射する位置にガイドするように透明部材から成る光ガイドを備え、この光ガイドは、光源からの光を全反射させる全反射面を有し
前記全反射面は、水平方向に対して傾斜した状態で、前記光源と対向するように配置されていることを特徴とする請求項1乃至請求項のいずれか一項に記載の水平センサ。
A light guide made of a transparent member is disposed so that the light source and the light receiving element are disposed on the same side with respect to the level, and the light from the light source is incident and guided to a position where the light is irradiated toward the level. The light guide has a total reflection surface that totally reflects light from the light source ,
The total reflection surface is in a state of being inclined with respect to the horizontal direction, the horizontal sensor according to any one of claims 1 to 3, characterized in that it is arranged so as to face the light source.
入射面、側壁内面及び出射面の少なくとも1つの水準器の面に、光を拡散する微小な凹凸を形成したことを特徴とする請求項1乃至請求項のいずれか一項に記載の水平センサ。 The horizontal sensor according to any one of claims 1 to 6 , wherein minute unevenness for diffusing light is formed on a surface of at least one level of an incident surface, an inner surface of a side wall, and an output surface. . 前記水準器の側面の受光素子から遠い側に光源からの光が入射する入光部を設け、前記入光部から入射した光を反射・屈折させ略均一に面照射させるように、水準器の受光素子のある側の反対側の面に微小な凹凸又は溝形状を備え
前記入光部は、前記光源に近い前記側面端部が窪むように形成されていることを特徴とする請求項1又は請求項又は請求項又は請求項のいずれか一項に記載の水平センサ。
A light incident portion where light from a light source is incident on a side far from the light receiving element on the side surface of the level is provided, and the light incident from the light incident portion is reflected and refracted so as to irradiate the surface substantially uniformly. The surface on the opposite side of the side with the light receiving element is provided with minute irregularities or groove shapes ,
The light incident portion, a horizontal according to any one of claims 1 or claim 2 or claim 6 or claim 7, wherein the lateral end is formed so as to be recessed close to the light source Sensor.
前記光ガイドは、光源から射出した光が該光ガイドの入光面において概ね平行になるように、該入光面が凸型の円筒形状部とされ、この円筒形状部の軸が、光源の光軸と、光源の光軸が前記光ガイドの全反射面に対して反射してできる軸とを含む平面の法線に平行であり、
前記円筒形状部は、凸形の円筒形状の入光面を有することにより、凸レンズの働きをすることを特徴とする請求項に記載の水平センサ。
The light guide has a convex cylindrical portion so that light emitted from the light source is substantially parallel to the light incident surface of the light guide, and the axis of the cylindrical portion is the axis of the light source. and the optical axis, Ri parallel der the normal of the plane containing the axes optical axis of the light source can be reflected on the total reflection surface of the light guide,
The horizontal sensor according to claim 6 , wherein the cylindrical portion has a convex cylindrical light incident surface to function as a convex lens .
前記光ガイドは、導光板状の面発光部を備え、
前記光ガイドの全反射面は、光源の光軸と、光源の光軸が該全反射面に対して反射してできる軸とを含む平面での断面形状が放物面を成し、この放物面の焦点が、前記面発光部の入り口付近になるように形成され
前記面発光部は、光を反射する凹凸や溝を有する反射面と、その平面より光を出射する光出射面とを有することを特徴とする請求項に記載の水平センサ。
The light guide includes a light guide plate-like surface light emitting unit,
The total reflection surface of the light guide has a parabolic surface formed by a cross-sectional shape in a plane including the optical axis of the light source and an axis formed by reflecting the optical axis of the light source with respect to the total reflection surface. Formed so that the focal point of the object surface is near the entrance of the surface light emitting part ,
The horizontal sensor according to claim 9 , wherein the surface light-emitting unit has a reflective surface having irregularities and grooves for reflecting light, and a light emitting surface for emitting light from the plane .
前記光ガイドは、前記円筒形状部の円筒面に沿って、前記円筒形状部の軸方向に光を拡散させる複数の溝が形成され
前記複数の溝の各溝は、前記円筒形状部の軸と直交する平面上にあり、かつ、前記円筒形状部の軸方向略等間隔に円筒面のほぼ全体に配設されていることを特徴とする請求項又は請求項10に記載の水平センサ。
The light guide is formed with a plurality of grooves for diffusing light in the axial direction of the cylindrical portion along the cylindrical surface of the cylindrical portion ,
Each groove of the plurality of grooves is on a plane orthogonal to the axis of the cylindrical portion, and is disposed on substantially the entire cylindrical surface at substantially equal intervals in the axial direction of the cylindrical portion. The horizontal sensor according to claim 9 or 10 .
前記光ガイドは、前記面発光部の反射面に、前記円筒形状部の円筒の軸に平行に断面形状が三角形状の複数の溝が形成されており、かつ、その溝の光の入射側面の底角が20〜40°であり、
前記光ガイドの面発光部の射出面と前記水準器の間に、頂角90°の三角プリズムが形成されたシート状部材を、プリズムの稜線が前記光ガイドの溝の稜線と平行になるように配置し
前記反射面の外側に、該反射面に平行に補助反射板が設けられていることを特徴とする請求項乃至請求項11のいずれか一項に記載の水平センサ。
In the light guide, a plurality of grooves having a triangular cross-sectional shape are formed on the reflecting surface of the surface light emitting portion in parallel to the axis of the cylinder of the cylindrical portion, and the light incident side surface of the groove is The base angle is 20-40 °,
A sheet-like member in which a triangular prism having an apex angle of 90 ° is formed between the exit surface of the surface light emitting portion of the light guide and the level, and the ridge line of the prism is parallel to the ridge line of the groove of the light guide. placed,
The horizontal sensor according to any one of claims 9 to 11 , wherein an auxiliary reflecting plate is provided outside the reflecting surface in parallel to the reflecting surface .
前記光ガイドの面発光部は、前記光ガイドの設計により大きさを自由に替えることができる構成を有し、
前記面発光部の厚みが、0.7〜1.5mmであることを特徴とする請求項10乃至請求項12のいずれか一項に記載の水平センサ。
The surface light emitting portion of the light guide has a configuration that can be freely changed in size by the design of the light guide,
The horizontal sensor according to any one of claims 10 to 12 , wherein a thickness of the surface light emitting portion is 0.7 to 1.5 mm.
前記光ガイドの面発光部の反射面に形成された三角形状の溝と溝との間に、該面発光部に入射してきた光を全反射して、この光を該面発光部の入口付近から奥へと進行させる、該面発光部に平行な平面を形成したことを特徴とする請求項12又は請求項13に記載の水平センサ。 Between the triangular grooves formed on the reflection surface of the surface light emitting portion of the light guide, the light incident on the surface light emitting portion is totally reflected, and this light is near the entrance of the surface light emitting portion. horizontal sensor according to claim 12 or claim 13 from advancing to the back, characterized in that to form a plane parallel to said surface light emitting portion.
JP2006214255A 2005-08-08 2006-08-07 Horizontal sensor Expired - Fee Related JP4928863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214255A JP4928863B2 (en) 2005-08-08 2006-08-07 Horizontal sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005230100 2005-08-08
JP2005230100 2005-08-08
JP2006214255A JP4928863B2 (en) 2005-08-08 2006-08-07 Horizontal sensor

Publications (2)

Publication Number Publication Date
JP2007071870A JP2007071870A (en) 2007-03-22
JP4928863B2 true JP4928863B2 (en) 2012-05-09

Family

ID=37933407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214255A Expired - Fee Related JP4928863B2 (en) 2005-08-08 2006-08-07 Horizontal sensor

Country Status (1)

Country Link
JP (1) JP4928863B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924694B1 (en) * 1970-11-25 1974-06-25
US4311709A (en) * 1979-12-26 1982-01-19 Merck & Co., Inc. Loweralkyl substituted diphenyl polyamine as an antimicrobial agent
JPS58202815A (en) * 1982-05-21 1983-11-26 Yuushin:Kk Slant detecting device
JP3072779B2 (en) * 1991-02-26 2000-08-07 株式会社トプコン Tilt angle detector
JP3370619B2 (en) * 1999-02-10 2003-01-27 アルプス電気株式会社 Attitude control device and attitude control method

Also Published As

Publication number Publication date
JP2007071870A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US6975408B2 (en) Reflection scale and displacement measurement apparatus using the same
US8300291B2 (en) Optical scanning device and two-dimensional image display device using the same
US20210278542A1 (en) Line beam scanning optical system and laser radar
US20110149590A1 (en) Linear light source
KR20140104002A (en) Irradiation device and image-reading device
US5479010A (en) Photoelectric encoder having a plane mirror disposed parallel to the optical axis of a concave mirror
US8102514B2 (en) Beam irradiation apparatus
KR102129706B1 (en) Micro-optics and optoelectronics module including the same
TWI515465B (en) Light-couple element and light module having light-couple element
KR20120045426A (en) Light guide plate and display device having the same
WO2015141600A1 (en) Optical receptacle and optical module
CN101600978B (en) Device and method for controlling an angular coverage of a light beam
CN117977379A (en) Multi-line laser projector and electronic equipment
JP4928863B2 (en) Horizontal sensor
JP4270181B2 (en) Horizontal sensor
US9435509B2 (en) Linear light source apparatus and image reading apparatus
JP4270180B2 (en) Horizontal sensor
CN111290061A (en) Optical diffusion sheet, light source device, and distance measuring device
WO2022153849A1 (en) Line beam scanning optical system and laser radar
JPH10271278A (en) Image reader
JP2000358130A (en) Image reader and light guide unit used for it
JP2015103847A (en) Illumination device and image sensor
WO2021192601A1 (en) Line beam scanning optical system, and laser radar
WO2007018191A1 (en) Horizontal sensor and laser marker
CN221126534U (en) Optical module, light emitting device, laser radar and structured light device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees