JP4928836B2 - Microscope - Google Patents

Microscope Download PDF

Info

Publication number
JP4928836B2
JP4928836B2 JP2006149171A JP2006149171A JP4928836B2 JP 4928836 B2 JP4928836 B2 JP 4928836B2 JP 2006149171 A JP2006149171 A JP 2006149171A JP 2006149171 A JP2006149171 A JP 2006149171A JP 4928836 B2 JP4928836 B2 JP 4928836B2
Authority
JP
Japan
Prior art keywords
optical system
light
aperture
condensing
objective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006149171A
Other languages
Japanese (ja)
Other versions
JP2007322451A (en
Inventor
孝志 山西
政昭 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2006149171A priority Critical patent/JP4928836B2/en
Publication of JP2007322451A publication Critical patent/JP2007322451A/en
Application granted granted Critical
Publication of JP4928836B2 publication Critical patent/JP4928836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、赤外顕微鏡、ラマン顕微鏡等の顕微装置、特にその空間分解能の変更機構の改良に関する。   The present invention relates to a microscope such as an infrared microscope and a Raman microscope, and more particularly to an improvement of a mechanism for changing the spatial resolution.

例えば、固定表面に付着した有機物などの分子構造などを調べるため、赤外顕微鏡、ラマン顕微鏡等の各種顕微装置が用いられる。このような顕微装置では被測定物に光を照射し、対物光学系によって被測定物上の特定微小部位からの光を採取し、スペクトルの測定を行う。さらに、所定の空間分解能を達成するため、光路上にアパーチャを設けて、対物光学系によって採取した光のうち、特定微小部位以外の他の部分からの光をカットしている(例えば、特許文献1参照)。こうすることで、測定したい特定微小部位からの光のみがアパーチャを通過し、その光が光検出器で検出される。
特開2000−121554号公報
For example, various microscopic apparatuses such as an infrared microscope and a Raman microscope are used in order to examine a molecular structure of an organic substance attached to the fixed surface. In such a microscope, the object to be measured is irradiated with light, the light from a specific minute part on the object to be measured is collected by the objective optical system, and the spectrum is measured. Furthermore, in order to achieve a predetermined spatial resolution, an aperture is provided on the optical path, and light from other parts than the specific minute part is cut out of the light collected by the objective optical system (for example, Patent Documents) 1). In this way, only light from a specific minute site to be measured passes through the aperture, and the light is detected by the photodetector.
JP 2000-121554 A

従来の顕微装置で空間分解能、つまり測定したい微小部位の範囲の大きさ、の変更は、アパーチャの径を変えることで行なっていた。しかし、この方式では、空間分解能の変更は段階的にしか変更することができないという問題があった。また、アパーチャの径を変更する際に、アパーチャの位置がずれてしまうといった位置再現性の問題もあった。
本発明は上記課題に鑑みなされたものであり、その目的は空間分解能を連続的に変更できる顕微装置を提供することにある。
In the conventional microscope, the spatial resolution, that is, the size of the range of the minute part to be measured is changed by changing the diameter of the aperture. However, this method has a problem that the spatial resolution can be changed only in stages. Also, there has been a problem of position reproducibility that the position of the aperture is shifted when the diameter of the aperture is changed.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a microscope that can continuously change the spatial resolution.

上記目的を達成するため、本発明にかかる顕微装置は、被測定物からの光を集光する対物光学系と、該対物光学系によって集光した光のうち被測定物の特定部位の光のみを通過するアパーチャと、前記アパーチャを通過した光を受光する光検出器と、前記対物光学系とアパーチャの間の光路上に設置され、対物光学系によって集光した被測定物像を前記アパーチャ面に結像する結像光学系と、前記アパーチャと前記光検出器の間の光路上に設置され、前記アパーチャを通過した光を集光して前記光検出器へ導入する集光光学系と、を備え、前記結像光学系は焦点距離可変なズーム光学系で構成され、前記集光光学系は、焦点距離可変なズーム光学系で構成され、前記結像光学系による前記アパーチャでの結像の倍率に関わらず、光軸にほぼ平行な光束を出射することを特徴とする。
In order to achieve the above object, a microscope apparatus according to the present invention includes an objective optical system that condenses light from an object to be measured, and only light at a specific part of the object to be measured among the light collected by the objective optical system. An aperture that passes through the aperture, a photodetector that receives light that has passed through the aperture, and an object surface that is installed on the optical path between the objective optical system and the aperture and is focused by the objective optical system. An imaging optical system that forms an image on the optical path; and a condensing optical system that is installed on an optical path between the aperture and the photodetector, collects the light that has passed through the aperture, and introduces the light into the photodetector. The imaging optical system is configured with a zoom optical system with a variable focal length, and the condensing optical system is configured with a zoom optical system with a variable focal length, and is imaged with the aperture by the imaging optical system. The optical axis is almost flat regardless of the magnification Characterized by emitting a light beam.

上記の顕微装置において、前記集光光学系と前記光検出器の間の光路上に設置される分光器と、前記集光光学系を通過した光を前記分光器へ導入する入射光学系と、を備え、前記入射光学系が焦点距離可変なズーム光学系で構成され、前記集光光学系から出射した平行光束の大きさに応じて焦点距離を変更することにより、前記分光器とのFマッチングを行うことが好適である。
上記の顕微装置において、前記集光光学系と前記入射光学系との間の光路上に設置され、前記対物光学系、結像光学系、アパーチャ、集光光学系を通過した光以外の別光路からの光を前記分光器に導入する光路切替え手段を備えることが好適である。
In the above microscopy device, a spectrometer installed in the optical path between the photodetector and the light converging optical system, an incident optical system for introducing light transmitted through the condensing optical system to the spectroscope, And the incident optical system is composed of a zoom optical system having a variable focal length , and F-matching with the spectroscope is performed by changing the focal length according to the size of the parallel light beam emitted from the condensing optical system. Is preferably performed .
In the above microscopy device, installed on an optical path between the focusing optical system and the incident optical system, said objective optical system, the imaging optical system, an aperture, a separate optical path other than the light passing through the condensing optical system It is preferable to provide optical path switching means for introducing the light from the light into the spectrometer.

本発明にかかる顕微装置によれば、対物光学系によって集光した光をアパーチャへ結像する結像光学系がズーム光学系で構成されているため、空間分解能を連続的に変更することができる。   According to the microscope according to the present invention, since the imaging optical system that forms an image of the light collected by the objective optical system on the aperture is composed of the zoom optical system, the spatial resolution can be continuously changed. .

以下に図面を参照して本発明の好適な実施形態について説明する。
図1は、本発明の実施形態にかかる顕微装置の概略構成図である。図1の顕微装置10は、対物レンズ12(対物光学系)と、アパーチャ14と、光検出器16と、対物レンズ12とアパーチャ14の間の光路上に設置された結像光学系18と、を備える。被測定物20からの光は対物レンズ12によって集光され、結像光学系18へと送られる。結像光学系18は対物レンズ12によって採取した被測定物像をアパーチャ14面に結像する。アパーチャ14では、測定したい特定部位の光のみを通過し、その他の部分からの光を遮断する。そして、アパーチャ14を通過した光は光検出器16によって検出される。
Preferred embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a microscope apparatus according to an embodiment of the present invention. 1 includes an objective lens 12 (objective optical system), an aperture 14, a photodetector 16, an imaging optical system 18 installed on an optical path between the objective lens 12 and the aperture 14, Is provided. Light from the object to be measured 20 is collected by the objective lens 12 and sent to the imaging optical system 18. The imaging optical system 18 forms an image of the object measured by the objective lens 12 on the surface of the aperture 14. The aperture 14 passes only light of a specific part to be measured and blocks light from other parts. The light that has passed through the aperture 14 is detected by the photodetector 16.

ここで、結像光学系18はズーム光学系として構成されている。ズーム光学系とは、複数のレンズによって構成され、結像位置を同一面に保ったまま光学系全体での焦点距離を連続的に変化させることができる光学系であり、像の横倍率を自在に変更できる。   Here, the imaging optical system 18 is configured as a zoom optical system. A zoom optical system is an optical system that consists of a plurality of lenses and can continuously change the focal length of the entire optical system while keeping the image formation position on the same plane. Can be changed.

以下に図2A、図2Bを参照して、本実施形態の顕微装置における空間分解能の変更機構について説明する。図2A、2Bは、それぞれ異なる空間分解能で被測定物の特定部位を観察している状態を示している。図に示されたように、被測定物の特定部位(図で矢印で示した範囲)の像は、結像光学系18によって所定の倍率でアパーチャ14面に結像される。アパーチャ14面に結像された像(図で矢印で示した部分)のうち、アパーチャ14の径に対応した部分のみがアパーチャ14を通過する。このため、大きな倍率でアパーチャ14面に像を結像した場合(図2A)と、小さな倍率で像を結像した場合(図2B)とを比べると、図2Aの方が図2Bよりもアパーチャ14によって制限される範囲が大きく、より微小な範囲を測定していることになる。   A mechanism for changing the spatial resolution in the microscope according to the present embodiment will be described below with reference to FIGS. 2A and 2B. 2A and 2B show a state where a specific part of the object to be measured is observed with different spatial resolutions. As shown in the figure, an image of a specific part of the object to be measured (a range indicated by an arrow in the figure) is formed on the surface of the aperture 14 at a predetermined magnification by the imaging optical system 18. Of the image formed on the surface of the aperture 14 (the portion indicated by the arrow in the figure), only the portion corresponding to the diameter of the aperture 14 passes through the aperture 14. Therefore, comparing the case where an image is formed on the surface of the aperture 14 with a large magnification (FIG. 2A) and the case where an image is formed with a small magnification (FIG. 2B), the aperture in FIG. The range limited by 14 is large, and a smaller range is measured.

このように、本実施形態の顕微装置10によれば、アパーチャ14を通過し得る被測定物20の特定部位の範囲の大きさを連続的に変更でき、連続的な空間分解能の変更が達成できる。また、アパーチャ14を可動式にする必要がないため、位置再現性の問題もない。
さらに、アパーチャ14の径自体を変更する機構と組み合わせれば、空間分解能のよりきめ細やかな設定もできる。
As described above, according to the microscope apparatus 10 of the present embodiment, the size of the range of the specific part of the measurement object 20 that can pass through the aperture 14 can be continuously changed, and a continuous spatial resolution change can be achieved. . Further, since it is not necessary to make the aperture 14 movable, there is no problem of position reproducibility.
Further, when combined with a mechanism for changing the diameter of the aperture 14 itself, the spatial resolution can be set more finely.

また、顕微装置において分光測定を行う際、分光器のスループットを上げるため、分光器の開口角に合わせて、分光器へ光を導入する入射光学系を設定(Fマッチング)する必要がある。   Further, when performing spectroscopic measurement in the microscope, it is necessary to set (F matching) an incident optical system for introducing light into the spectroscope in accordance with the aperture angle of the spectroscope in order to increase the throughput of the spectroscope.

本実施形態の顕微装置には好適にFマッチングを行なう機構も設けられており、図1を再び参照して、本実施形態にかかる顕微装置における、分光器のFマッチング機構を説明する。図1の顕微装置10はさらに、アパーチャ14と光検出器16の間に設置される分光器22と、集光光学系24と、入射光学系26と、を備える。アパーチャ14を通過した光は集光光学系24によって集光され、入射光学系26へ送られる。入射光学系26は集光光学系24からの光を分光器22へ導入する。ここで、集光光学系24、入射光学系26は、それぞれズーム光学系で構成されている。
The microscope apparatus of the present embodiment is also provided with a mechanism for suitably performing F matching. With reference to FIG. 1 again, the F matching mechanism of the spectrometer in the microscope apparatus according to the present embodiment will be described. The microscope apparatus 10 of FIG. 1 further includes a spectroscope 22 installed between the aperture 14 and the photodetector 16, a condensing optical system 24, and an incident optical system 26. The light that has passed through the aperture 14 is condensed by the condensing optical system 24 and sent to the incident optical system 26. The incident optical system 26 introduces light from the condensing optical system 24 into the spectrometer 22. Here, the condensing optical system 24 and the incident optical system 26 are each composed of a zoom optical system.

図3A、3Bに示すように、集光光学系24はズーム光学系で構成されており、測定時の対物光学系12および結像光学系18の倍率に応じて焦点距離を変更する。つまり、アパーチャ14から出射する光の広がり角は対物光学系12および結像光学系18の倍率によって異なるため、集光光学系24は焦点距離を変更することで効率的にアパーチャ14からの出射光を集光する。さらに、入射光学系26もズーム光学系で構成されており、集光光学系24から出射した光束の大きさに応じて焦点距離を変更し、集光光学系24のF値を分光器22のF値に合うように調整することができる。このように、本実施形態の顕微装置によれば、分光器のFマッチングを容易に行なうことができる。   As shown in FIGS. 3A and 3B, the condensing optical system 24 is composed of a zoom optical system, and changes the focal length according to the magnification of the objective optical system 12 and the imaging optical system 18 at the time of measurement. That is, since the divergence angle of the light emitted from the aperture 14 varies depending on the magnification of the objective optical system 12 and the imaging optical system 18, the condensing optical system 24 efficiently changes the focal length and emits the light emitted from the aperture 14. Condensing. Further, the incident optical system 26 is also composed of a zoom optical system, the focal length is changed according to the size of the light beam emitted from the condensing optical system 24, and the F value of the condensing optical system 24 is changed to that of the spectroscope 22. It can be adjusted to suit the F value. Thus, according to the microscope apparatus of the present embodiment, F-matching of the spectrometer can be easily performed.

また、顕微装置10は、アパーチャ14と入射光学系26との間の光路上に設置された光路切替え手段28を備えることも好適である。光路切換え手段28は、光路上へ挿入および光路上から退避できる移動可能なミラー30によって構成されている。通常、ミラー30は図1に示すように集光光学系24と入射光学系26との間の光路上から退避しており、対物レンズ12、結像光学系18、アパーチャ14、を通った光が分光器22へと導入される。一方、対物レンズ12、結像光学系18、アパーチャ14、を通った光以外の外部光を分光器22へ導入したい場合、図4に示すように、ミラー30が光路上へ挿入され、外部光が分光器22へ導入される。なお、図4に示すような外部光を分光器に取り込む場合においても、入射光学系26は外部光の瞳径に応じて焦点距離を変更し、分光器のFマッチングを行なうことができる。 It is also preferable that the microscope apparatus 10 includes an optical path switching unit 28 installed on the optical path between the aperture 14 and the incident optical system 26. The optical path switching means 28 is constituted by a movable mirror 30 that can be inserted into and retracted from the optical path. Normally, the mirror 30 is retracted from the optical path between the condensing optical system 24 and the incident optical system 26 as shown in FIG. 1 and passes through the objective lens 12, the imaging optical system 18, and the aperture 14. Is introduced into the spectrometer 22. On the other hand, when it is desired to introduce external light other than the light passing through the objective lens 12, the imaging optical system 18, and the aperture 14 into the spectroscope 22, a mirror 30 is inserted on the optical path as shown in FIG. Is introduced into the spectrometer 22. Even when external light as shown in FIG. 4 is taken into the spectroscope, the incident optical system 26 can change the focal length according to the pupil diameter of the external light and perform F-matching of the spectroscope.

本発明の実施形態にかかる顕微装置の概略構成図である。It is a schematic block diagram of the microscope apparatus concerning embodiment of this invention. 本発明の実施形態にかかる顕微装置の空間分解能の変更機構の説明図である。It is explanatory drawing of the change mechanism of the spatial resolution of the microscope apparatus concerning embodiment of this invention. 本発明の実施形態にかかる顕微装置の空間分解能の変更機構の説明図である。It is explanatory drawing of the change mechanism of the spatial resolution of the microscope apparatus concerning embodiment of this invention. 本発明の実施形態にかかる顕微装置における、分光器のFマッチング機構の説明図である。It is explanatory drawing of the F matching mechanism of the spectrometer in the microscope apparatus concerning embodiment of this invention. 本発明の実施形態にかかる顕微装置における、分光器のFマッチング機構の説明図である。It is explanatory drawing of the F matching mechanism of the spectrometer in the microscope apparatus concerning embodiment of this invention. 本発明の実施形態にかかる顕微装置の光路切換え手段の動作の説明図である。It is explanatory drawing of operation | movement of the optical path switching means of the microscope apparatus concerning embodiment of this invention.

符号の説明Explanation of symbols

10 顕微装置
12 対物光学系
14 アパーチャ
16 光検出器
18 結像光学系
20 被測定物
22 分光器
24 集光光学系
26 入射光学系
28 光路切換え手段
DESCRIPTION OF SYMBOLS 10 Microscope apparatus 12 Objective optical system 14 Aperture 16 Photo detector 18 Imaging optical system 20 Object 22 Spectrometer 24 Condensing optical system 26 Incident optical system 28 Optical path switching means

Claims (3)

被測定物からの光を集光する対物光学系と、
該対物光学系によって集光した光のうち被測定物の特定部位の光のみを通過するアパーチャと、
前記アパーチャを通過した光を受光する光検出器と、
前記対物光学系とアパーチャの間の光路上に設置され、対物光学系によって集光した被測定物像を前記アパーチャ面に結像する結像光学系と、
前記アパーチャと前記光検出器の間の光路上に設置され、前記アパーチャを通過した光を集光して前記光検出器へ導入する集光光学系と、
を備え、
前記結像光学系は焦点距離可変なズーム光学系で構成され
前記集光光学系は、焦点距離可変なズーム光学系で構成され、前記結像光学系による前記アパーチャでの結像の倍率に関わらず、光軸にほぼ平行な光束を出射することを特徴とする顕微装置。
An objective optical system that collects light from the object to be measured;
An aperture that passes only light of a specific part of the object to be measured out of the light collected by the objective optical system;
A photodetector for receiving light that has passed through the aperture;
An imaging optical system that is installed on an optical path between the objective optical system and the aperture, and forms an image of an object to be measured collected by the objective optical system on the aperture surface;
A condensing optical system that is installed on an optical path between the aperture and the photodetector, collects light that has passed through the aperture, and introduces the light into the photodetector;
With
The imaging optical system is composed of a zoom optical system having a variable focal length ,
The condensing optical system is composed of a zoom optical system having a variable focal length, and emits a light beam substantially parallel to the optical axis regardless of the magnification of the image formed on the aperture by the image forming optical system. Microscopic device to do.
請求項1記載の顕微装置において、
前記集光光学系と前記光検出器の間の光路上に設置される分光器と、
前記集光光学系を通過した光を前記分光器へ導入する入射光学系と、
を備え、
前記入射光学系が焦点距離可変なズーム光学系で構成され、前記集光光学系から出射した平行光束の大きさに応じて焦点距離を変更することにより、前記分光器とのFマッチングを行うことを特徴とする顕微装置。
The microscopic device according to claim 1, wherein
A spectroscope installed on an optical path between the condensing optical system and the photodetector;
An incident optical system for introducing light that has passed through the condensing optical system into the spectrometer;
With
The incident optical system is composed of a zoom optical system having a variable focal length , and F matching with the spectroscope is performed by changing the focal length according to the size of the parallel light beam emitted from the condensing optical system. A microscopic device characterized by
請求項2記載の顕微装置において、
前記集光光学系と前記入射光学系との間の光路上に設置され、前記対物光学系、結像光学系、アパーチャ、集光光学系を通過した光以外の別光路からの光を前記分光器に導入する光路切替え手段を備えたことを特徴とする顕微装置。
The microscope according to claim 2,
Is installed on an optical path between the incident optical system and the focusing optical system, said objective optical system, the imaging optical system, the aperture, the spectral light from another light path other than the light passing through the condensing optical system A microscopic device characterized by comprising optical path switching means for introduction into a vessel.
JP2006149171A 2006-05-30 2006-05-30 Microscope Active JP4928836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149171A JP4928836B2 (en) 2006-05-30 2006-05-30 Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149171A JP4928836B2 (en) 2006-05-30 2006-05-30 Microscope

Publications (2)

Publication Number Publication Date
JP2007322451A JP2007322451A (en) 2007-12-13
JP4928836B2 true JP4928836B2 (en) 2012-05-09

Family

ID=38855369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149171A Active JP4928836B2 (en) 2006-05-30 2006-05-30 Microscope

Country Status (1)

Country Link
JP (1) JP4928836B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044983A1 (en) 2009-09-24 2011-03-31 Carl Zeiss Microimaging Gmbh microscope

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670745B2 (en) * 1996-02-20 2005-07-13 オリンパス株式会社 Confocal microscope
DE19654207A1 (en) * 1996-12-24 1998-06-25 Leica Lasertechnik TV camera
JP4642401B2 (en) * 2004-07-26 2011-03-02 オリンパス株式会社 Laser scanning observation device

Also Published As

Publication number Publication date
JP2007322451A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
TWI754086B (en) Overlay metrology using multiple parameter configurations
JP5913964B2 (en) Spectral detection apparatus and confocal microscope equipped with the same
US20070108387A1 (en) Tunable x-ray fluorescence imager for multi-element analysis
WO2010004720A1 (en) Microspectroscope
KR20190089164A (en) High-throughput, high-resolution optics for reflective and transmissive nanophoton devices
US20170023409A1 (en) Microspectroscopy device
JP2006084794A (en) Observation device with focal position control mechanism
JP4696197B2 (en) Cathode luminescence detection device
JP2012504242A (en) Spectral imaging microscopy
KR102573338B1 (en) Microscopy System for Structure and Defect Inspection of EUV Lithography Photomasks
WO2019035483A1 (en) Optical microscope and method of spectroscopic measurement
WO2016132451A1 (en) Microscope
JP2007033381A (en) Optical inspection apparatus and its lighting method
JP4601266B2 (en) Laser microscope
US7408636B2 (en) Method and apparatus for dark field chemical imaging
US10481101B2 (en) Asymmetrical magnification inspection system and illumination module
JP4928836B2 (en) Microscope
JP2007264322A (en) Infrared microscope
JP4140490B2 (en) X-ray analyzer and its focusing device
JP2006047270A (en) Wavelength-variable monochromatic light source
JP2018194634A (en) Light field microscope
JP6067083B2 (en) Defect inspection method and apparatus
JP4136891B2 (en) Fluorescence measurement device for measuring fluorescence image / spectrum
JP2005181124A (en) Spectrum detection device
US20230121350A1 (en) Euv microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250