JP4928451B2 - ビデオデータを処理する装置および方法 - Google Patents

ビデオデータを処理する装置および方法 Download PDF

Info

Publication number
JP4928451B2
JP4928451B2 JP2007523796A JP2007523796A JP4928451B2 JP 4928451 B2 JP4928451 B2 JP 4928451B2 JP 2007523796 A JP2007523796 A JP 2007523796A JP 2007523796 A JP2007523796 A JP 2007523796A JP 4928451 B2 JP4928451 B2 JP 4928451B2
Authority
JP
Japan
Prior art keywords
video
pixel data
video frame
segmentation
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007523796A
Other languages
English (en)
Other versions
JP2008508801A5 (ja
JP2008508801A (ja
Inventor
ペース・チャールズ・ポール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euclid Discoveries LLC
Original Assignee
Euclid Discoveries LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euclid Discoveries LLC filed Critical Euclid Discoveries LLC
Publication of JP2008508801A publication Critical patent/JP2008508801A/ja
Publication of JP2008508801A5 publication Critical patent/JP2008508801A5/ja
Application granted granted Critical
Publication of JP4928451B2 publication Critical patent/JP4928451B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/215Motion-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/154Measured or subjectively estimated visual quality after decoding, e.g. measurement of distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/20Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/33Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • H04N19/54Motion estimation other than block-based using feature points or meshes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/63Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/63Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
    • H04N19/64Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by ordering of coefficients or of bits for transmission
    • H04N19/647Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by ordering of coefficients or of bits for transmission using significance based coding, e.g. Embedded Zerotrees of Wavelets [EZW] or Set Partitioning in Hierarchical Trees [SPIHT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Image Analysis (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

関連出願
本出願は2004年7月30日出願の米国特許仮出願第60/598,085号「主成分分析を利用するビデオ圧縮システムおよび方法(System And Method For Video Compression Employing Principal Component Analysis)」の優先権を主張する。
本発明は一般にディジタル信号処理の分野、さらに詳細には、信号または画像データ、最も詳細には、ビデオデータの効果的な表現および処理のための装置および方法に関する。
本発明が属する従来技術の一般的なシステムの説明が図1に示されている。ここで、ブロックダイヤグラムは典型的な従来技術のビデオ処理システムを示している。このようなシステムは一般に、以下のステージ、すなわち入力ステージ102、処理ステージ104、出力ステージ106、および1つまたは複数のデータ記憶機構108を有する。
入力ステージ102は、カメラセンサ、カメラセンサアレイ、距離計測(range finding)センサといった構成要素、または記憶機構からデータを読み出す手段を有する。入力ステージは、人工および/または自然発生の現象の時間相関のあるシーケンスを表すビデオデータを提供する。データの顕著な要素はノイズまたは他の望ましくない信号によってマスクまたは汚染されているかもしれない。
データストリーム、アレイまたはパケットの形式のビデオデータが、予め定義された転送プロトコルに従って、直接に、または中間記憶要素108を介して処理ステージ104に提供される。処理ステージ104は、専用のアナログもしくはディジタルデバイス、または中央処理装置(CPU)、ディジタル信号プロセッサ(DSP)もしくはフィールドプログラマブルゲートアレイ(FPGA)などのプログラマブル装置の形式をとり、所望の一連のビデオデータ処理操作を実行する。処理ステージ104は通常1つまたは複数のCODEC(符号器/復号器)を有する。
出力ステージ106は、信号、表示、またはユーザもしくは外部装置に影響を与えることが可能な他の応答を生成する。一般に、出力装置は、インジケータ信号(表示信号)、表示、ハードコピー、記憶装置において処理される処理データ表現を生成するために、または遠隔地にデータ伝送を開始するために用いられる。さらに、後続の処理操作における使用のために、中間信号または制御パラメータを提供するように用いられてもよい。
記憶装置はこのシステムにおいて随意の要素として提示されている。用いられる場合、記憶要素108は、読取専用記憶媒体のような不揮発性、または動的ランダムアクセスメモリ(RAM)のような揮発性であってもよい。単一のビデオ処理システムが、入力ステージ、処理ステージおよび出力ステージに対して様々な関係を有する、複数タイプの記憶要素を有することは珍しいことではない。このような記憶要素の例は、入力バッファ、出力バッファおよび処理キャッシュである。
図1のビデオ処理システムの主な目的は、入力データを処理して特定の用途に対して有意義な出力を生成することである。この目的を達成するために、ノイズ低減もしくは除去、特徴抽出、オブジェクトのセグメント化および/もしくは正規化、データのカテゴリー分類、イベントの検出、編集、データの選択、データの再コード化、ならびにトランスコーディングなどの処理操作が利用される。
ほとんど制約されていないデータを生成する多くのデータソースは、人々、特に音響および視覚映像にとって重大な問題である。ほとんどの場合、これらのソース信号の基本的特性が、効率的なデータ処理目的に悪影響を与える。技術的仮定を導く際に用いられる単純な経験的および発見的方法から生じるエラーを持ち込むことなく信頼性の高い効率的な方法でデータを処理するには、ソースデータの本質的な変動性が障害となる。入力データが、狭く定義された特性セット(例えば、限定された記号値のセットまたは狭い帯域幅)に自然または故意に制限される場合、この変動性は用途に応じて減少される。これらの全ての制約は、ほとんどの場合、商業価値の低い処理技術をもたらす。
信号処理システムの設計は、システムの意図する用途および入力として使用されるソース信号の期待される特性によって影響される。ほとんどの場合、要求される性能効率もまた重要な設計因子である。すなわち、性能効率は、利用可能なデータ記憶と比較した処理データ量、ならびに利用可能な計算能力と比較したアプリケーションの計算の複雑性によって影響される。
従来のビデオ処理方法では、遅いデータ通信速度、大きな記憶容量条件、および妨害となる知覚呈示(知覚を刺激するもの(perceptual artifact))の形態で現れる、多くの非効率に苦しんでいる。ユーザが所望するビデオデータの使用および操作の方法は様々であり、また、特定の形式の視覚情報に対してユーザが生得的感受性を有するため、これらは重大な問題となる可能性がある。
「最適な」ビデオ処理システムは、所望の一連の処理操作の実行において、効率的であり、信頼性が高く、頑健である。このような操作には、データの記憶、伝送、表示、圧縮、編集、暗号化、強調、カテゴリー分類、特徴検出および認識が含まれる。2次的操作は、他の情報源とこのように処理されたデータの統合を含む。このような処理システムの場合において同様に重要なのは、知覚呈示の混入を回避することによって、出力が人間の視覚に対応していなければならない。
ビデオ処理システムの速度、効率および品質が入力データのいずれかの特定の特性の特異性に強く依存しない場合、ビデオ処理は「頑健(ロバスト)である」と説明される。頑健性はまた、入力のいくつかにエラーがあるときに操作を実行する能力に関係する。多くのビデオ処理システムは、アプリケーションの汎用的な集合への適用を可能にするだけの十分な頑健性を有しない。これらシステムは、システムの開発に使用された同一の狭く制約されたデータへの適用のみを提供する。
入力要素のサンプリングレートが検出現象の信号特性に適合しないことによって、顕著な情報が、連続値のデータソースの離散化において失われる可能性がある。また、信号強度がセンサの限界を超える場合も損失が発生し、飽和を生じさせる。同様に、入力データの全範囲の値が一連の離散値によって表現される場合、任意の量子化プロセスが実行されて入力データの精度が低下する際に情報が失われ、これによりデータの表現の精度が低下する。
集合体多様性は、データまたは情報ソースの集合におけるあらゆる不確定要素に触れる。視覚情報は一般に制限がないため、視覚情報のデータ表現は極めて大きい集合体多様性を有する。視覚データは、センサアレイ上に入射する光によって形成される、空間アレイシーケンスまたは時空間シーケンスを表現する。
視覚現象のモデル化において、ビデオプロセッサは、一般に、データの表現または読取りに、いくつかの一連の制限および/または構造を課す。この結果、このような方法は、出力の品質、出力に関する信頼性、およびデータに確実に実行される後続の処理タスクの種類に影響を与える、系統的エラーを発生させる可能性がある。
量子化方法は、そのデータの統計的変動を保持することを試みる一方、ビデオフレーム内のデータ精度を低下させる。一般に、ビデオデータは、データ値の分布が確率分布に収集されるように解析される。また、データを空間周波数の混合データとして特徴付けるためにデータを位相空間に射影する方法もあり、これにより、精度の低下が拡散され、好ましい状態になる。これら量子化が集中的に利用されると、しばしば、知覚的に信じがたい色を発生させ、ビデオフレームの元の滑らかな領域に急峻な画素データを発生させる。
また、一般に、データの局所的な空間類似性を利用するために、差分コード化が用いられる。フレームの一部分におけるデータが、このフレームにおいて類似データの周辺で塊となっている傾向がある。また、後続のフレームにおいて同様の位置で塊となっている傾向がある。したがって、空間的に近接するデータに関するデータ表現は、量子化と組み合わせることができ、最終結果は、所定の精度に対して、差分表現がデータの絶対値を使用するよりも正確になる。例えば、白黒ビデオまたは低水準のカラービデオなどのように元のビデオデータのスペクトル解像度が制限される場合、この仮定はよく当てはまる。ビデオのスペクトル解像度が高くなると、同様の仮定が成り立たなくなる。これは、ビデオデータの精度を選択的に保護できないことに起因する。
残差のコード化は、表現のエラーをさらに差分コード化して、元のデータの精度を所望のレベルの正確度に復元する点で、差分コード化に類似する。
これらの方法の多様性は、空間位相および空間スケールにおけるデータの相関関係を明らかにする別の表現にビデオデータを変換することを試みる。ビデオデータがこれらの方法で変換されると、量子化および差分コード化の方法が変換データに適用されて、顕著な画像特徴の保持性の増加をもたらす。これら変換ビデオ圧縮技術のもっとも普及している2つの方法は、離散コサイン変換(DCT)および離散ウェーブレット変換(DWT)である。DCTにおけるエラーはビデオデータ値の広範な変動として現れ、したがって、これらの誤った相関を局所化するために、DCTは一般にビデオデータのブロックにおいて使用される。この局所化による呈示(artifact)はブロックの境界に沿って現れることが多い。DWTについては、基本関数と特定のテクスチャの間に不一致が存在すると、より複雑な呈示が発生し、これにより「ぼけ」が引き起こされる。DCTおよびDWTの悪影響を打ち消すために、表現の精度を上げて、重要な帯域幅を犠牲にして歪みを低減している。
本発明は、既存の最新のビデオ処理方法に、計算および解析の両方における利点を提供するビデオ処理方法である。発明の方法の原理は、線形分解方法、空間セグメント化方法および空間正規化方法の統合である。ビデオデータを空間的に制約することにより、線形分解方法の頑健性および適用性を大幅に向上する。これに加えて、データの空間セグメント化は、高変化データが解析データに空間的に近接する場合、誘引される非線形性を軽減する。
詳細には、本発明は、信号データを効率的に処理して1つまたは複数の有益な表現を得る手段を提供する。本発明は、多くの一般に発生するデータセットの処理において有効であり、特に、ビデオおよび画像データの処理において有効である。本発明の方法は、データを解析し、このデータの1つまたは複数のコンパクトな表現を提供することによって、この処理およびコード化を容易にする。新しい、よりコンパクトなデータ表現のそれぞれは、ビデオデータのコード化、圧縮、伝送、解析、記憶および表示(これらに限定されない)を含む、多数の用途に対する、計算処理、伝送帯域幅および記憶容量の条件の低減を可能にする。本発明は、ビデオデータの顕著なコンポーネントを識別および抽出する方法を含み、データの処理および表現における優先順位付けを可能にする。信号のノイズおよび他の望ましくない部分は優先順位がより低いと識別され、したがって、さらなる処理は、より高い優先順位のビデオ信号の部分の解析および表現に焦点が合わされる。その結果、ビデオ信号は、以前に可能であったものよりも、よりコンパクトに表現される。正確度における損失は、知覚的に重要ではないビデオ信号の部分に集中する。
ビデオ信号データでは、通常3次元シーンを2次元画像面への射影として描く画像シーケンスに、ビデオフレームが組み立てられる。各フレームすなわち画像は、サンプル信号に対する画像センサ応答を表現する画素(pel)から構成される。多くの場合、サンプル信号は、2次元センサアレイによってサンプル化される特定の反射、屈折または放射された電磁エネルギに相当する。連続的な逐次サンプリングによって、フレーム当たりの空間2次元と、ビデオシーケンスにおけるフレーム順序に対応する時間次元とを備える、時空間データストリームを得ることができる。
本発明は、図2に示されているとおり、信号データを解析して顕著なコンポーネントを識別する。信号がビデオデータから構成される場合、時空間ストリームの解析により、顔のような特定のオブジェクトであることが多い、顕著なコンポーネントを明らかにする。識別処理は、顕著なコンポーネントの存在および重要度を限定し、これら限定した顕著なコンポーネントの1つまたは複数の最重要部分を選択する。これは、ここで説明されている処理後または処理と同時に行われる、顕著性がより小さい他の顕著なコンポーネントの識別および処理を制限するわけではない。上述の顕著なコンポーネントはその後さらに解析され、変化するサブコンポーネントおよび不変のサブコンポーネントを識別する。不変サブコンポーネントの識別は、コンポーネントの特定の外観のモデル化処理である。これにより、コンポーネントを所望の正確度に合成できるモデルのパラメータ化が明らかになる。
本発明の一実施形態では、前景のオブジェクトが検出され追跡される。オブジェクトの画素はビデオの各フレームから識別されてセグメント化される。ブロックに基づく動き検出(動きベクトル探索)が、複数フレーム中のセグメント化されたオブジェクトに適用される。次に、これらの動き検出は高次の動きモデルに統合される。動きモデルを利用して、オブジェクトのインスタンスを共通の空間構成に包み込む。この構成において、特定のデータに対しては、オブジェクトのより多くの特徴が一つにまとめられる。この正規化によって、複数フレームにわたってオブジェクトの画素値の線形分解が可能になり、コンパクトに表現される。オブジェクトの外観(アピアランス)に関係する顕著な情報は、このコンパクトな表現に包含されている。
本発明の好ましい実施形態は、前景のビデオオブジェクトの線形分解を詳述する。オブジェクトは空間的に正規化され、これによりコンパクトな線形外観モデルを生成する。別の好ましい実施形態はさらに、空間的正規化の前に、ビデオフレームの背景から前景のオブジェクトを分割する。
本発明の好ましい実施形態は、少しだけ動いてカメラに向かって話す人物のビデオに本発明を適用する。
本発明の好ましい実施形態は、空間的変換によって、鮮明に表現されるビデオ内の任意のオブジェクトに本発明を適用する。
本発明の好ましい実施形態は、特に、ブロックに基づく動き検出を用いて、ビデオの2または3以上のフレーム間での有限差分を求める。高次の動きモデルが、より効率的な線形分解を提供するために、有限差分から因子分解される。
<検出および追跡>
信号の構成要素の顕著なコンポーネントが決定されると、これらのコンポーネントは保持され、他のすべての信号コンポーネントは減少または除去される。保持されるコンポーネントはビデオデータの中間的な形式を表現する。この中間データは、通常は既存のビデオ処理方法には利用されない方法を用いて、コード化される。中間データが複数の形式で存在するので、これらの中間的形式のいくつかをコード化するのに、標準のビデオコード化技術が用いられる。それぞれの例について、本発明は、もっとも効率的なコード化技法を決定して採用する。
顕著なコンポーネントの解析処理は、顕著な信号モードを検出して分類する。この処理の一実施形態は、強度がビデオフレーム内のオブジェクトの検出された顕著なコンポーネントに関連する応答信号を生成するように特に設計された空間フィルタの組み合わせを用いる。識別器が、ビデオフレームの異なる空間スケールで、異なる位置に、適用される。識別器からの応答強度が、顕著な信号モードの存在の可能性を示す。顕著性が強いオブジェクトが集中している場合、処理はそれを強い応答と識別する。顕著な信号モードの検出は、ビデオシーケンス内の顕著な情報に関する後続の処理および解析を可能にすることによって、本発明を特徴付ける。
1つまたは複数のビデオフレーム内の顕著な信号モードの検出位置が与えられると、本発明は、顕著な信号モードの不変の特徴を解析する。加えて、本発明は、不変の特徴について、残差信号、すなわち「突出性の小さい」信号モードを解析する。不変の特徴の識別が、冗長な情報の低減および信号モードのセグメント化(すなわち分離)の基礎となる。
<特徴点の追跡>
本発明の一実施形態では、1つまたは複数のフレーム内の空間位置が、空間強度フィールドの勾配解析を通して決定される。これらの特徴は、「コーナー」として大まかに記載できる「線」の交点に対応する。このような実施形態はさらに、両方とも強いコーナーで相互に空間的に異なるコーナー(ここでは特徴点と称する)の一連を選択する。さらに、オプティカルフロー推定の階層的な多重解像度を用いて、特徴点の時間的な並進変位を求めることができる。
特徴点追跡の限定されない実施形態を利用することによって、ブロックに基づく動き検出などのより一般的な勾配解析を行うために、特徴点を用いることができる。
別の実施形態は、特徴点追跡を基礎とする動き検出の予測を前もって処理する。
<オブジェクトを基礎とする検出および追跡>
本発明の限定されない一実施形態では、頑健なオブジェクト識別器を用いてビデオフレーム内の顔を追跡する。このような識別器は顔に向けられた方位エッジに対するカスケード応答を基礎とする。この識別器では、エッジは一連の基本的なHaar特徴として定義され、これら特徴の回転は45°ごとである。カスケード識別器はAdaBoostアルゴリズムの変形形態である。さらに、応答計算は、エリア総和テーブルを使用して最適化される。
<局所的位置合わせ>
位置合わせは、2つまたはこれ以上のビデオフレーム内で識別されるオブジェクトの要素間の相関関係の指定を伴う。これらの相関関係は、ビデオデータ内の時間的に別個の点におけるビデオデータ間の空間関係のモデル化の基礎となる。
特定の実施形態を説明し、これら実施形態に関連する、公知のアルゴリズムおよびこれらのアルゴリズムの発明派生物に関して、実行作業の低減を説明するために、本発明では、位置合わせの様々な限定されない手段が記述される。
時空シーケンス内の明白なオプティカルフローのモデル化の1つの手段は、2つまたはそれ以上のビデオデータのフレームから有限の場の生成を通して達成される。相関関係が空間および強度感知の両方において特定の一定の制約条件に適合する場合、オプティカルフロー場をわずかに予測できる。
<ダイアモンド探索>
ビデオフレームを重複しないようにブロックに分割すると仮定して、各ブロックに対する一致について前のビデオフレームを探索する。全域探索ブロックベース(FSBB)の動き検出によって、現在のフレーム内のブロックと比較する際、前のビデオフレーム内の最小エラーを有する位置を見出す。FSBBの実行は計算的に極めて負荷が大きく、多くの場合、局所的動きの仮定に基づいた他の動き検出方式に比べて優れた一致を得るとは限らない。ダイアモンド検索ブロックベース(DSBB)の勾配降下動き検出は、各種サイズのダイアモンド形状の探索パターンを用いて、ブロックの最高一致の方向にエラー勾配を反復的に移動するものであって、FSBBに対する一般的な代替方法である。
本発明の一実施形態では、DSBBは、1つまたは複数のビデオフレームの間の画像勾配場の解析に用いられ、その値が後に高次動きモデルに因子分解される有限差分を生成する。
ブロックベースの動き検出が規則的メッシュの頂点の解析の同等物と捉えることができることを、当業者は認識するであろう。
<位相ベースの動き検出>
従来技術では、ブロックベースの動き検出は一般に、1つまたは複数の空間一致をもたらす空間探索として実現されていた。位相ベースの正規化相互相関(PNCC)は、図3に示されているとおり、現在のフレームおよび前のフレームからのブロックを「位相空間」に変換し、これらの2つのブロックの相互相関を見出す。相互相関は、値の位置が2つのブロック間のエッジの「位相シフト」に対応する、値の場として表現される。これらの位置はしきい値化によって分離され、その後、空間座標に変換して戻される。空間座標は別個のエッジ変位であり、動きベクトルに対応する。
PNCCの利点は、ビデオストリームにおける利得/露出調整の許容差を可能にするコントラストマスキングを含むことである。また、PNCCは、空間ベースの動き検出量から多くの反復値を取得する単一ステップからの結果を可能にする。さらに、動き検出はサブピクセル精度である。
本発明の一実施形態は、1つまたは複数のフレーム間の画像勾配場の解析にPNCCを利用することにより、その値が後に高次の動きモデルに因子分解される有限差分を生成する。
<全体位置合わせ>
一実施形態では、本発明は、有限差分予測値の場から1つまたは複数の線形モデルを因子分解する。このようなサンプリングが発生する場を、ここでは、有限差分の母集団と称する。ここで説明される方法はRANSACアルゴリズムの予測値と同様な頑健な予測値を用いる。
線形モデル予測アルゴリズムの一実施形態では、動きモデルの推定量は線形の最小2乗解に基づいている。この依存性により、推定量は異常値データによって狂わされてしまう。RANSACに基づいて、ここで開示されている方法は、データの部分集合の反復的な予測によって異常値の影響に対抗し、データの重要な部分集合を記述する動きモデルを探求する、頑健な方法である。各探求によって生成されるモデルは、モデルを表すデータのパーセンテージについて試験される。十分な数の反復が行われている場合、モデルはデータの最大の部分集合に適合すると見なされる。
図4において考察され示されているとおり、本発明は有限差分の初期サンプリング(サンプル)および線形モデルの最小2乗予測を含む代替アルゴリズムの形態で、RANSACアルゴリズムを超える革新的方法を開示する。総合エラーが、解明された線形モデルを用いて母集団内の全サンプルに対して査定される。サンプルの残差が事前設定のしきい値に一致するサンプル数に基づいて、線形モデルにランク(順位)が割り当てられ、このランクは「候補コンセンサス」とみなされる。
最終基準が満たされるまで、初期サンプリング、解明およびランク付けが反復的に実行される。基準が満たされると、最大ランクの線形モデルが集団の最終コンセンサスとみなされる。
随意の改良工程では、候補モデルに最適適合する順に、サンプルの部分集合を反復的に解析し、1つまたは複数のサンプルの追加が部分集合全体に対する残差エラーのしきい値を超えるまで部分集合サイズを増加する。
本発明の開示された限定されない実施形態はさらに、有限差分ベクトルの場として上述したベクトル空間のサンプリングの一般方法として一般化され、これにより、特定の線形モデルに対応する別のパラメータベクトル空間における部分空間の多様体を求めることができる。
全体位置合わせ処理の別の結果は、この処理と局所的位置合わせ処理との間の差が局所的位置合わせの残差を生じることである。この残差は局所モデルへの近似における全体モデルのエラーである。
<正規化>
正規化は、標準または共通の空間構成のために空間強度場を再サンプリングすることを意味する。これら相対的な空間構成がこのような構成の間で可逆空間変換である場合、画素の再サンプリングおよびこれに伴う補間もまた位相限界まで可逆性を有する。本発明の正規化方法は図5に示されている。
3つ以上の空間強度場が正規化されるとき、中間の正規化の計算を保存することによって、計算効率が向上する。
位置合わせの目的、すなわち正規化のために画像を再サンプルするのに使用される空間変換モデルは、全体モデルおよび局所モデルを含む。全体モデルは、並進から射影への増加分である。局所モデルは、基本的にはブロックによって、またはより複雑には区分線形メッシュによって決定される、隣接画素の補間を暗示する有限差分である。
オリジナルの強度場の正規化強度場への補間は、強度場の部分集合に基づいたPCA外観モデルの線形性を向上する。
<セグメント化>
詳述するセグメント化処理によって識別される空間不連続性は、不連続のそれぞれの境界の幾何パラメータ化によって効率的にコード化され、これらを空間不連続モデルと称する。これらの空間不連続モデルは進化した方法でコード化され、コード化の部分集合に対応するより簡潔な境界記述を可能にする。進化したコード化は、空間不連続の顕著な様相の大部分を保持しながら、空間形状の優先順位付けの頑健な方法を提供する。
本発明の好ましい実施形態は多重解像度のセグメント化解析と空間輝度場の勾配解析とを組み合わせて、頑健なセグメント化を達成するためにさらに時間安定性の制約を用いる。
本発明により利用される不変の特徴の解析の一形態は、空間不連続の識別に焦点が当てられる。これらの不連続は、エッジ、影、遮蔽、線、コーナー、または、1つもしくは複数のビデオの画像フレーム内の画素間の急激で識別可能な分離を発生させる、その他の可視特徴物として現れる。さらに、ビデオフレーム内のオブジェクトの画素が、互いに異なる動きではなく、オブジェクト自体に対してコヒーレントな動きを受ける場合にのみ、類似の色および/またはテクスチャのオブジェクト間の微細な空間不連続が現れる。本発明は、空間、テクスチャ(強度勾配)および動きのセグメント化の組み合わせを利用して、顕著な信号モードに関連する空間不連続を頑健に識別する。
<時間セグメント化>
並進動きベクトルの時間積分、すなわち高次動きモデルへの、空間強度場における有限差分の測定は、従来技術で説明されている動きセグメント化の形式である。
本発明の一実施形態では、動きベクトルの高密度場を生成して、ビデオ内のオブジェクト動きの有限差分を表現する。これらの導関数は、タイルの規則的分割によって、または空間セグメント化などの特定の初期化手順によって、空間的に一体にグループ化される。各グループの「導関数」は、線形の最小2乗推定量を使用して高次の動きモデルに統合される。次に、結果として生じた動きモデルが、k平均法クラスタ化技法を用いて動きモデル空間内のベクトルとしてクラスタ化される。導関数は、いずれのクラスタがそれら導関数に最も適合するかに基づいて分類される。次に、クラスタラベルが、空間分割の発現として空間的にクラスタ化される。この処理は空間分割が安定するまで続けられる。
本発明の別の実施形態では、所定の開口の動きベクトルが開口に対応する一連の画素位置に対して補間される。この補間によって定義されたブロックが、オブジェクト境界に対応する画素間を橋渡しする場合、結果として生じる分類はブロックの特定の特異な対角領域分割(anomalous diagonal partitioning)である。
従来技術では、導関数を統合するのに用いられる最小2乗推定量は異常値に極めて敏感である。この敏感のために、反復が広範囲に発散する点に動きモデルのクラスタ化方法を大きく偏らせる、動きモデルを生成する。
本発明においては、動きセグメント化の方法は、2つまたはそれ以上のビデオフレーム全体にわたる明らかな(目に見える)画素動きの解析によって空間不連続を識別する。この明らかな動きは、ビデオフレーム全体にわたる一貫性に関して解析され、パラメータの動きモデルに組み込まれる。このような一貫した動きに関連する空間不連続が識別される。時間変化は動きによって発生するため、動きセグメント化はまた、時間セグメント化と称することもできる。しかし、時間変化はまた、局所変形、明るさの変化などといった、いくつかの他の現象により発生する可能性がある。
ここで説明された方法によって、正規化方法に対応する顕著な信号モードは、複数の背景差分法の1つによって、周囲信号のモード(背景すなわち非オブジェクト)から識別でき、かつ分離できる。多くの場合、これらの方法は、各時刻において最小量の変化を示す画素として背景を統計的にモデル化する。変化は画素値の差として特徴付けられる。代わりに、動きセグメント化が、顕著な画像モードの検出された位置およびスケールを与えることによって達成される。距離変換を用いて、検出された位置からの各画素の距離を求めることができる。最大距離に対応する画素値が保持されている場合、背景の妥当なモデルを解明できる。言い換えれば、周囲信号は、信号差の測定を利用して時間的に再サンプル化される。
周囲信号のモデルを前提として、各時刻における完全な顕著信号モードの差を計算できる。これらの差のそれぞれを再サンプル化して、空間的な正規化信号差(絶対差)を得ることができる。次に、これらの差は相互に整列されて積算される。これらの差は顕著信号モードに対して空間的に正規化されているため、差のピークは、顕著信号モードの画素の位置にほぼ対応する。
<勾配セグメント化>
テクスチャのセグメント化方法、すなわち強度勾配セグメント化は、1つまたは複数のビデオフレーム内の画素の局所勾配を解析する。勾配応答はビデオフレーム内の画素位置近傍の空間不連続を特徴付ける、統計的測定値である。次に、いくつかの空間的クラスタ化方法の1つを用いて、勾配応答同士を組み合わせて空間領域を生成する。これらの領域の境界が、1つまたは複数のビデオフレームにおける空間不連続の識別に有効である。
本発明の一実施形態では、コンピュータグラフィックのテクスチャ生成からのエリア総和テーブルの概念が、強度場の勾配の計算を促進するために用いられる。連続的に合計された値の場を生成して、4つの追加操作と組み合わされる4つの参照を通してオリジナル場の任意の長方形の加算を促進する。
別の実施形態は、画像に対して生成されるHarris応答を用いて、各画素の近辺は均質なエッジまたは均質なコーナーのいずれかとして識別される。応答値はこの情報から生成され、フレーム内の各要素についてエッジまたはコーナーの度合いを示す。
<スペクトルセグメント化>
スペクトルセグメント化の方法は、ビデオ信号における白黒、グレースケールまたは色の画素の統計的確率分布を解析する。スペクトル識別器は、これらの画素の確率分布に対してクラスタ化操作を実行することにより構成される。次に、識別器を用いて、1つまたは複数の画素を確率クラスに属するとして分類する。次に、結果として得られた確率クラスおよびその画素はクラスラベルを与えられる。その後、これらのクラスラベルは明確な境界を有する画素の領域に空間的に関連付けられる。これらの境界は1つまたは複数のビデオフレーム内の空間不連続を識別する。
本発明は、空間分類に基づく空間セグメント化を利用して、ビデオフレーム内の画素をセグメント化する。さらに、領域間の対応は、空間領域と前のセグメント化における領域との重ね合わせに基づいて求められる。
ビデオフレーム内のオブジェクトに対応するより大きな領域に空間的に結合される連続的な色領域からビデオフレームが大まかに構成される場合、色付けされた(またはスペクトルの)領域の識別および追跡によって、ビデオシーケンス内のオブジェクトの後続のセグメント化が容易になることが観測されている。
<外観モデル>
ビデオ処理の共通の目的は、多くの場合、ビデオフレームのシーケンスの外観をモデル化して保存することである。本発明は、前処理を利用して、頑健で広範囲に利用可能な方法で適用される制限された外観のモデル化方法を実現することを目的としている。前述の位置合わせ、セグメント化および正規化は明からにこの目的のためのものである。
本発明は外観変化(appearance variance)モデル化の手段を開示している。線形モデルの場合における主要な基本は、線形相関を利用するコンパクトな基準を示す特徴ベクトルの解析である。空間強度場の画素を表現する特徴ベクトルは外観変化モデルにまとめられることができる。
別の実施形態においては、外観変化モデルは画素のセグメント化された部分集合から計算される。さらに、特徴ベクトルは、空間的に重複しない特徴ベクトルに分離される。このような空間分解は空間的タイル法を用いて達成される。計算効率は、より全体的なPCA方法の次元数減少を犠牲にすることなく、これらの時間集合の処理によって達成される。
外観変化モデルを生成すると、空間強度場の正規化を用いて、空間変換のPCAモデル化を減少することができる。
<PCA>
外観変化モデルを生成する好ましい手段は、ビデオフレームをパターンベクトルと組み合わせて訓練マトリックスとするか、または訓練マトリックスに主成分分析(PCA)を組み合わせるかもしくは適用することである。このような展開が打ち切られると、結果として得られるPCA変換マトリックスは、ビデオの後続のフレームの解析および合成に用いられる。打ち切りレベルに基づいて、画素のオリジナルの外観の品質レベルの変更が達成される。
パターンベクトルの構成および分解の特定の手段が当業者には公知である。
顕著信号モードの周囲信号および空間正規化からの顕著信号モードの空間セグメント化を条件として、画素自体、すなわち結果として得られる正規化信号の外観は、画素の外観の表現の近似エラーとビットレートとの間の直接トレードオフを可能にする低ランクのパラメータ化を用いて線形相関性があるコンポーネントに含められることができる。
<逐次(シーケンシャル)PCA>
PCAは、PCA変換を用いて、パターンをPCA係数にコード化する。PCA変換によって、より優れたパターンが表現されると、パターンをコード化するのに必要な係数がより少なくなる。訓練パターンの取得とコード化されるパターンとの間の時間の経過に伴ってパターンベクトルが劣化することを認識して、変換を更新することにより劣化に対抗する作用を助けることができる。新しい変換の生成に対する代わりとして、既存パターンの逐次更新が、特定の場合において計算的により有効である。
多くの最先端のビデオ圧縮アルゴリズムは、1つまたは複数の他のフレームから1つのビデオフレームを予測する。予測モデルは一般的に、重ならないタイルへの各予測フレームの分割に基づいている。この重ならないタイルは、別のフレーム内の対応するパッチおよびオフセット動きベクトルによってパラメータ化される関連の並進変位に一致する。随意にフレームインデックスと結合されるこの空間的変位が、タイルの「動き予測」の変形を提供する。予測エラーが特定のしきい値を下回る場合、タイルの画素は残差のコード化に適し、圧縮効率における対応する利得が存在する。そうでなければ、タイルの画素は直接コード化される。この種類のタイルに基づく(代わりとして、ブロックに基づく)動き予測方法は画素を含むタイルを並進させることによりビデオをモデル化する。ビデオの画像化現象がこの種類のモデル化に準拠する場合、対応するコード化の効率が向上する。このモデル化の制約は、ブロックに基づく予測に固有である並進条件に適合させるために、特定レベルの時間解像度すなわち1秒当たりのフレーム数が、動きのある画像化されるオブジェクトに持続すると仮定する。この並進モデルに関する別の必要条件は、特定の時間解像度に対する空間的変位が制限されていることである。すなわち、予測が導き出されるフレームと予測されるフレームとの間の時間差が、比較的短い絶対時間量でなければならない。これらの時間解像度および動き制限は、ビデオストリーム内に存在する、ある一定の冗長ビデオ信号コンポーネントの識別およびモデル化を促進する。
<残差ベースの分解>
MPEGビデオ圧縮では、現在のフレームは動きベクトルを使用して前のフレームの動き補償によって形成され、次いで補償ブロックに対して残差の更新を適用し、最終的に十分な一致を有しないいずれかのブロックが新しいブロックとしてコード化される。
残差のブロックに対応する画素は、動きベクトルによって前のフレーム内の画素にマッピングされる。この結果は、残差の値を連続して適用することによって合成できるビデオを通る画素の時間経路である。これらの画素はPCAを用いて最適に表現される画素として識別される。
<遮蔽ベースの分解>
本発明の別の改良は、ブロックに適用される動きベクトルが、画素を移動させることによって前のフレームからのいずれかの画素を遮蔽する(覆う)のか否かを決定する。各遮蔽の発生に対して、遮蔽画素を新しい層に分割する。また、履歴なしに出現する画素も存在する。出現した画素は現在のフレーム内のそれら出現画素に適合するいずれかの層に配置され、履歴の適合はその層に対して実施される。
画素の時間連続性は様々な層への画素の接続および接合によって維持される。安定した層モデルが得られると、各層内の画素はコヒーレント動きモデルとの帰属関係に基づいてグループ化される。
<サブバンドの時間量子化>
本発明の別の実施形態は、離散コサイン変換(DCT)または離散ウェーブレット変換(DWT)を用いて、各フレームをサブバンド画像に分解する。次に、主成分分析(PCA)がこれらの「サブバンド」ビデオのそれぞれに適用される。この概念は、ビデオフレームのサブバンド分解がオリジナルのビデオフレームと比較して、サブバンドのいずれか1つにおける空間分散を減少することである。
動きのあるオブジェクト(人物)のビデオについては、空間分散がPCAによってモデル化される分散を左右する傾向がある。サブバンド分解は、いずれの分解ビデオにおける空間分散も減少させる。
DCTについては、いずれのサブバンドに対する分解係数も、サブバンドのビデオに空間的に配置される。例えば、DC係数は各ブロックから取得され、オリジナルのビデオの郵便切手の変形ように見える、サブバンドのビデオに配置される。これは他のサブバンドのすべてに対して反復され、結果として得られるサブバンドビデオのそれぞれはPCAを使用して処理される。
DWTでは、サブバンドはすでにDCTに対して説明されている方法で配置される。限定されない実施形態において、PCA係数の打ち切りは変化する。
<ウェーブレット>
データが離散ウェーブレット変換(DWT)を用いて分解されると、多重帯域通過データセットが低い空間解像度になる。この変換処理は、単一のスカラー値を得るまで、導き出されたデータに再帰的に適用される。分解された構造におけるスカラー要素は一般に、階層的な親/子方式で関連付けられる。結果として得られるデータは多重解像度の階層的な構造および有限差分を含む。
DWTが空間強度場に適用されると、自然発生する画像現象の多くは、低い空間周波数のために、第1または第2の低帯域通過生成データ構造によってほとんど知覚損失なく表現される。階層構造の打ち切りは、高い周波数の空間データは、存在しないかノイズと見なされるかのいずれかである場合、コンパクトな表現を提供する。
PCAを用いることによって小数の係数で正確な再構築を達成できるが、変換自体は極めて大きい。この「初期」変換の大きさを低減するために、ウェーブレット分解の組込みゼロ・ツリー(EZT)構造を用いて変換マトリックスのより正確な変形を連続的に形成することができる。
従来技術のビデオ処理システムを示したブロック図である。 ビデオ処理の主要なモジュールを示す、本発明の全体を提供するブロック図である。 本発明の動き検出方法を示したブロック図である。 本発明の全体の位置合わせ方法を示したブロック図である。 本発明の正規化方法を示したブロック図である。

Claims (10)

  1. 複数のビデオフレームからビデオ信号データのコード化形式を生成するディジタルプロセッサ装置であって、
    ビデオフレームシーケンス内のオブジェクトを検出する手段と、
    前記ビデオフレームシーケンスの2またはそれ以上のフレームを通して前記オブジェクトを追跡する手段と、
    2またはそれ以上のフレームにおける前記オブジェクトの対応する顕著なコンポーネントを識別する手段と、
    前記オブジェクトの対応する顕著なコンポーネントをモデル化して、2つ以上のビデオフレームにおけるブロックに基づく動き検出から生成される有限差分に基づくサンプリング母集団を識別するように、前記オブジェクトの対応する顕著なコンポーネントを解析することにより相関関係モデルを生成する、モデル化手段と、
    記オブジェクトに対応する前記画素データを前記ビデオフレームシーケンス内の他の画素データからセグメント化して、セグメント化されたオブジェクト画素データを取得する、セグメント化手段であって、時間的なセグメント化を行うセグメント化手段
    前記相関関係モデルを利用して、前記ビデオフレーム内の前記オブジェクトに対応する前記セグメント化された画素データを再サンプリングする手段であって、前記再サンプリングされた画素データは前記ビデオフレームにおけるオブジェクトの中間形式である、再サンプリング手段と、
    主成分分析を適用することにより、前記再サンプリングされたオブジェクト画素データを分解する、分解手段とを備え、ディジタルプロセッサ装置。
  2. 請求項1において、前記再サンプリング手段および前記セグメント化手段が、さらに、前記オブジェクトに対応する画素データを前記ビデオフレームシーケンスにおける他の画素データから空間的にセグメント化して、誘引された非線形性を軽減する、ディジタルプロセッサ装置。
  3. 請求項1において、前記セグメント化手段が、スペクトル、テクスチャおよび動きセグメント化の組み合わせを利用する、ディジタルプロセッサ装置。
  4. 請求項1において、相関関係モデルが、(a)前記オブジェクトの多数の特徴点が整列される共通の空間構成としての機能を果たし、(b)コンパクトに表現される複数ビデオフレーム全体にわたる前記分解を可能にする、ディジタルプロセッサ装置。
  5. 請求項1において、前記分解手段が、前記ビデオフレームシーケンスのコンパクトな線形外観モデルを生成する、ディジタル処理装置。
  6. ビデオフレームシーケンスを有するビデオ信号データを処理する方法であって、ディジタル処理を備え、このディジタル処理は、
    対象のビデオ信号データから得られるビデオフレームシーケンス内のオブジェクトを検出する工程と、
    前記ビデオフレームシーケンスの2またはそれ以上のフレームを通して前記オブジェクトを追跡する工程と、
    2またはそれ以上のビデオフレームにおける前記オブジェクトの対応する顕著なコンポーネントを識別する工程と
    前記オブジェクトの対応する顕著なコンポーネントをモデル化して、2つ以上のビデオフレームにおけるブロックに基づく動き検出から生成される有限差分に基づくサンプリング母集団を識別するように、前記オブジェクトの対応する顕著なコンポーネントを解析することにより相関関係モデルを生成する、モデル化工程と、
    記オブジェクトに対応する前記画素データを前記ビデオフレームシーケンス内の他の画素データからセグメント化して、セグメント化されたオブジェクト画素データを取得する工程であって、時間的なセグメント化行うセグメント化工程と
    前記相関関係モデルを利用して、前記ビデオフレーム内の前記オブジェクトに対応する前記セグメント化された画素データを再サンプリングする工程であって、前記再サンプリングされた画素データは前記ビデオフレームにおけるオブジェクトの中間形式である、再サンプリング工程と、
    主成分分析を適用することにより、前記再サンプリングされたオブジェクト画素データを分解する、分解工程とを有する、ビデオ信号データ処理方法。
  7. 請求項6において、前記再サンプリング工程および前記セグメント化工程が、さらに、前記オブジェクトに対応する画素データを前記ビデオフレームシーケンスにおける他の画素データから空間的にセグメント化して、誘引された非線形性を軽減する、ビデオ信号データ処理方法。
  8. 請求項6において、前記セグメント化工程が、スペクトル、テクスチャおよび動きセグメント化の組み合わせを利用する、ビデオ信号データ処理方法。
  9. 請求項6において、前記相関関係モデルが、(a)前記オブジェクトの多数の特徴点が整列される共通の空間構成としての機能を果たし、(b)コンパクトに表現される複数ビデオフレーム全体にわたる前記分解を可能にする、ビデオ信号データ処理方法。
  10. 請求項6において、前記分解工程が、前記ビデオフレームシーケンスのコンパクトな線形外観モデルを生成する、ビデオ信号データ処理方法。
JP2007523796A 2004-07-30 2005-07-28 ビデオデータを処理する装置および方法 Expired - Fee Related JP4928451B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US59808504P 2004-07-30 2004-07-30
US60/598,085 2004-07-30
PCT/US2005/026740 WO2006015092A2 (en) 2004-07-30 2005-07-28 Apparatus and method for processing video data

Publications (3)

Publication Number Publication Date
JP2008508801A JP2008508801A (ja) 2008-03-21
JP2008508801A5 JP2008508801A5 (ja) 2011-09-08
JP4928451B2 true JP4928451B2 (ja) 2012-05-09

Family

ID=35787811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007523796A Expired - Fee Related JP4928451B2 (ja) 2004-07-30 2005-07-28 ビデオデータを処理する装置および方法

Country Status (8)

Country Link
US (2) US7158680B2 (ja)
EP (2) EP2602742A1 (ja)
JP (1) JP4928451B2 (ja)
KR (1) KR20070067684A (ja)
CN (1) CN101036150B (ja)
AU (1) AU2005269310C1 (ja)
CA (1) CA2575211C (ja)
WO (1) WO2006015092A2 (ja)

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075556A1 (ja) * 2003-02-19 2004-09-02 Ishikawajima-Harima Heavy Industries Co., Ltd. 画像圧縮装置、画像圧縮方法、画像圧縮プログラム、及び圧縮符号化方法、圧縮符号化装置、圧縮符号化プログラム、並びに復合化方法、復合化装置、復合化プログラム
US8989453B2 (en) * 2003-06-26 2015-03-24 Fotonation Limited Digital image processing using face detection information
US7792335B2 (en) * 2006-02-24 2010-09-07 Fotonation Vision Limited Method and apparatus for selective disqualification of digital images
US8896725B2 (en) 2007-06-21 2014-11-25 Fotonation Limited Image capture device with contemporaneous reference image capture mechanism
US7616233B2 (en) * 2003-06-26 2009-11-10 Fotonation Vision Limited Perfecting of digital image capture parameters within acquisition devices using face detection
US8553949B2 (en) * 2004-01-22 2013-10-08 DigitalOptics Corporation Europe Limited Classification and organization of consumer digital images using workflow, and face detection and recognition
US8593542B2 (en) 2005-12-27 2013-11-26 DigitalOptics Corporation Europe Limited Foreground/background separation using reference images
US8494286B2 (en) 2008-02-05 2013-07-23 DigitalOptics Corporation Europe Limited Face detection in mid-shot digital images
US8948468B2 (en) * 2003-06-26 2015-02-03 Fotonation Limited Modification of viewing parameters for digital images using face detection information
US8498452B2 (en) * 2003-06-26 2013-07-30 DigitalOptics Corporation Europe Limited Digital image processing using face detection information
US8363951B2 (en) 2007-03-05 2013-01-29 DigitalOptics Corporation Europe Limited Face recognition training method and apparatus
US7574016B2 (en) * 2003-06-26 2009-08-11 Fotonation Vision Limited Digital image processing using face detection information
US7440593B1 (en) * 2003-06-26 2008-10-21 Fotonation Vision Limited Method of improving orientation and color balance of digital images using face detection information
US8682097B2 (en) * 2006-02-14 2014-03-25 DigitalOptics Corporation Europe Limited Digital image enhancement with reference images
US8330831B2 (en) * 2003-08-05 2012-12-11 DigitalOptics Corporation Europe Limited Method of gathering visual meta data using a reference image
US9129381B2 (en) * 2003-06-26 2015-09-08 Fotonation Limited Modification of post-viewing parameters for digital images using image region or feature information
US7471846B2 (en) 2003-06-26 2008-12-30 Fotonation Vision Limited Perfecting the effect of flash within an image acquisition devices using face detection
US7362368B2 (en) * 2003-06-26 2008-04-22 Fotonation Vision Limited Perfecting the optics within a digital image acquisition device using face detection
US7792970B2 (en) * 2005-06-17 2010-09-07 Fotonation Vision Limited Method for establishing a paired connection between media devices
US7565030B2 (en) 2003-06-26 2009-07-21 Fotonation Vision Limited Detecting orientation of digital images using face detection information
US7269292B2 (en) * 2003-06-26 2007-09-11 Fotonation Vision Limited Digital image adjustable compression and resolution using face detection information
US7620218B2 (en) * 2006-08-11 2009-11-17 Fotonation Ireland Limited Real-time face tracking with reference images
US7844076B2 (en) * 2003-06-26 2010-11-30 Fotonation Vision Limited Digital image processing using face detection and skin tone information
US9692964B2 (en) 2003-06-26 2017-06-27 Fotonation Limited Modification of post-viewing parameters for digital images using image region or feature information
US8155397B2 (en) * 2007-09-26 2012-04-10 DigitalOptics Corporation Europe Limited Face tracking in a camera processor
US7564994B1 (en) 2004-01-22 2009-07-21 Fotonation Vision Limited Classification system for consumer digital images using automatic workflow and face detection and recognition
US20050285937A1 (en) * 2004-06-28 2005-12-29 Porikli Fatih M Unusual event detection in a video using object and frame features
US7426301B2 (en) * 2004-06-28 2008-09-16 Mitsubishi Electric Research Laboratories, Inc. Usual event detection in a video using object and frame features
CA2575211C (en) * 2004-07-30 2012-12-11 Euclid Discoveries, Llc Apparatus and method for processing video data
US7436981B2 (en) * 2005-01-28 2008-10-14 Euclid Discoveries, Llc Apparatus and method for processing video data
US9578345B2 (en) 2005-03-31 2017-02-21 Euclid Discoveries, Llc Model-based video encoding and decoding
US9743078B2 (en) 2004-07-30 2017-08-22 Euclid Discoveries, Llc Standards-compliant model-based video encoding and decoding
US8902971B2 (en) 2004-07-30 2014-12-02 Euclid Discoveries, Llc Video compression repository and model reuse
US7457435B2 (en) 2004-11-17 2008-11-25 Euclid Discoveries, Llc Apparatus and method for processing video data
US7457472B2 (en) * 2005-03-31 2008-11-25 Euclid Discoveries, Llc Apparatus and method for processing video data
US9532069B2 (en) 2004-07-30 2016-12-27 Euclid Discoveries, Llc Video compression repository and model reuse
US7508990B2 (en) * 2004-07-30 2009-03-24 Euclid Discoveries, Llc Apparatus and method for processing video data
JP2008514136A (ja) * 2004-09-21 2008-05-01 ユークリッド・ディスカバリーズ・エルエルシー ビデオデータを処理する装置および方法
US8320641B2 (en) 2004-10-28 2012-11-27 DigitalOptics Corporation Europe Limited Method and apparatus for red-eye detection using preview or other reference images
EP1815397A4 (en) * 2004-11-17 2012-03-28 Euclid Discoveries Llc DEVICE AND METHOD FOR PROCESSING VIDEO DATA
US8503800B2 (en) * 2007-03-05 2013-08-06 DigitalOptics Corporation Europe Limited Illumination detection using classifier chains
US8488023B2 (en) * 2009-05-20 2013-07-16 DigitalOptics Corporation Europe Limited Identifying facial expressions in acquired digital images
US7715597B2 (en) * 2004-12-29 2010-05-11 Fotonation Ireland Limited Method and component for image recognition
US7315631B1 (en) 2006-08-11 2008-01-01 Fotonation Vision Limited Real-time face tracking in a digital image acquisition device
JP2008529414A (ja) * 2005-01-28 2008-07-31 ユークリッド・ディスカバリーズ・エルエルシー ビデオデータを処理する装置および方法
US8908766B2 (en) * 2005-03-31 2014-12-09 Euclid Discoveries, Llc Computer method and apparatus for processing image data
CA2590869C (en) * 2005-03-31 2014-01-21 Euclid Discoveries, Llc Apparatus and method for processing video data
KR100869497B1 (ko) * 2005-07-01 2008-11-21 주식회사 메디슨 계층적 움직임 추정방법 및 이를 적용한 초음파 영상장치
JP4777433B2 (ja) * 2005-10-27 2011-09-21 エヌイーシー ラボラトリーズ アメリカ インク ビデオ前景の分割方法
US7804983B2 (en) 2006-02-24 2010-09-28 Fotonation Vision Limited Digital image acquisition control and correction method and apparatus
DE602007012246D1 (de) * 2006-06-12 2011-03-10 Tessera Tech Ireland Ltd Fortschritte bei der erweiterung der aam-techniken aus grauskalen- zu farbbildern
WO2008015586A2 (en) * 2006-08-02 2008-02-07 Fotonation Vision Limited Face recognition with combined pca-based datasets
US7916897B2 (en) 2006-08-11 2011-03-29 Tessera Technologies Ireland Limited Face tracking for controlling imaging parameters
US7403643B2 (en) * 2006-08-11 2008-07-22 Fotonation Vision Limited Real-time face tracking in a digital image acquisition device
US7894662B2 (en) * 2006-10-11 2011-02-22 Tandent Vision Science, Inc. Method for using image depth information in identifying illumination fields
US8055067B2 (en) * 2007-01-18 2011-11-08 DigitalOptics Corporation Europe Limited Color segmentation
JP2010517427A (ja) 2007-01-23 2010-05-20 ユークリッド・ディスカバリーズ・エルエルシー 個人向けのビデオサービスを提供するシステムおよび方法
JP2010517426A (ja) 2007-01-23 2010-05-20 ユークリッド・ディスカバリーズ・エルエルシー オブジェクトアーカイブシステムおよび方法
NZ578752A (en) 2007-02-08 2012-03-30 Behavioral Recognition Sys Inc Behavioral recognition system
US10194175B2 (en) * 2007-02-23 2019-01-29 Xylon Llc Video coding with embedded motion
JP5049356B2 (ja) * 2007-02-28 2012-10-17 デジタルオプティックス・コーポレイション・ヨーロッパ・リミテッド テクスチャ空間分解に基づく統計的顔モデリングにおける指向性照明変動性の分離
US8649604B2 (en) * 2007-03-05 2014-02-11 DigitalOptics Corporation Europe Limited Face searching and detection in a digital image acquisition device
WO2008109622A1 (en) 2007-03-05 2008-09-12 Fotonation Vision Limited Face categorization and annotation of a mobile phone contact list
EP2136876B1 (en) * 2007-03-08 2016-10-19 Second Sight Medical Products, Inc. Saliency-based apparatus for visual prostheses
US7916971B2 (en) * 2007-05-24 2011-03-29 Tessera Technologies Ireland Limited Image processing method and apparatus
US8411935B2 (en) 2007-07-11 2013-04-02 Behavioral Recognition Systems, Inc. Semantic representation module of a machine-learning engine in a video analysis system
US8200011B2 (en) 2007-09-27 2012-06-12 Behavioral Recognition Systems, Inc. Context processor for video analysis system
US8175333B2 (en) * 2007-09-27 2012-05-08 Behavioral Recognition Systems, Inc. Estimator identifier component for behavioral recognition system
US8300924B2 (en) * 2007-09-27 2012-10-30 Behavioral Recognition Systems, Inc. Tracker component for behavioral recognition system
JP5371232B2 (ja) * 2007-11-28 2013-12-18 キヤノン株式会社 画像処理装置および画像処理方法
US8817190B2 (en) 2007-11-28 2014-08-26 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and computer program
EP2227785B1 (en) * 2007-11-30 2013-09-18 Dolby Laboratories Licensing Corp. Temporally smoothing a motion estimate
US8750578B2 (en) * 2008-01-29 2014-06-10 DigitalOptics Corporation Europe Limited Detecting facial expressions in digital images
JP4513035B2 (ja) * 2008-03-10 2010-07-28 ソニー株式会社 情報処理装置および方法、並びにプログラム
US7855737B2 (en) * 2008-03-26 2010-12-21 Fotonation Ireland Limited Method of making a digital camera image of a scene including the camera user
US7683809B2 (en) * 2008-04-11 2010-03-23 Aceurity, Inc. Advanced lossless bit coding
US9837013B2 (en) * 2008-07-09 2017-12-05 Sharp Laboratories Of America, Inc. Methods and systems for display correction
EP2321964B1 (en) * 2008-07-25 2018-12-12 Google LLC Method and apparatus for detecting near-duplicate videos using perceptual video signatures
JP5547730B2 (ja) * 2008-07-30 2014-07-16 デジタルオプティックス・コーポレイション・ヨーロッパ・リミテッド 顔検知を用いた顔及び肌の自動美化
US9633275B2 (en) 2008-09-11 2017-04-25 Wesley Kenneth Cobb Pixel-level based micro-feature extraction
JP5567021B2 (ja) 2008-10-07 2014-08-06 ユークリッド・ディスカバリーズ・エルエルシー 特徴を基礎とするビデオ圧縮
WO2010063463A2 (en) * 2008-12-05 2010-06-10 Fotonation Ireland Limited Face recognition using face tracker classifier data
US9373055B2 (en) * 2008-12-16 2016-06-21 Behavioral Recognition Systems, Inc. Hierarchical sudden illumination change detection using radiance consistency within a spatial neighborhood
US8285046B2 (en) * 2009-02-18 2012-10-09 Behavioral Recognition Systems, Inc. Adaptive update of background pixel thresholds using sudden illumination change detection
US8416296B2 (en) * 2009-04-14 2013-04-09 Behavioral Recognition Systems, Inc. Mapper component for multiple art networks in a video analysis system
US8280153B2 (en) * 2009-08-18 2012-10-02 Behavioral Recognition Systems Visualizing and updating learned trajectories in video surveillance systems
US8625884B2 (en) * 2009-08-18 2014-01-07 Behavioral Recognition Systems, Inc. Visualizing and updating learned event maps in surveillance systems
US8493409B2 (en) * 2009-08-18 2013-07-23 Behavioral Recognition Systems, Inc. Visualizing and updating sequences and segments in a video surveillance system
US8295591B2 (en) * 2009-08-18 2012-10-23 Behavioral Recognition Systems, Inc. Adaptive voting experts for incremental segmentation of sequences with prediction in a video surveillance system
US8379085B2 (en) * 2009-08-18 2013-02-19 Behavioral Recognition Systems, Inc. Intra-trajectory anomaly detection using adaptive voting experts in a video surveillance system
US20110043689A1 (en) * 2009-08-18 2011-02-24 Wesley Kenneth Cobb Field-of-view change detection
US8358834B2 (en) 2009-08-18 2013-01-22 Behavioral Recognition Systems Background model for complex and dynamic scenes
US9805271B2 (en) 2009-08-18 2017-10-31 Omni Ai, Inc. Scene preset identification using quadtree decomposition analysis
US8340352B2 (en) * 2009-08-18 2012-12-25 Behavioral Recognition Systems, Inc. Inter-trajectory anomaly detection using adaptive voting experts in a video surveillance system
US8068677B2 (en) * 2009-08-25 2011-11-29 Satyam Computer Services Limited System and method for hierarchical image processing
US8167430B2 (en) * 2009-08-31 2012-05-01 Behavioral Recognition Systems, Inc. Unsupervised learning of temporal anomalies for a video surveillance system
US8797405B2 (en) * 2009-08-31 2014-08-05 Behavioral Recognition Systems, Inc. Visualizing and updating classifications in a video surveillance system
US8270732B2 (en) * 2009-08-31 2012-09-18 Behavioral Recognition Systems, Inc. Clustering nodes in a self-organizing map using an adaptive resonance theory network
US8285060B2 (en) * 2009-08-31 2012-10-09 Behavioral Recognition Systems, Inc. Detecting anomalous trajectories in a video surveillance system
US8270733B2 (en) * 2009-08-31 2012-09-18 Behavioral Recognition Systems, Inc. Identifying anomalous object types during classification
US8786702B2 (en) * 2009-08-31 2014-07-22 Behavioral Recognition Systems, Inc. Visualizing and updating long-term memory percepts in a video surveillance system
US8218819B2 (en) * 2009-09-01 2012-07-10 Behavioral Recognition Systems, Inc. Foreground object detection in a video surveillance system
US8218818B2 (en) * 2009-09-01 2012-07-10 Behavioral Recognition Systems, Inc. Foreground object tracking
US8180105B2 (en) * 2009-09-17 2012-05-15 Behavioral Recognition Systems, Inc. Classifier anomalies for observed behaviors in a video surveillance system
US8170283B2 (en) * 2009-09-17 2012-05-01 Behavioral Recognition Systems Inc. Video surveillance system configured to analyze complex behaviors using alternating layers of clustering and sequencing
US8379917B2 (en) * 2009-10-02 2013-02-19 DigitalOptics Corporation Europe Limited Face recognition performance using additional image features
US20110122224A1 (en) * 2009-11-20 2011-05-26 Wang-He Lou Adaptive compression of background image (acbi) based on segmentation of three dimentional objects
US8891939B2 (en) * 2009-12-22 2014-11-18 Citrix Systems, Inc. Systems and methods for video-aware screen capture and compression
US8379919B2 (en) * 2010-04-29 2013-02-19 Microsoft Corporation Multiple centroid condensation of probability distribution clouds
EP2395452A1 (en) 2010-06-11 2011-12-14 Toyota Motor Europe NV/SA Detection of objects in an image using self similarities
US8942917B2 (en) 2011-02-14 2015-01-27 Microsoft Corporation Change invariant scene recognition by an agent
IN2014DN08342A (ja) 2012-03-15 2015-05-08 Behavioral Recognition Sys Inc
WO2013148002A2 (en) 2012-03-26 2013-10-03 Euclid Discoveries, Llc Context based video encoding and decoding
US9113143B2 (en) 2012-06-29 2015-08-18 Behavioral Recognition Systems, Inc. Detecting and responding to an out-of-focus camera in a video analytics system
US9317908B2 (en) 2012-06-29 2016-04-19 Behavioral Recognition System, Inc. Automatic gain control filter in a video analysis system
US9111353B2 (en) 2012-06-29 2015-08-18 Behavioral Recognition Systems, Inc. Adaptive illuminance filter in a video analysis system
US9723271B2 (en) 2012-06-29 2017-08-01 Omni Ai, Inc. Anomalous stationary object detection and reporting
WO2014004901A1 (en) 2012-06-29 2014-01-03 Behavioral Recognition Systems, Inc. Unsupervised learning of feature anomalies for a video surveillance system
US9911043B2 (en) 2012-06-29 2018-03-06 Omni Ai, Inc. Anomalous object interaction detection and reporting
EP2885766A4 (en) 2012-08-20 2017-04-26 Behavioral Recognition Systems, Inc. Method and system for detecting sea-surface oil
CN104823444A (zh) 2012-11-12 2015-08-05 行为识别系统公司 用于视频监控系统的图像稳定技术
TWI496114B (zh) * 2012-11-23 2015-08-11 Univ Nat Taiwan 影像追蹤裝置及其影像追蹤方法
US9857470B2 (en) 2012-12-28 2018-01-02 Microsoft Technology Licensing, Llc Using photometric stereo for 3D environment modeling
US9940553B2 (en) 2013-02-22 2018-04-10 Microsoft Technology Licensing, Llc Camera/object pose from predicted coordinates
BR112016002229A2 (pt) 2013-08-09 2017-08-01 Behavioral Recognition Sys Inc sistema de reconhecimento de comportamento neurolinguístico cognitivo para fusão de dados de multissensor
US10091507B2 (en) 2014-03-10 2018-10-02 Euclid Discoveries, Llc Perceptual optimization for model-based video encoding
US10097851B2 (en) 2014-03-10 2018-10-09 Euclid Discoveries, Llc Perceptual optimization for model-based video encoding
WO2015138008A1 (en) 2014-03-10 2015-09-17 Euclid Discoveries, Llc Continuous block tracking for temporal prediction in video encoding
US9674406B2 (en) 2014-08-15 2017-06-06 University Of Washington Using dynamic mode decomposition for real-time background/foreground separation in video
US10409910B2 (en) 2014-12-12 2019-09-10 Omni Ai, Inc. Perceptual associative memory for a neuro-linguistic behavior recognition system
US10409909B2 (en) 2014-12-12 2019-09-10 Omni Ai, Inc. Lexical analyzer for a neuro-linguistic behavior recognition system
US10474745B1 (en) 2016-04-27 2019-11-12 Google Llc Systems and methods for a knowledge-based form creation platform
US11039181B1 (en) 2016-05-09 2021-06-15 Google Llc Method and apparatus for secure video manifest/playlist generation and playback
US10595054B2 (en) 2016-05-10 2020-03-17 Google Llc Method and apparatus for a virtual online video channel
US10750248B1 (en) 2016-05-10 2020-08-18 Google Llc Method and apparatus for server-side content delivery network switching
US10750216B1 (en) 2016-05-10 2020-08-18 Google Llc Method and apparatus for providing peer-to-peer content delivery
US11069378B1 (en) 2016-05-10 2021-07-20 Google Llc Method and apparatus for frame accurate high resolution video editing in cloud using live video streams
US10785508B2 (en) 2016-05-10 2020-09-22 Google Llc System for measuring video playback events using a server generated manifest/playlist
US10771824B1 (en) 2016-05-10 2020-09-08 Google Llc System for managing video playback using a server generated manifest/playlist
US11032588B2 (en) 2016-05-16 2021-06-08 Google Llc Method and apparatus for spatial enhanced adaptive bitrate live streaming for 360 degree video playback
US10412462B2 (en) * 2016-11-08 2019-09-10 Ati Technologies Ulc Video frame rate conversion using streamed metadata
RU182411U1 (ru) * 2018-01-26 2018-08-16 Общество с Ограниченной Ответственностью "Фабрика Нетканых Материалов "Весь Мир" Нетканый утеплительный огнестойкий материал для одежды
US11312594B2 (en) 2018-11-09 2022-04-26 Otis Elevator Company Conveyance system video analytics
CN109559286B (zh) * 2018-11-19 2022-12-06 电子科技大学 一种方差梯度约束法红外图像边缘保持去噪方法
CN110647917B (zh) * 2019-08-23 2022-06-03 北京大学 一种模型复用方法与系统
CN110619356B (zh) * 2019-08-28 2023-03-28 电子科技大学 基于区域建议注意力的目标检测方法
WO2021124417A1 (ja) * 2019-12-16 2021-06-24 日本電気株式会社 前景抽出装置、前景抽出方法、及び、記録媒体

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606523B2 (ja) * 1992-02-28 1997-05-07 日本ビクター株式会社 予測符号化装置及び復号化装置
JP3679426B2 (ja) * 1993-03-15 2005-08-03 マサチューセッツ・インスティチュート・オブ・テクノロジー 画像データを符号化して夫々がコヒーレントな動きの領域を表わす複数の層とそれら層に付随する動きパラメータとにするシステム
KR0171151B1 (ko) 1995-03-20 1999-03-20 배순훈 곡률 계산 기법을 이용한 이미지 윤곽 근사화 장치
US5774591A (en) * 1995-12-15 1998-06-30 Xerox Corporation Apparatus and method for recognizing facial expressions and facial gestures in a sequence of images
FR2783123B1 (fr) * 1998-09-04 2000-11-24 France Telecom Procede d'estimation du mouvement entre deux images
US6711278B1 (en) * 1998-09-10 2004-03-23 Microsoft Corporation Tracking semantic objects in vector image sequences
US7124065B2 (en) * 1998-10-26 2006-10-17 Speech Technology And Applied Research Corporation Determining a tangent space and filtering data onto a manifold
US6546117B1 (en) 1999-06-10 2003-04-08 University Of Washington Video object segmentation using active contour modelling with global relaxation
EP1185106A4 (en) * 1999-01-29 2006-07-05 Mitsubishi Electric Corp METHOD FOR ENCODING IMAGE CHARACTERISTICS AND IMAGE SEARCHING METHOD
US6751354B2 (en) * 1999-03-11 2004-06-15 Fuji Xerox Co., Ltd Methods and apparatuses for video segmentation, classification, and retrieval using image class statistical models
US6774917B1 (en) * 1999-03-11 2004-08-10 Fuji Xerox Co., Ltd. Methods and apparatuses for interactive similarity searching, retrieval, and browsing of video
JP2001100731A (ja) * 1999-09-28 2001-04-13 Toshiba Corp オブジェクト映像表示装置
US6738424B1 (en) * 1999-12-27 2004-05-18 Objectvideo, Inc. Scene model generation from video for use in video processing
US6574353B1 (en) 2000-02-08 2003-06-03 University Of Washington Video object tracking using a hierarchy of deformable templates
US6661004B2 (en) * 2000-02-24 2003-12-09 Massachusetts Institute Of Technology Image deconvolution techniques for probe scanning apparatus
US6731799B1 (en) 2000-06-01 2004-05-04 University Of Washington Object segmentation with background extraction and moving boundary techniques
FR2814312B1 (fr) 2000-09-07 2003-01-24 France Telecom Procede de segmentation d'une surface image video par objets elementaires
EP1518211A2 (en) * 2000-12-22 2005-03-30 Anthropics Technology Limited Image processing system
US7061483B2 (en) 2001-02-08 2006-06-13 California Institute Of Technology Methods for computing barycentric coordinates generalized to irregular n-gons and applications of the same
US6625310B2 (en) * 2001-03-23 2003-09-23 Diamondback Vision, Inc. Video segmentation using statistical pixel modeling
US9400921B2 (en) * 2001-05-09 2016-07-26 Intel Corporation Method and system using a data-driven model for monocular face tracking
US7130446B2 (en) * 2001-12-03 2006-10-31 Microsoft Corporation Automatic detection and tracking of multiple individuals using multiple cues
US7136505B2 (en) * 2002-04-10 2006-11-14 National Instruments Corporation Generating a curve matching mapping operator by analyzing objects of interest and background information
US7203356B2 (en) * 2002-04-11 2007-04-10 Canesta, Inc. Subject segmentation and tracking using 3D sensing technology for video compression in multimedia applications
US7177445B2 (en) * 2002-04-16 2007-02-13 Koninklijke Philips Electronics N.V. Discriminating between changes in lighting and movement of objects in a series of images using different methods depending on optically detectable surface characteristics
JP3984191B2 (ja) * 2002-07-08 2007-10-03 株式会社東芝 仮想化粧装置及びその方法
US7031499B2 (en) * 2002-07-22 2006-04-18 Mitsubishi Electric Research Laboratories, Inc. Object recognition system
US6925122B2 (en) * 2002-07-25 2005-08-02 National Research Council Method for video-based nose location tracking and hands-free computer input devices based thereon
KR100455294B1 (ko) 2002-12-06 2004-11-06 삼성전자주식회사 감시 시스템에서의 사용자 검출 방법, 움직임 검출 방법및 사용자 검출 장치
US7457435B2 (en) 2004-11-17 2008-11-25 Euclid Discoveries, Llc Apparatus and method for processing video data
US7457472B2 (en) 2005-03-31 2008-11-25 Euclid Discoveries, Llc Apparatus and method for processing video data
CA2575211C (en) 2004-07-30 2012-12-11 Euclid Discoveries, Llc Apparatus and method for processing video data
US7436981B2 (en) 2005-01-28 2008-10-14 Euclid Discoveries, Llc Apparatus and method for processing video data
JP2008514136A (ja) 2004-09-21 2008-05-01 ユークリッド・ディスカバリーズ・エルエルシー ビデオデータを処理する装置および方法

Also Published As

Publication number Publication date
AU2005269310C1 (en) 2010-05-20
CA2575211C (en) 2012-12-11
EP1779294A4 (en) 2010-12-29
CN101036150B (zh) 2010-06-09
WO2006015092A2 (en) 2006-02-09
AU2005269310B2 (en) 2009-12-17
EP1779294A2 (en) 2007-05-02
KR20070067684A (ko) 2007-06-28
US20060029253A1 (en) 2006-02-09
WO2006015092A3 (en) 2006-05-11
JP2008508801A (ja) 2008-03-21
EP2602742A1 (en) 2013-06-12
CN101036150A (zh) 2007-09-12
AU2005269310A1 (en) 2006-02-09
US7424157B2 (en) 2008-09-09
CA2575211A1 (en) 2006-02-09
US20070071336A1 (en) 2007-03-29
US7158680B2 (en) 2007-01-02

Similar Documents

Publication Publication Date Title
JP4928451B2 (ja) ビデオデータを処理する装置および方法
JP4573895B2 (ja) ビデオデータを処理する装置および方法
US7426285B2 (en) Apparatus and method for processing video data
US8908766B2 (en) Computer method and apparatus for processing image data
US7457435B2 (en) Apparatus and method for processing video data
US7508990B2 (en) Apparatus and method for processing video data
US7457472B2 (en) Apparatus and method for processing video data
AU2005306599C1 (en) Apparatus and method for processing video data
JP2008529414A (ja) ビデオデータを処理する装置および方法
JP2009540675A (ja) ビデオデータを処理する装置および方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110405

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees