JP4925289B2 - Method for producing a gypsum mold for casting - Google Patents

Method for producing a gypsum mold for casting Download PDF

Info

Publication number
JP4925289B2
JP4925289B2 JP2006300228A JP2006300228A JP4925289B2 JP 4925289 B2 JP4925289 B2 JP 4925289B2 JP 2006300228 A JP2006300228 A JP 2006300228A JP 2006300228 A JP2006300228 A JP 2006300228A JP 4925289 B2 JP4925289 B2 JP 4925289B2
Authority
JP
Japan
Prior art keywords
gypsum
mold
casting
layer
mother
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006300228A
Other languages
Japanese (ja)
Other versions
JP2008114265A (en
Inventor
泰之 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006300228A priority Critical patent/JP4925289B2/en
Publication of JP2008114265A publication Critical patent/JP2008114265A/en
Application granted granted Critical
Publication of JP4925289B2 publication Critical patent/JP4925289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

本発明は、精密鋳造法の一つである石膏鋳造法で用いる鋳造用石膏鋳型の製造方法に関するものである。更に詳しくは、母型に対して注型反転する事で石膏鋳型を製作する際に、石膏鋳型の母型との接触面部における気泡や石膏材の充填不足、及び、石膏鋳型の脱型時の欠け等の不具合を極少にする事が出来る技術に関するものである。   The present invention relates to a method for producing a gypsum mold for casting used in a gypsum casting method which is one of precision casting methods. More specifically, when a gypsum mold is manufactured by reversing the casting with respect to the mother mold, there is insufficient filling of bubbles and gypsum material at the contact surface portion with the mother mold of the gypsum mold, and when the gypsum mold is removed. It relates to a technology that can minimize defects such as chipping.

現在、精密鋳造法には大きく分けると次の3種類が存在している。
1)焼失模型法(ロストワックス法),2)セラミックモールド法,3)石膏鋳造法 である。各鋳造法での特徴をまとめあげると表1の様になる。
Currently, there are the following three types of precision casting methods.
1) burnout model method (lost wax method), 2) ceramic mold method, and 3) gypsum casting method. Table 1 summarizes the characteristics of each casting method.

Figure 0004925289
Figure 0004925289

各鋳造法での鋳型材のスラリーは、上記 結合材+溶媒+耐火材を混合して作成される。石膏の場合は水が硬化(凝結)を開始させるエージェントとなるが、エチルシリケートの場合は硬化材(アクセラレータ)を添加する事で始めて自硬性を発現する。コロイダルシリカの場合は、自硬性を持たせる事は出来ず、スラリー中の水を自然乾燥させる事で、見かけ上『固体』とし、これを高温焼成する事でガラス化させる。   The mold material slurry in each casting method is prepared by mixing the binder, solvent, and refractory material. In the case of gypsum, water becomes an agent that initiates curing (condensation), but in the case of ethyl silicate, self-hardening is manifested only by adding a curing agent (accelerator). In the case of colloidal silica, self-hardening cannot be imparted, and water in the slurry is naturally dried to make it apparently “solid”, which is vitrified by high-temperature firing.

鋳型材は通常、液状の結合剤(バインダー)内に各種耐火材の粉末を混合しスラリー化し、これをゴム型・ロウ材表面などに流し、硬化させ、脱型・脱ロウする方法で作成される事になる。これが鋳造法の最大の特徴と言え、複雑な形状を液状化した状態の鋳型材で精密に反転する事で、機械加工では対応できない様な形状品を作成できるのである。   Mold materials are usually made by mixing various refractory powders in a liquid binder (binder) to form a slurry, which is then poured onto the surface of a rubber mold or brazing material, cured, and demolded or dewaxed. It will be. This can be said to be the greatest feature of the casting method. By precisely reversing a complicated shape with a liquefied mold material, it is possible to create a shape that cannot be handled by machining.

従って、鋳型材用の結合材の特性が、各種鋳造法の特徴の大半を決定付けているとも言える。すなわち、コロイダルシリカ,エチルシリケート系の結合剤は、焼成後ガラス化する為、耐火材の選択次第で高い温度までの使用が可能となる事から、鉄,ニッケル,銅合金と言った、融点で1000〜1500℃程度の合金まで、殆ど全ての合金の鋳造用鋳型として使用出来るのに対し、石膏はそれ自体の耐火性が低い為、800℃程度までしか耐えられない。これは800℃近傍から石膏CaSO4の熱分解;カルシウムと亜硫酸ガスへの分解;が始まる為である。この為、アルミニウム,亜鉛合金などの比較的融点の低い合金の鋳造までしか出来ないと言える。この事から、石膏鋳造法の場合、耐火材には、耐火性の高い、高価なものを使用せず、むしろ安価で寸法的に安定で鋳肌が平滑になる様な、きめの細かいものが使用される傾向がつよい。 Therefore, it can be said that the characteristics of the binder for the mold material determine most of the characteristics of various casting methods. In other words, colloidal silica and ethyl silicate-based binders are vitrified after firing, and can be used at high temperatures depending on the choice of refractory materials. While it can be used as a casting mold for almost all alloys up to about 1000-1500 ° C., gypsum can only withstand up to about 800 ° C. because of its low fire resistance. This is because thermal decomposition of gypsum CaSO 4 ; decomposition into calcium and sulfurous acid gas begins from around 800 ° C. For this reason, it can be said that only casting of alloys having relatively low melting points such as aluminum and zinc alloys can be performed. Therefore, in the case of the gypsum casting method, the fire-resistant material should not be expensive and expensive, but rather it should be fine, dimensionally stable and smooth in the casting surface. It tends to be used.

また石膏鋳型は、焼成(乾燥)後の石膏分子の状態が三型無水石膏(CaSO4III)で分子内に結晶水と言う形で水を取り込み易い状態となっており、150〜200℃以下になると、大気中から速やかに再吸湿し鋳造時に鋳物ピンホール欠陥を発生させ易いと言う欠点も存在している。石膏鋳型も700〜800℃の高温で焼成すれば、石膏分子の状態を、再吸湿しない二型無水石膏(CaSO4II)にもってゆく事が出来るのであるが、三型から二型への変態には非常に大きな『変態収縮』を伴う上、強度低下も著しい事から、鋳型焼成時に『型割れ』や『鋳型変形』を発生させてしまう事が多い為、通常は寸法が最も安定な焼成温度(150〜200℃)で鋳型を乾燥しているのである。この事も有って、先記3種の精密鋳造法の中で、鋳型の寸法精度が最も良好なのは石膏鋳造である。 In addition, the gypsum mold is in a state where the gypsum molecule after firing (drying) is type 3 anhydrous gypsum (CaSO 4 III), and it is easy to incorporate water in the form of crystal water in the molecule. Then, there is a drawback that it quickly absorbs moisture from the atmosphere and easily causes casting pinhole defects during casting. If the gypsum mold is also baked at a high temperature of 700 to 800 ° C, the state of the gypsum molecule can be brought to the type 2 anhydrous gypsum (CaSO4II) that does not resorb moisture, but in the transformation from type 3 to type 2. It is accompanied by a very large “transformation shrinkage”, and the strength is greatly reduced, so it often causes “mold cracking” and “mold deformation” during mold firing. The mold is dried at 150 to 200 ° C. For this reason, among the above-mentioned three types of precision casting methods, the most accurate mold dimensional accuracy is gypsum casting.

コロイダルシリカには自硬性が無く、スラリー状で型に流し込み、硬化させ、反転するという方法が採用出来ないという弱点が存在している。この為、コロイダルシリカは消失模型法にしか使用出来ないと言え、この場合でも、スラリーを硬化させる(スラリー中の水分を除去する)のに長い時間を要し、生産性が悪いと言える。(水分除去工程を急速に行うと、消失模型からスラリーが剥がれたり、ひび割れが入ったりし易い。水分除去後は、800℃〜1000℃の焼成でコロイダルシリカをガラス化させ、鋳造に耐える鋳型材として完全硬化させる。)   Colloidal silica is not self-hardening, and has a weak point that it cannot be used in a slurry-like manner, poured into a mold, cured, and reversed. For this reason, it can be said that colloidal silica can be used only for the disappearance model method. Even in this case, it takes a long time to cure the slurry (remove moisture in the slurry), and it can be said that productivity is poor. (If the moisture removal process is carried out rapidly, the slurry may be peeled off or cracked from the disappeared model. After removing the moisture, the colloidal silica is vitrified by baking at 800 ° C to 1000 ° C to withstand casting. As a complete cure.)

エチルシリケートの場合は、自硬性を持たせられる代わりに、硬化後に『急速加熱(焼成)』する事が必須となり、これに起因する鋳型の寸法変動が起こりやすいと言う弱点が存在している。(急速加熱の必要が有るのは、鋳型中の溶媒を急速に除去し、『加水分解』反応を停止させて鋳型の寸法変化を押さえると同時に、『マイクロクレージング』を生じさせる事で、鋳型の通気性を向上させる目的も有る。この急速加熱の後に、800℃〜1000℃の本焼成を実施し、鋳型を完全にガラス化させるのである。)   In the case of ethyl silicate, instead of imparting self-hardening properties, it is essential to perform “rapid heating (firing)” after curing, and there is a weak point that the dimensional variation of the mold easily occurs due to this. (The reason why rapid heating is necessary is to remove the solvent in the mold rapidly, stop the "hydrolysis" reaction and suppress the dimensional change of the mold, and at the same time generate "microcrazing", (There is also the purpose of improving the air permeability. After this rapid heating, the main baking is performed at 800 ° C. to 1000 ° C. to completely vitrify the mold.)

また、コストの面では、石膏,コロイダルシリカ,エチルシリケートの順にコスト高となって行くと言える。アルミニウム合金や亜鉛合金、マグネシウム合金の精密鋳造には、石膏鋳造法は利点が多く、タイヤ成形用金型や、各種機能部品、一部の装飾品の鋳造法として採用されている。   In terms of cost, it can be said that the cost increases in the order of gypsum, colloidal silica, and ethyl silicate. For precision casting of aluminum alloys, zinc alloys, and magnesium alloys, the gypsum casting method has many advantages, and has been adopted as a casting method for tire molding dies, various functional parts, and some decorative products.

石膏鋳型の製作は、図1の様にして行なわれるのが一般的である。図1の工程の中で、5)の注型作業時に、母型表面に気泡が付着したり、母型表面に石膏スラリーが充填しきれなかったりする場合が存在する。特に母型の材質が『有機系材料(油脂類を含む材質等)』の場合、石膏スラリーは『水』を溶媒としたものの為、『撥水作用』が働きやすく、上記の様な形状転写不具合を生じる場合が多い。   The production of a gypsum mold is generally performed as shown in FIG. In the process of FIG. 1, there are cases where bubbles adhere to the surface of the mother mold or the gypsum slurry cannot be completely filled on the mother mold surface during the casting operation of 5). In particular, when the matrix material is “organic materials (materials containing oils and fats)”, the gypsum slurry uses “water” as a solvent, so “water repellency” is easy to work on, and the above shape transfer is possible. It often causes problems.

この対策としては、図2のように注型用石膏スラリーを用いて、母型の表面に『肌石膏』を筆塗りするか、スプレーしたうえ、母層を注型すると言う方法が存在している。しかし、これらの対策は、肌石膏材として母層注型用スラリーを用いる為、母層スラリーの特性(粘性等)の影響を強く受け、筆塗り法やスプレー法を用いても、気泡付着や、充填不足不具合を解消出来ない場合が存在していた。また、母型に抜き勾配が逆の所謂アンダーカット形状や、微細な凹凸形状が存在する場合、図1の工程7)の脱型作業時に、該当部位を欠損させてしまう場合も存在していた。(鋳型欠け)   As a countermeasure against this, there is a method of casting the mother layer after brushing or spraying “skin gypsum” on the surface of the mother mold using a casting gypsum slurry as shown in FIG. Yes. However, since these measures use a slurry for casting the mother layer as the skin gypsum material, they are strongly influenced by the properties (viscosity, etc.) of the mother layer slurry. In some cases, insufficient filling problems could not be resolved. In addition, when the matrix has a so-called undercut shape with a reverse draft or a fine uneven shape, the part may be lost during demolding in step 7) of FIG. . (Mold missing)

鋳造用石膏鋳型材は、半水石膏(α石膏)、各種耐火材、添加剤で構成されている場合が多い。スラリー化した後の硬化(凝結)は半水石膏(CaSO4・1/2H2O)の二水石膏(CaSO4・2H2O)への変態によってもたらされる。また、石膏材は水と混練してスラリー化して注型する事を前提としている為、上記変態に必要な結晶水より遥かに多くの水と混練して使用されるのが一般的である。この為、鋳型材中の石膏分比率が高いほど、混水率(石膏材1kgあたりに混練する水の重量%)が低くなるほど、硬化後の石膏鋳型の強度特性は高くなる傾向を示す。 Cast gypsum mold materials are often composed of hemihydrate gypsum (α gypsum), various refractory materials, and additives. Curing after slurried (condensation) is provided by transformation to hemihydrate gypsum (CaSO 4 · 1 / 2H 2 O) of gypsum (CaSO 4 · 2H 2 O) . Since the gypsum material is premised on being kneaded with water to form a slurry and casting, it is generally used by kneading with much more water than the crystallization water necessary for the above transformation. For this reason, the higher the gypsum content ratio in the mold material, the lower the water mixing ratio (% by weight of water kneaded per kg of gypsum material), and the higher the strength characteristics of the gypsum mold after curing.

石膏鋳型(生型:CaSO4・2H2O+遊離水)は、乾燥し結晶水を除去してIII型無水石膏(CaSO4III)まで変態させたものを鋳造に用いるのが一般的である。これは、鋳造時に入熱で結晶水が遊離して鋳物に水素ピンホール欠陥が発生するのを防止する為である。
三型無水石膏(CaSO4III)まで変態させた石膏鋳型を鋳造に用いると、鋳造時の入熱で二型無水石膏(CaSO4II)まで変態する。この三型から二型への変態の際、石膏は大きな収縮を伴う。特許文献1に示すように、この収縮量は、石膏鋳型材中の石膏分比率が高いほど、混水率が高いほど大きいと言える。
A gypsum mold (green mold: CaSO 4 · 2H 2 O + free water) is generally used for casting after drying to remove crystal water and transforming it to type III anhydrous gypsum (CaSO 4 III). This is to prevent the occurrence of hydrogen pinhole defects in the casting due to the release of crystal water by heat input during casting.
When a gypsum mold transformed to type 3 anhydrous gypsum (CaSO 4 III) is used for casting, it transforms to type 2 anhydrous gypsum (CaSO 4 II) by heat input during casting. During this transformation from type 3 to type 2, gypsum is accompanied by significant shrinkage. As shown in Patent Document 1, it can be said that the amount of shrinkage increases as the gypsum content ratio in the gypsum mold material increases and the water mixing ratio increases.

石膏鋳型は熱伝導率が低い為、鋳造時石膏鋳型の溶湯接触面近傍にのみ、該当変態収縮が発生し易く、これにより鋳型表面に割れを発生させてしまう事が有り、ひどくなると、溶湯が差し込み鋳物でバリを生じさせたり、部分的に鋳型を欠落させ、鋳物で形状欠落を生じさせたりする場合があった。   Since the gypsum mold has a low thermal conductivity, the transformation shrinkage is likely to occur only near the molten metal contact surface of the gypsum mold during casting, which may cause cracks on the mold surface. In some cases, burrs are generated in the insert casting, or the mold is partially lost, and the shape is lost in the casting.

以上の事から、肌石膏層、母層ともに同一石膏スラリーを用いて造型した石膏鋳型で発生する不具合は、次の表2に示すような傾向を示していた。なお、AA→A→B→C→Dに行くにつれて、該当不具合がひどくなる(不具合が発生し易い)事を示す。(α,βは肌石膏に関する不具合、γは母層石膏に関する不具合と言える。)   From the above, the problems occurring in the gypsum mold formed using the same gypsum slurry for both the skin gypsum layer and the mother layer showed a tendency as shown in Table 2 below. It should be noted that as AA → A → B → C → D, the corresponding defect becomes severe (problem is likely to occur). (It can be said that α and β are problems related to skin plaster, and γ is a problem related to mother layer plaster.)

Figure 0004925289
Figure 0004925289

石膏パウダー中の石膏分が多いほど、αの気泡、充填不足不具合が減少する傾向を示す理由は、スラリーの塩基性度(アルカリ性度合)が増す為と推定される。通常石膏鋳型反転に用いる母型は、ゴム材等の有機系材料(油脂類を含む材質)から構成されていたり、鋳型の脱型性を向上させる為に有機系材質からなる離型剤を塗布されていたりする場合が多い。これらの材質は『撥水作用』が強く、気泡,充填不足不具合に直結しやすいのであるが、石膏スラリーの塩基性度が高まると、スラリーが油を溶かす効果が高まり、これにより母型と石膏スラリー(肌石膏)の馴染みも良くなると考えられる。また、スラリー調合時の混水率が高いほど、αの気泡、充填不足不具合が減少する傾向を示す理由は、肌石膏スラリーの粘性によるものと考えられる。混水率が増すほど、スラリーの粘性は下がり、母型の細かな部位にもスラリーが回りやすくなる為と考えられる。   The reason that the more the gypsum content in the gypsum powder tends to decrease the α bubbles and the insufficient filling failure is presumed to be because the basicity (alkalinity) of the slurry increases. The matrix used for reversing gypsum molds is usually composed of organic materials such as rubber materials (materials containing fats and oils), or a mold release agent made of organic materials is applied to improve mold release properties. It is often done. These materials have a strong “water repellency” and are likely to directly lead to defects in bubbles and insufficient filling. However, as the basicity of the gypsum slurry increases, the effect of the slurry on dissolving the oil increases. The familiarity of the slurry (skin gypsum) is considered to be improved. Moreover, it is thought that the reason which shows the tendency for (alpha) air bubbles and a filling insufficiency defect to reduce, so that the water mixing rate at the time of slurry preparation is high is based on the viscosity of skin gypsum slurry. It is considered that as the water mixing ratio increases, the viscosity of the slurry decreases, and the slurry easily turns to the fine part of the mother mold.

即ち、どれか一つの問題点を改善しようとすると、他の問題点を悪化させてしまう事に繋がりやすく、全ての問題を解決出来る良い方法は存在していない状況にあった。なお特許文献1には、得られた石膏鋳型の表面に後でコロイダルシリカを含浸させる方法が開示されているが、脱型時の欠けには対応することができない。
特許第3761414号公報
That is, trying to improve one of the problems is likely to lead to worsening the other problems, and there is no good method that can solve all the problems. Patent Document 1 discloses a method in which the surface of the obtained gypsum mold is impregnated with colloidal silica later, but cannot cope with chipping during demolding.
Japanese Patent No. 3761414

本発明は、この様な状況下で考案されたものであり、その目的は、肌石膏に関する不具合を克服しつつ、母層石膏に関する不具合も克服する技術を提供する事にある。更に詳しくは、肌石膏に用いる石膏スラリーのみを、母層の石膏スラリーより石膏分比率の高いパウダーを用い、その混水率も母層のそれよりも高めに設定する等の調整をする事で、不具合に対処出来る技術を提供する事にある。   The present invention has been devised under such circumstances, and an object of the present invention is to provide a technique for overcoming the problems related to the mother-layer gypsum while overcoming the problems related to the skin gypsum. More specifically, by adjusting only the gypsum slurry used for skin gypsum, using a powder with a higher gypsum content ratio than the mother layer gypsum slurry, and setting the water mixing ratio higher than that of the mother layer. It is to provide technology that can deal with defects.

上記の課題を解決するためになされた請求項1の発明は、石膏鋳造法で使用する石膏鋳型を母型に対する注型反転法にて製作する際に、該石膏鋳型の溶湯と接触する表面を形成する肌石膏層を、石膏分比率が50〜100重量%の石膏パウダーを用いて構成し、該石膏鋳型の内部を形成する母層を、石膏分比率が30〜40重量%の石膏パウダーを用いて構成することを特徴とするものである。請求項2の発明は、請求項1記載の鋳造用石膏鋳型の製造方法において、肌石膏層に用いる石膏鋳型材スラリーの混水率を、母層に用いる石膏鋳型材スラリーの混水率より高くすることを特徴とするものである。 In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that when the gypsum mold used in the gypsum casting method is manufactured by the casting reversal method for the mother mold, the surface of the gypsum mold in contact with the molten metal is formed. The skin gypsum layer to be formed is composed of gypsum powder having a gypsum content ratio of 50 to 100% by weight , and the mother layer forming the interior of the gypsum mold is made of gypsum powder having a gypsum content ratio of 30 to 40% by weight. It is characterized by using. The invention according to claim 2 is the method for producing a gypsum mold for casting according to claim 1, wherein the water mixing ratio of the gypsum mold material slurry used for the skin gypsum layer is higher than the water mixing ratio of the gypsum mold material slurry used for the mother layer. It is characterized by doing.

また請求項3の発明は、請求項1または2記載の鋳造用石膏鋳型の製造方法において、母型の表面に肌石膏層を第一層として塗布した後、肌石膏層に用いた石膏鋳型材スラリーの石膏パウダーの石膏分比率と同等値から母層調合用パウダーの石膏分比率値の範囲内の石膏パウダーを用い、第一層用スラリーより混水率を低く調合したものを第二層として塗布し、さらに母層石膏を注型することを特徴とするものである。 The invention according to claim 3 is the method for producing a gypsum mold for casting according to claim 1 or 2, wherein the gypsum mold material used for the skin gypsum layer after the skin gypsum layer is applied as a first layer on the surface of the mother mold Using the gypsum powder within the range of the gypsum content ratio of the gypsum powder of the slurry to the gypsum content ratio value of the powder for preparing the mother layer, the second layer is formulated with a lower water content than the slurry for the first layer It is characterized in that it is applied and a mother layer gypsum is cast.

請求項1の発明によれば、肌石膏に用いる石膏パウダーのみを母層を構成するのに用いる石膏パウダーより高い石膏分比率を持ったものとする事で、表2に示した及びα(肌石膏気泡充填不足不具合),β(脱型時表面欠け不具合)の特性は維持しながら、γの問題点である鋳造時鋳型割れや形状欠落不具合を極小化することができる。また請求項2の発明によれば、鋳型表面の気泡欠陥をより確実に防止することができる。さらに請求項3の発明によれば、肌石膏を二層構造とすることにより、請求項2並みの気泡・充填不足対策能力と、請求項1並みの脱型時表面欠け対策能力を合わせ持たせることが出来る。   According to the invention of claim 1, only gypsum powder used for skin gypsum has a higher gypsum content ratio than gypsum powder used to constitute the mother layer, and the α and ( While maintaining the characteristics of gypsum bubble filling insufficient defect) and β (surface chipping defect during demolding), it is possible to minimize casting mold cracking and shape defect, which are problems of γ. According to the invention of claim 2, bubble defects on the mold surface can be more reliably prevented. Further, according to the invention of claim 3, by forming the skin gypsum into a two-layer structure, the ability to counteract bubbles and filling insufficiently as in claim 2 and the ability to prevent surface chipping at the time of demolding as in claim 1 are combined. I can do it.

<請求項1の発明>
図3は請求項1の発明を示す工程説明図であり、まず母層用スラリー1と肌石膏用スラリー2とを作成する。母層用スラリー1は母層用の石膏パウダー3と水とを混合し、肌石膏用スラリー2は肌石膏用パウダー4と水とを混合して作成する。混水率はともに同一であるが、肌石膏用パウダー4として母層用の石膏パウダー3よりも石膏分比率が高い石膏パウダーを用いて構成する。すなわち母層用の石膏パウダー3の石膏分をA重量%、肌石膏用パウダー4の石膏分をC重量%とすると、A<Cである。またAの値は30〜40重量%、Cの値は50〜100重量%程度である。
<Invention of Claim 1>
FIG. 3 is a process explanatory view showing the invention of claim 1, and first, a mother layer slurry 1 and a skin gypsum slurry 2 are prepared. The mother layer slurry 1 is prepared by mixing the mother layer gypsum powder 3 and water, and the skin gypsum slurry 2 is prepared by mixing the skin gypsum powder 4 and water. Although the water mixing ratio is the same, gypsum powder having a higher gypsum content ratio than the gypsum powder 3 for the mother layer is used as the skin gypsum powder 4. That is, if the gypsum content of the gypsum powder 3 for the mother layer is A wt % and the gypsum content of the skin gypsum powder 4 is C wt %, then A <C. The value of A is 30 to 40% by weight , and the value of C is about 50 to 100% by weight .

この肌石膏用スラリー2を母型5の表面にスプレーして、溶湯接触面近傍となる肌石膏層6を母型5の表面に形成し、その後に母層用スラリー1を注型して鋳型内部の母層7を形成し、硬化、脱型する。このようにして、石膏鋳型8を母型5に対する注型反転法にて製作することができる。得られた石膏鋳型8は溶湯接触面近傍となる肌石膏層6と鋳型内部の母層7とからなり、肌石膏層6は母層7よりも石膏分比率が高い石膏パウダーを用いて構成されている。これによって、母型近傍のみ強度が高く緻密な石膏鋳型8を得ることが出来る様になる。   The skin gypsum slurry 2 is sprayed on the surface of the mother die 5 to form a skin gypsum layer 6 near the molten metal contact surface on the surface of the mother die 5, and then the mother layer slurry 1 is cast to mold An inner mother layer 7 is formed, cured and demolded. In this way, the gypsum mold 8 can be manufactured by the casting reversal method for the mother mold 5. The obtained gypsum mold 8 is composed of a skin gypsum layer 6 in the vicinity of the molten metal contact surface and a mother layer 7 inside the mold, and the skin gypsum layer 6 is composed of gypsum powder having a higher gypsum content ratio than the mother layer 7. ing. As a result, a dense gypsum mold 8 having a high strength only in the vicinity of the mother mold can be obtained.

表2において、スラリー調合条件Iは、αの気泡,充填不足不具合、βの脱型時表面欠け不具合に対しては優れた特性をもつのに対して、γの鋳造時鋳型割れ,形状脱落不具合に対しては悪い特性を持つ事になる。請求項1の発明は、α,βの良好な特性を維持したまま、γの問題点を克服する為に、肌石膏に用いる石膏パウダーのみを母層を構成するのに用いる石膏パウダーより高い石膏分比率を持ったものとし、α,βの特性は維持し、γの問題点を極小化したものである。   In Table 2, slurry blending condition I has excellent characteristics for α bubbles, insufficient filling failure, and surface chipping failure when β is removed, whereas γ casting mold cracking and shape dropout failure. Will have bad characteristics. The invention of claim 1 is a gypsum that is higher than gypsum powder used for constituting a mother layer only for gypsum powder used for skin gypsum in order to overcome the problems of γ while maintaining the favorable characteristics of α and β. It has a fractional ratio, maintains the characteristics of α and β, and minimizes the problem of γ.

こうする事で、母型からの脱型時の鋳型欠損やシャープな突起形状先端部の面ダレと言った不具合発生を極小化する事が出来る様になる。また、この手法を用いる事で、鋳造時の鋳型割れ不具合(鋳造入熱による石膏鋳型の変態収縮割れに起因する不具合)も極小化する事が出来る。以下に図4を用いて説明する。   By doing so, it is possible to minimize the occurrence of defects such as mold defects at the time of demolding from the mother die and surface sag at the sharp tip of the protrusion. Further, by using this method, it is possible to minimize a mold cracking defect during casting (a defect caused by transformation shrinkage cracking of a gypsum mold due to casting heat input). This will be described below with reference to FIG.

図4に示すように、母層用パウダー(石膏分比率A重量%)のみを用いて鋳型を製作した場合には、母型から脱型した後の石膏鋳型の表面に欠損、気泡、面ダレ等が発生しやすいため、母型からの鋳型脱型時に生じた欠損や面ダレ、気泡形状を転写してしまう不具合が発生する。ただし鋳物バリは極小である。一方、肌石膏用パウダー(石膏分比率C重量%)のみを用いて鋳型を製作した場合には、母型の形状転写精度は良好であるが、鋳物バリ、鋳造時鋳型脱落による不具合発生頻度が高くなる。これに対して、請求項1の発明によれば、母型の形状転写精度良好で、鋳物バリ、鋳造字鋳型脱落発生頻度も少ない。(肌石膏層が薄ければ薄い程、これらの不具合が発生しづらくなる。) As shown in FIG. 4, when the mold is manufactured using only the powder for the mother layer (gypsum content ratio A weight %), the surface of the gypsum mold after demolding from the mother mold is free of defects, bubbles, and surface sag. Therefore, defects such as defects, surface sag, and bubble shape generated when the mold is removed from the mother die are caused. However, the casting burr is extremely small. On the other hand, when the mold is manufactured using only the powder for skin plaster (gypsum content ratio C weight %), the shape transfer accuracy of the mother mold is good, but the frequency of defects due to casting burrs and mold dropout during casting is low. Get higher. On the other hand, according to the first aspect of the present invention, the shape transfer accuracy of the mother die is good, and the occurrence frequency of casting burrs and cast-shaped mold dropping is low. (The thinner the skin gypsum layer, the less likely these defects occur.)

このように請求項1の発明は、表2における調合条件Iの時の不具合γ;鋳造時鋳型割れ形状欠落不具合;を、調合条件Iのスラリーを『肌石膏層』にのみ用いる事で克服することを要旨としている。即ち、図4の様に、鋳造入熱で生じる石膏鋳型の鋳型割れを、肌石膏層近傍のみに留める事で、問題γに関して致命傷となる事を回避する技術が請求項1である。請求項1の発明を用いれば、従来法の不具合(表2のα,β,γ)ほぼ全てを克服する事が出来るのである。   As described above, the invention of claim 1 overcomes the problem γ under the compounding condition I in Table 2 and the defect in the mold cracking shape missing during casting by using the slurry under the compounding condition I only for the “skin gypsum layer”. This is the gist. That is, as shown in FIG. 4, claim 1 is a technique for avoiding a fatal wound related to the problem γ by keeping the mold crack of the gypsum mold caused by heat input from casting only in the vicinity of the skin gypsum layer. If the invention of claim 1 is used, almost all the defects of the conventional method (α, β, γ in Table 2) can be overcome.

請求項1の様に肌石膏層の石膏分比率のみを高くしても、肌石膏層と母層の密着性は確保され、実用上の問題は少ないが、この逆(肌石膏層の石膏分比率を母層のそれよりも低くする)を行うと、母型からの石膏鋳型脱型時や、鋳型乾燥中、又は鋳造中に、肌石膏層が『剥離』すると言う不具合を生じ易い。この逆のケースを活用したいと言うケースは殆ど存在しないが、これを活用する事は事実上不可能であると言える。   Even if only the gypsum content ratio of the skin gypsum layer is increased as in claim 1, the adhesion between the skin gypsum layer and the mother layer is ensured and there are few practical problems. If the ratio is made lower than that of the mother layer), the gypsum layer is likely to “peel” when the gypsum mold is removed from the mother mold, during mold drying, or during casting. There are almost no cases where you want to use the opposite case, but it is virtually impossible to use it.

<請求項2の発明>
以上に説明した請求項1の発明を用いても、『混水率の設定』が低い場合などは、鋳型表面に気泡欠陥を多発させてしまう危険性が残る。請求項2の発明はこの問題点を克服すべく、請求項1を活用しつつ、肌石膏用スラリーのみ母層スラリーより混水率を高いものとし、鋳型表面に気泡欠陥を発生させない様にする事を要旨としたものである。
<Invention of Claim 2>
Even when the invention of claim 1 described above is used, there is still a risk of frequent occurrence of bubble defects on the mold surface when the “setting of water mixing ratio” is low. In order to overcome this problem, the invention of claim 2 makes use of claim 1 and only the slurry for skin gypsum has a higher water mixing ratio than the mother layer slurry so as not to generate bubble defects on the mold surface. It is a summary of the matter.

前記の表2に示されているように、気泡欠陥対策として最も効果が高いのが調合条件Vである事が判る。但し、調合条件Vは、鋳造時の鋳型割れ形状脱落不具合が生じやすくなるという弱点を併せ持つ為、これを請求項1の手法で克服すると言うのが請求項2の要旨である。   As shown in Table 2 above, it can be seen that the blending condition V is the most effective as a countermeasure against bubble defects. However, since the blending condition V has the weak point that the mold crack shape drop-out failure easily occurs during casting, the gist of claim 2 is to overcome this by the method of claim 1.

すなわち、請求項1は不具合β(脱型時表面欠け)対策に主眼を置いた対応策、請求項2は不具合α(気泡・充填不足不具合)対策に主眼を置いた対策と言う事が出来る。具体的には、図3に示した肌石膏用スラリー2を作成するための混水率を、母層用スラリー1を作成するための混水率よりも高めればよく、その混水率の差は例えば5〜15%とすればよい。   That is, claim 1 can be said to be a countermeasure focusing on countermeasures against defect β (surface chipping at the time of demolding), and claim 2 can be said to be countermeasures focusing on countermeasures against malfunction α (bubble and insufficient filling defect). Specifically, the water mixing rate for creating the skin gypsum slurry 2 shown in FIG. 3 may be higher than the water mixing rate for creating the mother layer slurry 1, and the difference in water mixing rate May be, for example, 5 to 15%.

<請求項3の発明>
請求項3は請求項2並みの不具合α対策能力と請求項1並みの不具合α対策能力を同時に発現させるための手法であり、具体的には、肌石膏を『二層構造』にする事がポイントである。すなわち、第一層目の肌石膏は請求項2に順ずる方法で塗布し、その後に用いる第二層目の肌石膏として、
1) 使用する石膏パウダー中の石膏分比率が、母層に使用する石膏パウダーの石膏分比率以上、第一層目で使用した石膏パウダー中の石膏分比率以下となるものと使用し、
2) 混水率は、第一層目用のスラリーの混水率より低いスラリーとなる様に調合したものを用い、
肌石膏を二層構造とする事を要旨としたものである。これにより、請求項2並みの気泡・充填不足対策能力と請求項1並みの脱型時表面欠け対策能力を合わせ持つ事が出来る様になる。
<Invention of Claim 3>
Claim 3 is a technique for simultaneously developing the defect α countermeasure ability equivalent to claim 2 and the defect alpha countermeasure ability equivalent to claim 1. Specifically, the skin plaster can be made into a “two-layer structure”. It is a point. That is, the first layer of skin plaster is applied by the method according to claim 2, and the second layer of skin plaster used thereafter is
1) Use the gypsum powder in the gypsum powder used to have a gypsum content ratio in the gypsum powder used in the first layer that is greater than or equal to the gypsum content ratio in the first layer,
2) Use a water mixture ratio that is prepared so that the slurry is lower than the water mixture ratio of the slurry for the first layer.
The gist is that the skin gypsum has a two-layer structure. As a result, it is possible to have both the ability to cope with bubbles and insufficient filling as in claim 2 and the ability to cope with surface chipping during demolding as in claim 1.

図5はこの請求項3の発明の実施形態を示すもので、第一層目の肌石膏スラリー11と、第二層目の肌石膏スラリー12とを母型5の表面に塗布している。水と混練されスラリー化した石膏は、15〜60分ほどで硬化(凝結)する。スラリー状の間は、第一層、第二層目の肌石膏間および、第二層目の肌石膏と母層石膏間では、『拡散』現象が生じ、それぞれのスラリーが混ざり合い平衡状態となろうとする。請求項3の発明はこの特性を活用したものとも言える。第一層目の肌石膏スラリー11は混水率が高く、母型5への塗布性に優れ気泡発生は極少に出来るが、そのままでは凝結後に高い強度特性を発揮しないという弱点も持つのであるが、後から塗布される第二層目の肌石膏スラリー12と交じり合う事で、この弱点を克服できるのである。   FIG. 5 shows an embodiment of the invention of claim 3, in which a first layer of gypsum slurry 11 and a second layer of gypsum slurry 12 are applied to the surface of the mother die 5. Gypsum that has been kneaded with water and slurried is cured (condensed) in about 15 to 60 minutes. During the slurry state, a “diffusion” phenomenon occurs between the first layer, the second layer of gypsum, and between the second layer of gypsum and the mother layer gypsum. Try to be. It can be said that the invention of claim 3 utilizes this characteristic. The first-layer skin gypsum slurry 11 has a high water mixing ratio and is excellent in applicability to the mother mold 5 and can minimize the generation of bubbles, but it has a weak point that it does not exhibit high strength characteristics after condensation. This weak point can be overcome by intermingling with the second-layer skin gypsum slurry 12 applied later.

また請求項3の発明を用いると、母型表面に塗布した肌石膏が垂れて落ち易い部位(立ち壁面など)に対しても、気泡無く肌石膏を均一に塗布する事が可能となるのも利点の一つである。
以下に各発明の実施例を示す。
In addition, when the invention of claim 3 is used, it is possible to uniformly apply the gypsum without bubbles to the part (standing wall surface, etc.) where the gypsum applied to the surface of the mother mold is likely to hang down. One of the advantages.
Examples of each invention are shown below.

全実施例を通して使用した原型、母型、石膏材、製作を狙った鋳物は以下の通りである。
原型形状は図6のとおりであり、材質は(Si0.6%,Mg0.5%,Cu3.8%,Fe0.5%,残Al)のアルミ合金2017である。母型(ゴム型)はスムースオン社製ポリサルファイドゴム FMC201であり、構造はゴム層肉厚10mmの石膏裏打ち付き構造(裏打ち材最小肉厚80mm)で、原型からの注型反転により製作した。
The original mold, master mold, gypsum material, and castings aimed at production used throughout the examples are as follows.
The original shape is as shown in FIG. 6, and the material is an aluminum alloy 2017 (Si 0.6%, Mg 0.5%, Cu 3.8%, Fe 0.5%, remaining Al). The base mold (rubber mold) is smooth-on polysulfide rubber FMC201, and the structure is a gypsum-lined structure with a rubber layer thickness of 10 mm (the minimum thickness of the backing material is 80 mm).

使用した石膏パウダーはノリタケジプサム製鋳造用石膏鋳型材:G−6非発泡石膏であり、パウダー中石膏分比率調整用にα石膏FT−2を併用した。鋳物形状は図7に示すとおりであり、その材質はアルミ合金AC4C製(Si7.0%,Mg0.4%,Cu0.02%,Fe0.15%,残Al)である。細部の寸法は、母型を鋳造反転した際に生じる『鋳縮み』分を反映した出来成りである。   The gypsum powder used was Noritake Gypsum casting gypsum mold material: G-6 non-foamed gypsum, and α gypsum FT-2 was used in combination for adjusting the gypsum content ratio in the powder. The casting shape is as shown in FIG. 7, and the material is made of aluminum alloy AC4C (Si 7.0%, Mg 0.4%, Cu 0.02%, Fe 0.15%, remaining Al). The dimensions of the details reflect the amount of “cast shrinkage” that occurs when the master mold is cast and reversed.

<実施例1>請求項1の実施例
表3の上段に示す調合条件で肌石膏用、母層用スラリーを別仕立てで調合し、肌石膏用スラリーをスプレーガンを用いて母型(ゴム型)に塗布した後、母層用スラリーを注型する事で石膏鋳型を反転製作した。この様にして得られた石膏鋳型およびそれを用いて鋳造した鋳物の結果を表3の下段に示す。
<Example 1> Example of claim 1 Slurry for skin gypsum and mother layer are separately prepared under the blending conditions shown in the upper part of Table 3, and the slurry for skin gypsum is molded using a spray gun (rubber mold) ), And then the gypsum mold was inverted by casting the slurry for the mother layer. The lower part of Table 3 shows the results of the gypsum mold thus obtained and the castings cast using the same.

Figure 0004925289
Figure 0004925289

<比較例1>実施例1の比較例
表4の上段に示す調合条件で肌石膏用、母層用スラリーを調合し、肌石膏用スラリーをスプレーガンを用いて母型(ゴム型)に塗布した後、母層用スラリーを注型する事で石膏鋳型を反転製作した。この様にして得られた石膏鋳型およびそれを用いて鋳造した鋳物の結果を表4の下段に示す。これにより請求項1の発明を用いた実施例1の優位性が確認された。
<Comparative example 1> Comparative example of Example 1 The slurry for skin gypsum and the mother layer was prepared under the blending conditions shown in the upper part of Table 4, and the slurry for skin gypsum was applied to the mother mold (rubber mold) using a spray gun. Then, the gypsum mold was inverted by casting the slurry for the mother layer. The lower part of Table 4 shows the results of the gypsum mold thus obtained and the castings cast using the same. Thus, the superiority of Example 1 using the invention of claim 1 was confirmed.

Figure 0004925289
Figure 0004925289

<実施例2>請求項2の実施例
表5の上段に示す調合条件で肌石膏用、母層用スラリーを別仕立てで調合し、肌石膏用スラリーをスプレーガンを用いて母型(ゴム型)に塗布した後、母層用スラリーを注型する事で石膏鋳型を反転製作した。この様にして得られた石膏鋳型およびそれを用いて鋳造した鋳物の結果を表5の下段に示す。実施例1に比べて気泡不具合は減少したが、欠け不具合が散在する様になった。ただし比較例1に比べれば優位である事に間違いは無い。
<Example 2> Example of Claim 2 The slurry for skin gypsum and the mother layer is prepared in a separate manner under the blending conditions shown in the upper part of Table 5, and the slurry for skin gypsum is molded into a mother mold (rubber mold) using a spray gun. ), And then the gypsum mold was inverted by casting the slurry for the mother layer. The lower part of Table 5 shows the results of the gypsum mold thus obtained and the castings cast using the same. Bubble defects were reduced as compared with Example 1, but chip defects were scattered. However, there is no mistake in being superior to Comparative Example 1.

Figure 0004925289
Figure 0004925289

<実施例3>請求項3の実施例
表6の上段に示す調合条件で肌石膏用、母層用スラリーを別仕立てで調合し、2種類の肌石膏用スラリーをスプレーガンを用いて母型(ゴム型)に2層塗布した後、母層用スラリーを注型する事で石膏鋳型を反転製作した。この様にして得られた石膏鋳型およびそれを用いて鋳造した鋳物の結果は表6の下段のとおりであった。実施例1、2と比べて、総合的に最も良い品質の鋳物を得る事が出来た。
<Example 3> Example of Claim 3 The slurry for skin gypsum and the mother layer is prepared separately by the preparation conditions shown in the upper part of Table 6, and the two types of slurry for skin gypsum are molded using a spray gun. After applying two layers to the (rubber mold), the gypsum mold was inverted by casting the slurry for the mother layer. The results of the gypsum mold thus obtained and the castings cast using the same were as shown in the lower part of Table 6. Compared with Examples 1 and 2, it was possible to obtain a casting having the best overall quality.

Figure 0004925289
Figure 0004925289

これらの本実施例では、結果を判りやすくする為、鋳型で発生した不具合α,βは、そのままの状態で鋳造を行なったが、実際の製品対応時には、不具合α,βは『鋳型の段階で修正する』事で対処する事になる。(鋳物になってしまうと、ほぼ修正不可能となってしまうため。)この為、先の実施例で不具合箇所数が少ないほど、生産性高く高難度鋳物を製作出来ると言えるのである。   In these examples, in order to make the results easier to understand, the defects α and β that occurred in the mold were cast as they were, but when the actual product was handled, the defects α and β were “at the mold stage. It will be dealt with by "correcting". (Because it becomes a casting, it is almost impossible to correct.) For this reason, it can be said that the less difficult the number of defective parts in the previous embodiment, the more highly difficult casting can be produced with high productivity.

以上に説明したように、本発明を用いれば、石膏鋳造法を用いて、従来困難であった微細な凹凸形状を精度高く転写する事が可能となる。この観点で、本発明が各種装飾品鋳造や精密部品鋳造、精密金型鋳造に持つ意義は極めて大きいと言える。   As described above, by using the present invention, it is possible to accurately transfer a fine concavo-convex shape, which has been difficult in the past, using a gypsum casting method. From this point of view, it can be said that the present invention has a great significance in casting various decorative products, precision parts and precision molds.

一般的な石膏鋳型の製作工程の説明図である。It is explanatory drawing of the manufacturing process of a general gypsum mold. 肌石膏の塗布方法を示す説明図である。It is explanatory drawing which shows the application | coating method of skin gypsum. 請求項1の発明を示す工程説明図である。FIG. 2 is a process explanatory view showing the invention of claim 1. 各工程における欠陥の発生状態を示す対比図である。It is a contrast diagram which shows the generation | occurrence | production state of the defect in each process. 請求項2の発明の工程説明図である。It is process explanatory drawing of invention of Claim 2. 実施例における原型形状の説明図である。It is explanatory drawing of the original shape in an Example. 実施例における鋳物形状の説明図である。It is explanatory drawing of the casting shape in an Example.

符号の説明Explanation of symbols

1 母層用スラリー
2 肌石膏用スラリー
3 母層用の石膏パウダー
4 肌石膏用パウダー
5 母型
6 肌石膏層
7 鋳型内部の母層
8 石膏鋳型
11 第一層目の肌石膏スラリー
12 第二層目の肌石膏スラリー
1 Mother layer slurry 2 Skin gypsum slurry 3 Mother layer gypsum powder 4 Skin gypsum powder 5 Mother mold 6 Skin gypsum layer 7 Mold inner layer 8 Gypsum mold 11 First layer gypsum slurry 12 Second Layer skin gypsum slurry

Claims (3)

石膏鋳造法で使用する石膏鋳型を母型に対する注型反転法にて製作する際に、該石膏鋳型の溶湯と接触する表面を形成する肌石膏層を、石膏分比率が50〜100重量%の石膏パウダーを用いて構成し、該石膏鋳型の内部を形成する母層を、石膏分比率が30〜40重量%の石膏パウダーを用いて構成することを特徴とする鋳造用石膏鋳型の製造方法。 When the gypsum mold used in the gypsum casting method is manufactured by the casting reversal method for the mother mold, the gypsum layer forming the surface in contact with the molten metal of the gypsum mold has a gypsum content ratio of 50 to 100% by weight . A method for producing a gypsum mold for casting, characterized in that the gypsum powder is used to form a mother layer that forms the interior of the gypsum mold using a gypsum powder having a gypsum content ratio of 30 to 40% by weight . 請求項1記載の鋳造用石膏鋳型の製造方法において、肌石膏層に用いる石膏鋳型材スラリーの混水率を、母層に用いる石膏鋳型材スラリーの混水率より高くすることを特徴とする鋳造用石膏鋳型の製造方法。   The casting gypsum mold manufacturing method according to claim 1, wherein the water mixing ratio of the gypsum mold material slurry used for the skin gypsum layer is higher than the water mixing ratio of the gypsum mold material slurry used for the mother layer. Method for producing gypsum molds. 請求項1または2記載の鋳造用石膏鋳型の製造方法において、母型の表面に肌石膏層を第一層として塗布した後、肌石膏層に用いた石膏鋳型材スラリーの石膏パウダーの石膏分比率と同等値から母層調合用パウダーの石膏分比率値の範囲内の石膏パウダーを用い、第一層用スラリーより混水率を低く調合したものを第二層として塗布し、さらに母層石膏を注型する事を特徴とする鋳造用石膏鋳型の製造方法。   3. The method for producing a gypsum mold for casting according to claim 1 or 2, wherein a gypsum powder ratio of a gypsum mold material slurry used for the skin gypsum layer is applied to the surface of the master mold as a first layer. Using the gypsum powder within the range of the gypsum content ratio value of the mother layer preparation powder from the same value as above, apply a mixture with a lower water mixing ratio than the slurry for the first layer as the second layer, A method for producing a gypsum mold for casting, characterized by casting.
JP2006300228A 2006-11-06 2006-11-06 Method for producing a gypsum mold for casting Active JP4925289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300228A JP4925289B2 (en) 2006-11-06 2006-11-06 Method for producing a gypsum mold for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300228A JP4925289B2 (en) 2006-11-06 2006-11-06 Method for producing a gypsum mold for casting

Publications (2)

Publication Number Publication Date
JP2008114265A JP2008114265A (en) 2008-05-22
JP4925289B2 true JP4925289B2 (en) 2012-04-25

Family

ID=39500666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300228A Active JP4925289B2 (en) 2006-11-06 2006-11-06 Method for producing a gypsum mold for casting

Country Status (1)

Country Link
JP (1) JP4925289B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699273B (en) * 2012-05-14 2013-12-25 宁波霍思特精密机械有限公司 Precision casting method for large-scale aluminium alloy impeller
US11077488B2 (en) 2018-05-11 2021-08-03 Compagnie Generale Des Etablissements Michelin Casting process with variable index
JP7311369B2 (en) * 2019-09-13 2023-07-19 Toyo Tire株式会社 Manufacturing method of tire vulcanization mold

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132745A (en) * 1986-11-25 1988-06-04 Honda Motor Co Ltd Production of water soluble casting mold
JPH06157117A (en) * 1993-04-05 1994-06-03 Noritake Co Ltd Carbon fiber reinforced gypsum forming mold and gypsum powder and production thereof
JP2002153943A (en) * 2000-11-22 2002-05-28 Nissan Motor Co Ltd Method for manufacturing mold for precision casting and model used for the method

Also Published As

Publication number Publication date
JP2008114265A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US8002017B2 (en) Method of manufacturing a collapsible mold
US20100147485A1 (en) Mold and manufacturing method thereof, and molded article using the mold
JP2020514078A (en) Compositions and methods for casting cores in high pressure die castings
JP4925289B2 (en) Method for producing a gypsum mold for casting
US20050252633A1 (en) Lost wax moulding method with contact layer
CN113894251B (en) High-inertia mould shell for casting, preparation method thereof and method for improving magnesium alloy casting precision
KR102314875B1 (en) Refractory coating compositions for forming surfaces on temporary molds or on cores for iron and steel foundry operations
CA2461797A1 (en) Method for producing castings, molding sand and its use for carrying out said method
JP7504100B2 (en) Improved foundry slurry for shell mold manufacturing
JP3629640B2 (en) Method for producing collapsible sand core for casting and sand core thereof
KR101755832B1 (en) Method of manufacturing precision cast parts for vehicle exhaust system
JP4421466B2 (en) Slurry for casting mold and mold obtained using the same
JPH0636954B2 (en) Composition for easily disintegrating mold
KR100348713B1 (en) Alumina-base investment casting shell mold and manufacturing method thereof
JPH04333343A (en) Manufacture of ceramic shell mold
JPS6224172B2 (en)
JPS58128245A (en) Production of sand core for pressure casting
JP3362106B2 (en) Coated sand for casting
JP2005169440A (en) Mold wash for metal mold
JPH09192777A (en) Gypsum mold
JPS6156751A (en) Casting method of thin-walled casting
US20240316620A1 (en) High-inertia Mold Shell for Casting and Preparation Method thereof and Method for Improving Precision of Magnesium Alloy Cast
RU2152842C1 (en) Method of coating application
TW202302244A (en) Manufacturing method of shell mold for metal part and semi-finished product of shell mold capable of enhancing casting precision and taking cost into consideration
RU2333070C1 (en) Suspension for manufacture of ceramic forms by smelted models

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150