JP4925033B2 - Stress-induced anti-apoptotic molecule (IEX-1) derived peptide - Google Patents

Stress-induced anti-apoptotic molecule (IEX-1) derived peptide Download PDF

Info

Publication number
JP4925033B2
JP4925033B2 JP2005517705A JP2005517705A JP4925033B2 JP 4925033 B2 JP4925033 B2 JP 4925033B2 JP 2005517705 A JP2005517705 A JP 2005517705A JP 2005517705 A JP2005517705 A JP 2005517705A JP 4925033 B2 JP4925033 B2 JP 4925033B2
Authority
JP
Japan
Prior art keywords
peptide
hla
iex
cells
ctl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005517705A
Other languages
Japanese (ja)
Other versions
JPWO2005075646A1 (en
Inventor
恭悟 伊東
茂樹 七條
哲朗 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurume University
Original Assignee
Kurume University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurume University filed Critical Kurume University
Priority to JP2005517705A priority Critical patent/JP4925033B2/en
Publication of JPWO2005075646A1 publication Critical patent/JPWO2005075646A1/en
Application granted granted Critical
Publication of JP4925033B2 publication Critical patent/JP4925033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4747Apoptosis related proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、癌患者に対する免疫療法に利用可能なストレス誘導抗アポトーシス分子(IEX−1)由来ペプチドに関する。詳細には、細胞傷害性T細胞(CTL)により認識され、特異的なCTLを誘導する、IEX−1由来ペプチド、該ペプチドを含むポリペプチドおよびこれらペプチドを含む癌ワクチン等に関する。   The present invention relates to a stress-induced anti-apoptotic molecule (IEX-1) -derived peptide that can be used in immunotherapy for cancer patients. Specifically, the present invention relates to an IEX-1-derived peptide that is recognized by cytotoxic T cells (CTL) and induces a specific CTL, a polypeptide containing the peptide, a cancer vaccine containing the peptide, and the like.

胃癌は、世界で最も普遍的に発生する悪性腫瘍の一つである(文献1−6)。本疾患は、早期では予後は一般的に良好であるが、進行癌においては、外科的切除、化学療法、および放射線療法などの既存の治療法が最近顕著に進歩しているにも係らず、予後が非常に悪い。それゆえ、進行段階の胃癌患者を処置するため、新しい特異的免疫療法のような新規な治療法の開発が必要とされている。   Gastric cancer is one of the most universally occurring malignant tumors in the world (References 1-6). The disease has a generally good prognosis at an early stage, but in advanced cancer, despite recent advances in existing therapies such as surgical resection, chemotherapy, and radiation therapy, Prognosis is very bad. Therefore, there is a need to develop new therapies such as new specific immunotherapy to treat patients with advanced stage gastric cancer.

近年、ヒト腫瘍がCTLに認識される抗原性ペプチドを発現していることが明らかになってきており、このようなペプチドはHLA−A2またはA24アレルを有する癌患者に対するペプチドワクチンとして使用されている(文献1−7)。HLA−A2またはA24拘束性CTLにより認識されるエピトープペプチドについては多くの報告がなされており(文献8−11)、本発明者らも、最近、ペプチドワクチン処置がHLA−A2またはA24重症胃癌患者の全体的生存率を延長することを報告した(文献4)。
一方、HLA−A33アレルは世界中の様々な人種において比較的広く発現しているにも拘わらず(文献14、15)、HLA−A33拘束性CTLにより認識される抗原およびペプチドについての報告は非常に限られている(文献12、13)。このことは、HLA−A33癌患者に対するペプチド基盤特異的免疫療法の開発を妨げている。
In recent years, it has become clear that human tumors express antigenic peptides recognized by CTLs, and such peptides are used as peptide vaccines for cancer patients with HLA-A2 or A24 alleles. (References 1-7). Many reports have been made on epitope peptides recognized by HLA-A2 or A24-restricted CTL (References 8-11), and the present inventors have recently also been treated with peptide vaccine treatment for patients with severe gastric cancer of HLA-A2 or A24. Reported an increase in the overall survival rate (Reference 4).
On the other hand, despite the relatively wide expression of HLA-A33 alleles in various races around the world (References 14 and 15), there are reports on antigens and peptides recognized by HLA-A33-restricted CTLs. Very limited (12, 13). This has hindered the development of peptide-based specific immunotherapy for HLA-A33 + cancer patients.

IEX−1(immediate early response gene X-1)(p22/PRG1(文献20)、Dif−2(文献21)、またはマウスホモログgyl96(文献22)としてもまた知られる)は、ストレス誘導遺伝子であり、細胞周期進行およびアポトーシスの調節に関与する。IEX−1は、TNFおよびFasのような様々なアポトーシス誘発因子により誘導されるアポトーシスに対する細胞抵抗性に重要な役割を果たすこと(文献23)、およびいくつかの細胞株において細胞周期進行を加速すること(文献24−26)が報告されている。また、in vivoにおけるTリンパ球の活性化誘導細胞死に対するIEX−1の抗アポトーシス効果も報告されている(文献27)。
IEX−1の発現は、放射線照射、成長因子、ウィルス感染、TNF−αおよびIL−1βのような炎症性サイトカイン、リポポリサッカライド、およびステロイドホルモンを含むいくつかの細胞ストレスによって急速に活性化され得る(文献27)。IEX−1はもともとNF−κB/rel標的遺伝子として同定されたが(文献23)、IEX−1プロモーターには例えばp53、SP−1およびc−Mycのような他の転写因子のためのコンセンサス配列がいくつか含まれる(文献7)。例えば、腫瘍細胞に共通する癌抑制遺伝子p53の変異がIEX−1発現を上昇させることが示されている(文献29)。
以上のように、IEX−1は腫瘍細胞の悪性形質転換に関与することが示唆されているが、腫瘍細胞において抗原性ペプチドとして機能するIEX−1エピトープペプチドは知られていなかった。
IEX-1 (immediate early response gene X-1) (also known as p22 / PRG1 (Reference 20), Dif-2 (Reference 21), or mouse homolog gyl96 (Reference 22)) is a stress-inducing gene. Involved in the regulation of cell cycle progression and apoptosis. IEX-1 plays an important role in cell resistance to apoptosis induced by various pro-apoptotic factors such as TNF and Fas (Ref. 23) and accelerates cell cycle progression in several cell lines (References 24-26) have been reported. In addition, the anti-apoptotic effect of IEX-1 on T-lymphocyte activation-induced cell death in vivo has been reported (Reference 27).
IEX-1 expression is rapidly activated by several cellular stresses including irradiation, growth factors, viral infections, inflammatory cytokines such as TNF-α and IL-1β, lipopolysaccharides, and steroid hormones. Obtain (Reference 27). Although IEX-1 was originally identified as an NF-κB / rel target gene (Reference 23), the IEX-1 promoter contains consensus sequences for other transcription factors such as p53, SP-1 and c-Myc. Are included (Reference 7). For example, it has been shown that a mutation in the tumor suppressor gene p53 common to tumor cells increases IEX-1 expression (Reference 29).
As described above, it has been suggested that IEX-1 is involved in malignant transformation of tumor cells, but no IEX-1 epitope peptide that functions as an antigenic peptide in tumor cells has been known.

本発明は、HLA−A33癌患者に対する癌ワクチンの開発に有用な抗原ペプチドを提供することを目的とする。An object of the present invention is to provide an antigenic peptide useful for developing a cancer vaccine for HLA-A33 + cancer patients.

本発明者らは、重症胃癌患者の腫瘍組織浸潤リンパ球(TIL)からHLA−A33拘束性CTL株を樹立し、IEX−1由来の三つのHLA−A33結合エピトープを、本細胞株により認識される腫瘍抗原として同定した。さらに、これらの抗原性エピトープが悪性腫瘍疾患患者のPBMC(末梢血単核細胞)においてペプチド特異的CTLを誘導することを確認したことにより、本発明を完成した。   The present inventors established an HLA-A33-restricted CTL line from tumor tissue-infiltrating lymphocytes (TIL) of patients with severe gastric cancer, and three HLA-A33 binding epitopes derived from IEX-1 were recognized by this cell line. Identified as a tumor antigen. Furthermore, the present invention was completed by confirming that these antigenic epitopes induce peptide-specific CTLs in PBMC (peripheral blood mononuclear cells) of patients with malignant tumor diseases.

即ち本発明は、以下を包含する。
(1)細胞傷害性T細胞(CTL)によって認識され、特異的なCTLを誘導する、ストレス誘導抗アポトーシス分子(IEX−1)由来のペプチドまたはその変異ペプチド。
(2)CTLがHLA−A33拘束性に認識する、(1)記載のペプチド。
(3)連続する8〜11個のアミノ酸残基からなる、(1)または(2)に記載のペプチド。
(4)配列番号1〜3のいずれかに示されるアミノ酸配列からなるペプチド、または配列番号1〜3のいずれかに示されるアミノ酸配列において1若しくは複数のアミノ酸が欠失、置換および/または付加されたアミノ酸配列からなり、かつHLA−A33分子と結合して特異的なCTLを誘導するペプチドである、(1)〜(3)のいずれかに記載のペプチド。
(5)上記(1)〜(4)のいずれかに記載のペプチドを含むポリペプチド。
(6)単離された抗原提示能を有する細胞の表面に、HLA−A33分子と(1)〜(4)のいずれかに記載のペプチドとの複合体を提示させてなる、抗原提示細胞。
(7)上記(1)〜(4)のいずれかに記載のペプチド、または(5)記載のポリペプチドをコードする核酸分子。
(8)上記(7)記載の核酸分子を含有するベクター。
(9)上記(1)〜(4)のいずれかに記載のペプチド、(5)記載のポリペプチド、(6)記載の抗原提示細胞、(7)記載の核酸分子、または(8)記載のベクターを含む、特異的なCTLを誘導するための医薬組成物。
(10)癌ワクチンである、(9)記載の医薬組成物。
(11)上記(1)〜(4)のいずれかに記載のペプチドとHLAとの複合体、または(6)記載の抗原提示細胞に提示された複合体を認識する、IEX−1反応性CTL。
(12)上記(1)〜(4)のいずれかに記載のペプチド、(5)記載のポリペプチド、または(6)記載の抗原提示細胞を用いてIEX−1反応性CTLを誘導する方法。
(13)上記(1)〜(4)のいずれかに記載のペプチドまたは(5)記載のポリペプチドを特異的に認識する抗体。
(14)次の1)または2)に記載のポリペプチドを含む、特異的なCTLを誘導するための医薬組成物:
1)配列番号4に示されるアミノ酸配列からなるポリペプチド、または
2)配列番号4に示されるアミノ酸配列において1若しくは複数のアミノ酸が欠失、置換および/または付加されたアミノ酸配列からなり、かつHLA−A33分子と結合して特異的なCTLを誘導するペプチドを与えるポリペプチド。
(15)癌ワクチンである、(14)記載の医薬組成物。
That is, the present invention includes the following.
(1) A peptide derived from a stress-induced anti-apoptotic molecule (IEX-1) or a mutant peptide thereof that is recognized by cytotoxic T cells (CTL) and induces a specific CTL.
(2) The peptide according to (1), wherein CTL recognizes HLA-A33 restricted.
(3) The peptide according to (1) or (2), comprising 8 to 11 consecutive amino acid residues.
(4) A peptide consisting of the amino acid sequence shown in any one of SEQ ID NOs: 1 to 3, or one or more amino acids in the amino acid sequence shown in any of SEQ ID NOs: 1 to 3 are deleted, substituted and / or added The peptide according to any one of (1) to (3), which is a peptide that has a specific amino acid sequence and induces a specific CTL by binding to an HLA-A33 molecule.
(5) A polypeptide comprising the peptide according to any one of (1) to (4) above.
(6) An antigen-presenting cell obtained by presenting a complex of the HLA-A33 molecule and the peptide according to any one of (1) to (4) on the surface of an isolated cell having an antigen-presenting ability.
(7) A nucleic acid molecule encoding the peptide according to any one of (1) to (4) above or the polypeptide according to (5).
(8) A vector containing the nucleic acid molecule according to (7) above.
(9) The peptide according to any one of (1) to (4), the polypeptide according to (5), the antigen-presenting cell according to (6), the nucleic acid molecule according to (7), or the description according to (8) A pharmaceutical composition for inducing specific CTL, comprising a vector.
(10) The pharmaceutical composition according to (9), which is a cancer vaccine.
(11) An IEX-1 reactive CTL that recognizes a complex of the peptide according to any one of (1) to (4) above and HLA, or a complex presented on an antigen-presenting cell according to (6) .
(12) A method for inducing IEX-1-reactive CTL using the peptide according to any one of (1) to (4), the polypeptide according to (5), or the antigen-presenting cell according to (6).
(13) An antibody that specifically recognizes the peptide according to any one of (1) to (4) or the polypeptide according to (5).
(14) A pharmaceutical composition for inducing specific CTL, comprising the polypeptide according to the following 1) or 2):
1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 4, or 2) an amino acid sequence comprising one or more amino acids deleted, substituted and / or added in the amino acid sequence shown in SEQ ID NO: 4, and HLA A polypeptide that gives a peptide that binds to the A33 molecule and induces a specific CTL.
(15) The pharmaceutical composition according to (14), which is a cancer vaccine.

本発明は、悪性腫瘍、特にHLA−A33陽性の癌患者の治療に適したIEX−1基盤免疫療法を可能にする。   The present invention enables IEX-1-based immunotherapy suitable for the treatment of malignant tumors, particularly HLA-A33 positive cancer patients.

胃腺癌患者(HLA−A2402/A3303、B7/B44、Cw7/Cw14)の腫瘍浸潤生リンパ球(TIL)から樹立した、HLA−A33拘束性850B−CTL細胞株の特性を示す図である。Aは種々の標的細胞に対する認識能を、様々なE:T比(エフェクター細胞:標的細胞)におけるIFN−γの産生に基づき検討した結果を示す。Bは種々の標的細胞に対する細胞傷害活性を、相異なるE:T比における6時間51Cr放出試験により試験した結果を示す。Cは種々のmAbを用いた阻害実験における、850B−CTLのHLA−A33LC−1細胞に対する反応性の差異を示す図である。The figure which shows the characteristic of the HLA-A33 restriction | limiting 850B-CTL cell line established from the tumor infiltration lymphocyte (TIL) of a gastric adenocarcinoma patient (HLA-A * 2402 / A * 3303, B7 / B44, Cw7 / Cw14). It is. A shows the result of examining the recognition ability with respect to various target cells based on the production of IFN-γ in various E: T ratios (effector cells: target cells). B shows the results of cytotoxic activity against various target cells tested by a 6 hour 51 Cr release test at different E: T ratios. C is a figure which shows the difference in the reactivity with respect to HLA-A33 + LC-1 cell of 850B-CTL in the inhibition experiment using various mAb. 850B−CTL細胞株による、同定された腫瘍抗原遺伝子のHLA−A33拘束性認識を示す図である。LC−1肺腺癌細胞cDNAライブラリーから遺伝子発現クローニング法で得たクローンと、HLA−A3303またはHLA−A2601遺伝子を共にトランスフェクトしたCOS7細胞に対する850B−CTLの反応性をIFN−γ産生に基づいて検討した。FIG. 5 shows HLA-A33 restricted recognition of identified tumor antigen genes by the 850B-CTL cell line. Based on IFN-γ production, reactivity of 850B-CTL to COS7 cells co-transfected with clones obtained by gene expression cloning method from LC-1 lung adenocarcinoma cell cDNA library and HLA-A3303 or HLA-A2601 gene And examined. mRNAおよびタンパク質レベルにおけるIEX−1の発現を示す図である。Aは、様々な正常組織におけるIEX−1mRNAの発現を、32P標識IEX−1プローブを用いるノーザンブロット解析によって調べた結果を示す写真の模写図である。Bは正常および癌細胞におけるIEX−1遺伝子のmRNA発現のノーザンブロット解析におけるオートラジオグラフィーを示す写真の模写図である。C〜Eは様々な腫瘍組織におけるIEX−1の発現をタンパク質レベルで免疫組織化学的に検討した結果を示す顕微鏡写真の模写図である。Cは胃癌組織、Dは乳癌、Eは肺癌における染色を示している。FIG. 2 shows IEX-1 expression at the mRNA and protein levels. A is a reproduction of photographs showing the results of examining the expression of IEX-1 mRNA in various normal tissues by Northern blot analysis using a 32 P-labeled IEX-1 probe. B is a copy of a photograph showing autoradiography in Northern blot analysis of mRNA expression of IEX-1 gene in normal and cancer cells. C to E are photomicrographs showing the results of immunohistochemical examination of IEX-1 expression in various tumor tissues at the protein level. C shows stomach cancer tissue, D shows breast cancer, and E shows lung cancer staining. IEX−1における抗原性エピトープの同定を示す図である。IEX−1の推定アミノ酸配列のHLA−A33結合性モチーフに基づくコンピュータ解析でHLA−A33に対して強い結合活性を有しうる8個の候補ペプチドを選択し、試験した。Aは、これら8個の候補ペプチドをC1R−A33細胞(HLA−A3303cDNAをトランスフェクトして安定的に発現させたC1Rヒト多発性骨髄腫細胞)とともに培養し、さらに850B−CTLを添加して培養した後、培養上清中のIFN−γの産生をELISAにより測定した結果を示す。Bは、有意なレベルのIFN−γ産生を誘導した3つのペプチド(IEX47−56、IEX61−69、およびIEX65−73ペプチド)及び1つの対照ペプチドの濃度と、IEX−1反応性CTL誘導活性との関係を検討した結果を示す。It is a figure which shows the identification of the antigenic epitope in IEX-1. Eight candidate peptides that could have strong binding activity for HLA-A33 were selected and tested by computer analysis based on the HLA-A33 binding motif of the deduced amino acid sequence of IEX-1. In A, these eight candidate peptides were cultured with C1R-A33 cells (C1R human multiple myeloma cells stably transfected with HLA-A * 3303 cDNA), and 850B-CTL was further added. The results of measuring the production of IFN-γ in the culture supernatant by ELISA after culturing was shown. B shows the concentration of three peptides (IEX 47-56, IEX 61-69, and IEX 65-73 peptides) and one control peptide that induced significant levels of IFN-γ production, and IEX-1 reactive CTL inducing activity. The result of examining the relationship is shown. ペプチドに対する細胞性応答を示す図である。IEX47−56、IEX61−69、およびIEX65−73ペプチドでHLA−A33上皮癌患者およびHLA−A33健常人のPBMCを刺激し、対応するペプチドでパルスしたC1R−A33細胞または陰性対照のHIVペプチドでパルスしたC1R−A33細胞で刺激し、IFN−γ産生活性に基づいて細胞応答を試験した。It is a figure which shows the cellular response with respect to a peptide. C1R-A33 cells stimulated with IEX47-56, IEX61-69, and IEX65-73 peptides in HLA-A33 + epithelial cancer patients and HLA-A33 + healthy individuals and pulsed with the corresponding peptides or HIV peptides as negative controls Stimulated with C1R-A33 cells pulsed with and tested for cellular responses based on IFN-γ producing activity. はペプチド誘導CTLの細胞傷害性を示す図である。 LC−1(HLA−A33IEX−1)、QG56(HLA−A33IEX−1)およびHGC27(HLA−A33IEX−1)細胞をIL−2単独で培養し、相異なるE:T比で6時間51Cr放出試験を行い、細胞障害活性を検討した。FIG. 2 is a view showing cytotoxicity of peptide-induced CTL. LC-1 (HLA-A33 + IEX-1 + ), QG56 (HLA-A33 - IEX-1 + ) and HGC27 (HLA-A33 - IEX-1 ) cells were cultured with IL-2 alone and different E The 51 Cr release test was conducted for 6 hours at a T ratio to examine cytotoxic activity. モノクローナル抗体による細胞傷害性阻害試験の結果を示す図である。 抗HLAクラスI、抗HLAクラスII、抗CD8(Nu−Ts/c、IgG2a)、抗CD4(Nu−Th/i、IgG1)と対照としての抗CD14(JML−H14、IgG2a)mAbを用い、ペプチド刺激PBMCの細胞傷害性に対する阻害作用を検討した。It is a figure which shows the result of the cytotoxicity inhibition test by a monoclonal antibody. Using anti-HLA class I, anti-HLA class II, anti-CD8 (Nu-Ts / c, IgG2a), anti-CD4 (Nu-Th / i, IgG1) and anti-CD14 (JML-H14, IgG2a) mAb as a control, The inhibitory effect on the cytotoxicity of peptide-stimulated PBMC was examined. 特異的細胞傷害性の競合試験の結果を示す図である。 非標識C1R細胞を対応ペプチドまたはHIVペプチド(陰性対照)でパルスし、51Cr放出試験に供した(非標識細胞対標識細胞=10:1)。E/T比10:1で51Cr放出試験を行った。It is a figure which shows the result of the competition test of specific cytotoxicity. Unlabeled C1R cells were pulsed with the corresponding peptide or HIV peptide (negative control) and subjected to 51 Cr release test (unlabeled vs. labeled cells = 10: 1). A 51 Cr release test was conducted at an E / T ratio of 10: 1.

本発明についてさらに詳細に説明する。
HLA拘束性CTL株
HLA拘束性CTL株は、目的とするHLAアレルを有する癌患者の腫瘍組織に浸潤しているリンパ球(TIL)を採取し、T細胞の増殖を促すサイトカインであるIL−2と共に培養して増殖させることにより得られる。本方法は当業界において周知である。
遺伝子発現クローニング法
HLA拘束性CTL株によって認識される腫瘍抗原は、遺伝子発現クローニング法により同定する。本方法は、cDNAライブラリーにコードされるタンパク質を哺乳類細胞で一過性に発現させ、樹立したCTL株が特異的に認識する目的のタンパク質をコードするcDNAをスクリーニングし、当該タンパク質をコードする遺伝子を単離するものである。本発明では、樹立したCTL株がタンパク質発現細胞を認識した際に産生するIFN−γを指標としてスクリーニングを行う。
The present invention will be described in further detail.
HLA-restricted CTL line HLA-restricted CTL line is IL-2 which is a cytokine that collects lymphocytes (TIL) infiltrating tumor tissues of cancer patients having the target HLA allele and promotes T cell proliferation. It is obtained by culturing and growing together. This method is well known in the art.
Gene Expression Cloning Method Tumor antigens recognized by HLA restricted CTL lines are identified by gene expression cloning methods. In this method, the protein encoded by the cDNA library is transiently expressed in mammalian cells, the cDNA encoding the target protein specifically recognized by the established CTL line is screened, and the gene encoding the protein Is to be isolated. In the present invention, screening is performed using IFN-γ produced when an established CTL line recognizes a protein-expressing cell as an index.

ペプチドおよびポリペプチド
本発明のIEX−1由来ペプチドは、HLAと結合して特異的CTLを誘導しうるペプチドである。本発明ペプチドはIEX−1の連続する8〜11個のアミノ酸残基からなることが好ましい。このようなIEX−1の部分ペプチドの具体例として、IEX47−56、(配列番号:1)、IEX61−69(配列番号:2)、またはIEX65−73(配列番号:3)が挙げられる。IEX−1遺伝子の全ヌクレオチド配列および推定のアミノ酸配列は、受入番号NM_003897としてGeneBankに登録されている(配列番号:4)。特異的なCTLを誘導する他のIEX−1由来ペプチドは、本明細書の実施例に準じた方法により容易に決定および選択できる。
Peptides and polypeptides The IEX-1-derived peptides of the present invention are peptides that can bind to HLA and induce specific CTLs. The peptide of the present invention preferably comprises 8 to 11 consecutive amino acid residues of IEX-1. Specific examples of such a partial peptide of IEX-1 include IEX 47-56, (SEQ ID NO: 1), IEX 61-69 (SEQ ID NO: 2), or IEX 65-73 (SEQ ID NO: 3). The entire nucleotide sequence and deduced amino acid sequence of the IEX-1 gene are registered in GeneBank as accession number NM_003897 (SEQ ID NO: 4). Other IEX-1-derived peptides that induce specific CTLs can be readily determined and selected by methods according to the examples herein.

「HLAと結合して特異的なCTLを誘導しうる」とは、本発明のペプチドがHLAと結合して複合体を形成し、かかる複合体をCTLが認識できることをいう。換言すれば、本発明のペプチドが、HLAとの結合活性を有し、かつ、HLAとの複合体の形で、ペプチド特異的なCTLを誘導する活性を有することを意味する。本発明において好ましいHLAは、HLA−A33である。   The phrase “can bind to HLA to induce specific CTL” means that the peptide of the present invention binds to HLA to form a complex, and CTL can recognize the complex. In other words, it means that the peptide of the present invention has an activity of inducing peptide-specific CTL in the form of a complex with HLA, as well as binding activity with HLA. A preferred HLA in the present invention is HLA-A33.

また、本発明は、HLAと結合して特異的なCTLを誘導しうるIEX−1由来ペプチドの変異ペプチドであって、同等のCTL誘導能を有する変異ペプチドも包含する。変異は、本発明のIEX−1由来ペプチドに対して一個または数個のアミノ酸の欠失、置換、付加、挿入などを行うことにより導入することができ、その手段は当業界にて周知である。変異が他のアミノ酸による置換または付加を含む場合、他のアミノ酸は、天然のアミノ酸またはアミノ酸アナログであってよく、アミノ酸アナログとしては、種々のアミノ酸のN−アシル化物、O−アシル化物、エステル化物、酸アミド化物、アルキル化物等が挙げられる。本発明のペプチドの変異体を得るには、例えば、配列番号1〜3に記載のアミノ酸配列の1〜数個、好ましくは1〜4個、より好ましくは1〜3個、さらに好ましくは1個または2個のアミノ酸残基が欠失しているか、他のアミノ酸残基またはアミノ酸アナログで置換された、またはそれが付加された候補ペプチドを合成し、該候補ペプチドとHLA−A33分子との複合体がCTLにより認識されるか否かをアッセイすることにより、同定することができる。   The present invention also includes a mutant peptide of an IEX-1-derived peptide capable of inducing specific CTL by binding to HLA, and having a similar CTL inducing ability. Mutations can be introduced into the IEX-1-derived peptide of the present invention by deletion, substitution, addition, insertion, or the like of one or several amino acids, and the means are well known in the art. . When the mutation includes substitution or addition with other amino acids, the other amino acids may be natural amino acids or amino acid analogs, and examples of amino acid analogs include N-acylated products, O-acylated products, and esterified products of various amino acids. , Acid amidated products, alkylated products and the like. In order to obtain a variant of the peptide of the present invention, for example, 1 to several amino acid sequences represented by SEQ ID NOs: 1 to 3, preferably 1 to 4, more preferably 1 to 3, more preferably 1 Alternatively, a candidate peptide in which two amino acid residues are deleted, substituted with another amino acid residue or amino acid analog, or added thereto is synthesized, and the candidate peptide is combined with the HLA-A33 molecule. It can be identified by assaying whether the body is recognized by CTL.

アッセイは例えば、後述するCTL誘導法に準じて行うことができる。即ち、in vitroで候補ペプチドを添加して刺激した場合に、該候補ペプチドをパルスしたHLA−A33陽性細胞を特異的に認識するCTLが誘導されるか否かを調べる。ここで、CTL誘導の有無は、例えば、抗原ペプチド提示細胞に反応してCTLが産生する種々のサイトカイン(IFN-γ等)の量を酵素免疫測定法(ELISA)等により測定することによって調べることができる。または、51Crで標識した抗原ペプチド提示細胞に対するCTLの傷害性を測定する方法(51Cr リリースアッセイ、Int.J.Cancer,58:p317,1994)によっても調べることができる。前記アッセイで用いるHLA−A33陽性細胞としては、実施例に記載のHLA−A33陽性細胞が挙げられる。
変異ペプチドのアミノ酸残基数は、抗原提示細胞表面上に提示され、かつCTL認識エピトープとしての性質を有する数であればよく、通常少なくとも約8個以上であり、好ましくは約9個以上であって、12個以下、好ましくは11以下、さらに好ましくは10個以下である。特に好ましアミノ酸残基数は9個ないし10個である。
The assay can be performed, for example, according to the CTL induction method described below. That is, when a candidate peptide is added and stimulated in vitro, it is examined whether CTL that specifically recognizes HLA-A33 positive cells pulsed with the candidate peptide is induced. Here, the presence or absence of CTL induction is examined, for example, by measuring the amount of various cytokines (IFN-γ, etc.) produced by CTL in response to antigen peptide-presenting cells by enzyme immunoassay (ELISA) or the like. Can do. Or a method of measuring the cytotoxicity of CTL against labeled antigen peptide presenting cells in 51 Cr (51 Cr release assay, Int.J.Cancer, 58: p317,1994) can be examined by. Examples of HLA-A33 positive cells used in the assay include HLA-A33 positive cells described in Examples.
The number of amino acid residues of the mutant peptide may be any number as long as it is displayed on the antigen-presenting cell surface and has a property as a CTL recognition epitope, and is usually at least about 8 and preferably about 9 or more. 12 or less, preferably 11 or less, and more preferably 10 or less. Particularly preferred is 9 to 10 amino acid residues.

本発明はさらに、特異的なCTLの誘導活性を有する、本発明のIEX−1由来ペプチドまたはその変異ペプチドを含有するポリペプチドを包含する。ポリペプチドを構成するアミノ酸数は、特に限定されず、本発明が属する分野での技術常識に従う。通常、アミノ酸残基数約100個以下の長さであり、好ましくは約50個以下、より好ましくは約30個以下程度である。
本発明のポリペプチドはHLA−A33陽性細胞内で断片化されて特異的CTL誘導活性を有するペプチド断片を与えることができるものである。そのようなポリペプチドは、配列番号:1、配列番号:2、または配列番号:3で示される本発明のペプチドに相当する部分配列、または本発明ペプチドの変異体に相当する配列を含有することが特に好ましい。
The present invention further includes a polypeptide containing the IEX-1-derived peptide of the present invention or a mutant peptide thereof having specific CTL inducing activity. The number of amino acids constituting the polypeptide is not particularly limited, and follows the common general technical knowledge in the field to which the present invention belongs. Usually, the length is about 100 or less amino acid residues, preferably about 50 or less, more preferably about 30 or less.
The polypeptide of the present invention can be fragmented in HLA-A33 positive cells to give a peptide fragment having specific CTL inducing activity. Such a polypeptide contains a partial sequence corresponding to the peptide of the present invention represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3, or a sequence corresponding to a variant of the peptide of the present invention. Is particularly preferred.

また、機能を著しく障害しない程度に構成アミノ酸またはカルボキシル基などを修飾して、本発明のペプチドおよびポリペプチドを改変することもできる。例えば、N末端や遊離のアミノ基には、ホルミル基、アセチル基、t−ブトキシカルボニル(t−Boc)基等が結合していてもよく、抗原ペプチドのC末端や遊離のカルボキシル基には、メチル基、エチル基、t−ブチル基、ベンジル基等が結合していてもよい。さらに、本発明のペプチドは、生体内への導入を容易にするように、修飾されていてもよい。
一般に、HLA分子と結合する腫瘍抗原 ペプチドのアミノ酸配列には、HLAの型により異なるモチーフ(規則的配列)が存在することが知られており、変異または改変は、そのモチーフ上、許容されるものであることが好ましい。変異の導入において、ペプチドまたはポリペプチドの基本的な性質(物性、機能、生理活性または免疫学的活性等)を変化させないという観点からは、例えば、同族アミノ酸(極性アミノ酸、非極性アミノ酸、疎水性アミノ酸、親水性アミノ酸、陽性荷電アミノ酸、陰性荷電アミノ酸および芳香族アミノ酸等)の間での相互置換は容易に想定される。
本発明のペプチドおよびポリペプチドは、ペプチド化学における一般的な公知方法により製造できる。
Furthermore, the peptides and polypeptides of the present invention can be altered by modifying the constituent amino acids or carboxyl groups to such an extent that the function is not significantly impaired. For example, a formyl group, an acetyl group, a t-butoxycarbonyl (t-Boc) group or the like may be bonded to the N-terminus or a free amino group, and the C-terminus or free carboxyl group of an antigen peptide may be A methyl group, an ethyl group, a t-butyl group, a benzyl group or the like may be bonded. Furthermore, the peptide of the present invention may be modified so as to facilitate introduction into the living body.
In general, it is known that there are different motifs (regular sequences) depending on the type of HLA in the amino acid sequences of tumor antigen peptides that bind to HLA molecules, and mutations or modifications are permitted on the motifs. It is preferable that From the viewpoint of not changing the basic properties (physical properties, functions, physiological activities or immunological activities, etc.) of peptides or polypeptides in the introduction of mutations, for example, homologous amino acids (polar amino acids, nonpolar amino acids, hydrophobicity) Mutual substitution between amino acids, hydrophilic amino acids, positively charged amino acids, negatively charged amino acids, aromatic amino acids, etc.) is readily envisioned.
The peptides and polypeptides of the present invention can be produced by general known methods in peptide chemistry.

「抗原提示細胞(APC)」とは、HLAと抗原ペプチドとの複合体を細胞表面に提示する細胞を意味する。従って、抗原提示細胞は、本発明の腫瘍抗原ペプチドとHLA−A33分子との複合体を細胞表面に提示することにより、HLA−A33拘束性CTLの活性化をもたらす機能を有する。そのような細胞には、CTL細胞障害作用の標的である腫瘍細胞も含まれる。
本発明の抗原提示細胞は、単離された抗原提示能を有する細胞の表面に、HLA−A33分子と本発明の腫瘍抗原ペプチドとの複合体を提示している。そのような細胞は、in vitroで誘導することもでき、具体的には、HLA−A33陽性の抗原提示能を有する細胞に本発明の腫瘍抗原ペプチドをパルスしてHLA−A33と該ペプチドとの複合体をその細胞表面に提示させることにより得られる。「抗原提示能を有する細胞」とは、本発明の腫瘍抗原ペプチドを提示可能なHLA-A24抗原を細胞表面に発現している細胞であれば特に限定されないが、特に抗原提示能が高いとされる樹状細胞が好ましい。特に、HLA−A33陽性腫瘍患者由来の単離された抗原提示能を有する細胞の表面に、HLA−A33分子と本発明の腫瘍抗原ペプチドとの複合体を提示させた抗原提示細胞が好ましい。
“Antigen-presenting cell (APC)” means a cell that presents a complex of HLA and an antigen peptide on the cell surface. Therefore, the antigen-presenting cell has a function of bringing about activation of HLA-A33-restricted CTL by presenting the complex of the tumor antigen peptide of the present invention and the HLA-A33 molecule on the cell surface. Such cells also include tumor cells that are targets for CTL cytotoxic effects.
The antigen-presenting cell of the present invention presents a complex of the HLA-A33 molecule and the tumor antigen peptide of the present invention on the surface of an isolated cell having the ability to present antigen. Such cells can also be induced in vitro. Specifically, cells having the antigen-presenting ability of HLA-A33 positive are pulsed with the tumor antigen peptide of the present invention, and HLA-A33 and the peptide are used together. It is obtained by presenting the complex on the cell surface. The “cell having antigen-presenting ability” is not particularly limited as long as it is a cell that expresses the HLA-A24 antigen capable of presenting the tumor antigen peptide of the present invention on the cell surface. Dendritic cells are preferred. In particular, antigen-presenting cells in which a complex of an HLA-A33 molecule and the tumor antigen peptide of the present invention is presented on the surface of an isolated cell having an antigen-presenting ability derived from an HLA-A33-positive tumor patient is preferable.

核酸分子
本発明の核酸分子は、本発明のIEX−1由来ペプチドまたはその変異ペプチドおよび該ぺプチドを含むポリペプチドの、アミノ酸配列をコードする一本鎖(相補鎖を含む)および二本鎖ポリヌクレオチドを含む。本発明の核酸分子はDNAであってもRNAであってもよい。これら核酸分子がコードするアミノ酸配列を有するペプチドは、それ自体がCTLにより認識され、該CTLを活性化するか、そのような活性を有するペプチド断片を与えることができ、腫瘍抗原として機能し得る。
また、本発明の核酸分子は、本発明のペプチドをコードする領域に対応する少なくとも24個以上の塩基からなるポリヌクレオチドおよびその相補鎖であってよい。このようなポリヌクレオチドは、例えば公知のタンパク質発現系を利用して発現ペプチドを確認することにより選択できる。
Nucleic Acid Molecules The nucleic acid molecules of the present invention comprise single-stranded (including complementary strands) and double-stranded polypec- tides encoding amino acid sequences of the IEX-1-derived peptide of the present invention or a mutant peptide thereof and a polypeptide comprising the peptide. Contains nucleotides. The nucleic acid molecule of the present invention may be DNA or RNA. Peptides having the amino acid sequence encoded by these nucleic acid molecules are recognized by CTLs themselves and can activate the CTLs or give peptide fragments having such activities, and can function as tumor antigens.
Further, the nucleic acid molecule of the present invention may be a polynucleotide comprising at least 24 bases corresponding to the region encoding the peptide of the present invention and its complementary strand. Such a polynucleotide can be selected, for example, by confirming the expressed peptide using a known protein expression system.

抗体
本発明の抗体は、モノクローナル抗体またはポリクローナル抗体のいずれであってもよい。本発明のIEX−1由来ペプチドまたはポリペプチドの中から選ばれる1つのペプチドまたはポリペプチドのアミノ酸配列中、連続する少なくとも5個のアミノ酸残基からなるエピトープペプチドまたはポリペプチドを特異的に認識するものである。
抗体はそれらのエピトープペプチドを使用して作製でき、そのエピトープペプチドは少なくとも5個、好ましくは少なくとも8〜10個のアミノ酸で構成される。本発明は、この少なくとも5個のアミノ酸残基からなるペプチドおよびそれをコードする核酸分子も包含する。
本発明の抗体は、エピトープペプチドを単独で、または担体と結合した形で、アジュバントの存在または非存在下に例えばマウス、ラット、ウサギ、ヤギ等に免疫し産生を誘導することができる。得られたポリクローナル抗体は、公知の方法により血清から回収することができる。
一方、モノクローナル抗体は、上記のように免疫応答を誘導した動物から回収した抗体産生細胞を、永久増殖性細胞と融合することで生産できる。本方法は当業界において周知である。
これらのポリクローナル抗体およびモノクローナル抗体は、精製用抗体、試薬、標識マーカー等として利用することができる。また、ヒト型化して治療用に供する場合もあり得る。
Antibody The antibody of the present invention may be either a monoclonal antibody or a polyclonal antibody. A peptide or polypeptide that specifically recognizes an epitope peptide or polypeptide comprising at least 5 consecutive amino acid residues in the amino acid sequence of one peptide or polypeptide selected from the IEX-1-derived peptides or polypeptides of the present invention It is.
Antibodies can be generated using these epitope peptides, which epitope peptides are composed of at least 5, preferably at least 8-10 amino acids. The present invention also includes a peptide consisting of at least 5 amino acid residues and a nucleic acid molecule encoding the peptide.
The antibody of the present invention can induce production by immunizing, for example, mice, rats, rabbits, goats and the like, in the presence or absence of an adjuvant, with the epitope peptide alone or in a form bound to a carrier. The obtained polyclonal antibody can be recovered from the serum by a known method.
On the other hand, monoclonal antibodies can be produced by fusing antibody-producing cells collected from animals that have induced immune responses as described above with permanently proliferating cells. This method is well known in the art.
These polyclonal and monoclonal antibodies can be used as purifying antibodies, reagents, labeling markers and the like. Moreover, it may be humanized and used for treatment.

医薬組成物
本発明の医薬組成物は、本発明のIEX−1由来ペプチド、変異体ペプチド、ポリペプチド、HLA分子とペプチドとの複合体を細胞表面に提示している抗原提示細胞、ペプチドまたはポリペプチドをコードする核酸分子、該核酸分子の塩基配列情報に基づき作製した組換えベクター、または本発明の抗体を、単独または複数組み合わせて利用することにより調製できる。
具体的には、本発明のIEX−1由来ペプチドまたはその変異体、該ペプチドを含むポリペプチド、抗原提示細胞は癌ワクチンとして使用することができる。一種類のペプチドでも癌ワクチンとして有効であるが、複数種類のペプチドを組み合わせて使用するのが好ましい。これは、癌患者のCTLが複数の異なる種類の腫瘍抗原を認識する細胞の集団であることから、複数種類の腫瘍抗原を組み合わせて癌ワクチンとして使用する方がより効果的であると期待されるからである。本発明に係るペプチド等を他のペプチドと共に複数種類組み合わせて使用してもよい。
Pharmaceutical Composition The pharmaceutical composition of the present invention comprises an IEX-1-derived peptide, mutant peptide, polypeptide, antigen-presenting cell, peptide or polyporoid presenting a complex of an HLA molecule and a peptide on the cell surface. It can be prepared by using a nucleic acid molecule encoding a peptide, a recombinant vector prepared based on the nucleotide sequence information of the nucleic acid molecule, or an antibody of the present invention alone or in combination.
Specifically, the IEX-1-derived peptide of the present invention or a variant thereof, a polypeptide containing the peptide, and antigen-presenting cells can be used as a cancer vaccine. Although one type of peptide is effective as a cancer vaccine, it is preferable to use a combination of multiple types of peptides. This is because the CTL of a cancer patient is a population of cells that recognize a plurality of different types of tumor antigens, and it is expected that it is more effective to use a combination of a plurality of types of tumor antigens as a cancer vaccine. Because. A plurality of types of peptides according to the present invention may be used in combination with other peptides.

本発明の癌ワクチンは、適当なアジュバントの存在または非存在下で、単独で、または製薬的に許容される担体と結合して使用することができる。担体は、人体に有害な作用を起こさない限り限定されるものではなく、例えば、セルロース、重合アミノ酸、アルブミン等が使用できる。剤形は、ペプチド製剤について周知の剤形が選択可能である。投与量は、CTLによる認識性、治療すべき疾患、患者の年齢、体重等により変化するが、ペプチドの場合、活性本体として、通常、0.0001mg〜1000mg、好ましくは0.001mg〜1000mg、より好ましくは0.1mg〜100mg、さらに好ましくは0.1〜10mg/日/成人ヒトである。これを数日ないし数周あるいは数ヶ月に一回投与する。   The cancer vaccine of the present invention can be used alone or in combination with a pharmaceutically acceptable carrier in the presence or absence of a suitable adjuvant. The carrier is not limited as long as it does not adversely affect the human body. For example, cellulose, polymerized amino acid, albumin and the like can be used. As the dosage form, a known dosage form for the peptide preparation can be selected. The dose varies depending on the recognizability by CTL, the disease to be treated, the age of the patient, the body weight, etc. In the case of peptides, the active substance is usually 0.0001 mg to 1000 mg, preferably 0.001 mg to 1000 mg, more preferably 0.1 mg to 100 mg, more preferably 0.1 to 10 mg / day / adult human. This is administered once every few days or several weeks or months.

本発明の医薬組成物はまた、本発明に係るペプチドをコードする核酸配列を適当なベクターに組み込み、in vivoまたはex vivoで導入するのに利用することができる。ベクターとしては、例えばレトロウィルス、アデノウィルス、ワクシニアウィルス等が挙げられるが、レトロウィルス系が好ましい。投与量は、CTLによる認識性により変化するが、DNA含量として0.1μg-100mg/日/成人ヒト、好ましくは1μg−50mg/日/成人ヒトである。これを数日ないし数ヶ月に一回投与する。   The pharmaceutical composition of the present invention can also be used to incorporate a nucleic acid sequence encoding the peptide of the present invention into an appropriate vector and introduce it in vivo or ex vivo. Examples of the vector include retrovirus, adenovirus, vaccinia virus and the like, but a retrovirus system is preferable. Although the dose varies depending on the recognition by CTL, the DNA content is 0.1 μg-100 mg / day / adult human, preferably 1 μg-50 mg / day / adult human. This is administered once every few days or months.

IEX−1反応性CTLおよびその誘導方法
「IEX−1反応性CTL」とは、本発明のIEX−1由来ペプチドまたはその変異体とHLAとの複合体を認識し、誘導されるCTLを意味する。該CTLはHLA−A33拘束性CTLである。
そのようなCTLは、例えばHLA−A33胃癌患者の末梢血単核球(PBMC)から本発明に係るペプチドを用いて誘導することができる。
つまり、本発明のペプチドでパルスした抗原提示細胞(APC)とともにHLA−A33胃癌患者のPBMCをインキュベートしてCTLを誘導し、IFN-γ産生を指標として評価する。さらに、誘導されたCTLの活性は、51Cr放出試験等により腫瘍細胞傷害性を指標として確認できる。
The IEX-1-reactive CTL and the induction method “IEX-1-reactive CTL” mean a CTL that recognizes and induces a complex of the IEX-1-derived peptide of the present invention or a variant thereof and HLA. . The CTL is HLA-A33 restricted CTL.
Such CTLs can be derived, for example, from peripheral blood mononuclear cells (PBMC) of HLA-A33 + gastric cancer patients using the peptides according to the present invention.
That is, HLA-A33 + gastric cancer patient's PBMC is incubated with antigen-presenting cells (APC) pulsed with the peptide of the present invention to induce CTL, and IFN-γ production is evaluated as an index. Furthermore, the induced CTL activity can be confirmed by a 51 Cr release test or the like using tumor cytotoxicity as an index.

上記の方法は、in vitroで誘導した抗原特異的CTLを患者体内に戻し腫瘍細胞を傷害する、養子免疫療法に利用できる。すなわち、メラノーマにおいては、患者本人の腫瘍内浸潤T細胞を体外で大量に培養して、これを患者に戻す養子免疫療法に治療効果が認められている(J. Natl.Cancer.Inst.,86:1159、1994)。またマウスのメラノーマにおいては、脾細胞をin vitroで腫瘍抗原ペプチドTRP-2で刺激し、腫瘍抗原ペプチドに特異的なCTLを増殖させ、該CTLをメラノーマ移植マウスに投与することにより、転移抑制が認められている(J. Exp.Med.,185:453, 1997)。これは、抗原提示細胞のHLA抗原と腫瘍抗原ペプチドとの複合体を特異的に認識するCTLをin vitroで増殖させた結果に基づくものである。本発明の腫瘍抗原ペプチドを用いて、in vitroで患者末梢血リンパ球を刺激して腫瘍特異的CTLを増やした後、このCTLを患者に戻すことにより腫瘍を治療することが可能である。   The above method can be used for adoptive immunotherapy in which antigen-specific CTLs induced in vitro are returned to the body of a patient to injure tumor cells. That is, in melanoma, a therapeutic effect has been observed in adoptive immunotherapy in which a patient's own tumor infiltrating T cells are cultured in large amounts outside the body and returned to the patient (J. Natl. Cancer. Inst., 86 : 1159, 1994). In mouse melanoma, spleen cells are stimulated with tumor antigen peptide TRP-2 in vitro, CTL specific for the tumor antigen peptide is proliferated, and the CTL is administered to melanoma transplanted mice to suppress metastasis. (J. Exp. Med., 185: 453, 1997). This is based on the result of in vitro proliferation of CTL that specifically recognizes a complex of an antigen-presenting cell HLA antigen and a tumor antigen peptide. The tumor antigen peptide of the present invention is used to stimulate a patient's peripheral blood lymphocytes in vitro to increase tumor-specific CTL, and then return the CTL to the patient to treat the tumor.

以下、本発明を実施例によってより詳細に説明するが、本発明は下記実施例によっていかなる意味においても制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited in any meaning by the following Example.

本発明には、以下の癌細胞株を使用した。
胃腺癌 MKN−28、MKN−45、SSTW−9、KATO−III、KWS、およびHGC−27;肺腺癌 LC−1;肺偏平上皮癌 QG−56;頭頸部癌 KUMA−1;大腸腺癌 SW620およびCOLO201;膵臓腺癌 Panc−1;ヒト慢性骨髄性白血病 K562。これらの腫瘍細胞のHLAクラスI遺伝子型は以前に示されている(文献10、11)。
これらの細胞上のHLAクラスIまたはHLA−A33抗原の発現は、抗HLAクラスI(W6/32)モノクローナル抗体(mAb)(HLAクラスI分子の単一形領域を認識)、または抗HLA−A33mAb(HLA−A33分子の多形領域を認識)(IgM、One Lamda, Canoga Park, CA)を用いて、FACScan(Becton Dickinson, San Jose, CA)でのフローサイトメトリーによって測定した。
統計学的解析には、本発明すべてにおいて両側 Student t検定を用いた。
The following cancer cell lines were used in the present invention.
Gastric adenocarcinoma MKN-28, MKN-45, SSTW-9, KATO-III, KWS, and HGC-27; lung adenocarcinoma LC-1; lung squamous cell carcinoma QG-56; head and neck cancer KUMA-1; SW620 and COLO201; pancreatic adenocarcinoma Panc-1; human chronic myeloid leukemia K562. The HLA class I genotype of these tumor cells has been shown previously (10, 11).
The expression of HLA class I or HLA-A33 antigen on these cells is anti-HLA class I (W6 / 32) monoclonal antibody (mAb) (recognizing a single region of the HLA class I molecule), or anti-HLA-A33 mAb. (Recognizing the polymorphic region of the HLA-A33 molecule) (IgM, One Lamda, Canoga Park, Calif.) And measured by flow cytometry on a FACScan (Becton Dickinson, San Jose, Calif.).
For statistical analysis, a two-sided Student t test was used in all of the present invention.

実施例1
(850B−CTL株の樹立)
HLA−A33拘束性および腫瘍特異的CLT株(850B−CTL)は、重症胃腺癌患者(HLA−A2402/A3303、B7/B44、Cw7/Cw14)のTILを10%FCS(Equitech Bio, Ingram, TX)、100U/mlIL−2(Shionogi Pharmaceutical, Osaka, Japan)、および10μg/mlPHA(Difco, Detroit, MI)含有培養培地(45%RPIM1640培地、45%AIM−V培地;Life Technologies, Walkersville, MA)で14日間インキュベートし、続いて支持細胞としての放射線照射(30Gy)アロジェニック末梢血単核細胞(PBMC)の存在下でさらに30日より長く培養することにより樹立した。本CTL株の表現型をFITC結合抗CD3、CD4、またはCD8モノクローナル抗体(mAb)を用いて免疫学的蛍光試験により検討したところ、CD3CD4CD8(>95%)であった(データ非提示)。
Example 1
(Establishment of 850B-CTL strain)
HLA-A33-restricted and tumor-specific CLT strain (850B-CTL) has a TIL of 10% FCS (Equitech Bio) for patients with severe gastric adenocarcinoma (HLA-A * 2402 / A * 3303, B7 / B44, Cw7 / Cw14). , Ingram, TX), 100 U / ml IL-2 (Shionogi Pharmaceutical, Osaka, Japan), and 10 μg / ml PHA (Difco, Detroit, MI) -containing culture medium (45% RPIM1640 medium, 45% AIM-V medium; Life Technologies, It was established by incubation for 14 days in Walkersville, MA, followed by further culturing for more than 30 days in the presence of irradiated (30 Gy) allogeneic peripheral blood mononuclear cells (PBMC) as support cells. The phenotype of this CTL line was examined by immunological fluorescence test using FITC-conjugated anti-CD3, CD4, or CD8 monoclonal antibody (mAb) and found to be CD3 + CD4 CD8 + (> 95%) (data) Not shown).

(850B−CTL株の特性)
文献記載の方法に従い、850B−CTL株を特性化した(文献9)。
標的細胞を認識することによりIFN−γを産生する能力について、様々なE:T比(エフェクター細胞:標的細胞)において850B−CTL細胞株を試験した。値はELISA(検出限界10pg/ml)によるトリプリケート測定の平均を表す。図1Aに示すように、このCTL株はHLA−A33上皮癌細胞、LC−1およびKUMA−1を認識することにより有意なレベルのIFN−γを産生したが、HLA−A33標的細胞に対しては反応しなかった。
(Characteristics of 850B-CTL strain)
The 850B-CTL strain was characterized according to literature methods (Reference 9).
The 850B-CTL cell line was tested at various E: T ratios (effector cells: target cells) for the ability to produce IFN-γ by recognizing target cells. The value represents the average of triplicate measurements by ELISA (detection limit 10 pg / ml). As shown in FIG. 1A, this CTL line produced significant levels of IFN-γ by recognizing HLA-A33 + epithelial cancer cells, LC-1 and KUMA-1, but it was found in HLA-A33 - target cells. There was no reaction.

次に、様々な標的細胞に対する850B−CTLの細胞傷害活性を、相異なるE:T比において6時間51Cr放出試験により試験した。本方法は既知である(文献9)。値はトリプリケート測定の平均を表す。850B−CTLは、HLA−A33LC−1およびKUMA−1細胞に対してより強い細胞傷害性を示したが、HLA−A33標的細胞、COS7細胞、NK標的細胞株、K562、または健常提供者のPBMCから得たHLA−A33PHA活性化正常T細胞(PHA幼若化細胞)のいずれに対しても示さなかった。Next, the cytotoxic activity of 850B-CTL against various target cells was tested by a 6 hr 51 Cr release test at different E: T ratios. This method is known (Reference 9). The value represents the average of triplicate measurements. 850B-CTL showed stronger cytotoxicity against HLA-A33 + LC-1 and KUMA-1 cells, but HLA-A33 - target cells, COS7 cells, NK target cell lines, K562, or healthy donors None of the HLA-A33 + PHA-activated normal T cells (PHA immature cells) obtained from human PBMCs.

さらにmAbを用いた阻害実験によって、850B−CTLの反応性を検討した。抗HLAクラスI(W6/32、IgG2a)、抗CD8(Nu−Ts/c、IgG2a)、抗HLA−A24(0041HA、IgG2a)、抗CD4(Nu−Th/i、IgG1)、抗HLAクラスIB,C(B1−23、IgG2a)、および抗HLAクラスII(H−DR、IgG2a)mAb(20μg/ml)を文献記載の方法と同様に使用した(文献10、11)。アイソタイプ適合対照mAbとして、抗CD14(JML−H14、IgG1)または抗CD13(MCS2、IgG2a)を準備した。
HLA−A33LC−1細胞の認識による850B−CTLからのIFN−γ産生は、抗HLAクラスIおよび抗CD8mAb(20μg/ml)によって阻害されたが、抗HLA−B, C、抗HLAクラスII、抗HLA−A24、抗CD4、または無関係なアイソタイプ適合抗CD13または抗CD14mAbによっては阻害されなかった(図1C)。
これらの結果は、850B−CTL株が腫瘍細胞に対してはHLA−A33拘束性細胞傷害性を示すが、正常細胞に対しては示さないことを意味している。
Furthermore, the reactivity of 850B-CTL was examined by an inhibition experiment using mAb. Anti-HLA class I (W6 / 32, IgG2a), anti-CD8 (Nu-Ts / c, IgG2a), anti-HLA-A24 (0041HA, IgG2a), anti-CD4 (Nu-Th / i, IgG1), anti-HLA class IB , C (B1-23, IgG2a), and anti-HLA class II (H-DR, IgG2a) mAb (20 μg / ml) were used in the same manner as described in the literature (10, 11). Anti-CD14 (JML-H14, IgG1) or anti-CD13 (MCS2, IgG2a) was prepared as an isotype matched control mAb.
IFN-γ production from 850B-CTL by recognition of HLA-A33 + LC-1 cells was inhibited by anti-HLA class I and anti-CD8 mAb (20 μg / ml), but anti-HLA-B, C, anti-HLA class It was not inhibited by II, anti-HLA-A24, anti-CD4, or an irrelevant isotype-matched anti-CD13 or anti-CD14 mAb (FIG. 1C).
These results indicate that the 850B-CTL line shows HLA-A33 restricted cytotoxicity against tumor cells but not normal cells.

実施例2
(IEX−1遺伝子の同定)
遺伝子発現クローニング法(文献9)により、850B−CTL株によって認識される腫瘍抗原をコードする遺伝子を同定した。
LC−1肺腺癌細胞のポリ(A)RNAをcDNAに変換し、SalIアダプターをライゲートし、そして発現ベクターpSV−SPORT−6(Invitrogen, San Diego, CA)に挿入した。HLA−A3303またはHLA−A2601のcDNAをそれぞれKUMA−1またはKE4細胞より回収したRNAからRT−PCRによって作製し、真核細胞発現ベクターpCR3(Invitrogen)へ挿入してクローニングした。LC−1cDNAライブラリーのプラスミドDNAプールまたはクローン(200ng)、およびHLA−A3303またはHLA−A2601(陰性対照)cDNA(200ng)、の両方を、1μlのリポフェクタミン(Invitrogen)と120μlのOpti−MEM(Invitrogen)中で40分間混合した。COS7細胞(5x10)をこの混合物50μlと6時間インキュベートし、続いて10%FCS含有RPMI1640培地150μlを添加した。2日間培養した後850B−CTL(2x10細胞/ウェル)を添加し、その後18時間インキュベートし、上清100μlを回収してELISAによりデュプリケート試験でIFN−γを測定した(文献9)。
Example 2
(Identification of IEX-1 gene)
A gene encoding a tumor antigen recognized by the 850B-CTL strain was identified by a gene expression cloning method (Reference 9).
LC-1 lung adenocarcinoma cell poly (A) + RNA was converted to cDNA, SalI adapters were ligated and inserted into the expression vector pSV-SPORT-6 (Invitrogen, San Diego, Calif.). HLA-A * 3303 or HLA-A * 2601 cDNA was prepared by RT-PCR from RNA recovered from KUMA-1 or KE4 cells, respectively, and inserted into a eukaryotic cell expression vector pCR3 (Invitrogen) for cloning. Both the plasmid DNA pool or clone (200 ng) of the LC-1 cDNA library, and HLA-A * 3303 or HLA-A * 2601 (negative control) cDNA (200 ng), 1 μl Lipofectamine (Invitrogen) and 120 μl Opti Mix for 40 minutes in MEM (Invitrogen). COS7 cells (5 × 10 3 ) were incubated with 50 μl of this mixture for 6 hours, followed by addition of 150 μl of RPMI 1640 medium containing 10% FCS. After culturing for 2 days, 850B-CTL (2 × 10 5 cells / well) was added, followed by incubation for 18 hours, and 100 μl of the supernatant was recovered, and IFN-γ was measured by a duplicate test by ELISA (Reference 9).

一次スクリーニングにおいて、LC−1cDNAライブラリーから得た1x10クローンすべてを、HLA−A3303cDNAとともにCOS7細胞にトランスフェクションした後に、850B−CTLによるIFN−γ産生を刺激する能力について試験した。すなわち、cDNAプール(1x10クローン)を96平底プレート中の約2000の相違するウェルにデュプリケートで分割した(各ウェルの期待されるクローン数:100クローン/ウェル)。一次スクリーニングでは、10の異なるウェルで有意なレベルのIFN−γ産生が得られた。二次スクリーニングとして、陽性ウェルからクローン化して得た各cDNAプールを96平底プレートの約200の異なるウェルにデュプリケートで分割し、IFN−γ産生刺激活性について試験した。
二次スクリーニングの後、更なるアッセイのための二つの陽性クローンを同定した。DNAシークエンスキットおよびABI PRISM 377 DNA シークエンサー(Perkin-Elmer, Foster, CA)を使用したジデオキシヌクレオチドシークエンス法によりDNAシークエンスを行った。単離された遺伝子の一つについて以下の検討を行った。
In the primary screen, all 1 × 10 5 clones from the LC-1 cDNA library were tested for their ability to stimulate IFN-γ production by 850B-CTL after transfection into COS7 cells with HLA-A * 3303 cDNA. That is, the cDNA pool (1 × 10 5 clones) was divided in duplicate into about 2000 different wells in 96 flat bottom plates (expected number of clones in each well: 100 clones / well). The primary screen resulted in significant levels of IFN-γ production in 10 different wells. As a secondary screen, each cDNA pool obtained by cloning from positive wells was divided in duplicate into about 200 different wells of 96 flat bottom plates and tested for IFN-γ production stimulating activity.
After secondary screening, two positive clones for further assay were identified. DNA sequencing was performed by the dideoxynucleotide sequencing method using a DNA sequencing kit and an ABI PRISM 377 DNA sequencer (Perkin-Elmer, Foster, CA). The following examination was performed on one of the isolated genes.

図2に示されるように、クローン1およびHLA−A3303をトランスフェクトしたCOS7細胞は、用量依存的に850B−CTLにおけるIFN−γ産生を誘導したが、陰性対照としてクローン1とHLA−A2601をトランスフェクトした細胞は誘導しなかった。それに対し、クローン1またはHLA−A3303のいずれかを単独でトランスフェクトしたCOS7細胞は850B−CTLに認識されなかった(データ非提示)。さらに、LC−1cDNAライブラリーから得られた陰性対照として使用した他のクローンは、HLA−A3303とともにCOS7細胞にトランスフェクトした場合に850B−CTLにおけるIFN−γ産生を誘導できなかった(データ非提示)。このことはクローン1が850B−CTLによって特異的に認識される腫瘍抗原をコードすることを示唆している。
GeneBankの検索によって、クローン1のヌクレオチド配列は、ストレス誘導抗アポトーシス遺伝子として報告されているIEX−1(文献17)の配列と同一であることがわかった。
As shown in FIG. 2, COS7 cells transfected with clone 1 and HLA-A * 3303 induced IFN-γ production in 850B-CTL in a dose-dependent manner, but clone 1 and HLA-A as a negative control. * Cells transfected with 2601 were not induced. In contrast, COS7 cells transfected with either clone 1 or HLA-A * 3303 alone were not recognized by 850B-CTL (data not shown). Furthermore, other clones used as negative controls from the LC-1 cDNA library were unable to induce IFN-γ production in 850B-CTL when transfected into COS7 cells with HLA-A * 3303 (data) Not shown). This suggests that clone 1 encodes a tumor antigen that is specifically recognized by 850B-CTL.
A search of GeneBank revealed that the nucleotide sequence of clone 1 was identical to the sequence of IEX-1 (Reference 17) reported as a stress-induced anti-apoptotic gene.

実施例3
(正常および癌組織におけるIEX−1mRNAおよびタンパク質の発現)
様々な腫瘍または正常組織(Multiple Tissue Northern Blots, Clontech, Tokyo, Japan)におけるIEX−1mRNAの発現を、以前に記載した方法に従い32P標識IEX−1プローブを用いてノーザンブロット解析によって調べた(文献9)(図3A、レーン1:脳、レーン2:心臓、レーン3:骨格筋、レーン4:大腸、レーン5:胸腺、レーン6:脾臓、レーン7:腎臓、レーン8:肝臓、レーン9:小腸、レーン10:胎盤、レーン11:肺、レーン12:PBL)。β-アクチンプローブを対照として使用した。図3Aに示すように、脳(レーン1)を除き試験したすべての正常組織において約〜1.3kbのバンドがはっきりと検出され、心臓(レーン2)、腎臓(レーン7)、肺(レーン11)、または末梢血リンパ球(PBL)(レーン12)において特に発現が高く、胸腺(レーン5)、脾臓(レーン6)、肝臓(レーン8)、または小腸(レーン9)においては発現が低かった。
Example 3
(Expression of IEX-1 mRNA and protein in normal and cancerous tissues)
Expression of IEX-1 mRNA in various tumors or normal tissues (Multiple Tissue Northern Blots, Clontech, Tokyo, Japan) was examined by Northern blot analysis using a 32 P-labeled IEX-1 probe according to previously described methods (references) 9) (FIG. 3A, lane 1: brain, lane 2: heart, lane 3: skeletal muscle, lane 4: colon, lane 5: thymus, lane 6: spleen, lane 7: kidney, lane 8: liver, lane 9: Small intestine, lane 10: placenta, lane 11: lung, lane 12: PBL). A β-actin probe was used as a control. As shown in FIG. 3A, a band of approximately ˜1.3 kb was clearly detected in all normal tissues except the brain (lane 1), and the heart (lane 2), kidney (lane 7), lung (lane 11). ), Or peripheral blood lymphocytes (PBL) (lane 12), and particularly low expression in the thymus (lane 5), spleen (lane 6), liver (lane 8), or small intestine (lane 9) .

次に、正常および癌細胞におけるIEX−1遺伝子のmRNA発現をノーザンブロット解析により検討した(図3B、レーン1:PBL、レーン2:MKN45、レーン3:MKN28、レーン4:SSTW、レーン5:HGC27、レーン6:LC−1、レーン7:QG56、レーン8:KUMA−1、レーン9:Panc−1、レーン10:SW620、レーン11:COLO201、レーン12:KATO−III)。IEX−1は、HCG27胃癌細胞株(レーン5)を除き、胃(レーン2−4、12)、肺(レーン6、7)、頭頸部(レーン8)、膵臓(レーン9)、および大腸(レーン10、11)を含む様々な臓器に由来する、被験腺癌およびSCC細胞株のほとんどにおいて高発現していた。
これらの結果は、この遺伝子があらゆる癌および正常組織において発現していることを意味する。
Next, mRNA expression of IEX-1 gene in normal and cancer cells was examined by Northern blot analysis (FIG. 3B, lane 1: PBL, lane 2: MKN45, lane 3: MKN28, lane 4: SSTW, lane 5: HGC27. Lane 6: LC-1, Lane 7: QG56, Lane 8: KUMA-1, Lane 9: Panc-1, Lane 10: SW620, Lane 11: COLO201, Lane 12: KATO-III). IEX-1 except for the HCG27 gastric cancer cell line (lane 5), stomach (lanes 2-4, 12), lungs (lanes 6, 7), head and neck (lane 8), pancreas (lane 9), and large intestine (lane 9) It was highly expressed in most of the adenocarcinoma and SCC cell lines derived from various organs including lanes 10 and 11).
These results imply that this gene is expressed in all cancers and normal tissues.

さらに、様々な腫瘍組織におけるこの遺伝子の発現をタンパク質レベルで検討した。IEX−1タンパク質の発現は、抗IEX−1抗体(Santa-Cruz biotechnology, Santa-Cruz, CA)とともにVentana Medical Systems 自動化装置(Tucson, AZ)を使用して、ホルマリン固定パラフィン包埋組織切片上で免疫組織化学によって評価した。
胃癌組織における代表的染色を示す(図3C)。胃癌においてIEX−1タンパク質の発現は癌細胞で選択的に増強されていたが、周囲の正常上皮または結合組織においては増強されていなかった。IEX−1タンパク質は、乳癌(図3D)、肺癌(図3E)、および大腸癌(データ非提示)を含む様々な型の癌組織においてもまた、高くかつ選択的に発現していた。なお、図3C〜Eにおいて、IEX−1タンパク質は茶色に染まっており、正常細胞および結合組織は茶色に染まっていない。これら、茶色に染まった数箇所を、便宜上、矢印で示した。
以上の結果より、IEX−1は癌の治療において理想的な標的分子の一つであるといえる。
Furthermore, the expression of this gene in various tumor tissues was examined at the protein level. Expression of IEX-1 protein was performed on formalin-fixed paraffin-embedded tissue sections using a Ventana Medical Systems automation device (Tucson, AZ) with anti-IEX-1 antibody (Santa-Cruz biotechnology, Santa-Cruz, CA). Assessed by immunohistochemistry.
Representative staining in gastric cancer tissue is shown (FIG. 3C). In gastric cancer, IEX-1 protein expression was selectively enhanced in cancer cells but not in surrounding normal epithelium or connective tissue. IEX-1 protein was also highly and selectively expressed in various types of cancer tissues including breast cancer (FIG. 3D), lung cancer (FIG. 3E), and colon cancer (data not shown). 3C to 3E, IEX-1 protein is stained brown, and normal cells and connective tissue are not stained brown. For convenience, some of these spots stained brown are indicated by arrows.
From the above results, it can be said that IEX-1 is one of the ideal target molecules in the treatment of cancer.

実施例4
(850−B CTLによって認識されるIEX−1由来抗原性ペプチドの同定)
IEX−1の抗原性エピトープとしてCTLに認識され得るペプチドを同定するため以下の実験を行った。
IEX−1の推定アミノ酸配列においてHLA−A33分子に結合するためのモチーフ(文献18、19)を有する可能性のあるペプチド配列の中で、コンピューター解析(Bioinformatics and Molecular Analysis Section (BIMAS), NIH, Bethesda, MD)ではHLA−A33に対してより強い結合活性を有する8の相異なるペプチドを使用した。BioSynthesis, Lewisville, TXより純度>95%のペプチドを得た。ペプチド結合アッセイには、RMA−S−A33細胞(HLA−A3303cDNAを安定的にトランスフェクトしたRMA−Sタップ(ペプチドプロセシングに関与するトランスポーター)欠損マウスリンパ腫細胞(Hiroko Takedatsu, et al., Identification of Peptide Vaccine Candidates Sharing Among HLA-A3, -A11, -A31, and -A33 Cancer Patients., Clin Can Res, 2004, in press)(1x10細胞/ウェル)を使用した。簡単に言うと、細胞を26℃で18時間インキュベートした。PBSで洗浄した後、細胞(1x10細胞)をOpti-MEM(ヒトβ2-ミクログロブリン3μg/mlおよびペプチド10μg/ml含有)に懸濁し、続いて26℃で3時間そして37℃で3時間インキュベートした。PBSで洗浄した後、細胞を抗HLA−A33mAbと4℃で30分間インキュベートし、続いてFITC結合ウサギ抗マウスIgM抗体(Cappel, Aurora, OH)と4℃で30分間インキュベートした。細胞をFACScanで解析し、平均蛍光強度(MFI)により結合活性を評価した。26℃で、TRP2−197ペプチド(参考ペプチド)でパルスした細胞、およびパルスしていない細胞も使用した。表1に示すように、若干親和性は異なるが、8ペプチド全てがRMA−S−A33細胞に結合できた。

Figure 0004925033
Example 4
(Identification of IEX-1-derived antigenic peptide recognized by 850-B CTL)
The following experiment was conducted to identify a peptide that can be recognized by CTL as an antigenic epitope of IEX-1.
Among peptide sequences that may have a motif (References 18 and 19) for binding to the HLA-A33 molecule in the deduced amino acid sequence of IEX-1, computer analysis (Bioinformatics and Molecular Analysis Section (BIMAS), NIH, Bethesda, MD) used 8 different peptides with stronger binding activity to HLA-A33. Peptides with> 95% purity were obtained from BioSynthesis, Lewisville, TX. For peptide binding assays, RMA-S-A33 cells (RMA-S tap (transporter involved in peptide processing) stably transfected with HLA-A * 3303 cDNA) mouse lymphoma cells (Hiroko Takedatsu, et al., Identification of Peptide Vaccine Candidates Sharing Among HLA-A3, -A11, -A31, and -A33 Cancer Patients., Clin Can Res, 2004, in press) (1 × 10 4 cells / well). Was incubated for 18 hours at 26 ° C. After washing with PBS, cells (1 × 10 6 cells) were suspended in Opti-MEM (containing 3 μg / ml human β2-microglobulin and 10 μg / ml peptide) followed by 26 ° C. Incubated for 3 hours and 3 hours at 37 ° C. After washing with PBS, cells were incubated with anti-HLA-A33 mAb for 30 minutes at 4 ° C. Followed by incubation with FITC-conjugated rabbit anti-mouse IgM antibody (Cappel, Aurora, OH) for 30 minutes at 4 ° C. Cells were analyzed by FACScan and binding activity was assessed by mean fluorescence intensity (MFI) .26 Cells pulsed with TRP2-197 peptide (reference peptide) and non-pulsed cells were also used at 0 ° C. As shown in Table 1, all of the 8 peptides were RMA-S-A33 cells with slightly different affinity. Could be combined.
Figure 0004925033

850B-CTL株によって認識される抗原性ペプチドの検出のため、C1R−A33細胞(HLA−A3303cDNAをトランスフェクトして安定的に発現させたC1Rヒト多発性骨髄腫細胞(Hiroko Takedatsu, et al., Clin Can Res, 2004, in press)を指示濃度のペプチドとともに培養した。二時間後、850B−CTL(2x10細胞/ウェル)を添加し、さらに18時間インキュベートした。培養上清中のIFN−γの産生はELISAにより測定した。
ペプチド非ロードC1R−A33細胞に応答した850B−CTLによるIFN−γ産生をバックグラウンドとして、その値から差し引いた。値はトリプリケート試験の平均を示す。
For detection of antigenic peptides recognized by the 850B-CTL line, C1R-A33 cells (C1R human multiple myeloma cells stably transfected with HLA-A * 3303 cDNA transfected (Hiroko Takedatsu, et al , Clin Can Res, 2004, in press) with the indicated concentration of peptide, 2 hours later, 850B-CTL (2 × 10 5 cells / well) was added and incubated for another 18 hours. -Γ production was measured by ELISA.
IFN-γ production by 850B-CTL in response to peptide non-loaded C1R-A33 cells was subtracted from that value as background. Values represent the average of triplicate tests.

これらペプチドのうち3つ、IEX47−56、IEX61−69、およびIEX65−73が、有意なレベルのIFN−γ産生を用量依存的に誘導した(図4A、4B)。HLA−A33トランスフェクトC1R細胞上にロードするのに最適な三つのペプチドの濃度は、各ペプチドにおいて0.1−1μMの範囲にわたり様々であったが(図4B)、RMA−S−A33細胞により決定されたHLA−A33分子に対するそれらの結合親和性(表1)には依存していなかった。
以上の結果に基づき、IEX47−56、IEX61−69、およびIEX65−73を、850B−CTL株によって認識されるIEX−1由来抗原性ペプチドとして同定した。
Three of these peptides, IEX 47-56, IEX 61-69, and IEX 65-73, induced significant levels of IFN-γ production in a dose-dependent manner (FIGS. 4A, 4B). The optimal concentration of the three peptides to load on HLA-A33 transfected C1R cells varied over the range of 0.1-1 μM for each peptide (FIG. 4B), but by RMA-S-A33 cells It was not dependent on their determined binding affinity for HLA-A33 molecules (Table 1).
Based on the above results, IEX47-56, IEX61-69, and IEX65-73 were identified as IEX-1-derived antigenic peptides recognized by the 850B-CTL strain.

実施例5
(IEX−1由来ペプチドによるCTLの誘導)
IEX47−56、IEX61−69、およびIEX65−73ペプチドのHLA−A33拘束性および腫瘍特異的CTL誘導能について、HLA−A33上皮癌患者(n=4、胃癌患者(2)、肺癌患者(1)、前立腺癌(1))およびHLA−A33健常人(HD)のPBMCにおいて試験した。
HLA−A33癌患者およびHLA−A33健常人PBMC(1x10/ウェル)を、96穴マイクロカルチャープレート(Nunc, Roskiide, Denmark)においてIL−2含有培養液200μl中で各ペプチド(10μM)とインキュベートした(文献13)。14日目に各ウェルから別個にペプチド刺激PBMC(80−120x10/ウェル)を回収し、洗浄し、4等分した。2つは対応するペプチドをロードしたC1R−A33細胞で、残りの二つは陰性対照のHIVペプチドをロードしたC1R−A33細胞で刺激した。18時間後、上清を回収しそれらのIFN−γ産生活性について試験した。
4人の患者の代表例を図5に示す。HIVペプチドに対するIFN−γ産生(<50pg/ml)をバックグラウンドとして差し引いた。これら3つのぺプチドで刺激した癌患者由来PBMCは、ほとんどの場合において対応するペプチドをロードしたHLA−A33トランスフェクトC1R細胞を認識して有意な量のIFN−γを産生した(図5)。それに対して、5人のHDから得たPBMCはそれらに対して有意な量のIFN−γを産生しなかった(データ非提示)。
Example 5
(Induction of CTL by IEX-1-derived peptide)
Regarding the HLA-A33-restricted and tumor-specific CTL inducing ability of IEX47-56, IEX61-69, and IEX65-73 peptides, HLA-A33 + epithelial cancer patients (n = 4, gastric cancer patients (2), lung cancer patients (1 ), Prostate cancer (1)) and HLA-A33 + healthy individuals (HD) PBMC.
HLA-A33 + cancer patients and HLA-A33 + healthy human PBMC (1 × 10 5 / well) were combined with each peptide (10 μM) in 200 μl of IL-2 containing culture medium in a 96-well microculture plate (Nunc, Roskiide, Denmark). Incubated (Reference 13). On day 14, peptide-stimulated PBMC (80-120 × 10 4 / well) were collected separately from each well, washed and divided into 4 equal parts. Two were stimulated with C1R-A33 cells loaded with the corresponding peptide and the other two were C1R-A33 cells loaded with the negative control HIV peptide. After 18 hours, supernatants were collected and tested for their IFN-γ producing activity.
A representative example of four patients is shown in FIG. IFN-γ production against HIV peptides (<50 pg / ml) was subtracted as background. Cancer patient-derived PBMC stimulated with these three peptides recognized HLA-A33 transfected C1R cells loaded with the corresponding peptide in most cases and produced significant amounts of IFN-γ (FIG. 5). In contrast, PBMCs obtained from 5 HD did not produce significant amounts of IFN-γ against them (data not shown).

次に、ペプチド誘導CTLの腫瘍細胞傷害活性を検討した。
有意な量のIFN−γを産生できた細胞を回収し、IL−2単独でさらに10−14日間培養し、相異なるE:T比で6時間51Cr放出試験を行った(文献13)。LC−1(HLA−A33IEX−1)、QG56(HLA−A33IEX−1)、およびHGC27(HLA−A33IEX−1)に対する細胞傷害活性を計測した。対照として、非抗原性IEX−1由来ペプチド、IEX43−51によって刺激した癌患者のPBMCを使用した。値はトリプリケート測定の平均を示す。
図6に示すように、IEX−1由来ペプチドで刺激されたPBMCは、HLA−A33IEX−1LC−1腫瘍細胞に対して有意なレベルの細胞傷害性を示したが、HLA−A33HGC27またはQG56細胞に対しては示さなかった。また、IEX43−51(陰性対照ペプチド)は特異的CTL活性を示さなかった。この結果は、IEX47−56、IEX61−69、およびIEX65−73が、上皮癌患者のPBMCにおいてHLA−A33拘束性に特異的CTLを誘導できる抗原性エピトープペプチドであることを示唆している。
Next, the tumor cytotoxic activity of peptide-derived CTLs was examined.
Cells capable of producing a significant amount of IFN-γ were collected, cultured for additional 10-14 days with IL-2 alone, and subjected to a 51 Cr release test at different E: T ratios for 6 hours (Reference 13). LC-1 (HLA-A33 + IEX-1 +), QG56 (HLA-A33 - IEX-1 +), and HGC27 (HLA-A33 - IEX- 1 -) for the measurement of the cytotoxic activity. As a control, PBMCs from cancer patients stimulated with a non-antigenic IEX-1-derived peptide, IEX 43-51, were used. Values indicate the average of triplicate measurements.
As shown in FIG. 6, PBMC stimulated with IEX-1 derived peptides showed a significant level of cytotoxicity against HLA-A33 + IEX-1 + LC-1 tumor cells, but HLA-A33. - it did not show against HGC27 or QG56 cells. IEX43-51 (negative control peptide) did not show specific CTL activity. This result suggests that IEX47-56, IEX61-69, and IEX65-73 are antigenic epitope peptides capable of inducing specific CTL in an HLA-A33-restricted manner in PBMC of epithelial cancer patients.

さらに、細胞傷害性の拘束性およびペプチド特異性を阻害試験および競合試験により確認した。
阻害試験には、抗HLAクラスI(W6/32、IgG2a)、抗HLAクラスII(H−DR、IgG2a)、抗CD8(Nu−Ts/c、IgG2a)、抗CD4(Nu−Th/i、IgG1)(20μg/ml)を使用した。抗CD14(JML−H14、IgG2a)mAbを対照として使用した。
これらペプチド刺激PBMCの細胞傷害性は、試験したすべてのケースで抗HLAクラスIまたは抗CD8抗体によって有意に阻害されたが、他のmAbよっては阻害されなかった(図7)。
競合試験では、対応ペプチドまたはHIVペプチド(陰性対照)でパルスした非標識C1R細胞を51Cr放出試験に非標識細胞対標識細胞の比率を10対1で添加した。10:1のE/T比で51Cr放出試験を行った。値は特異的傷害活性(%)の平均±SDを示す。
対応ペプチドパルスC1R−A33細胞を添加することにより細胞傷害性は阻害されたが、HIVペプチドパルス細胞では阻害されなかった(図8)。
以上の結果は、ペプチド特異的CTL活性が、主としてHLA−AクラスI拘束性にCD8+T細胞によって発揮されることを示唆している。
Furthermore, the cytotoxic restraint and peptide specificity were confirmed by inhibition tests and competition tests.
Inhibition tests include anti-HLA class I (W6 / 32, IgG2a), anti-HLA class II (H-DR, IgG2a), anti-CD8 (Nu-Ts / c, IgG2a), anti-CD4 (Nu-Th / i, IgG1) (20 μg / ml) was used. Anti-CD14 (JML-H14, IgG2a) mAb was used as a control.
The cytotoxicity of these peptide-stimulated PBMCs was significantly inhibited by anti-HLA class I or anti-CD8 antibodies in all cases tested, but not by other mAbs (FIG. 7).
In competition experiments, and the ratio of non-labeled C1R cells pulsed with the corresponding peptide or HIV peptide (negative control) to a 51 Cr release test unlabeled cells versus labeled cells were added at 10: 1. A 51 Cr release test was conducted at an E / T ratio of 10: 1. Values represent the mean ± SD of specific injury activity (%).
Cytotoxicity was inhibited by adding corresponding peptide pulsed C1R-A33 cells, but not in HIV peptide pulsed cells (FIG. 8).
These results suggest that peptide-specific CTL activity is exerted by CD8 + T cells mainly in HLA-A class I restriction.

本発明は、IEX−1が、胃腺癌に浸潤しているT細胞より樹立されたHLA拘束性および腫瘍特異的CTLにより認識される腫瘍抗原性エピトープをコードしていることを開示するものである。また、本発明はIEX−1由来抗原性ペプチドが癌患者のPBMC培養においてHLA拘束性に腫瘍特異的CTLを誘導できることをも開示するものである。
IEX−1は、正常組織、特に、心臓、腎臓、肺およびPBLにおいても発現しているので、これらの臓器はIEX−1由来抗原性エピトープによる特異的免疫療法の有害事象となる恐れがある。しかしながら、本発明は850−BCTL株およびIEX−1由来ペプチドにより誘導されたCTLのいずれもHLA−A33腫瘍細胞を溶解する一方、過剰量の対応ペプチドが培養中に存在するにも拘わらずPHA活性化正常HLA−A33T細胞は傷害しないことを明らかにした。また、発明者らが行っている腫瘍抗原由来ペプチドワクチンを用いる臨床試験では、腫瘍抗原のいくつかは正常組織または臓器に広く発現しているにも拘わらず、深刻な有害事象は観察されていない(文献4−7)。
従って、以上の結果は、本発明のIEX−1由来ペプチドが癌治療に適したペプチドワクチンとして使用可能であることを示唆している。
The present invention discloses that IEX-1 encodes a tumor antigenic epitope recognized by HLA-restricted and tumor-specific CTL established from T cells infiltrating gastric adenocarcinoma. . The present invention also discloses that the IEX-1-derived antigenic peptide can induce tumor-specific CTL in an HLA-restricted manner in PBMC cultures of cancer patients.
Since IEX-1 is also expressed in normal tissues, particularly heart, kidney, lung and PBL, these organs may be adverse events of specific immunotherapy with IEX-1-derived antigenic epitopes. However, the present invention shows that both the 850-BCTL strain and the CTL induced by the IEX-1-derived peptide lyse HLA-A33 + tumor cells, while PHA is present in culture despite the presence of an excess of the corresponding peptide. It was revealed that activated normal HLA-A33 + T cells were not damaged. In clinical trials using peptide vaccines derived from tumor antigens conducted by the inventors, no serious adverse events have been observed even though some tumor antigens are widely expressed in normal tissues or organs. (References 4-7).
Therefore, the above results suggest that the IEX-1-derived peptide of the present invention can be used as a peptide vaccine suitable for cancer treatment.

また、放射線照射およびいくつかの化学療法薬が、比較的高いレベルでIEX−1発現を誘導することが報告されているので(文献26、30)、本発明のIEX−1分子を標的とした特異的免疫療法は、特に化学療法または放射線療法抵抗性癌を患う患者の処置にとって新規で魅力的な方法となり得る。
HLA−A33は、アジア人および黒人において最も一般的なHLA−Aアレルの一つであり、日本人の13%、韓国人の14%、白人の14%、および黒人の16%に見られる(文献14、15)。またIEX−1は癌組織に高発現している。従って、本発明の抗原ペプチドは、HLA−A33癌患者に対する特異的免疫療法に広く利用可能であろう。
In addition, radiation and some chemotherapeutic drugs have been reported to induce IEX-1 expression at relatively high levels (Refs. 26, 30), thus targeting the IEX-1 molecule of the present invention. Specific immunotherapy can be a novel and attractive method especially for the treatment of patients suffering from chemotherapy or radiation resistant cancer.
HLA-A33 is one of the most common HLA-A alleles in Asians and blacks and is found in 13% of Japanese, 14% of Koreans, 14% of whites, and 16% of blacks ( References 14, 15). IEX-1 is highly expressed in cancer tissues. Therefore, the antigenic peptides of the present invention will be widely available for specific immunotherapy against HLA-A33 + cancer patients.

文献リスト
文献1:Rosenberg, S. A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity, 10: 281-287, 1999.
文献2:Rosenberg, S. A. Progress in human tumour immunology and immunotherapy. Nature, 411: 380-384, 2001.
文献3:Ribas, A., Butterfield, L. H., Glaspy, J. A., and Economou, J. S. Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol, 21: 2415-2432, 2003.
文献4:Sato, Y., Shomura, H., Maeda, Y., Mine, T., Une, Y., Akasaka, Y., Kondo, M., Takahashi, S., Shinohara, T., Katagiri, K., Sato, M., Okada, S., Matsui, K., Yamada, A., Yamana, H., Itoh, K., and Todo, S. Immunological evaluation of peptide vaccination for patients with gastric cancer based on pre-existing cellular response to peptide. Cancer Sci, 94: 802-808, 2003.
文献5:Mine, T., Gouhara, R., Hida, N., Imai, N., Azuma, K., Rikimaru, T., Katagiri, K., Nishikori, M., Sukehiro, A., Nakagawa, M., Yamada, A., Aizawa, H., Shirouzu, K., Itoh, K., and Yamana, H. Immunological evaluation of CTL precursor-oriented vaccines for advanced lung cancer patients. Cancer Sci, 94: 548-556, 2003.
文献6:Tsuda, N., Mochizuki, K., Harada, M., Sukehiro, A., Kawano, K., Yamada, A., Ushijima, K., Sugiyama, T., Nishida, T., Yamana, H., Itoh, K., and Kamura, T. Vaccination with pre-designated or evidence-based peptides for patients with recurrent gynecologic cancers. J Immunother, in press.
文献7:Noguchi, M., Kobayashi, K., Suetsugu, N., Tomiyasu, K., Suekane, S., Yamada, A., Itoh, K., and Noda, S. Induction of cellular and humoral immune responses to tumor cells and peptides in HLA-A24 positive hormone-refractory prostate cancer patients by peptide vaccination. Prostate, 57: 80-92, 2003.
文献8:Skipper, J. C., Hendrickson, R. C., Gulden, P. H., Brichard, V., Van Pel, A., Chen, Y., Shabanowitz, J., Wolfel, T., Slingluff, C. L., Jr., Boon, T., Hunt, D. F., and Engelhard, V. H. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med, 183: 527-534, 1996.
文献9:Shichijo, S., Nakao, M., Imai, Y., Takasu, H., Kawamoto, M., Niiya, F., Yang, D., Toh, Y., Yamana, H., and Itoh, K. A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocytes. J Exp Med, 187: 277-288, 1998.
文献10:Gomi, S., Nakao, M., Niiya, F., Imamura, Y., Kawano, K., Nishizaka, S., Hayashi, A., Sobao, Y., Oizumi, K., and Itoh, K. A cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumor-specific CTLs. J Immunol, 163: 4994-5004, 1999.
文献11:Ito, M., Shichijo, S., Tsuda, N., Ochi, M., Harashima, N., Saito, N., and Itoh, K. Molecular basis of T cell-mediated recognition of pancreatic cancer cells. Cancer Res, 61: 2038-2046, 2001.
文献12:Wang, R. F., Johnston, S. L., Southwood, S., Sette, A., and Rosenberg, S. A. Recognition of an antigenic peptide derived from tyrosinase-related protein-2 by CTL in the context of HLA-A31 and -A33. J Immunol, 160: 890-897, 1998.
文献13:Takedatsu, H., Shichijo, S., Katagiri, K., Sawamizu, H., Sata, M., and Itoh, K. Identification of peptide vaccine candidates sharing among HLA-A3+, -A11+, -A31+, -A33+ cancer patients. Clin Cancer Res, in press.
文献14:Imanishi I, A. T., Kimura A, Tokunaga K, Gojobori T. Allele and haprotype frequencies for HLA and complement loci in various ethnic groups. In, pp. 1065-1220: Oxford University Press, 1992.
文献15:Aizawa, M. Allele and haplotype frequencies for HLA and ccomplement loci in various ethnic groups. Oxford: Oxford University Press, 1992.
文献16:Macdonald, J. S. Advances in the therapy of gastric cancer. Gastric Cancer, 5 Suppl 1: 35-40, 2002.
文献17:Wu, M. X. Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis. Apoptosis, 8: 11-18, 2003.
文献18:Takiguchi, M., Matsuda, T., Tomiyama, H., and Miwa, K. Analysis of three HLA-A*3303 binding peptide anchors using an HLA-A*3303 stabilization assay. Tissue Antigens, 55: 296-302, 2000.
文献19:Takiguchi, M., Matsuda, T., and Tomiyama, H. Polarity of the P1 anchor residue determines peptide binding specificity between HLA-A*3101 and HLA-A*3303. Tissue Antigens, 56: 501-506, 2000.
文献20:Schafer, H., Trauzold, A., Siegel, E. G., Folsch, U. R., and Schmidt, W. E. PRG1: a novel early-response gene transcriptionally induced by pituitary adenylate cyclase activating polypeptide in a pancreatic carcinoma cell line. Cancer Res, 56: 2641-2648, 1996.
文献21:Pietzsch, A., Buchler, C., Aslanidis, C., and Schmitz, G. Identification and characterization of a novel monocyte/macrophage differentiation-dependent gene that is responsive to lipopolysaccharide, ceramide, and lysophosphatidylcholine. Biochem Biophys Res Commun, 235: 4-9, 1997.
文献22:Charles, C. H., Yoon, J. K., Simske, J. S., and Lau, L. F. Genomic structure, cDNA sequence, and expression of gly96, a growth factor-inducible immediate-early gene encoding a short-lived glycosylated protein. Oncogene, 8: 797-801, 1993.
文献23:Wu, M. X., Ao, Z., Prasad, K. V., Wu, R., and Schlossman, S. F. IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science, 281: 998-1001, 1998.
文献24:Kumar, R., Kobayashi, T., Warner, G. M., Wu, Y., Salisbury, J. L., Lingle, W., and Pittelkow, M. R. A novel immediate early response gene, IEX-1, is induced by ultraviolet radiation in human keratinocytes. Biochem Biophys Res Commun, 253: 336-341, 1998.
文献25:Schafer, H., Lettau, P., Trauzold, A., Banasch, M., and Schmidt, W. E. Human PACAP response gene 1 (p22/PRG1): proliferation-associated expression in pancreatic carcinoma cells. Pancreas, 18: 378-384, 1999.
文献26:Grobe, O., Arlt, A., Ungefroren, H., Krupp, G., Folsch, U. R., Schmidt, W. E., and Schafer, H. Functional disruption of IEX-1 expression by concatemeric hammerhead ribozymes alters growth properties of 293 cells. FEBS Lett, 494: 196-200, 2001.
文献27:Zhang, Y., Schlossman, S. F., Edwards, R. A., Ou, C. N., Gu, J., and Wu, M. X. Impaired apoptosis, extended duration of immune responses, and a lupus-like autoimmune disease in IEX-1-transgenic mice. Proc Natl Acad Sci U S A, 99: 878-883, 2002.
文献28:Garcia, J., Ye, Y., Arranz, V., Letourneux, C., Pezeron, G., and Porteu, F. IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation. Embo J, 21: 5151-5163, 2002.
文献29:Huang, Y. H., Wu, J. Y., Zhang, Y., and Wu, M. X. Synergistic and opposing regulation of the stress-responsive gene IEX-1 by p53, c-Myc, and multiple NF-kappaB/rel complexes. Oncogene, 21: 6819-6828, 2002.
文献30:Kondratyev, A. D., Chung, K. N., and Jung, M. O. Identification and characterization of a radiation-inducible glycosylated human early-response gene. Cancer Res, 56: 1498-1502, 1996.
文献31:Kittlesen, D. J., Thompson, L. W., Gulden, P. H., Skipper, J. C., Colella, T. A., Shabanowitz, J., Hunt, D. F., Engelhard, V. H., Slingluff, C. L., Jr., and Shabanowitz, J. A. Human melanoma patients recognize an HLA-A1-restricted CTL epitope from tyrosinase containing two cysteine residues: implications for tumor vaccine development. J Immunol, 160: 2099-2106, 1998.
Literature list Literature 1: Rosenberg, SA A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity, 10: 281-287, 1999.
Reference 2: Rosenberg, SA Progress in human tumour immunology and immunotherapy. Nature, 411: 380-384, 2001.
Reference 3: Ribas, A., Butterfield, LH, Glaspy, JA, and Economou, JS Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol, 21: 2415-2432, 2003.
Reference 4: Sato, Y., Shomura, H., Maeda, Y., Mine, T., Une, Y., Akasaka, Y., Kondo, M., Takahashi, S., Shinohara, T., Katagiri, K., Sato, M., Okada, S., Matsui, K., Yamada, A., Yamana, H., Itoh, K., and Todo, S. Immunological evaluation of peptide vaccination for patients with gastric cancer based on pre-existing cellular response to peptide. Cancer Sci, 94: 802-808, 2003.
Reference 5: Mine, T., Gouhara, R., Hida, N., Imai, N., Azuma, K., Rikimaru, T., Katagiri, K., Nishikori, M., Sukehiro, A., Nakagawa, M., Yamada, A., Aizawa, H., Shirouzu, K., Itoh, K., and Yamana, H. Immunological evaluation of CTL precursor-oriented vaccines for advanced lung cancer patients. Cancer Sci, 94: 548-556 , 2003.
Reference 6: Tsuda, N., Mochizuki, K., Harada, M., Sukehiro, A., Kawano, K., Yamada, A., Ushijima, K., Sugiyama, T., Nishida, T., Yamana, H., Itoh, K., and Kamura, T. Vaccination with pre-designated or evidence-based peptides for patients with recurrent gynecologic cancers.J Immunother, in press.
Reference 7: Noguchi, M., Kobayashi, K., Suetsugu, N., Tomiyasu, K., Suekane, S., Yamada, A., Itoh, K., and Noda, S. Induction of cellular and humoral immune responses to tumor cells and peptides in HLA-A24 positive hormone-refractory prostate cancer patients by peptide vaccination. Prostate, 57: 80-92, 2003.
Reference 8: Skipper, JC, Hendrickson, RC, Gulden, PH, Brichard, V., Van Pel, A., Chen, Y., Shabanowitz, J., Wolfel, T., Slingluff, CL, Jr., Boon, T., Hunt, DF, and Engelhard, VH An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins.J Exp Med, 183: 527-534, 1996.
Reference 9: Shiichijo, S., Nakao, M., Imai, Y., Takasu, H., Kawamoto, M., Niiya, F., Yang, D., Toh, Y., Yamana, H., and Itoh , K. A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocytes.J Exp Med, 187: 277-288, 1998.
Reference 10: Gomi, S., Nakao, M., Niiya, F., Imamura, Y., Kawano, K., Nishizaka, S., Hayashi, A., Sobao, Y., Oizumi, K., and Itoh , K. A cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumor-specific CTLs. J Immunol, 163: 4994-5004, 1999.
Reference 11: Ito, M., Shichijo, S., Tsuda, N., Ochi, M., Harashima, N., Saito, N., and Itoh, K. Molecular basis of T cell-mediated recognition of pancreatic cancer cells Cancer Res, 61: 2038-2046, 2001.
Reference 12: Wang, RF, Johnston, SL, Southwood, S., Sette, A., and Rosenberg, SA Recognition of an antigenic peptide derived from tyrosinase-related protein-2 by CTL in the context of HLA-A31 and -A33 J Immunol, 160: 890-897, 1998.
Reference 13: Takedatsu, H., Shichijo, S., Katagiri, K., Sawamizu, H., Sata, M., and Itoh, K. Identification of peptide vaccine candidates sharing among HLA-A3 +, -A11 +, -A31 +, -A33 + cancer patients. Clin Cancer Res, in press.
Reference 14: Imanishi I, AT, Kimura A, Tokunaga K, Gojobori T. Allele and haprotype frequencies for HLA and complement loci in various ethnic groups. In, pp. 1065-1220: Oxford University Press, 1992.
Reference 15: Aizawa, M. Allele and haplotype frequencies for HLA and ccomplement loci in various ethnic groups. Oxford: Oxford University Press, 1992.
Reference 16: Macdonald, JS Advances in the therapy of gastric cancer. Gastric Cancer, 5 Suppl 1: 35-40, 2002.
Reference 17: Wu, MX Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis. Apoptosis, 8: 11-18, 2003.
Reference 18: Takiguchi, M., Matsuda, T., Tomiyama, H., and Miwa, K. Analysis of three HLA-A * 3303 binding peptide anchors using an HLA-A * 3303 stabilization assay. Tissue Antigens, 55: 296 -302, 2000.
Reference 19: Takiguchi, M., Matsuda, T., and Tomiyama, H. Polarity of the P1 anchor residue determines peptide binding specificity between HLA-A * 3101 and HLA-A * 3303. Tissue Antigens, 56: 501-506, 2000.
Reference 20: Schafer, H., Trauzold, A., Siegel, EG, Folsch, UR, and Schmidt, WE PRG1: a novel early-response gene transcriptionally induced by pituitary adenylate cyclase activating polypeptide in a pancreatic carcinoma cell line. , 56: 2641-2648, 1996.
Reference 21: Pietzsch, A., Buchler, C., Aslanidis, C., and Schmitz, G. Identification and characterization of a novel monocyte / macrophage differentiation-dependent gene that is responsive to lipopolysaccharide, ceramide, and lysophosphatidylcholine. Biochem Biophys Res Commun, 235: 4-9, 1997.
Reference 22: Charles, CH, Yoon, JK, Simske, JS, and Lau, LF Genomic structure, cDNA sequence, and expression of gly96, a growth factor-inducible immediate-early gene encoding a short-lived glycosylated protein. Oncogene, 8 : 797-801, 1993.
Reference 23: Wu, MX, Ao, Z., Prasad, KV, Wu, R., and Schlossman, SF IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science, 281: 998-1001, 1998.
Reference 24: Kumar, R., Kobayashi, T., Warner, GM, Wu, Y., Salisbury, JL, Lingle, W., and Pittelkow, MR A novel immediate early response gene, IEX-1, is induced by ultraviolet radiation in human keratinocytes. Biochem Biophys Res Commun, 253: 336-341, 1998.
Reference 25: Schafer, H., Lettau, P., Trauzold, A., Banasch, M., and Schmidt, WE Human PACAP response gene 1 (p22 / PRG1): proliferation-associated expression in pancreatic carcinoma cells. Pancreas, 18 : 378-384, 1999.
Reference 26: Grobe, O., Arlt, A., Ungefroren, H., Krupp, G., Folsch, UR, Schmidt, WE, and Schafer, H. Functional disruption of IEX-1 expression by concatemeric hammerhead ribozymes alters growth properties of 293 cells. FEBS Lett, 494: 196-200, 2001.
Reference 27: Zhang, Y., Schlossman, SF, Edwards, RA, Ou, CN, Gu, J., and Wu, MX Impaired apoptosis, extended duration of immune responses, and a lupus-like autoimmune disease in IEX-1- transgenic mice.Proc Natl Acad Sci USA, 99: 878-883, 2002.
Reference 28: Garcia, J., Ye, Y., Arranz, V., Letourneux, C., Pezeron, G., and Porteu, F. IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation Embo J, 21: 5151-5163, 2002.
Reference 29: Huang, YH, Wu, JY, Zhang, Y., and Wu, MX Synergistic and opposing regulation of the stress-responsive gene IEX-1 by p53, c-Myc, and multiple NF-kappaB / rel complexes. Oncogene , 21: 6819-6828, 2002.
Reference 30: Kondratyev, AD, Chung, KN, and Jung, MO Identification and characterization of a radiation-inducible glycosylated human early-response gene. Cancer Res, 56: 1498-1502, 1996.
Reference 31: Kittlesen, DJ, Thompson, LW, Gulden, PH, Skipper, JC, Colella, TA, Shabanowitz, J., Hunt, DF, Engelhard, VH, Slingluff, CL, Jr., and Shabanowitz, JA Human melanoma patients recognize an HLA-A1-restricted CTL epitope from tyrosinase containing two cysteine residues: implications for tumor vaccine development.J Immunol, 160: 2099-2106, 1998.

Claims (10)

配列番号1〜3のいずれかに示されるアミノ酸配列からなるペプチド。  A peptide comprising the amino acid sequence shown in any one of SEQ ID NOs: 1 to 3. 配列番号1〜3のいずれかに示されるアミノ酸配列において1のアミノ酸が置換されたアミノ酸配列からなるペプチドであって、HLA−A33分子と結合し、該ペプチドに特異的なCTLを誘導するペプチド。  A peptide comprising an amino acid sequence in which one amino acid is substituted in the amino acid sequence shown in any one of SEQ ID NOs: 1 to 3, and which binds to an HLA-A33 molecule and induces a CTL specific for the peptide. 単離された抗原提示能を有する細胞の表面に、HLA−A33分子と請求項1または2に記載のペプチドとの複合体を提示させてなる、抗原提示細胞。 3. An antigen-presenting cell obtained by presenting a complex of an HLA-A33 molecule and the peptide according to claim 1 or 2 on the surface of an isolated cell having an antigen-presenting ability. 請求項1または2に記載のペプチドをコードする核酸分子。A nucleic acid molecule encoding the peptide according to claim 1 or 2 . 請求項記載の核酸分子を含有するベクター。A vector containing the nucleic acid molecule according to claim 4 . 請求項1または2に記載のペプチド、請求項記載の抗原提示細胞、請求項記載の核酸分子、または請求項記載のベクターを含む、該ペプチドまたは該抗原に特異的なCTL誘導用医薬組成物。The peptide according to claim 1 or 2, antigen-presenting cells according to claim 3, claim 4 nucleic acid molecule according or claim 5 comprising the vector of the peptides or pharmaceutical specific CTL induction to the antigens, Composition. 癌ワクチンである、請求項記載の医薬組成物。The pharmaceutical composition according to claim 6 , which is a cancer vaccine. 請求項1または2に記載のペプチドとHLAとの複合体、または請求項記載の抗原提示細胞に提示された複合体を認識する、IEX−1反応性CTL。An IEX-1 reactive CTL that recognizes a complex of the peptide according to claim 1 or 2 and HLA, or a complex presented to an antigen-presenting cell according to claim 3 . 請求項1または2に記載のペプチドまたは請求項記載の抗原提示細胞を用いてIEX−1反応性CTLをin vitroで誘導する方法。A method for inducing IEX-1 reactive CTL in vitro using the peptide according to claim 1 or 2 or the antigen-presenting cell according to claim 3 . 請求項1または2に記載のペプチドをエピトープとする抗体。An antibody having the peptide according to claim 1 or 2 as an epitope.
JP2005517705A 2004-02-03 2005-02-02 Stress-induced anti-apoptotic molecule (IEX-1) derived peptide Expired - Fee Related JP4925033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517705A JP4925033B2 (en) 2004-02-03 2005-02-02 Stress-induced anti-apoptotic molecule (IEX-1) derived peptide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004026691 2004-02-03
JP2004026691 2004-02-03
PCT/JP2005/001508 WO2005075646A1 (en) 2004-02-03 2005-02-02 Peptide originating in stress-induced antiapoptosis molecule (iex-1)
JP2005517705A JP4925033B2 (en) 2004-02-03 2005-02-02 Stress-induced anti-apoptotic molecule (IEX-1) derived peptide

Publications (2)

Publication Number Publication Date
JPWO2005075646A1 JPWO2005075646A1 (en) 2007-10-11
JP4925033B2 true JP4925033B2 (en) 2012-04-25

Family

ID=34835864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517705A Expired - Fee Related JP4925033B2 (en) 2004-02-03 2005-02-02 Stress-induced anti-apoptotic molecule (IEX-1) derived peptide

Country Status (2)

Country Link
JP (1) JP4925033B2 (en)
WO (1) WO2005075646A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854945B (en) 2007-09-18 2015-07-01 株式会社绿多肽 Ctl inducer composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506443A (en) * 2000-08-22 2004-03-04 ブライハム アンド ウィメンズ ホスピタル インコーポレーテッド Diagnosis and treatment of cardiovascular conditions
WO2003012085A1 (en) * 2001-07-30 2003-02-13 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Antigen presenting cells, method for their preparation and their use for cancer vaccines
JP2004000216A (en) * 2002-04-26 2004-01-08 Kyogo Ito Tumor antigen

Also Published As

Publication number Publication date
JPWO2005075646A1 (en) 2007-10-11
WO2005075646A1 (en) 2005-08-18
WO2005075646A8 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
KR101610353B1 (en) CDCA peptide and pharmaceutical agent comprising the same
KR101561175B1 (en) CDH3 peptide and medicinal agent comprising the same
US7148326B2 (en) Tumor antigen
WO2007018199A1 (en) Cancer-rejection antigen peptide derived from glypican-3 (gpc3) for use in hal-a2-positive patient and pharmaceutical comprising the antigen
JP2003520606A (en) Novel MHC class II restricted T cell epitope derived from cancer antigen NYESO-1
WO2007097358A1 (en) Hla-a*3303-restricted wt1 peptide and pharmaceutical composition comprising the same
JP6259983B2 (en) Th1 cell KIF20A epitope peptide and vaccine containing the same
TW201043240A (en) NEIL3 peptides and vaccines including the same
WO2005068632A1 (en) EPITOPE/PEPTIDE RECOGNIZED BY HLA-A2402-RESTRICTED Ep-CAM-SPECIFIC CTL AND USE OF THE SAME
TW201138806A (en) CDCA5 peptides and vaccines including the same
JP6255593B2 (en) CD1 epitope peptide of Th1 cells and vaccine containing the same
JP4945444B2 (en) Prostate-related protein-derived peptide that is a cancer vaccine candidate for HLA-A3 supertype allele molecule positive prostate cancer patients
WO2001011044A1 (en) Tumor antigen
JP6255594B2 (en) LY6K epitope peptide of Th1 cell and vaccine containing the same
TW201225973A (en) Tomm34 peptides and vaccines including the same
JP4925033B2 (en) Stress-induced anti-apoptotic molecule (IEX-1) derived peptide
JP2002284797A (en) Cancer antigen peptide derived from survivin
KR20170040319A (en) Koc1-derived peptide and vaccine including same
TW201043244A (en) VANGL1 peptides and vaccines including the same
Sasada et al. Immediate early response gene X-1, a stress-inducible antiapoptotic gene, encodes cytotoxic T-lymphocyte (CTL) epitopes capable of inducing human leukocyte antigen-A33-restricted and tumor-reactive CTLs in gastric cancer patients
US6664232B1 (en) HLA-A2 restraint tumor antigen peptide originating in SART-1
JPWO2003037917A1 (en) Tumor antigen
Gene et al. Immediate Early Response Gene X-1, a Stress-Inducible
TW201200525A (en) MYBL2 peptides and vaccines containing the same
JP2008260689A (en) Medicinal composition containing hla-a24 molecule-binding peptide originating in parathyroid hormone-related protein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees