JP4923390B2 - Heat treatment apparatus and steel material manufacturing method - Google Patents
Heat treatment apparatus and steel material manufacturing method Download PDFInfo
- Publication number
- JP4923390B2 JP4923390B2 JP2004219110A JP2004219110A JP4923390B2 JP 4923390 B2 JP4923390 B2 JP 4923390B2 JP 2004219110 A JP2004219110 A JP 2004219110A JP 2004219110 A JP2004219110 A JP 2004219110A JP 4923390 B2 JP4923390 B2 JP 4923390B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- steel material
- power
- induction heating
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 title claims description 754
- 229910000831 Steel Inorganic materials 0.000 title claims description 491
- 239000010959 steel Substances 0.000 title claims description 491
- 239000000463 material Substances 0.000 title claims description 484
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 230000006698 induction Effects 0.000 claims description 295
- 238000004364 calculation method Methods 0.000 claims description 128
- 238000012545 processing Methods 0.000 claims description 73
- 238000001816 cooling Methods 0.000 claims description 58
- 238000009826 distribution Methods 0.000 claims description 51
- 238000005096 rolling process Methods 0.000 claims description 43
- 238000012937 correction Methods 0.000 claims description 32
- 238000007726 management method Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 description 157
- 230000008569 process Effects 0.000 description 32
- 238000005259 measurement Methods 0.000 description 28
- 230000006870 function Effects 0.000 description 23
- 230000008859 change Effects 0.000 description 21
- 230000014509 gene expression Effects 0.000 description 15
- 238000007781 pre-processing Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000012546 transfer Methods 0.000 description 11
- 238000003672 processing method Methods 0.000 description 10
- 238000011282 treatment Methods 0.000 description 8
- 230000035515 penetration Effects 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 238000005496 tempering Methods 0.000 description 5
- 238000002203 pretreatment Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N C1CCCCC1 Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- General Induction Heating (AREA)
- Control Of Heat Treatment Processes (AREA)
Description
本発明は、誘導加熱装置を用いて鋼材を熱処理する技術に関する。 The present invention relates to a technique for heat-treating a steel material using an induction heating device.
鉄鋼プロセスにおいては、製品となる鋼材の強度、靭性等の性質を向上させ、より強く粘り強い鋼材を製造するため、焼き入れ、焼き戻し、焼きなまし等さまざまな熱処理が行われている。これらの熱処理は一般的に加熱過程と冷却過程に分けられる。このうち加熱過程では鋼材の成分に応じた変態点温度が基準となる。例えば、焼入れの場合は変態点よりも高温に加熱し、焼き戻しおよび焼きなましでは変態点に達しないように加熱を行わねばならない。 In the iron and steel process, various heat treatments such as quenching, tempering, and annealing are performed in order to improve properties such as strength and toughness of a steel material as a product, and to produce a stronger and tenacious steel material. These heat treatments are generally divided into a heating process and a cooling process. Among these, in the heating process, the transformation point temperature corresponding to the component of the steel material is the standard. For example, in the case of quenching, it must be heated to a temperature higher than the transformation point, and in the tempering and annealing, heating must be performed so as not to reach the transformation point.
よって、熱処理の目的に応じて精度良く加熱することが必要である。また、同一部材内での品質のばらつきを抑えるためには、鋼材の内部にわたり均一に加熱する必要がある。この熱処理方法を均一加熱という。 Therefore, it is necessary to heat accurately according to the purpose of heat treatment. Moreover, in order to suppress the dispersion | variation in quality within the same member, it is necessary to heat uniformly over the inside of steel materials. This heat treatment method is called uniform heating.
また、一般に製造されている焼入れ、焼き戻しの熱処理を施された鋼材は、主に表面から冷却を受けるため、表面の硬度が内部に比べて高くなりがちである。このような板厚方向の硬度分布を持った鋼材は、腐食環境に弱く、石油、天然ガスのパイプライン等に使用されると硫化水素による応力腐食割れ(HIC)を起こしやすいことがわかっている。 In addition, steel materials that have been subjected to quenching and tempering heat treatment that are generally manufactured are subject to cooling mainly from the surface, and therefore the surface hardness tends to be higher than the inside. It is known that steel materials having such a hardness distribution in the thickness direction are vulnerable to corrosive environments and are prone to stress corrosion cracking (HIC) due to hydrogen sulfide when used in oil and natural gas pipelines. .
そこで、表層部を高温で加熱することにより軟化させ、表層部と内部の硬度差を少なくする処理が行われることもある。この熱処理方法を表層加熱という。 Therefore, there is a case where the surface layer portion is softened by heating at a high temperature to reduce the hardness difference between the surface layer portion and the inside. This heat treatment method is called surface layer heating.
従来、これらの加熱条件を実現する加熱方法として、誘導加熱装置を用い、鋼材を誘導加熱炉内で昇温させる加熱段階と、加熱段階よりも周波数を高くし、かつ投入電力を下げて加熱する均熱段階との間に、加熱段階での誘導加熱と同一の周波数で、かつ加熱段階よりも投入電力を下げて誘導加熱する準加熱段階を設ける誘導加熱方法が提案されている(例えば、特許文献1参照)。
しかしながら、特許文献1に開示された技術では、加熱時間が数十分を要するため効率的ではない。また、鋼材の加熱途中において誘導加熱装置の周波数を変更するものであるため、周波数を切り替える機構を装備する必要がある。従って装置が高価になり、さらに装置の構造が複雑になる。また、鋼材を加熱するための投入電力計算において、精度良い温度制御を実現する上で必要な要素である鋼材内部における誘導電流分布、大気による抜熱、加熱装置の効率、鋼材の比熱等が考慮されていない。
However, the technique disclosed in
そのため、誘導加熱装置を用いた圧延ライン上での熱処理のアイデアは従来から存在していたが、実用化には至らなかった。この理由には、誘導加熱能力の不足などのハード面の問題以外にも、熱処理方法を具体的にどのように問題を解けばよいのかという問題解決手法等のソフト面での問題もあった。熱処理を行うためには、長手方向・厚み方向で温度差をつけないで均一に加熱することが必要となる。このためには、誘導加熱時の鋼材の内部温度を精度よく推定する必要があり、この温度推定モデルを用いて加熱のための電力を求める必要がある。さらには、加熱前の温度により加熱時の電力も異なるため、これらの処理をオンラインで行う必要がある。しかしながら、これらの問題に対して明確な解答を与えるような、電力の計算方法や搬送速度の決め方について検討した文献はほとんどなかった。 For this reason, the idea of heat treatment on a rolling line using an induction heating apparatus has existed in the past, but has not been put to practical use. In addition to hardware problems such as lack of induction heating capability, there were also problems in software such as a problem solving method on how to specifically solve the heat treatment method. In order to perform the heat treatment, it is necessary to heat uniformly without making a temperature difference in the longitudinal direction and the thickness direction. For this purpose, it is necessary to accurately estimate the internal temperature of the steel during induction heating, and it is necessary to obtain the power for heating using this temperature estimation model. Furthermore, since the power during heating varies depending on the temperature before heating, it is necessary to perform these processes online. However, there is almost no literature which examined the calculation method of electric power and the method of determining the conveyance speed that gave a clear answer to these problems.
本発明は係る事情に鑑みてなされたものであって、鋼材の表面温度、内部温度を精度よく目標に一致させ、鋼材が目的の性質をもつような熱処理を行うことができる熱処理装置及び鋼材の製造方法を提供することにある。特に、上記問題を解決するために、計算処理の負荷をかけずに、熱処理能率に影響を与えないようにしたものである。 The present invention has been made in view of such circumstances, and it is possible to accurately match the surface temperature and internal temperature of a steel material with a target, and to perform a heat treatment so that the steel material has desired properties. It is to provide a manufacturing method. In particular, in order to solve the above-described problem, the heat treatment efficiency is not affected without applying a calculation processing load.
本発明に係る請求項1に記載の熱処理装置は、鋼材の圧延ライン上に設置され、圧延された前記鋼材を急速に冷却する加速冷却装置の後段に配された複数台の誘導加熱装置と、鋼材の圧延ライン上で、前記加速冷却装置と前記複数台の誘導加熱装置との中間に設置された前記鋼材を矯正するための矯正装置と、前記圧延ライン上に設置され前記鋼材の温度を検出する少なくとも1つの温度検出器と、前記鋼材のサイズと、前記鋼材の搬送速度と、前記鋼材の加熱目標温度と、前記誘導加熱装置の前段における前記鋼材の前記温度検出器で測定した実測温度とに基づいて、前記誘導加熱装置に供給する供給予定電力を演算する演算装置と、前記演算装置により演算された供給予定電力を前記誘導加熱装置に供給する電源装置とを有し、前記演算装置は、前記誘導加熱装置による加熱中の前記鋼材の表面温度が第1の目標温度以下で、加熱終了時の鋼材厚み方向内部の所定位置における温度と第2の目標温度との差が所定範囲内になるように加熱するために前記誘導加熱装置に供給する供給予定電力、または前記誘導加熱装置による加熱終了時の前記鋼材の表面温度が第3の目標温度以上となり、加熱中の鋼材厚み方向内部の所定位置における温度が第4の目標温度以下となるように加熱するために前記誘導加熱装置に供給する供給予定電力を演算する。
The heat treatment apparatus according to
また本発明に係る請求項2に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記搬送速度と前記温度検出器で測定した鋼材温度に基づいて加熱後の鋼材温度を推定する推定手段と、推定した鋼材温度が所定温度範囲内にない場合には、前記搬送速度を変更して前記推定手段を繰り返して実行させる繰り返し手段と、推定した鋼材温度が所定温度範囲内にある場合には、該搬送速度に基づいて前記鋼材を目標温度に加熱するために前記誘導加熱装置に供給する供給予定電力を演算する電力演算手段とを有する。
Moreover, the heat processing apparatus of
本発明に係る請求項3に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、前記温度条件に適合する場合は、その演算に用いられた供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段とを有する。 The heat treatment apparatus according to a third aspect of the present invention is the heat treatment apparatus according to the above-described invention, wherein the arithmetic unit is configured to calculate the steel material after induction heating from data including a conveyance speed of the steel material and the power to be supplied. Temperature estimation means for estimating the surface temperature and the internal temperature in the thickness direction, conformity determination means for determining whether or not the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition, and the temperature condition If the temperature condition is not satisfied, the temperature supply is corrected and the temperature estimation means and the fitness determination means are repeatedly executed. And a power determining unit that uses the scheduled power supply as power to be supplied to the induction heating device.
本発明に係る請求項4に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、前記温度条件に適合する場合は、その演算に用いられた供給予定電力に基づいて、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力量判定手段と、前記電力条件に適合する場合は、その演算に用いられた供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段と、前記電力条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する電力条件判定処理手段と
を有する。
The heat treatment apparatus according to a fourth aspect of the present invention is the heat treatment apparatus according to the above-described invention, wherein the arithmetic unit calculates the steel material after induction heating based on data including a conveyance speed of the steel material and the power to be supplied. Temperature estimation means for estimating the surface temperature and the internal temperature in the thickness direction, conformity determination means for determining whether or not the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition, and the temperature condition If the temperature condition is not satisfied, the temperature supply is corrected and the temperature estimation means and the fitness determination means are repeatedly executed. On the basis of the planned supply power, it is determined whether or not the total power amount of each induction heating device used for heating the steel material meets a power condition that is a predetermined value or less. A force determination means, if it conforms to the power condition, a power determining unit that the power supplies supply scheduled power used for the operation on the induction heating device, not fit to the power condition, the supply Power condition determination processing means for correcting scheduled power and repeatedly executing the temperature estimation means and the conformity determination means .
本発明に係る請求項5に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、前記温度条件に適合する場合は、前記温度条件に適合する供給予定電力の内、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が最小になる供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段とを有する。
The heat treatment apparatus according to
また本発明に係る請求項6に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記誘導加熱装置による加熱後の前記鋼材の厚み方向の温度分布を推定する温度分布推定手段を更に備える。
Moreover, the heat processing apparatus of
また本発明に係る請求項7に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記温度分布推定手段は、前記鋼材の搬送速度に基づいて、前記誘導加熱装置内における前記鋼材の厚み方向の誘導電流分布を求めて前記鋼材内部の発生熱量を算出する発生熱量算出手段と、前記誘導加熱装置外における前記鋼材から大気への放散熱量を算出する放散熱量算出手段と、前記発生熱量と前記放散熱量とを境界条件として前記鋼材の内部への熱伝導を演算して前記鋼材の表面温度と厚み方向の内部温度とを推定する温度演算手段とを有する。
Further, the heat treatment apparatus according to
また本発明に係る請求項8に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記温度分布推定手段は、矯正装置による前記鋼材の厚み方向の温度降下量を推定する冷却温度推定手段を有する。
The heat treatment apparatus according to
また本発明に係る請求項9に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材の長手方向の各位置に対応して前記鋼材の加熱に使用された電力と前記鋼材の温度検出値との履歴を管理する加熱履歴管理手段を更に有する。
Moreover, the heat processing apparatus of
また本発明に係る請求項10に記載の熱処理装置は、上記記載の発明である熱処理装置において、初段の誘導加熱装置の入り側に設けられた前記温度検出器で検出された前記鋼材の先頭部分の温度と後端部分の実測温度または推定温度と前記鋼材の搬送速度とに基づいて、前記鋼材の先頭部分と後端部分についてそれぞれの誘導加熱装置毎の加熱目標温度を算出する目標温度算出手段と、前記鋼材の先頭部分と後端部分においては、前記加熱目標温度に基づいてそれぞれの誘導加熱装置に供給する電力を算出し、前記鋼材の先頭部分と後端部分の移動に合わせて前記電力を制御して前記電源装置に供給する電力供給手段と、前記鋼材の先頭部分と後端部分に挟まれた中間部分においては、前記鋼材の先頭部分の実測温度と、後端部分の実測温度または推定温度と、当該中間部分の実測温度または推定温度とに基づいて、前記鋼材の先頭部分と後端部分の誘導加熱装置毎の加熱目標温度を補正して前記中間部分の誘導加熱装置毎の加熱目標温度を算出する中間部分目標温度算出手段と、前記中間部分の誘導加熱装置毎の加熱目標温度に基づいてそれぞれの誘導加熱装置に供給する中間電力を算出し、前記鋼材の中間部分の移動に合わせて前記中間電力を制御して前記電源装置に供給する中間電力制御手段とを備える。
The heat treatment apparatus according to
また本発明に係る請求項11に記載の熱処理装置は、上記記載の発明である熱処理装置において、少なくとも1つの前記誘導加熱装置の前後に前記温度検出器を有し、前記演算装置は、前記誘導加熱装置に供給した電力と前記温度検出器で測定した前記鋼材の上昇温度とに基づいて前記誘導加熱装置の加熱効率を推定する加熱効率推定手段と、次に熱処理予定の前記鋼材に対して求めた電力を前記加熱効率を用いて補正演算する補正演算手段と
を有する。
The heat treatment apparatus according to an eleventh aspect of the present invention is the heat treatment apparatus according to the above-described invention, wherein the temperature detector is provided before and after at least one of the induction heating devices, and the arithmetic device includes the induction device. Heating efficiency estimating means for estimating the heating efficiency of the induction heating device based on the electric power supplied to the heating device and the temperature rise of the steel material measured by the temperature detector, and then obtained for the steel material to be heat treated Correction calculating means for correcting the calculated power using the heating efficiency.
また本発明に係る請求項12に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記圧延ラインにおける前記鋼材の大気への放散熱量を実測温度によって修正する温度降下量修正手段と、次に熱処理予定の前記鋼材に対して、前記修正された放散熱量によって推定された温度降下量に基づいて、前記鋼材を目標温度に加熱するための供給予定電力を演算する冷却補正電力演算手段と
を有する。
The heat treatment apparatus according to
また本発明に係る請求項13に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記圧延ラインにおける前記鋼材の前記矯正装置による温度降下量を、前記矯正装置の前後に設置された温度検出器によって測定された実測温度によって修正する温度降下量修正手段と、次に熱処理予定の前記鋼材に対して、前記修正された矯正装置での温度降下量に基づいて、前記鋼材を目標温度に加熱するための供給予定電力を演算する冷却補正電力演算手段とを有する。
Moreover, the heat processing apparatus of
また本発明に係る請求項14に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記誘導加熱装置間に前記温度検出器を少なくとも1つ有し、前記温度検出器で測定した鋼材温度と、予め与えられたその位置での目標温度との差に基づいて前段の誘導加熱装置に供給する電力を制御するフィードバック制御手段と、前記温度検出器で測定した鋼材温度と、予め与えられたその位置での目標温度との差に基づいて後段の誘導加熱装置に供給する電力を制御するフィードフォワード制御手段とを更に備えた。
The heat treatment apparatus according to
また本発明に係る請求項15に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記鋼材の長手方向の各位置に対応して前記温度検出器で測定した鋼材温度と、予め与えられたその位置での目標温度との差に基づいて前段の誘導加熱装置に供給する電力を制御する。 The heat treatment apparatus according to claim 15 of the present invention is the heat treatment apparatus according to the invention described above, wherein the steel material temperature measured by the temperature detector corresponding to each position in the longitudinal direction of the steel material is given in advance. The electric power supplied to the preceding induction heating device is controlled based on the difference from the target temperature at that position.
また本発明に係る請求項16に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記フィードフォワード制御手段は、前記鋼材の長手方向の各位置に対応して前記温度検出器で測定した鋼材温度と、予め与えられたその位置での目標温度との差に基づいて後段の誘導加熱装置に供給する電力を制御する。 The heat treatment apparatus according to claim 16 of the present invention is the heat treatment apparatus according to the above-described invention, wherein the feedforward control means is measured by the temperature detector corresponding to each position in the longitudinal direction of the steel material. The electric power supplied to the induction heating device at the subsequent stage is controlled based on the difference between the steel material temperature and the target temperature at the position given in advance.
また本発明に係る請求項17に記載の熱処理装置は、鋼材を加熱する複数台の誘導加熱装置と、前記複数台の誘導加熱装置の前段に設置され、前記鋼材を矯正するための矯正装置と、前記鋼材のサイズと、前記鋼材の搬送速度と、前記鋼材の加熱目標温度と、前記誘導加熱装置の前段における前記鋼材の予定温度とに基づいて、前記誘導加熱装置に供給する供給予定電力を演算する演算装置と、前記演算装置により演算された供給予定電力を前記誘導加熱装置に供給する電源装置とを有し、前記演算装置は、前記誘導加熱装置による加熱中の前記鋼材の表面温度が第1の目標温度以下で、加熱終了時の鋼材厚み方向内部の所定位置における温度と第2の目標温度との差が所定範囲内になるように加熱するために前記誘導加熱装置に供給する供給予定電力、または前記誘導加熱装置による加熱終了時の前記鋼材の表面温度が第3の目標温度以上となり、加熱中の鋼材厚み方向内部の所定位置における温度が第4の目標温度以下となるように加熱するために前記誘導加熱装置に供給する供給予定電力を演算する。 A heat treatment apparatus according to claim 17 of the present invention includes a plurality of induction heating apparatuses that heat steel materials, and a correction apparatus that is installed in front of the plurality of induction heating apparatuses and that corrects the steel materials. Based on the size of the steel material, the conveyance speed of the steel material, the target heating temperature of the steel material, and the planned temperature of the steel material in the previous stage of the induction heating device, the planned supply power to be supplied to the induction heating device is An arithmetic device that calculates, and a power supply device that supplies the planned heating power calculated by the arithmetic device to the induction heating device, wherein the arithmetic device has a surface temperature of the steel being heated by the induction heating device. Supply to the induction heating device for heating so that the difference between the temperature at a predetermined position in the thickness direction of the steel material at the end of heating and the second target temperature is within a predetermined range at or below the first target temperature. The planned power or the surface temperature of the steel material at the end of heating by the induction heating device is equal to or higher than the third target temperature, and the temperature at a predetermined position inside the thickness direction of the steel material being heated is equal to or lower than the fourth target temperature. The power to be supplied to the induction heating device for heating is calculated.
また本発明に係る請求項18に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記誘導加熱装置は、前記鋼材の圧延ライン上に設置されて、圧延後に加速冷却装置によって急速に冷却され、さらに前記矯正装置によって矯正された前記鋼材を加熱する。 The heat treatment apparatus according to claim 18 of the present invention is the heat treatment apparatus according to the above-described invention, wherein the induction heating device is installed on a rolling line of the steel material and is rapidly moved by an accelerated cooling device after rolling. The steel material cooled and further straightened by the straightening device is heated.
また本発明に係る請求項19に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記鋼材の搬送速度は、前記鋼材のサイズに基づいて予め定められた搬送速度である。
Moreover, the heat processing apparatus of
また本発明に係る請求項20に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、前記温度条件に適合する場合は、その演算に用いられた供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段とを有する。 Further, the heat treatment apparatus according to claim 20 of the present invention is the heat treatment apparatus according to the above-described invention, wherein the arithmetic unit is the steel material after induction heating from data including a conveyance speed of the steel material and the planned supply power. Temperature estimation means for estimating the surface temperature of the steel and the internal temperature in the thickness direction, conformity determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition, and the temperature If the condition is not met, use the temperature condition determination processing means for correcting the scheduled power supply and executing the temperature estimation means and the suitability determination means repeatedly; Power determining means for using the supplied scheduled power to be supplied to the induction heating device.
また本発明に係る請求項21に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、前記温度条件に適合する場合は、その演算に用いられた供給予定電力に基づいて、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力量判定手段と、前記電力条件に適合する場合は、その演算に用いられた供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段と、前記電力条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する電力条件判定処理手段とを有する。 The heat treatment apparatus according to claim 21 according to the present invention is the heat treatment apparatus according to the above-described invention, wherein the arithmetic unit is configured to calculate the steel material after induction heating from data including a conveyance speed of the steel material and the power to be supplied. Temperature estimation means for estimating the surface temperature of the steel and the internal temperature in the thickness direction, conformity determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition, and the temperature If the condition is not met, use the temperature condition determination processing means for correcting the scheduled power supply and executing the temperature estimation means and the suitability determination means repeatedly; Based on the supplied power to be supplied, it is determined whether or not the total power amount of each induction heating device used for heating the steel material meets a power condition that is equal to or less than a predetermined value. A power amount determination unit that, if it conforms to the power condition, a power determining unit that the power supplies supply scheduled power used for the operation on the induction heating device, not fit to the power condition, Power condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the conformity determination means .
また本発明に係る請求項22に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、前記温度条件に適合する場合は、前記温度条件に適合する供給予定電力の内、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が最小になる供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段とを有する。 The heat treatment apparatus according to claim 22 of the present invention is the heat treatment apparatus according to the above-described invention, wherein the arithmetic unit is configured to calculate the steel material after induction heating from data including a conveyance speed of the steel material and the power to be supplied. Temperature estimation means for estimating the surface temperature of the steel and the internal temperature in the thickness direction, conformity determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition, and the temperature If the condition is not satisfied, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the conformity determination means; and if the temperature condition is satisfied, the temperature condition is The power to supply the induction heating device with the planned supply power that minimizes the total power amount of the induction heating devices used for heating the steel material among the appropriate supply power to be supplied. And a power determining means to.
また本発明に係る請求項23に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記誘導加熱装置による加熱後の前記鋼材の厚み方向の温度分布を推定する温度分布推定手段を更に備えた。 Moreover, the heat processing apparatus of Claim 23 which concerns on this invention is a heat processing apparatus which is the said invention, The said arithmetic unit is temperature which estimates the temperature distribution of the thickness direction of the said steel materials after the heating by the said induction heating apparatus. A distribution estimation means is further provided.
また本発明に係る請求項24に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記温度分布推定手段は、前記誘導加熱装置内における前記鋼材の厚み方向の誘導電流分布を求めて前記鋼材内部の発生熱量を算出する発生熱量算出手段と、前記誘導加熱装置外における前記鋼材から大気への放散熱量を算出する放散熱量算出手段と、前記発生熱量と前記放散熱量とを境界条件として前記鋼材の内部への熱伝導を演算して前記鋼材の表面温度と厚み方向の内部温度とを推定する温度演算手段とを有する。 The heat treatment apparatus according to claim 24 of the present invention is the heat treatment apparatus according to the invention described above, wherein the temperature distribution estimation means obtains an induction current distribution in the thickness direction of the steel material in the induction heating apparatus. The generated heat amount calculating means for calculating the generated heat amount inside the steel material, the dissipated heat amount calculating means for calculating the dissipated heat amount from the steel material to the atmosphere outside the induction heating device, and the generated heat amount and the dissipated heat amount as boundary conditions. Temperature calculating means for calculating the heat conduction to the inside of the steel material and estimating the surface temperature of the steel material and the internal temperature in the thickness direction.
また本発明に係る請求項25に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記温度分布推定手段は、矯正装置による前記鋼材の厚み方向の温度降下量を推定する冷却温度推定手段を有する。 The heat treatment apparatus according to claim 25 of the present invention is the heat treatment apparatus according to the above-described invention, wherein the temperature distribution estimation means estimates a temperature drop amount in the thickness direction of the steel material by the straightening device. Have means.
また本発明に係る請求項26に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材を長手方向の仮想的な複数の区画に分割し、この区画単位で前記鋼材の加熱に使用された電力と前記鋼材の温度検出値との履歴を管理する加熱履歴管理手段を更に有する。 The heat treatment apparatus of claim 26 according to the present invention, in the invention a is a heat treatment device described above, the arithmetic unit divides the steel in the longitudinal direction of the plurality of virtual partitions, in this compartment units It further has a heating history management means for managing the history of the electric power used for heating the steel material and the temperature detection value of the steel material.
また本発明に係る請求項27に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、前記温度条件に適合する場合は、前記温度条件に適合する供給予定電力の内、前記鋼材の搬送速度が最大になる供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段とを有する。 Moreover, the heat treatment apparatus according to claim 27 of the present invention is the heat treatment apparatus according to the above-described invention, wherein the arithmetic unit is configured to calculate the steel material after induction heating from data including a conveyance speed of the steel material and the power to be supplied. Temperature estimation means for estimating the surface temperature of the steel and the internal temperature in the thickness direction, conformity determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition, and the temperature If the condition is not satisfied, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the conformity determination means; and if the temperature condition is satisfied, the temperature condition is A power determination unit configured to supply power to be supplied to the induction heating device as power to be supplied to the induction heating device, which is the maximum supply speed of the steel material among the suitable power supply to be supplied
また本発明に係る請求項28に記載の熱処理装置は、上記記載の発明である熱処理装置において、前記演算装置は、前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、前記温度条件に適合する場合は、その演算に用いられた供給予定電力に基づいて、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力量判定手段と、前記電力条件に適合する場合は、前記搬送速度を増加した新たな搬送速度を用いて前記温度推定手段、前記適合判定手段、前記温度条件判定処理手段、前記電力量判定手段を前記温度条件に適合しなくなるまで繰り返して実行し、前記温度条件と前記電力条件に適合する最終の演算に用いられた搬送速度を新たな搬送速度として獲得する搬送速度演算手段と、前記電力条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する電力条件判定処理手段とを有する。 Further, the heat treatment apparatus according to claim 28 according to the present invention is the heat treatment apparatus according to the above-described invention, wherein the arithmetic unit is configured to calculate the steel material after induction heating from data including a conveyance speed of the steel material and the power to be supplied. Temperature estimation means for estimating the surface temperature of the steel and the internal temperature in the thickness direction, conformity determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition, and the temperature If the condition is not met, use the temperature condition determination processing means for correcting the scheduled power supply and executing the temperature estimation means and the suitability determination means repeatedly; Based on the supplied power to be supplied, it is determined whether or not the total power amount of each induction heating device used for heating the steel material meets a power condition that is equal to or less than a predetermined value. A power amount determination unit that, if it conforms to the power condition, the temperature estimating means uses the new conveying speed increases the transport speed, the adaptation judgment unit, the temperature condition determination processing unit, wherein the power amount determination repeatedly running means until no conform to the temperature condition, the conveying speed calculating means for acquiring the transport speed used for matching the final operation to the power condition and the temperature condition as the new transport speed, the power If the condition is not met, the apparatus has power condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the suitability determination means .
また本発明に係る請求項29に記載の熱処理装置は、鋼材の圧延ライン上に設置され、圧延された前記鋼材を急速に冷却する加速冷却装置の後段に配された複数台の誘導加熱装置と、鋼材の圧延ライン上で、前記加速冷却装置と前記複数台の誘導加熱装置との中間に設置された前記鋼材を矯正するための矯正装置と、前記圧延ライン上に設置され前記鋼材の温度を検出する少なくとも1つの温度検出器と、前記鋼材のサイズと、前記鋼材の搬送速度と、前記鋼材の加熱目標温度と、前記誘導加熱装置の前段における前記鋼材の予定温度とに基づいて、前記誘導加熱装置に供給する第1の供給予定電力を演算する第1の演算装置と、前記鋼材のサイズと、前記鋼材の搬送速度と、前記鋼材の加熱目標温度と、前記誘導加熱装置の前段における前記鋼材の前記温度検出器で測定した実測温度とに基づいて、前記誘導加熱装置に供給する第2の供給予定電力を演算する第2の演算装置と、前記鋼材の予定温度と前記鋼材の実測温度との差が所定の範囲内にあれば前記第1の供給予定電力を供給予定電力として選択し、前記鋼材の予定温度と前記鋼材の実測温度との差が所定の範囲内になければ前記第2の供給予定電力を供給予定電力として選択する電力選択装置と、前記電力選択装置により選択された供給予定電力を前記誘導加熱装置に供給する電源装置とを有し、前記第1及び第2の演算装置は、前記誘導加熱装置による加熱中の前記鋼材の表面温度が第1の目標温度以下で、加熱終了時の鋼材厚み方向内部の所定位置における温度と第2の目標温度との差が所定範囲内になるように加熱するために前記誘導加熱装置に供給する供給予定電力、または前記誘導加熱装置による加熱終了時の前記鋼材の表面温度が第3の目標温度以上となり、加熱中の鋼材厚み方向内部の所定位置における温度が第4の目標温度以下となるように加熱するために前記誘導加熱装置に供給する供給予定電力を演算する。 Moreover, the heat treatment apparatus according to claim 29 according to the present invention includes a plurality of induction heating apparatuses installed on a steel material rolling line and arranged at a subsequent stage of an accelerated cooling apparatus that rapidly cools the rolled steel material. A straightening device for straightening the steel material installed between the accelerated cooling device and the plurality of induction heating devices on the steel material rolling line; and a temperature of the steel material installed on the rolling line. The induction based on at least one temperature detector to be detected, the size of the steel material, the conveying speed of the steel material, the target heating temperature of the steel material, and the expected temperature of the steel material in the previous stage of the induction heating device. A first computing device that computes a first scheduled power to be supplied to the heating device, a size of the steel material, a conveyance speed of the steel material, a heating target temperature of the steel material, and a preceding stage of the induction heating device; Based on the measured temperature measured by the temperature detector of the steel, the induction and the second arithmetic device for calculating a second supply scheduled power supplied to the heating device, the measured temperature of the predetermined temperature and the steel of the steel The first scheduled power supply is selected as the scheduled power supply, and if the difference between the planned temperature of the steel material and the measured temperature of the steel material is not within the predetermined range, the first scheduled power supply is selected. A power selection device that selects the scheduled supply power of 2 as the planned supply power, and a power supply device that supplies the planned supply power selected by the power selection device to the induction heating device, the first and second The arithmetic device is such that the surface temperature of the steel material being heated by the induction heating device is equal to or lower than a first target temperature, and the difference between the temperature at a predetermined position inside the steel material thickness direction at the end of heating and the second target temperature is predetermined. Add to be within range To be supplied to the induction heating device or the surface temperature of the steel material at the end of heating by the induction heating device is equal to or higher than a third target temperature, and the temperature at a predetermined position inside the thickness direction of the steel material being heated. Is calculated to supply power to be supplied to the induction heating device in order to heat so that the temperature becomes equal to or lower than the fourth target temperature.
また本発明に係る請求項30に記載の鋼材の製造方法は、上記記載の発明である熱処理装置を用いて、熱処理を行うことによって製造する。 A method for manufacturing a steel material according to a thirty-third aspect of the present invention is manufactured by performing a heat treatment using the heat treatment apparatus according to the above-described invention.
本発明によれば、鋼材の表面温度、内部温度を精度よく目標に一致させ、鋼材が目的の性質をもつような熱処理を行うことができる。また、鋼板長手方向で均一な温度分布を付与することが可能となる。さらに、電力の最小化、搬送速度の最大化を図ることにより、経済的かつ高効率の熱処理を行うことが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the surface temperature of steel materials and internal temperature can be matched with a target accurately, and the heat processing which a steel material has the target property can be performed. Moreover, it becomes possible to provide a uniform temperature distribution in the longitudinal direction of the steel sheet. Furthermore, economical and highly efficient heat treatment can be performed by minimizing electric power and maximizing the conveyance speed.
一般に、鋼材は加熱炉で1200℃前後に加熱された後、圧延機により所定の寸法に熱間圧延される。圧延後、強度、靭性を向上させるために、加速冷却装置によって急速冷却される場合が増えている。急速冷却された鋼板は、必要に応じて、ガス熱処理炉で焼き戻し熱処理された後、切断され出荷される。 In general, a steel material is heated to around 1200 ° C. in a heating furnace, and then hot-rolled to a predetermined size by a rolling mill. In order to improve strength and toughness after rolling, cases of rapid cooling by an accelerated cooling device are increasing. The rapidly cooled steel sheet is tempered and heat-treated in a gas heat treatment furnace as necessary, and then cut and shipped.
図1は、本発明が適用される鋼材の製造ラインの概略構成を示す側面図である。この鋼材製造ラインは、鋼材1を加熱する加熱炉2、粗圧延・仕上げ圧延を行う圧延機3、加速冷却装置4、矯正装置5、誘導加熱装置6及び鋼材1の温度を測定する温度検出器7で構成されている。
FIG. 1 is a side view showing a schematic configuration of a steel material production line to which the present invention is applied. This steel material production line includes a
この鋼材製造ラインでは、圧延過程と冷却過程の後に、矯正装置5を用いて鋼材1の反りや曲がりを矯正した後、ライン上に設置された誘導加熱装置6で焼き戻し処理を行う。
In this steel material production line, after the rolling process and the cooling process, the
この鋼材製造ラインでは、従来のオフラインに設置されたガス燃焼炉による熱処理の代わりに、ライン上に設置された誘導加熱装置6を用いて熱処理する。従って、オンラインで焼き入れ処理後に焼き戻し処理を行うことができるため、能率を飛躍的に向上させることができる。また、誘導加熱装置6を使用することにより、ガス燃焼炉を使用した場合に比べて加熱温度の精度を上げることができる。従って、厚み方向の温度分布をも精度良く制御することが可能となる。
In this steel material production line, heat treatment is performed using an
誘導加熱装置6は、鋼材1を所定の温度に加熱できる能力を有することが必須である。誘導加熱装置6を用いて圧延ライン上での熱処理を行う場合、誘導加熱装置6の搬送速度制約により熱処理能率が圧延能率に劣り、結果的に生産性が阻害される場合が生じる。そこで、搬送速度を上げるためには誘導加熱装置6の台数を増やす必要があるが、設備が大掛かりになり、設備コストと設置スペースのコストが増えるとともに、消費電力も大きくなり、運転コストも増えて、実機への適用は困難となる。そこで,本願発明では、誘導加熱装置6が少ない台数でも、鋼材1を複数回往復させて加熱することで、圧延能率に劣らず、生産性を阻害しないとともに、コスト抑制を実現する加熱方法を行う。
It is essential that the
この場合、圧延を含めた鋼材製造ラインの能率を悪化させることを避けることのみならず、鋼材1の温度制御精度を向上する必要がある。従って、往復回数(パス数)と搬送速度を適切に選択することが必要である。
In this case, it is necessary not only to avoid deteriorating the efficiency of the steel material production line including rolling, but also to improve the temperature control accuracy of the
また、加熱方法には、対象となる鋼材1によって表層加熱と均一加熱がある。
In addition, the heating method includes surface heating and uniform heating depending on the
どちらの場合にも、鋼材1の表面温度と内部温度をそれぞれ別の目標温度に加熱する。内部温度とは、板厚方向の平均温度(平均温度)の場合もあるし、板厚中心部の温度(中心温度)の場合や、板表面から任意の深さ(たとえば、板厚1/3、1/4深さ)等の場合がある。
In either case, the surface temperature and the internal temperature of the
表層加熱の場合は、加熱終了時の表面温度を目標温度以上に加熱を行う。その場合に、加熱過程中の内部温度が上限温度を超えないように加熱を行う。このような表層加熱を行うことにより、表面の硬度を内部と同じにでき、パイプライン等の用途での問題を回避できるとともに、内部温度の過度の上昇による材質劣化を抑制することができる。 In the case of surface layer heating, the surface temperature at the end of heating is heated to a target temperature or higher. In that case, heating is performed so that the internal temperature during the heating process does not exceed the upper limit temperature. By performing such surface heating, the hardness of the surface can be made the same as the inside, problems in applications such as pipelines can be avoided, and material deterioration due to an excessive increase in internal temperature can be suppressed.
均一加熱の場合は、加熱過程中の表面温度が所定の値(例えば、Ac1変態点)を超えないようにしながら、加熱終了時に鋼材全体(内部)の温度が目標温度範囲になるように加熱を行う。このような均一加熱により、所望の特性を確保し、同一部材での品質ばらつきを抑えることを実現するとともに、表層過加熱による材質変化を抑制することができる。 In the case of uniform heating, heating is performed so that the temperature of the entire steel material (inside) reaches the target temperature range at the end of heating, while preventing the surface temperature during the heating process from exceeding a predetermined value (for example, the Ac1 transformation point). Do. By such uniform heating, it is possible to ensure desired characteristics and suppress quality variations among the same members, and to suppress material changes due to surface overheating.
表層加熱を行うためには、誘導加熱装置6からの加熱された表面から内部への熱伝達や表面からの放熱により、表面と内部の温度が均一になる前に、表面を目標温度に加熱することが必要である。逆に、均一加熱を行うためには、誘導加熱装置6を複数台用意して加熱過程と冷却過程を繰り返しながら徐々に加熱をする必要がある。たとえば、パス数を複数回として鋼材を誘導加熱装置内を通過させた後に、反対方向に搬送させて再度加熱する工程を指定パス数回分繰り返す。このとき、誘導加熱装置内を通過している間は表面付近が表皮効果により加熱されて、誘導加熱装置6を出た後、反転するまでは冷却過程となって表面からの放熱と内部への伝熱によって、表面と内部の温度が均一になっていく。
In order to perform surface layer heating, the surface is heated to a target temperature before the surface and the internal temperature become uniform by heat transfer from the heated surface to the inside from the
本願発明では、表層加熱、均一加熱ともに、A.鋼材内部の誘導加熱電流分布モデル、B.熱伝導方程式に基く伝熱モデル、C.大気との輻射と対流に基く熱伝達モデル、D.加熱効率を推定し次材に反映させる学習機能を備えた効率推定モデルを作成して、鋼材内部の温度変化をモデル化し、熱処理方法の精度を向上させた。 In the present invention, both surface heating and uniform heating are performed in accordance with A. Steel inside the induction heating current distribution model, B. A heat transfer model based on the heat conduction equation , C.I. A heat transfer model based on radiation and convection with the atmosphere ; An efficiency estimation model with a learning function that estimates the heating efficiency and reflects it in the next material was created, the temperature change inside the steel material was modeled, and the accuracy of the heat treatment method was improved.
なお、本願発明では、熱処理精度を向上させるため、3つのバリエーションの熱処理方法を用いている。以下の実施の形態の説明において、適宜この3つの熱処理方法の内容に言及する。 In the present invention, three variations of heat treatment methods are used in order to improve heat treatment accuracy. In the following description of the embodiment, the contents of these three heat treatment methods will be referred to as appropriate.
なお、第1の熱処理方法は請求項1〜請求項16の発明に対応し、第2の熱処理方法は請求項17〜請求項28の発明に対応し、第3の熱処理方法は請求項29の発明に対応している。
The first heat treatment method corresponds to the invention of
(1)第1の熱処理方法
上記演算を行うにあたって、同じ製造条件でも、鋼材一つ一つは、加速冷却後の鋼材温度が操業条件により異なる。このため、加速冷却後、あるいは加熱前の鋼材温度を鋼材の一つ一つに対して実測し、その値により加熱電力、搬送速度などを、オンラインで求めて決定し、加熱温度を目標温度に一致させる。第1の熱処理方法では、この方式を用いて精度をより向上させるような仕組みを構築する。
(1) First heat treatment method When performing the above calculation, the steel material temperature after accelerated cooling differs depending on the operation conditions under the same manufacturing conditions. For this reason, the steel material temperature after accelerated cooling or before heating is measured for each steel material, and the heating power, conveyance speed, etc. are determined online based on the measured values, and the heating temperature is set to the target temperature. Match. In the first heat treatment method, a mechanism for further improving accuracy is constructed using this method.
第1の熱処理方法では、下記点に特徴を有している。 The first heat treatment method has the following features.
(i)鋼材の製造条件にもとづき、圧延や加速冷却等を行った後、誘導加熱装置の入り口
まで鋼材を搬送する。
(i) After rolling or accelerating cooling based on the manufacturing conditions of the steel material, the steel material is conveyed to the entrance of the induction heating device.
(ii)加熱前の鋼材温度を実測し、その値により誘導加熱装置6に与える加熱用電力、鋼
材の搬送速度などを決定する
さらに、実用化にあたっては次の内容を考慮する。
(ii) The steel material temperature before heating is measured, and the heating power to be given to the
(iii)消費電力は、なるべく小さいほうが望ましい。 (iii) The power consumption should be as small as possible.
(iv)操業を阻害しない搬送速度で熱処理を行うことが必要となる。 (iv) It is necessary to perform heat treatment at a conveyance speed that does not impede operation.
(2)第2の熱処理方法
上記演算を行うにあたって、演算処理装置等の処理能力が十分でなく、計算負荷、すなわち計算処理時間がかかりすぎる場合がある。そのような場合には、加熱開始直前に鋼材の温度を計測したのち、演算処理をすることは、熱処理能率が悪くなり、他のオンライン処理である圧延能率に劣ることになり、オンライン全体の能率を低下させる問題が発生する。これを回避するために、第2の熱処理方法では、事前に加熱電力、搬送速度などを、決定するような仕組みを構築する。
(2) Second heat treatment method When performing the above calculation, the processing capability of the arithmetic processing unit or the like may not be sufficient, and it may take too much calculation load, that is, calculation processing time. In such a case, measuring the temperature of the steel material immediately before the start of heating and then performing the calculation process results in poor heat treatment efficiency and inferior rolling efficiency, which is another online process, and the overall online efficiency. The problem of lowering occurs. In order to avoid this, in the second heat treatment method, a mechanism for determining heating power, conveyance speed, and the like in advance is constructed.
第2の熱処理方法では、下記点に特徴を有している。 The second heat treatment method has the following features.
(i)鋼材の圧延や冷却条件等の誘導加熱装置までの製造条件から、鋼材の誘導加熱の開始温度を推定する。 (i) The starting temperature of induction heating of the steel material is estimated from the manufacturing conditions up to the induction heating device such as rolling and cooling conditions of the steel material.
(ii)加熱温度の目標、制限を満たす、電力と搬送速度を求める。 (ii) Obtain electric power and conveyance speed that satisfy the target and limit of the heating temperature.
さらに、実用化にあたっては次の内容を考慮する。 Furthermore, the following contents are taken into consideration for practical use.
(iii)消費電力は、なるべく小さいほうが望ましい。 (iii) The power consumption should be as small as possible.
(iv)操業を阻害しない搬送速度で熱処理を行うことが必要となる。 (iv) It is necessary to perform heat treatment at a conveyance speed that does not impede operation.
(3)第3の熱処理方法
上記演算を行うにあたって、演算処理装置等の処理能力が十分でなく、計算負荷、すなわち計算処理時間がかかりすぎる場合がある。そのような場合には、加熱開始直前に鋼材の温度を計測したのち、演算処理をすることは、演算処理に時間がかかりすぎるために、熱処理能率が悪くなり、他のオンライン処理である圧延能率に劣ることになり、オンライン全体の能率を低下させる問題が発生する。これを回避するために、事前に加熱電力、搬送速度などを、決定するような仕組みを構築すればよいが、そのためには加熱処理直前の鋼材温度を計測しなくとも、鋼材の圧延や冷却条件等の誘導加熱装置までの製造条件から、鋼材の誘導加熱の開始温度を推定しておく必要がある。
(3) Third heat treatment method In performing the above calculation, the processing capability of the arithmetic processing unit or the like may not be sufficient, and it may take too much calculation load, that is, calculation processing time. In such a case, measuring the temperature of the steel material immediately before the start of heating and then performing the calculation process takes too much time for the calculation process, so the heat treatment efficiency deteriorates, and the rolling efficiency which is another online process Will cause problems that reduce overall online efficiency. In order to avoid this, it is sufficient to build a mechanism that determines the heating power, conveyance speed, etc. in advance, but for that purpose, it is not necessary to measure the steel temperature immediately before the heat treatment, and the rolling and cooling conditions of the steel material. It is necessary to estimate the starting temperature of the induction heating of the steel material from the manufacturing conditions up to the induction heating device.
しかし、同じ製造条件でも、鋼材一つ一つは、加速冷却後の鋼材温度が操業条件により異なる場合がある。このため、電力をテーブル等であらかじめ用意しておくよりは、加速冷却後、あるいは加熱前の鋼材温度を鋼材の一つ一つに対して実測し、その値により加熱電力、搬送速度などを、オンラインで求めて決定し、加熱温度を目標温度に一致させるための精度をより向上させるような仕組みを構築する必要がある。したがって、第3の熱処理方法では、より効率的に、より精度よく演算を実行するために、事前にあらかじめ温度を予測しておき、予測温度は実測温度と異なる場合には補正するという手順を組み合せた仕組みを構築する。 However, even under the same manufacturing conditions, the temperature of each steel material after accelerated cooling may vary depending on the operating conditions. For this reason, rather than preparing electric power in advance with a table or the like, the steel material temperature after accelerated cooling or before heating is actually measured for each steel material, and the heating power, conveyance speed, etc., depending on the value, It is necessary to construct a mechanism that improves the accuracy for determining and determining the heating temperature online to match the heating temperature with the target temperature. Therefore, in the third heat treatment method, in order to execute the calculation more efficiently and more accurately, the temperature is predicted in advance, and the predicted temperature is corrected when it differs from the actually measured temperature. Build a mechanism.
第3の熱処理方法では、下記点に特徴を有している。 The third heat treatment method has the following features.
(i)鋼材の圧延や冷却条件等の誘導加熱装置までの製造条件から、鋼材の誘導加熱の開始温度を推定する。 (i) The starting temperature of induction heating of the steel material is estimated from the manufacturing conditions up to the induction heating device such as rolling and cooling conditions of the steel material.
(ii)加熱温度の目標、制限を満たす、電力と搬送速度を求める。 (ii) Obtain electric power and conveyance speed that satisfy the target and limit of the heating temperature.
(iii)加熱前の鋼材温度を実測し、事前に予測した温度と加熱直前に実測した温度との差に基づき、誘導加熱装置6に与える加熱用電力、鋼材の搬送速度などを修正し、決定する。
(iii) Measure the steel material temperature before heating, and correct and determine the heating power to be applied to the
さらに、実用化にあたっては次の点を考慮する。 Furthermore, the following points are taken into consideration for practical use.
(iv)消費電力は、なるべく小さいほうが望ましい。 (iv) The power consumption should be as small as possible.
(v)操業を阻害しない搬送速度で熱処理を行うことが必要となる。 (v) It is necessary to perform heat treatment at a conveyance speed that does not impede operation.
本発明の実施の形態に係る熱処理装置は以下の機能を備えている。 The heat treatment apparatus according to the embodiment of the present invention has the following functions.
1)誘導加熱時の鋼材1の内部温度を精度良く推定するため、厚み方向の差分式を採用して、鋼材温度、電力により透磁率と浸透深さを推定し、鋼材1の厚み方向の誘導電流分布を求め、発熱量を推定する。
1) In order to accurately estimate the internal temperature of the
2)加熱電力設定を求めるために、温度条件が複数あり、操作量(電力)も複数あり、モデルが非線形であるため、非線形計画法で算出する。その結果、表面温度と内部温度は独立変数ではないが、複数台加熱により、ある程度独立と見なせ、別々に目標設定をすることが可能とした。 2) In order to obtain the heating power setting, since there are a plurality of temperature conditions, a plurality of manipulated variables (power), and the model is nonlinear, the calculation is performed by nonlinear programming. As a result, the surface temperature and the internal temperature are not independent variables, but they can be regarded as being independent to some extent by heating multiple units, making it possible to set targets separately.
3)非線形計画法の目的関数を消費電力の和として、温度条件を満たす中で消費電力が最小となる電力を求める。 3) Using the objective function of nonlinear programming as the sum of power consumption, find the power that minimizes power consumption while satisfying the temperature condition.
4)ある速度で電力設定を求めたのち、加熱可能な範囲で、搬送速度を変更しながら繰り返し計算を行い、温度条件を満たす中で、操業を阻害しない搬送速度を求める。 4) After obtaining the power setting at a certain speed, calculation is repeated while changing the transport speed within a heatable range, and the transport speed that does not hinder the operation is obtained while satisfying the temperature condition.
5)第1の熱処理方法では、温度制御の精度をより向上させるために、加速冷却終了時、あるいは、誘導加熱処理直前に温度計で測定した鋼材の実測温度により電力と速度を計算する。 5) In the first heat treatment method, in order to further improve the accuracy of temperature control, the power and speed are calculated from the measured temperature of the steel material measured with a thermometer at the end of accelerated cooling or immediately before induction heating treatment.
6)第2の熱処理方法では、オンラインで電力と速度を求めるために、初期設定において圧延や鋼材の冷却条件等の誘導加熱装置までの製造条件から、鋼材の誘導加熱の開始温度を推定し、事前に電力と搬送速度の設定をする枠組みを用意する。 6) In the second heat treatment method, in order to obtain the power and speed online, the starting temperature of induction heating of the steel material is estimated from the manufacturing conditions up to the induction heating device such as rolling and cooling conditions of the steel material in the initial setting, Prepare a framework for setting power and transport speed in advance.
7)第3の熱処理方法では、オンラインで電力と速度を求めるために、初期設定において圧延や鋼材の冷却条件等の誘導加熱装置までの製造条件から、鋼材の誘導加熱の開始温度を推定し、事前に電力設定をし、さらに、加熱温度制御の精度を向上させるために、加速冷却終了時、あるいは、誘導加熱処理直前に温度計で測定した鋼材の実測温度により電力と速度の修正計算をする枠組みを用意する。 7) In the third heat treatment method, in order to obtain the power and speed online, the starting temperature of induction heating of the steel material is estimated from the manufacturing conditions up to the induction heating device such as rolling and cooling of the steel material in the initial setting, Power is set in advance, and in order to improve the accuracy of heating temperature control, correction calculation of power and speed is performed based on the measured temperature of the steel material measured with a thermometer at the end of accelerated cooling or immediately before induction heating treatment Prepare a framework.
以下に具体的な処理内容を記載する。 Specific processing contents are described below.
(1)設定計算機能
鋼材1を加熱するための搬送速度及び電力は以下の3つの処理、A.事前処理方式、B.実測処理方式、C.事前計算後、実測修正する組合せ方式の内のいずれかの処理によって決定される。なお、上述の第1の熱処理方式はB.実測処理方式を採用しており、上述の第2の熱処理方式は、A.事前処理方式を採用しており、上述の第3の熱処理方式はC.事前計算後、実測修正する組合せ方式を採用している。
(1) Setting calculation function The conveyance speed and electric power for heating the
A.事前処理方式
予め、鋼材1のサイズと誘導加熱装置に至る前の加熱炉、圧延機、冷却装置、矯正機での操業条件や過去の実績等に基づいて設定されている鋼材1の加熱開始予定温度と加熱目標温度とから、搬送速度とパス数を決め、その値をもとに加熱に必要な電力を計算する。鋼材1は、求めた搬送速度で搬送されつつ、誘導加熱装置6によって設定した電力で加熱される。鋼材1の温度を測定しなくとも、精度良く推定温度を求めることによって、計算負荷の膨大な処理を事前に実行することで熱処理に演算時間を含むことなく能率よく処理が可能となる。
A. Pre-treatment method The heating start schedule of the
B.実測処理方式
鋼材1の加熱開始前温度を実測し、実測された加熱開始前温度と、搬送速度とに基づいて加熱に必要な電力を計算する。鋼材1の実測温度に基いて、計算を行うことで精度のよい電力値を算出することができる。
B. Measurement processing method The temperature before the heating start of the
C.事前計算後、実測し修正する組合せ方式
上記A、Bを組合わせた方式である。前述したように、製造条件に基づいて、事前に加熱用電力と搬送速度をあらかじめ計算しておき、さらに冷却完了後、あるいは誘導加熱装置直前に設定された温度計によって鋼材1の加熱開始前温度を実測する。そして、実測した温度が加熱開始予定温度に近い場合は、a.事前処理方式にて計算した搬送速度と電力で加熱を行う。実測した温度が予定温度と異なる場合は、b.実測処理方式にて求めた搬送速度と電力にて修正し、加熱を行う。この方式によれば、精度のよい演算を短時間で処理をすることが可能となる。
C. Combination method for measuring and correcting after pre-calculation This is a method combining A and B above. As described above, the heating power and the conveyance speed are calculated in advance based on the manufacturing conditions, and the temperature before the heating of the
(2)トラッキング処理機能
鋼材1を長手方向の仮想的な部分に分割し、設定計算機能で算出した加熱電力をその仮想的な部分ごとに設定し、電力供給装置において鋼材1の搬送に応じて出力する。これによって、鋼材1の長手方向の温度不均一を解消でき、鋼材1の全ての位置で材質が同一のものができる。
(2) Tracking processing function The
(3)加熱電力補正機能
誘導加熱装置6の前後に設けた温度検出器7で鋼材1の温度を測定する。その実測温度により、加熱電力を補正する。FF(フィードフォワード)制御とFB(フィードバック)制御が設けられている。
(3) Heating power correction function The temperature of the
(4)モデル学習機能
加熱電力を求めるための鋼材の伝熱モデル、誘導加熱による効率推定モデル、矯正装置での温度降下モデル等を実測した温度で修正する。これは、上記(1)〜(3)で処理した結果として得られる温度を測定して、目標温度との温度差を比較して、その温度差がなくなるように、次の鋼材1での処理から演算処理に補正を行い、より精度向上を図ろうとするものである。
(4) Model learning function A steel material heat transfer model for obtaining heating power, an efficiency estimation model by induction heating, a temperature drop model in a straightening device, and the like are corrected at an actually measured temperature. This is because the temperature obtained as a result of the treatment in the above (1) to (3) is measured, the temperature difference with the target temperature is compared, and the treatment with the
以下、これらの機能について説明する。 Hereinafter, these functions will be described.
I.設定計算機能
まず、鋼材1の加熱開始温度、搬送速度が与えられた場合の電力の計算方法について説明する。
I. Setting calculation function First, the calculation method of the electric power when the heating start temperature and conveyance speed of the
図2は、本発明に係る第1の実施の形態の熱処理装置の概略構成を示す側面図である。 FIG. 2 is a side view showing a schematic configuration of the heat treatment apparatus according to the first embodiment of the present invention.
鋼材1は、誘導加熱装置6の中を移動しながら加熱される。それぞれの誘導加熱装置6の入り口には鋼材の温度を検出する温度検出器7が備えられている。上記温度検出器7で得られた温度信号は、制御装置10に入力される。制御装置10は、鋼材1の実測温度若しくは加熱開始の予定温度と搬送速度とに基づいて誘導加熱装置6に供給する電力を計算し、その値を電力供給装置12に出力する。
The
なお、第1〜第3の熱処理方式によって、電力の計算方法が異なる。 Note that the power calculation method differs depending on the first to third heat treatment methods.
第1の熱処理方式では、前述の温度のうち、加熱開始の実測温度を使用して演算を行う。電力供給装置12は、供給電力が制御装置6から与えられた値になるように誘導加熱装置6の出力を制御する。
In the first heat treatment method, calculation is performed using the actually measured temperature at the start of heating among the aforementioned temperatures. The
第2の熱処理方式では、前述の温度のうち、加熱開始の予定温度を使用して演算を行う。電力供給装置12は、供給電力が制御装置6から与えられた値になるように誘導加熱装置6の出力を制御する。
In the second heat treatment method, calculation is performed using the expected temperature at the start of heating among the above-mentioned temperatures. The
第3の熱処理方式では、前述の温度のうち、加熱開始の予定温度を使用して、事前に計算しておき、実測温度を使用して、予定温度との温度差に基き、補正、修正演算を行う。電力供給装置12は、供給電力が制御装置6から与えられた値になるように誘導加熱装置6の出力を制御する。
In the third heat treatment method, among the above-mentioned temperatures, the estimated temperature at the start of heating is used for calculation in advance, and the measured temperature is used for correction and correction calculation based on the temperature difference from the estimated temperature. I do. The
誘導加熱装置6で鋼材1を加熱すると、誘導電流は鋼材表面に集中して流れるため、主に表面が加熱される。そして、鋼材内部は、主として表面からの熱伝達で加熱される。
When the
そこで、誘導加熱装置6で加熱を行う場合の鋼材内部の誘導電流分布を求める。鋼材内部の電流分布は、浸透深さで表現される。浸透深さは周波数、比透磁率で異なり、式(1)で表される。
浸透深さδが大きい場合には誘導電流が鋼材内部まで流れる。浸透深δが小さい場合には、誘導電流が表面に集中するため加熱も表面に集中し、鋼材内部は表面からの熱伝導により加熱される。したがって、同じ電力を投入しても、浸透深さが異なれば表面の加熱温度は変わってくる。そこで、式(1)に基づいて浸透深さを求めて鋼材内部での電流密度分布を決定する。この電流分布から、誘導加熱装置6への加熱電力を決定する。
When the penetration depth δ is large, an induced current flows to the inside of the steel material. When the penetration depth δ is small, the induction current is concentrated on the surface, so that the heating is also concentrated on the surface, and the inside of the steel material is heated by heat conduction from the surface. Therefore, even if the same power is applied, the surface heating temperature changes if the penetration depth is different. Therefore, the penetration depth is obtained based on the formula (1) to determine the current density distribution inside the steel material. From this current distribution, the heating power to the
一般的に鋼材表面からの距離zと、その位置での誘導電流I(z)の関係は式(2)で表される。αは定数である。
よって、鋼材表面から距離zの位置での消費電力の比は式(3)で表される。
すなわち、式(3)は誘導加熱の際の電力分布を表わしていると考えることができる。 That is, equation (3) can be considered to represent the power distribution during induction heating.
次に、誘導加熱装置6を用いた加熱中における鋼材の温度変化を数式で表す。熱伝導方程式の差分式から、式(4)〜(6)を得る。
式(4)から(6)を書き換えると、鋼材を厚み方向に三分割した温度差分式は式(7)になる。
式(4)のQ1は境界条件である大気との熱伝達と、加熱装置から供給される熱量からなり、式(8)で表わされる。
ここで、式(9)をxi,jについて線形化する。鋼材の温度をx0とし、x0を中心に式(9)にあるxi,j 4の項をテーラ展開の一次の項までを使用して線形近似する。1次までのテーラ展開は式(11)で表される。
式(11)を利用して、式(12)を得る
よって、式(9)は、式(14)となる。
式(14)を用い、式(7)を整理して式(15)を得る。
式(15)において、行列Eの逆行列を左側から掛けることにより、式(20)を得る。
である。 It is.
式(20)が鋼材1の温度変化の基本式となる。尚、この式でub=0とすると、大気による冷却過程時の温度変化を表す式となる。
Equation (20) is the basic equation for the temperature change of the
次に、誘導加熱装置6の手前に設置した温度検出器7の位置から、誘導加熱装置出側の温度検出器7の位置までの温度変化を表す式を作成する。
Next, an equation representing a temperature change from the position of the
図3は、温度変化を表す式に用いられる記号を表す図である。 FIG. 3 is a diagram illustrating symbols used in a formula representing a temperature change.
誘導加熱装置6の手前の温度検出器7の位置から、誘導加熱装置6の出側の温度検出器位置までのそれぞれの誘導加熱装置6の長さをli、誘導加熱装置同士の間隔をsi、それぞれの誘導加熱装置6への投入電力をuiと表す。そして、鋼材1の誘導加熱装置入り側温度をx0、誘導加熱装置出側温度をx* Nで表し、それぞれの誘導加熱装置前後の温度をxi、x’iと表す。
The length of each
誘導加熱装置の長さをli、間隔をsi、搬送速度をvとして差分方程式での刻み数を求める。 The number of steps in the difference equation is obtained by setting the length of the induction heating device to li, the interval to si, and the conveyance speed to v.
ni=li/(v×dt) …(24)
mi=si/(v×dt) …(25)
ただし、dt:刻み時間、ni、mi:刻み数
すると鋼材2が誘導加熱装置によって順次加熱されていくときの各位置の温度は式(26)で表される。
mi = si / (v × dt) (25)
However, dt: step time, ni, mi: number of steps Then, the temperature at each position when the
とおく。 far.
誘導加熱装置間の温度変化は、たとえばx0―x1間の温度変化は、式(27)で表わされる。
また、一番目の誘導加熱装置で加熱された結果の温度、即ち誘導加熱装置の出側温度x’1は、式(28)で表される。
式(28)に式(27)を代入して、式(29)を得る。
この計算を次々と繰り返していくと、N台目誘導加熱装置の出側温度計位置での鋼材1の温度分布は式(30)のように表される。
これを整理すると式(31)、(32)のように、u1、…、uNの一次式になる。
式(32)を使用することによって、加熱電力u1、…、uNにより、誘導加熱後の温度分布x1、…、x*を計算で求めることができる。 By using equation (32), heating power u 1, ..., a u N, the temperature distribution after induction heating x1, ..., can be determined by calculating the x *.
また、被加熱材の温度範囲によっては、比熱や熱伝導率の温度変化により加熱温度が影響される場合がある。図23に、被加熱材の比熱が温度によって変化する例を示し、図24に、被加熱材の熱伝導率が温度によって変化する例を示す。このような場合には、比熱cpや熱伝導率λや温度をパラメータとする変数として扱い、式(4)〜(7)を用いて差分計算を行うことにより、加熱後の鋼材の温度分布x1、…、x*を求めることができる。 In addition, depending on the temperature range of the material to be heated, the heating temperature may be affected by the temperature change of specific heat or thermal conductivity. FIG. 23 shows an example in which the specific heat of the heated material changes with temperature, and FIG. 24 shows an example in which the thermal conductivity of the heated material changes with temperature. In such a case, the specific heat cp, the thermal conductivity λ, and the temperature are treated as variables, and the difference calculation is performed using equations (4) to (7), whereby the temperature distribution x1 of the steel material after heating is performed. , ..., x * can be obtained.
図25は、被加熱材の温度を推定するための手順を示すフロー図である。 FIG. 25 is a flowchart showing a procedure for estimating the temperature of the material to be heated.
式(4)〜(7)の差分計算により、一定時間dt毎に温度計算を行い、加熱開始から加熱終了時までの温度推定を行う。この際、被加熱材は与えられた速度で移動しながら複数の誘導加熱装置による加熱を受ける。この条件を組み込んで被加熱材の温度変化を逐次計算する。そして、鋼材が誘導加熱装置を抜けたところで計算終了となる。 By calculating the difference between the equations (4) to (7), the temperature is calculated every certain time dt, and the temperature is estimated from the start of heating to the end of heating. At this time, the material to be heated is heated by a plurality of induction heating devices while moving at a given speed. By incorporating this condition, the temperature change of the material to be heated is sequentially calculated. The calculation ends when the steel material passes through the induction heating device.
なお、本計算における被加熱材の分割数を多くすると温度推定の精度は良くなるが計算時間がかかってしまい、少なくすると計算時間は短くなるが温度推定の精度が悪くなるため、被加熱材の厚みに応じて分割数を決定する。 Increasing the number of divisions of the material to be heated in this calculation increases the accuracy of temperature estimation, but it takes time to calculate.If the number is decreased, the calculation time is shortened but accuracy of temperature estimation deteriorates. The number of divisions is determined according to the thickness.
以上説明した計算方法は、制御装置10内において実現することができる。図4は、加熱電力から加熱後の鋼材温度分布を求める概略の手順を示すフロー図である。
The calculation method described above can be realized in the
ステップT1では、加熱しようとする鋼材内部における電力分布を式(3)により求める。ステップT2では、その電力分布に基づいて誘導加熱装置6から供給される熱量分布を式(8)〜(10)により求める。ステップT3では、大気への放散熱量を式(14)により求める。ステップT4では、これらの求めた結果を用いて、鋼材内部の温度変化を求めるための式(21)、(22)、(23)で表される係数を算出する。
In step T1, the power distribution inside the steel material to be heated is obtained by equation (3). In step T2, the calorie distribution supplied from the
ステップT5では、誘導加熱装置6の台数、該装置の長さ、該装置間の間隔、鋼材の搬送速度を用い、誘導加熱装置6が供給する電力から鋼材1の温度分布を求める。この際、式(27)〜(30)を適用して鋼材1の温度分布を求めても良く、また式(32)を適用して鋼材1の温度分布を求めても良い。
In step T5, the temperature distribution of the
次に、この計算方法を用いて所望の熱処理を行う方法、即ち鋼材1が目標とする温度分布となるような加熱電力を決定する手順について説明する。この手順は、上記計算手順を備えた制御装置10内において実現することができる。
Next, a method for performing a desired heat treatment using this calculation method, that is, a procedure for determining the heating power so that the
図5は、加熱電力を求める電力演算処理の概略のフローを示す図である。 FIG. 5 is a diagram showing a schematic flow of power calculation processing for obtaining heating power.
ステップS1では、適当な初期値電力u1、…、uNを決定する。ステップS2では、上記の計算手順(ステップT1〜T4)に従って誘導加熱装置出側の加熱温度分布x1、…、x*を計算する。ステップS3では、各誘導加熱装置での加熱温度と目標とする温度範囲である温度条件とを比較し、温度条件を満たしているかどうかの判定を行う。 In step S1, appropriate initial power values u 1 ,..., U N are determined. In step S2, the heating temperature distribution x1, ..., x * on the outlet side of the induction heating device is calculated according to the above calculation procedure (steps T1 to T4). In step S3, the heating temperature in each induction heating device is compared with a temperature condition that is a target temperature range, and it is determined whether the temperature condition is satisfied.
ステップS4でYesの場合、即ち、温度条件に適合していれば、その加熱電力を最終的な加熱電力として計算を終了する。ステップS4でNoの場合、即ち、適合していない場合は、新たな誘導加熱電力u1、…、uNを与えて温度計算のやり直しを行う。 In the case of Yes in step S4, that is, if the temperature condition is met, the calculation ends with the heating power as the final heating power. In the case of No in step S4, that is, when it is not suitable, new induction heating power u 1 ,..., U N are given and the temperature calculation is performed again.
以上の処理を繰り返し行うことで、誘導加熱装置出側での目標温度分布x*を与えれば、それを実現する電力u1、…、uNを求めることができる。尚、新しい加熱電力u1、…、uNを与える方法は、線形計画法、非線形計画法など一般的な方法を適用すれば良い。温度条件が実現可能であるならば、有限回の計算で解を求めることができる。 By repeatedly performing the above processing, if the target temperature distribution x * at the outlet side of the induction heating device is given, the electric power u 1 ,..., U N that realizes the target temperature distribution can be obtained. As a method for giving new heating powers u 1 ,..., U N , a general method such as linear programming or nonlinear programming may be applied. If the temperature condition is feasible, the solution can be obtained by a finite number of calculations.
本実施の形態では、任意台数の誘導加熱装置6を用いて鋼材内部の温度を計算することが可能である。したがって、熱処理ライン内の誘導加熱装置一台毎に鋼材1の内部温度を求めることも、また誘導加熱装置複数台毎に鋼材1の内部温度を求めることも可能となる。
In the present embodiment, the temperature inside the steel material can be calculated using an arbitrary number of
これにより、誘導加熱装置6を通過させる回数を複数回にして最適なパス数やパス毎に搬送速度を変更したり、パスごとに使用する誘導加熱装置6の台数を変更したりすることができる。
Thereby, the frequency | count of letting the
従って、加熱中における鋼材1の表面温度を目標表面温度以下に加熱し、加熱終了時における鋼材1の内部の所定位置の温度を目標内部温度に対して所定範囲に納まるように制御することのできる電力設定値、即ち均一加熱処理のための電力設定値を定めることができる。また、加熱中における鋼材1の表面温度を目標表面温度以上に加熱し、加熱終了時における鋼材1の内部の所定位置の温度を目標内部温度以下となるように制御することのできる電力設定値、即ち表層加熱処理のための電力設定値を定めることができる。
Therefore, the surface temperature of the
次に、第2の実施の形態の熱処理装置について説明する。本実施形態では、第1の実施形態の電力演算処理において消費電力量が最小になるような加熱電力を求める点に特徴がある。従って、それ以外の構成については第1の実施形態と同一であるため、詳細の説明を省略する。 Next, a heat treatment apparatus according to the second embodiment will be described. The present embodiment is characterized in that the heating power that minimizes the amount of power consumption is obtained in the power calculation processing of the first embodiment. Therefore, since the other configuration is the same as that of the first embodiment, detailed description thereof is omitted.
図6は、第2の実施形態に係る、加熱電力を求める電力演算処理の概略のフローを示す図である。 FIG. 6 is a diagram illustrating a schematic flow of power calculation processing for obtaining heating power according to the second embodiment.
ステップS11では、適当な初期値電力u1、…、uNを決定する。ステップS12では、ステップT1〜T4の計算手順に従って誘導加熱装置出側の加熱温度分布x1、…、x*を計算する。ステップS13では、各誘導加熱装置での加熱温度と目標とする温度範囲である温度条件とを比較し、温度条件を満たしているかどうかの判定を行う。 In step S11, appropriate initial value powers u 1 ,..., U N are determined. In step S12, the heating temperature distribution x1,..., X * on the outlet side of the induction heating device is calculated according to the calculation procedure of steps T1 to T4. In step S13, the heating temperature in each induction heating device is compared with a temperature condition that is a target temperature range, and it is determined whether the temperature condition is satisfied.
ステップS14でNoの場合、即ち、適合していない場合は、新たな誘導加熱電力u1、…、uNを与えて温度計算のやり直しを行う。ステップS14でYesの場合、即ち、温度条件に適合していれば、ステップS15では、各誘導加熱装置6での消費電力量の和である合計消費電力量を求め、合計消費電力量が最少になるかどうかの判定を行う。すなわち、誘導加熱装置6での合計消費電力量が最少になるような加熱電力を求める。
In the case of No in step S14, that is, when it is not suitable, new induction heating powers u 1 ,..., U N are given and the temperature calculation is performed again. In the case of Yes in step S14, that is, if the temperature condition is met, in step S15, the total power consumption that is the sum of the power consumption in each
ステップS16でNoの場合、即ち、合計消費電力量が所定量以下の条件に適合していない場合は、新たな誘導加熱電力を与えて温度計算のやり直しを行う。ステップS16でYesの場合、即ち、合計消費電力量が所定量以下の条件に適合していれば、その加熱電力を最終的な加熱電力として計算を終了する。 In the case of No in step S16, that is, when the total power consumption does not meet the condition equal to or less than the predetermined amount, new induction heating power is given and the temperature calculation is performed again. In the case of Yes in step S16, that is, if the total power consumption meets the condition of a predetermined amount or less, the calculation is ended with the heating power as the final heating power.
この加熱電力が最小値になるように処理する条件は式(33)で表される。
すなわち、これら条件を満たすu(i)とは、加熱工程中の全ての時点での鋼材1の表面温度が上限温度を超えず、加熱工程終了後の内部温度を内部温度目標範囲内に加熱する、均一加熱処理の電力設定のうち、最も消費電力の少ない加熱電力である。
That is, u (i) satisfying these conditions means that the surface temperature of the
また、加熱工程中の全ての時点での鋼材1の表面温度を目標表面温度以上に加熱し、加熱工程終了後の内部温度を目標内部温度以下に加熱する表層加熱処理の電力設定のうち、最も消費電力の少ない加熱電力である。
In addition, among the power settings of the surface layer heating process in which the surface temperature of the
尚、新しい加熱電力u1、…、uNを与える方法は、線形計画法、非線形計画法など一般的な方法で良く、また遺伝子アルゴリズムなどの最適化手法を適用しても良い。 Note that the new heating power u 1, ..., a method of providing a u N is linear programming, be a common method such as nonlinear programming, or may be applied optimization techniques such as genetic algorithms.
次に、第3の実施の形態の熱処理装置について説明する。本実施形態では、第2の実施形態で求める最適な加熱電力を逐次二次計画法等の制約条件付き非線形計画法を用いて処理を行う点に特徴がある。従って、それ以外の構成については第2の実施形態と同一であるため、詳細の説明を省略する。 Next, the heat processing apparatus of 3rd Embodiment is demonstrated. The present embodiment is characterized in that the optimum heating power obtained in the second embodiment is processed using a nonlinear programming method with constraints such as a sequential quadratic programming method. Accordingly, since the other configuration is the same as that of the second embodiment, detailed description thereof is omitted.
まず、第1の実施形態、第2の実施形態における鋼材1の加熱条件等を数式で表現する。
First, the heating conditions of the
目標温度に関する条件式は、式(34)、式(35)で表現される。
中心温度は加熱目標であるため等式の条件で表される。表面温度は、誘導加熱装置出側で最も高くなるため、誘導加熱装置出側の温度を用いる。また、加熱上限値であるため不等式で表される。ただし、中心温度目標においては、式(36)のように範囲を指定することも可能である。
式(34)〜式(36)に基き、表層加熱の場合には、目標温度を表面温度とし、上限温度を内部温度とするため、
表面温度条件:│Ts−Tr│<c cは定数
内部温度条件:Tu−Ti>0
但し、Ts:表面温度最大値、Tr:加熱目標温度、Tu:上限温度、Ti:内部温度最大値、v:搬送速度
一方、均一加熱の場合には、目標温度を内部温度とし、上限温度を表面温度とするため、
内部温度条件:│Ti−Tr│<c cは定数
表面温度条件:Tu−Ts>0
これらは、各誘導加熱装置6の電力を求める際の制約条件となる。さらに、誘導加熱装置6の能力にも制限があるので、これを式(37)、(38)で表して制約条件とする。
Surface temperature condition: │Ts-Tr│ <cc is a constant Internal temperature condition: Tu-Ti> 0
However, Ts: surface temperature maximum value, Tr: heating target temperature, Tu: upper limit temperature, Ti: internal temperature maximum value, v: transfer speed On the other hand, in the case of uniform heating, the target temperature is the internal temperature and the upper limit temperature is To make the surface temperature
Internal temperature condition: │Ti-Tr│ <cc is a constant Surface temperature condition: Tu-Ts> 0
These are the limiting conditions for determining the power of each
さらに、式(34)、式(35)の制約条件において、制約条件中の温度TN、T1sは、誘導加熱装置6の加熱電力u1、…、uNを用いて表すことができる。すなわち、式(32)を用いて、制約条件式(34)、(35)を加熱電力u1、…、uNで表す。
Furthermore, in the constraints of the equations (34) and (35), the temperatures T N and T 1s in the constraints can be expressed using the heating power u 1 ,..., U N of the
まず、等式の加熱条件である式(34)は式(39)、(40)で表わされる。
さらに、不等式の制約条件は、式(41)〜(44)で表すことができる。
これらより、目的関数、制約条件がすべて加熱電力u1、…、uNで表現されるため、最適化手法の逐次2次計画法を適用することができる。以上整理し直すと以下のようになる。
この問題設定を、逐次二次計画法を用いて最適化を行うと、温度条件を満たす、最少の加熱電力分布が求められる。すなわち、加熱時の表面温度、内部温度の目標を、必要最低限の電力で実現することができる。 When this problem setting is optimized using a sequential quadratic programming method, the minimum heating power distribution that satisfies the temperature condition is obtained. That is, the target of the surface temperature and the internal temperature at the time of heating can be realized with the minimum necessary power.
次に設定計算機能である搬送速度と電力の決定方法について説明する。 Next, a method for determining the conveyance speed and power, which is a setting calculation function, is described.
鋼材1を加熱するための搬送速度及び電力は以下の3つの処理、A.事前処理方式、B.実測処理方式、C.事前計算後、実測修正する組合せ方式の内のいずれかの処理によって決定される。なお、上述の第1の熱処理方式はB.実測処理方式を採用しており、上述の第2の熱処理方式は、A.事前処理方式を採用しており、上述の第3の熱処理方式はC.事前計算後、実測修正する組合せ方式を採用している。
The conveyance speed and electric power for heating the
A.事前処理方式
図7は、事前処理方式を実現するシステムの構成図である。鋼材1の製造ラインの構成は上述の構成と同一であるため、同一符号を付して詳細の説明は省略する。
A. Pre-Processing Method FIG. 7 is a configuration diagram of a system that realizes the pre-processing method. Since the structure of the production line of the
生産管理コンピュータ13からは、製造する予定の鋼材1に関するデータが事前処理演算装置14に送信されてくる。データは、鋼材1のサイズ(幅、厚み、長さ)、加熱方法、加熱開始予定温度、加熱目標温度などである。ここで、事前処理演算装置14は制御装置10内に設けられている。
From the
事前処理演算装置14は、このデータに基づいて加熱時の搬送速度とパス数、及び電力を決定する。そして、決定した搬送速度を搬送速度設定装置15に出力し、決定した電力を電力供給装置12に出力する。
The preprocessing
ここで、搬送速度を決定する方法には、テーブルから抽出する方法と収束計算による方法がある。 Here, as a method for determining the conveyance speed, there are a method of extracting from the table and a method of convergence calculation.
a.テーブルから搬送速度を抽出する方法
図8は、鋼材1のサイズと搬送速度とパス数の対応テーブルを示す図である。
a. Method for Extracting Conveying Speed from Table FIG. 8 is a diagram showing a correspondence table of the size, the conveying speed, and the number of passes of the
事前処理演算装置14は、このテーブルに基づいて、鋼材1のサイズである幅、厚さ、長さから搬送速度とパス数を抽出する。尚、諸元の値が表の項目値に一致しない場合は、前後の表の値を内挿して求める。
Based on this table, the preprocessing
また、鋼材1のサイズである幅、厚さ、長さの内少なくとも1つの諸元に基づいて搬送速度とパス数を抽出するようにテーブルを構成しても良い。
Further, the table may be configured to extract the conveyance speed and the number of passes based on at least one of the width, thickness, and length as the size of the
b.収束計算によって搬送速度を決定する方法
図9は、収束計算によって搬送速度を決定する概略の手順を示すフロー図である。この方法では、加熱温度の条件を満たす加熱電力の内、熱処理に要する時間が最も短くなるように搬送速度を定める点に特徴がある。
b. Method for Determining Conveyance Speed by Convergence Calculation FIG. 9 is a flowchart showing a schematic procedure for determining a conveyance speed by convergence calculation. This method is characterized in that the conveyance speed is determined so that the time required for the heat treatment is the shortest among the heating power satisfying the condition of the heating temperature.
尚、誘導加熱装置群を複数回往復させて鋼材1を加熱する場合には、そのパスごとに搬送速度を設定することが可能である。従って、搬送速度は以下の式で定義する。
In addition, when the
V0=[V01,V02,V03,・・・,V0n]
但し、V0:搬送速度初期値、
V0i(i=1〜n):iパス目搬送速度初期値
ステップS20では、搬送速度として初期値を設定する。ここで、初期値V0は任意の値であっても良く、また実績値に基づいて決定しても良い。
V0 = [V01, V02, V03,..., V0n]
However, V0: transport speed initial value,
V0i (i = 1 to n): initial value of the i-th transport speed In step S20, an initial value is set as the transport speed. Here, the initial value V0 may be an arbitrary value or may be determined based on the actual value.
ステップS21では、その搬送速度を用いて上述の図5、6に示す電力演算を行い加熱電力を求める。ステップS22では、この加熱条件で鋼材1の加熱後温度が制約条件を充足するかどうかを調べる。この制約条件は、図5のステップS3、図6のステップS13の温度判定条件と同一であり、鋼材1の表面温度、内部温度がそれぞれ所定温度範囲内にあるかどうかを調べるものである。
In step S21, the power calculation shown in FIGS. 5 and 6 is performed using the transport speed to obtain the heating power. In step S22, it is investigated whether the post-heating temperature of the
ステップS22でYesの場合、即ち、制約条件を充足している場合は、電力演算が適正に実行されたことを意味しているため、搬送速度を速くした条件であっても適切な電力量が求められる可能性がある。従って、ステップS23では、搬送速度を所定量だけ速くする。尚、搬送速度は所定量でなく、所定割合で速くしても良く、また予め定めた関数に基づいて搬送速度を増速しても良い。 In the case of Yes in step S22, that is, when the constraint condition is satisfied, it means that the power calculation has been properly executed. Therefore, even if the transport speed is increased, an appropriate amount of power can be obtained. May be required. Therefore, in step S23, the conveyance speed is increased by a predetermined amount. The transport speed may be increased at a predetermined rate instead of a predetermined amount, or the transport speed may be increased based on a predetermined function.
ステップS24では、増速した搬送速度を用いて再度電力演算を行い、ステップS25では、鋼材1の加熱後温度が制約条件を充足するかどうかを調べる。ステップS25でYesの場合、即ち、制約条件を充足する場合は、更にステップS23〜25を繰り返す。これによってより速い搬送速度を設定することができる。
In step S24, electric power calculation is performed again using the increased conveyance speed, and in step S25, it is checked whether the temperature after heating of the
ステップS25でNoの場合、即ち、制約条件を充足しない場合は、後に説明する、搬送速度を減速するステップS26からの処理を実行するが、この処理に進まずに前回の計算に用いた制約条件を充足する搬送速度を採用しても良い。 In the case of No in step S25, that is, when the constraint condition is not satisfied, the processing from step S26, which will be described later, is performed, but the constraint condition used in the previous calculation without proceeding to this processing. It is also possible to adopt a conveyance speed that satisfies the above.
ステップS22でNoの場合、即ち、鋼材1の表面温度、内部温度がそれぞれ所定温度範囲にない場合は、電力演算が正しく行われなかったことを意味している。ここで、電力演算が正しく行われない場合は、搬送速度が速すぎるために鋼材1の温度が低くなっている場合である。何故ならば、鋼材1の温度が高い場合は、電力量を低下させることによって温度を下げることが可能なため、必ず電力量を求めることができるからである。
In the case of No in step S22, that is, when the surface temperature and the internal temperature of the
従ってこの場合には、鋼材1の温度加熱が不十分であるため、ステップS26では、搬送速度を所定量だけ遅くする。尚、搬送速度は所定量でなく、所定割合で遅くしても良く、また予め定めた関係式または関数に基づいて減速しても良い。
Therefore, in this case, since the temperature heating of the
そして、ステップS27では、減速した搬送速度を用いて再度電力演算を行い、ステップS28では、鋼材1の加熱後温度が制約条件を充足するかどうかを調べる。
And in step S27, electric power calculation is performed again using the decelerated conveyance speed, and in step S28, it is investigated whether the temperature after heating of the
ステップS28でNoの場合、即ち、制約条件を充足しない場合は、更にステップS26〜28を繰り返す。ステップS28でYesの場合、即ち、制約条件を充足する場合は、ステップS29では、この搬送速度を採用する。 If No in step S28, that is, if the constraint condition is not satisfied, steps S26 to S28 are further repeated. In the case of Yes in step S28, that is, when the constraint condition is satisfied, this transport speed is adopted in step S29.
本方式によれば、所定の制約条件を満たす電力の内、最も搬送速度の速い加熱条件を最終結果として得ることができ、従って、最も処理時間が短くなる熱処理条件を求めることができる。 According to this method, the heating condition with the fastest conveyance speed among the electric power satisfying the predetermined constraint conditions can be obtained as the final result, and therefore, the heat treatment condition with the shortest treatment time can be obtained.
尚、本方式では、搬送速度初期値から収束演算を行ったが、複数の搬送速度値に基づいて電力演算を行い、制約条件を満たす搬送速度の内、最速の搬送速度を求めても良い。また、過去の搬送速度実績値と鋼材1の諸元(例えば、厚み、幅等)の組合せに基づいて、加熱しようとする鋼材1の諸元に対応する搬送速度を内分点法によって算出しても良い。
In this method, the convergence calculation is performed from the initial value of the conveyance speed. However, power calculation may be performed based on a plurality of conveyance speed values, and the fastest conveyance speed among the conveyance speeds satisfying the constraint conditions may be obtained. Moreover, based on the combination of the past conveyance speed actual value and the specifications of the steel material 1 (for example, thickness, width, etc.), the conveyance speed corresponding to the specifications of the
複数パスの場合の搬送速度決定方法を示す。 A method for determining the conveyance speed in the case of multiple passes will be described.
(1)第1の方式は、予め各パスの搬送速度の比率を決めておき、それに沿った形で収束計算を行う方法である。 (1) The first method is a method in which the ratio of the conveyance speed of each path is determined in advance and the convergence calculation is performed in accordance with the ratio.
たとえば、3パスの場合は以下の式で示されるように、予めパス毎の速度比率を決めておく。 For example, in the case of 3 passes, the speed ratio for each pass is determined in advance as shown by the following equation.
v(2)=1.5×v(1)
v(3)=1.2×v(1)
そして加熱の諸条件が与えられて速度を決定する際には、係数αを求め、下式で示すようにその係数αで補正した値を搬送速度とする。
v (2) = 1.5 × v (1)
v (3) = 1.2 × v (1)
When various conditions for heating are given and the speed is determined, a coefficient α is obtained, and a value corrected by the coefficient α as shown in the following equation is set as the conveyance speed.
V’(i)=α×V(i)
図26は、係数αを求める手順を示すフロー図である。先ずαに初期値を与え、電力演算結果が制約条件を充足する範囲で、αが大きい値となるように逐次、値を変更しつつ繰り返して計算する。これにより、電力制約条件の内、搬送速度が大きい条件を決定することができる。
V ′ (i) = α × V (i)
FIG. 26 is a flowchart showing a procedure for obtaining the coefficient α. First, an initial value is given to α, and the calculation is repeatedly performed while changing the value sequentially so that α becomes a large value within a range where the power calculation result satisfies the constraint condition. Thereby, conditions with a large conveyance speed can be determined among the power constraint conditions.
(2)第2の方式は、各パスの搬送速度をそれぞれ変更し、もっとも速度の速い組み合わせを選択する。 (2) In the second method, the transport speed of each pass is changed, and the combination with the fastest speed is selected.
3パスの場合を例に説明する。速度の最大値をVmax、速度変更の刻み幅を△Vとし、v(1)、v(2)、v(3)を以下の式で定義する。 The case of 3 passes will be described as an example. The maximum value of the speed is Vmax, the step width of the speed change is ΔV, and v (1), v (2), and v (3) are defined by the following equations.
v(1)=Vmax−i×△V、i=1,…
v(2)=Vmax−j×△V、j=1,…
v(3)=Vmax−k×△V、k=1,…
そしてi、j、kをそれぞれ1から増加しつつ、制約条件を満たしながら、もっとも早い速度を最終的に抽出する。
v (1) = Vmax−i × ΔV, i = 1,.
v (2) = Vmax−j × ΔV, j = 1,.
v (3) = Vmax−k × ΔV, k = 1,.
Then, i, j, and k are increased from 1, respectively, and the fastest speed is finally extracted while satisfying the constraint condition.
図27は、搬送速度を求める手順を示すフロー図である。i,j,kを1から増加して、所定の最小速度(Vmin)以上の範囲でそれぞれのパスの速度を変更しつつ電力計算の制約条件を充足する組合せを求める。そして、そのうち最も速い速度を与える組合せを選択する。ここで、最も速い速度を判定する基準として、v(1)+v(2)+v(3)が最も大きい組合せを選ぶことができる。あるいは、それぞれの速度に重み係数を掛けて加算した値が最も大きい組合せを選ぶことができる。 FIG. 27 is a flowchart showing a procedure for obtaining the conveyance speed. i, j, and k are increased from 1, and a combination that satisfies the power calculation constraint condition is obtained while changing the speed of each path within a range equal to or higher than a predetermined minimum speed (Vmin). Then, the combination that gives the fastest speed is selected. Here, as a criterion for determining the fastest speed, a combination having the largest v (1) + v (2) + v (3) can be selected. Alternatively, a combination having the largest value obtained by multiplying each speed by a weighting coefficient can be selected.
そして、ここで決まった搬送速度をもとに、上述の電力設定計算を行って加熱電力を求める。そして、求めた加熱電力を電力供給装置12へ、搬送速度を搬送速度設定装置15へ送り、鋼材1の加熱を実行させる。
And based on the conveyance speed decided here, the above-mentioned electric power setting calculation is performed and heating electric power is calculated | required. Then, the obtained heating power is sent to the
さらに、a.テーブルから搬送速度を抽出する方法、b.収束計算によって搬送速度を決定する方法、いずれの方法においても、パス数の異なる搬送速度の組み合わせを求めておき、加熱直前に決定することも出来る。例えば、1パスの場合の搬送速度、3パスの場合の搬送速度、5パスの場合の搬送速度を予め求めておき、現在の能率等の基準から加熱直前にその内の一つを選択することもできる。 In addition, a. A method of extracting the conveyance speed from the table, b. In both methods of determining the conveyance speed by convergence calculation, a combination of conveyance speeds having different numbers of passes can be obtained and determined immediately before heating. For example, the transport speed in the case of 1 pass, the transport speed in the case of 3 passes, the transport speed in the case of 5 passes are obtained in advance, and one of them is selected immediately before heating based on the current efficiency and other criteria. You can also.
次に、加熱開始予定温度、加熱目標温度が変更になった場合の搬送速度の影響係数を求める方法について説明する。 Next, a method for obtaining the influence coefficient of the conveyance speed when the heating start scheduled temperature and the heating target temperature are changed will be described.
図10は、加熱開始予定温度が変更されたときの影響係数を求める手順を示すフロー図である。この手順によって、加熱開始予定温度をTi、加熱開始予定温度の変更量をΔTiとし、加熱開始予定温度がTi+ΔTiの場合に、上記で求めた搬送速度をどれだけ変更すれば良いのかの係数を求める。 FIG. 10 is a flowchart showing a procedure for obtaining an influence coefficient when the scheduled heating start temperature is changed. By this procedure, when the heating start scheduled temperature is Ti, the heating start scheduled temperature change amount is ΔTi, and the heating start scheduled temperature is Ti + ΔTi, the coefficient of how much the conveyance speed obtained above should be changed Ask for.
この手順は図9に示した搬送速度を決定する手順と同様である。影響係数を1として処理を開始し、加熱可能で最も処理時間が短くなるように影響係数を調整する。 This procedure is the same as the procedure for determining the conveyance speed shown in FIG. The treatment is started with an influence coefficient of 1, and the influence coefficient is adjusted so that heating is possible and the treatment time is the shortest.
こうして求めた影響係数の値をqとすると、実際の加熱開始予定温度がTi+ΔTの場合の搬送速度v’は、式(45)で求められる。
同様に、加熱目標温度が変更になった場合の速度変更係数も求める。 Similarly, a speed change coefficient when the heating target temperature is changed is also obtained.
図11は、加熱目標温度が変更されたときの影響係数を求める手順を示すフロー図である。この手順によって、加熱目標温度をTr、加熱目標温度の変更量をΔTrとし、加熱目標温度がTr+ΔTrの場合に、上記で求めた搬送速度をどれだけ変更すればよいのかの係数を求める。 FIG. 11 is a flowchart showing a procedure for obtaining an influence coefficient when the heating target temperature is changed. By this procedure, when the heating target temperature is Tr, the heating target temperature change amount is ΔTr, and the heating target temperature is Tr + ΔTr, the coefficient of how much the conveyance speed obtained above should be changed is obtained.
この手順は図9に示した搬送速度を決定する手順と同様である。影響係数を1として処理を開始し、加熱可能で最も処理時間が短くなるように影響係数を調整する。 This procedure is the same as the procedure for determining the conveyance speed shown in FIG. The process is started with an influence coefficient of 1, and the influence coefficient is adjusted so that heating is possible and the processing time is the shortest.
こうして求めた影響係数の値をqとすると、実際の加熱開始温度がTr+ΔTの場合の搬送速度v’は、下式(46)で求められる。
尚、この影響係数は、後述する処理である、B.実測処理方式とC.組合せ処理方式で使用される。 This influence coefficient is a process described later. Measurement processing method and C.I. Used in combination processing.
B.実測処理方式
図12は、実測処理方式に係るシステムの構成を示す図である。鋼材1の製造ラインの構成は上述の構成と同一であるため、同一符号を付して詳細の説明は省略する。
B. Actual Measurement Processing Method FIG. 12 is a diagram illustrating a system configuration related to the actual measurement processing method. Since the structure of the production line of the
本処理は加速冷却後の鋼材1の加熱開始温度を実測し、その温度により搬送速度の決定、加熱電力の算出を行う処理である。
This process is a process of actually measuring the heating start temperature of the
これは、以下の手順によって行う。 This is done by the following procedure.
(i)加熱開始温度の取得と加熱目標温度の決定
鋼材1の加熱開始温度は、冷却装置出側から誘導加熱装置入り側までに設置された少なくとも1つの温度検出器で実測により求める。また、生産管理コンピュータ13からのデータに基づいて実測処理演算装置16が加熱目標温度を決定する。
(I) Acquisition of heating start temperature and determination of heating target temperature
The heating start temperature of the
(ii)搬送速度の決定
次に搬送速度を決定する。搬送速度は、前述の図8に示すテーブル値を補間することにより求めることもできる。また前述のb.収束計算において、加熱開始予定温度を加熱開始実測温度に置き換えることで算出することができる。なお、事前に加熱開始予定温度に基づき、あらかじめ、b.収束計算において記載した方法で得られた搬送速度を使用する場合には、その加熱開始予定温度と加熱開始温度の実測結果との温度差に基づいて、式(45)または式(46)を用いて補正して決定することで、演算時間の短縮化を図ることができる。
(Ii) Determination of transfer speed
Next, the conveyance speed is determined. The conveyance speed can also be obtained by interpolating the table values shown in FIG. In addition, b. In the convergence calculation, it can be calculated by replacing the expected heating start temperature with the actual heating start temperature. In addition, based on the expected heating start temperature in advance, b. When using the conveyance speed obtained by the method described in the convergence calculation, use Equation (45) or Equation (46) based on the temperature difference between the expected heating start temperature and the actual measurement result of the heating start temperature. Therefore, the calculation time can be shortened.
さらに、a.テーブルから搬送速度を抽出する方法、b.収束計算によって搬送速度を決定する方法、いずれの方法においても、パス数の異なる搬送速度の組み合わせを求めておき、加熱直前に決定することも出来る。例えば、1パスの場合の搬送速度、3パスの場合の搬送速度、5パスの場合の搬送速度を予め求めておき、現在の能率等の基準から加熱直前にその内の一つを選択することもできる。 In addition, a. A method of extracting the conveyance speed from the table, b. In both methods of determining the conveyance speed by convergence calculation, a combination of conveyance speeds having different numbers of passes can be obtained and determined immediately before heating. For example, the transport speed in the case of 1 pass, the transport speed in the case of 3 passes, the transport speed in the case of 5 passes are obtained in advance, and one of them is selected immediately before heating based on the current efficiency and other criteria. You can also.
(iii)鋼材1の先端部と尾端部の加熱電力の計算
加熱電力は、先端部と尾端部では異なるため、上述の方法、即ち、図4〜6に示す電力を求める手順に従って、先端と尾端の加熱電力をそれぞれ演算する。
(Iii) Calculation of heating power at the tip and tail ends of the
Since the heating power differs between the tip portion and the tail end portion, the heating power at the tip end and the tail end is calculated according to the above-described method, that is, the procedure for obtaining the power shown in FIGS.
(iv)鋼材1の先端部と尾端部の各誘導加熱装置6での到達温度の計算
さらに、この電力で加熱した場合の各誘導加熱装置6の入り側と出側での到達温度も先端と尾端について保存しておく。この到達温度はFF、FB制御を行う際の目標値となる。
(Iv) Calculation of the temperature reached by each
Further, the temperatures reached on the entry side and the exit side of each
(v)電力と温度の補間
そして、鋼材1の中間部の加熱電力と到達温度を、既に求めた先端部と尾端部の加熱電力と到達温度を補間して求める。
(V) Interpolation of power and temperature
And the heating power and ultimate temperature of the intermediate part of the
C.組合せ処理方式
図13は、組合せ処理方式に係るシステムの構成を示す図である。鋼材1の製造ラインの構成は上述の構成と同一であるため、同一符号を付して詳細の説明は省略する。
C. Combination Processing Method FIG. 13 is a diagram illustrating a system configuration according to the combination processing method. Since the structure of the production line of the
まず事前処理演算装置14が事前処理方式を実行する。即ち、鋼材1の加熱開始予定温度に基づいて、搬送速度と電力を求める。この求められた搬送速度と電力は実測処理演算装置16に送られる。
First, the preprocessing
一方、温度検出器7は、冷却過程を終えた後の鋼材1の誘導加熱装置手前での加熱開始温度を実測する。そしてこの実測温度は、実測処理演算装置16に入力される。
On the other hand, the
実測した加熱開始温度が加熱予定温度に近いとき、例えば、式(47)が成立するときは、事前処理で求めた搬送速度と加熱電力で加熱を行う。 When the actually measured heating start temperature is close to the planned heating temperature, for example, when Equation (47) is satisfied, heating is performed at the conveyance speed and heating power obtained in the pre-processing.
|Tr0-Tr1|<=α (47)
Tr0:加熱開始予定温度、Tr1:加熱開始実測温度、αは所定の値で例えば、10℃
一方、式(48)が成立するときは、実測処理演算装置16は、上述の実測処理計算を行って、搬送速度を修正し、修正された搬送速度を新たな搬送速度として加熱電力を電力設定計算により求める。
| Tr0-Tr1 | <= α (47)
Tr0: Expected heating start temperature, Tr1: Actual heating start temperature, α is a predetermined value, for example, 10 ° C
On the other hand, when the equation (48) is established, the actual
|Tr0-Tr1|> α 式(48)
このようにして求めた搬送速度と電力をそれぞれ、搬送速度設定装置15、電力供給装置12へ伝送し、鋼材1の加熱を行う。
| Tr0-Tr1 |> α formula (48)
The transport speed and power thus determined are transmitted to the transport
このように、事前処理と実測処理による修正処理を組み合わせることにより、効率的で最適な搬送速度と加熱電力を用いて加熱を行うことができる。さらには、事前に処理負荷がかかる計算を、初期設定において事前に電力設定をしておき、初期設定と異なる場合のみ、加速冷却終了時に実測温度により補正計算しておくことができるのでオンラインでの処理が実現できる。 As described above, by combining the pre-processing and the correction processing by the actual measurement processing, it is possible to perform heating using an efficient and optimum transport speed and heating power. In addition, calculations that require a processing load in advance can be corrected online based on the measured temperature at the end of accelerated cooling only when the power setting is set in advance in the initial setting and only when different from the initial setting. Processing can be realized.
II.トラッキング処理機能
冷却後の鋼材1は、長手方向に温度差があるため、長手方向で電力設定を変更する必要がある。また、長手方向位置での加熱後の冷却状況の違いにより、加熱目標温度をあえて鋼材1の長手方向で変更可能とする場合がある。以下に本願発明でオンライン処理を可能とする方法を記載する。長手方向の各位置の温度を推定、あるいは実測して、各位置についてそれぞれに位置で上述の設定電力計算を行うことでもよいが、それでは演算処理の負荷が大きくなりすぎて、オンラインの処理は現実的ではない。この処理では、鋼材1を長手方向の位置に対応して、電力設定とFF制御、FB制御を行う。図14は、トラッキング処理の動作を説明する図である。
II. Tracking processing function Since the
トラッキング処理では、搬送ロールから入力される回転速度信号、温度検出器7の温度検出信号を元に、鋼材1の長手方向の現在位置を随時推定する。そして、鋼材1の長手方向の該当位置が各誘導加熱装置6に入った時点で、その位置に対応する電力を各誘導加熱装置6に出力する。
In the tracking process, the current position in the longitudinal direction of the
算出の手順には、以下の3通りがある。 There are the following three calculation procedures.
(1)先端と後端の温度を測定し、その実測温度に基き電力計算を行い、中間部の電力を補間する。 (1) Measure the temperatures at the leading and trailing ends, calculate the power based on the measured temperatures, and interpolate the power at the intermediate portion.
手順を以下に示す
(i)図20に示すように、鋼材1が誘導加熱装置に入る前に、あるいは冷却装置を出たときに、温度検出器7により鋼材1の先端部(進行方向)の温度を測定する。ここで温度検出器7は、鋼材1の先端が誘導加熱装置6に入るまでに尾端の温度を測定できる位置に設置されている。
The procedure is as follows. (I) As shown in FIG. 20, before the
(ii)前記測定した鋼材1の先端部の実測温度に基き、先端部の加熱電力を計算する。
(Ii) Based on the measured actual temperature of the tip of the
(iii)図21に示すように、鋼材1が搬送されて、鋼材1の長手位置が変化していくのにあわせて、鋼材1の長手方向の各位置の温度を測定して、長手方向の位置に対応した実測温度を保存する。
(Iii) As shown in FIG. 21, as the
(iv)図22に示すように、鋼材1の後端部の温度を測定する。
(Iv) As shown in FIG. 22, the temperature of the rear end portion of the
(v)前記測定した鋼材1の尾端部の実測温度に基き、尾端部の加熱電力を計算する。
(V) Based on the measured actual temperature of the tail end of the
(vi)鋼材1の長手方向の中間部の加熱電力は、先端部と尾端部との実測温度と長手方向中間部の各々の実測温度により、先端と尾端の電力を補間して求める。
(Vi) The heating power at the intermediate portion in the longitudinal direction of the
Pi=(Pt-Pb)/(Tt-Tb)*(Ti-Tt)+Pt
Pt:先端電力、Pb:後端電力、Pi:中間部電力
Tt:先端温度、Tb:後端温度、Ti:中間部温度、
(vii)鋼材1が誘導加熱装置6に進入する前に、前記(v)の電力算出が完了しており、鋼材1が誘導加熱装置6に進入したら、鋼材1の部位により該当する電力を変更して、与える。
Pi = (Pt-Pb) / (Tt-Tb) * (Ti-Tt) + Pt
Pt: leading edge power, Pb: trailing edge power, Pi: intermediate power
Tt: Front end temperature, Tb: Rear end temperature, Ti: Intermediate part temperature,
(Vii) Before the
この方法によれば、先端部から尾端部までの実測温度に基づくため、精度がよい利点があるが、先端部、尾端部の温度を測定するためには、温度検出器7の設置位置は、鋼材長さよりも誘導加熱装置から離れている必要があり、長い鋼材1まで対応させるためには設置スペースの制約もある。別の方法としては、
(2)先端部の温度を実測し、それ以降は、先端との温度差により電力を補正する。
According to this method, since it is based on the measured temperature from the tip portion to the tail end portion, there is an advantage of good accuracy. However, in order to measure the temperature of the tip portion and the tail end portion, the installation position of the
(2) The temperature of the tip is measured, and thereafter the power is corrected by the temperature difference from the tip.
(i)鋼材1が誘導加熱装置6に入る前に、あるいは冷却装置を出たときに、温度検出器7により鋼材1の先端部(進行方向)の温度を測定する。
(I) Before the
(ii)測定した鋼材1の先端部の実測温度に基づき、先端部の加熱電力を計算する。
(Ii) Based on the measured actual temperature of the tip of the
(iii)鋼材1が搬送されて、鋼材1の長手位置が変化していくのにあわせて、鋼材1の長手方向の各位置の温度を測定して、保存する。
(Iii) As the
(iv)測定した鋼材1の中間部の実測温度に基き、中間部それぞれの位置の加熱電力を計算する。
(Iv) Based on the measured actual temperature of the intermediate part of the
Pi=Pt+ΔPi
ΔPiはΔT=Ti-Ttの昇温量を与える電力
Pt:先端電力、Pb:後端電力、Pi:中間部電力
Tt:先端温度、Tb:後端温度、Ti:中間部温度、
(v)鋼材1が誘導加熱装置6に進入する前に、(iv)の電力算出が完了しており、鋼材1が誘導加熱装置6に進入したら、鋼材1の部位により該当する電力を変更して、与える。
Pi = Pt + ΔPi
ΔPi is power that gives ΔT = Ti-Tt temperature increase amount Pt: leading edge power, Pb: trailing edge power, Pi: intermediate power
Tt: Front end temperature, Tb: Rear end temperature, Ti: Intermediate part temperature,
(V) Before the
この方法によれば、先端部と中間部の実測温度に基づくため、設置スペースの制約はないものの、長手方向の温度変化が大きい鋼材1の時には、尾端部位置になるにつれて算出誤差が大きくなり問題が発生する。さらに、別の方法として
(3)先端と後端の温度を実測して電力計算を行い、中間部の電力を補間する。
According to this method, since there is no restriction on the installation space because it is based on the measured temperatures of the tip and intermediate portions, the calculation error increases as the position of the tail end portion when the
(i)鋼材1が誘導加熱装置6に入る前に、あるいは冷却装置を出たときに、温度検出器7により鋼材1の先端部(進行方向)の温度を測定する。
(I) Before the
(ii)鋼材1の後端部の温度を推定する。尾端部の温度推定方法は、同じ時刻であれば冷却後の先端部と尾端部の温度が同じものであるとして、同じ位置、すなわち誘導加熱装置6に入るまでの先端部と尾端部の時間差から冷却されて温度降下がどれくらいを推定する。なお、より精度を上げるためには、過去に同じ条件の鋼材1の先端部と尾端部の温度差を記憶しておき、その値に基づいて、先端部から尾端部の温度推定を行う場合もある。
(Ii) The temperature of the rear end portion of the
(iii)先端部、後端部の電力を計算する。 (Iii) Calculate the power at the front and rear ends.
(iv)鋼材1が搬送されて、鋼材1の長手位置が変化していくのにあわせて、鋼材1の長手方向の各位置の温度を測定して、保存する。
(Iv) As the
(v)鋼材1の長手方向の中間部の加熱電力は、先端部の実測温度と尾端部の推定温度と長手方向中間部の各々の実測温度により、先端と尾端の電力を補間して求める。
(V) The heating power of the intermediate portion in the longitudinal direction of the
Pi=(Pt-Pb)/(Tt-Tb)*(Ti-Tt)+Pt
Pt:先端電力、Pb:後端電力、Pi:中間部電力
Tt:先端温度、Tb:尾端推定温度、Ti:中間部温度、
この方法によれば、先端部と中間部の実測温度と、先端部の実測温度から推定した尾端部の温度に基き算出するので、設置スペースの制約を受けることなく、さらに算出する設定電力計算の精度も確保できる。
Pi = (Pt-Pb) / (Tt-Tb) * (Ti-Tt) + Pt
Pt: leading edge power, Pb: trailing edge power, Pi: intermediate power
Tt: Tip temperature, Tb: Estimated tail temperature, Ti: Intermediate temperature,
According to this method, the measured temperature of the tip portion and the intermediate portion, since the calculation based on the temperature of the tail end which is estimated from the measured temperature of the tip, without being restricted by the installation space, setting further calculates power calculation Accuracy can be secured.
(4)先端部の温度は実測し、尾端部は、テーブル設定値(定数)または、前工程(圧延、または急速冷却)終了時の先尾端温度差から推定する。 (4) The temperature at the tip is measured, and the tail is estimated from the table set value (constant) or the temperature difference at the end of the previous process (rolling or rapid cooling).
(i)鋼材1が誘導加熱装置6に入る前に、あるいは冷却装置を出たときに、温度検出器7により鋼材1の先端部(進行方向)の温度を測定する。
(I) Before the
(ii)測定した鋼材1の先端部の実測温度に基づき、先端部の加熱電力を計算する。
(Ii) Based on the measured actual temperature of the tip of the
(iii)尾端部をあらかじめサイズ、鋼種等により設定したテーブル値、または前工程(圧延、または急速冷却)終了時の先尾端温度差から推定する。 (Iii) The tail end is estimated from a table value set in advance according to size, steel type, or the temperature difference at the end of the previous step (rolling or rapid cooling).
(iv)推定した尾端部温度により、尾端部の加熱電力を計算する。 (Iv) The heating power at the tail end is calculated from the estimated tail end temperature.
(v)中間部それぞれの位置の加熱電力を先端と尾端部の電力を下の式を用いて補間により求める。 (V) The heating power at each position of the intermediate portion is obtained by interpolation using the following formula for the power at the tip and tail.
Pi=(Pt−Pb)/(ni−1)*(i−1)十Pt
i=1,…,ni
Pi:先頭からi番目の電力、Pt:先端電力、Pb:尾端電力、
ni:鋼材の長手方向ブロック数
(vi)鋼材1が誘導加熱装置6に進入する前に、(v)の電力算出が完了しており、鋼材1が誘導加熱装置6に進入したら、鋼材1の部位により該当する電力を変更して、与える。
Pi = (Pt−Pb) / (ni−1) * (i−1) + Pt
i = 1,..., ni
Pi: i-th power from the top, Pt: tip power, Pb: tail power,
ni: Number of blocks in the longitudinal direction of the steel material (vi) Before the
この方法によれば、尾端部が温度検出器7の通過を待たずに鋼材全体の電力設定計算ができるため、温度検出器7と誘導加熱装置6の距離が比較的短い場合にも適用することができる。
According to this method, since the power setting calculation of the entire steel material can be performed without waiting for the tail end to pass through the
上記説明では実測温度に基づいて説明したが、設定計算機能における、A.事前処理機能で行った場合には、実測温度でなくとも、加熱開始予定温度、加熱目標温度等に基づいて、上記トラッキング処理機能を実現することも可能である。 In the above description, the explanation is based on the actually measured temperature. When the preliminary processing function is used, the tracking processing function can be realized based on the heating start scheduled temperature, the heating target temperature, and the like, instead of the actually measured temperature .
上述した4つの方法は、どれを使用してもよく、装置構成のレイアウトや演算装置の能力や鋼材1の種類に合わせて、各々のメリット、デメリットを考慮した上で選択すればよい。
Any of the four methods described above may be used, and may be selected in consideration of each merit and demerit in accordance with the layout of the apparatus configuration, the capacity of the arithmetic unit, and the type of the
III.加熱電力補正機能(FF制御とFB制御)
上記のように数式モデルを使って温度推定や電力設定を行う際は、数式モデルの誤差により、温度に誤差が生じる場合がある。このため、誘導加熱装置入り側及び出側に設置された温度検出器7で測定した鋼材1の実測温度により、電力を補正する。
III. Heating power correction function (FF control and FB control)
As described above, when temperature estimation and power setting are performed using a mathematical model, an error may occur in the temperature due to a mathematical model error. For this reason, electric power is correct | amended with the measured temperature of the
図15、16は、FF制御の構成を示す図である。FF制御電力演算装置18は、各誘導加熱装置6の入り側に設置された温度検出器7の測定信号に基づいて、電力を補正する。
15 and 16 are diagrams showing the configuration of the FF control. The FF control
鋼材1の先端からi番目の部分のj台目誘導加熱装置6の電力補正値は、式(51)で与えられる。
尚、FF制御電力演算装置18は、誘導加熱装置6毎に設けても良く、また全誘導加熱装置6を統括して1台で制御しても良い。
Note that the FF control
図17、18は、FB制御の構成を示す図である。FB制御電力演算装置19は、各誘導加熱装置6の出側に設置された温度検出器7の測定信号に基づいて、電力を補正する。この電力補正値は、式(52)で求められる。
尚、FB制御電力演算装置19は、誘導加熱装置6毎に設けても良く、また全誘導加熱装置6を統括して1台で制御しても良い。
Note that the FB control
さらに、後述する加熱効率を逐次推定し、FF制御やFB制御の結果に反映させることも有効である。この場合の加熱補正電力は、それぞれ、
このように、誘導加熱装置6の前後に備え付けられた温度検出器7による実測温度により補正を行うことにより、温度制御精度を向上させることができる。
As described above, the temperature control accuracy can be improved by performing the correction based on the actually measured temperatures by the
IV.モデル学習機能
図19は、学習機能の全体を説明する図である。本モデル学習機能は、以下の3つの学習機能を備えている。
IV. Model Learning Function FIG. 19 is a diagram for explaining the entire learning function. This model learning function has the following three learning functions.
A.誘導加熱装置6の加熱効率を推定する加熱効率の学習
B.空冷による温度降下量を推定する空冷学習
C.矯正装置5における温度降下量を推定する矯正装置での温度降下推定量とモデル学習
以下、これらの学習方法について説明する。
A. B. Learning of the heating efficiency for estimating the heating efficiency of the
A.加熱効率の学習
図2における区間1、区間2、区間3の距離をそれぞれ、l1、l2、l3、またそれぞれの区間の通過速度をそれぞれ、v1、v2、v3とする。そして、鋼材1の内部の温度分布x(k)を下式で定義する。
区間1の終端での温度は、式(56)で表される。
誘導加熱装置6での供給電力量をubとすると、区間2の終端での温度は、式(58)で表される。
さらに区間3の終端での温度は、式(61)で表される。
これが目標温度Trに等しくなるようにubを決めればよいので、学習に関する式(62)が求められる。
学習式(62)により、目標温度Trに加熱するための誘導加熱装置6への供給電力量は式(63)で与えられる。
しかしながら、誘導加熱装置6での電力損失、また供給された電力量が鋼材1を昇温させる際の加熱損失などのため、式(63)で与えられる電力量を誘導加熱装置6に供給しても、鋼材1の昇温量が目標昇温量に達しない場合が多い。
However, because of the power loss in the
このため、供給電力量が鋼材1の温度上昇に及ぼす加熱効率を、実昇温量を求めることにより算出し、誘導加熱装置6の加熱効率を考慮した上で、目標昇温量を得るための供給電力量を算出することにする。
For this reason, the heating efficiency exerted on the temperature rise of the
鋼材1の搬送速度と、誘導加熱装置6の入り側と出側に設置された温度検出器7の設置間隔から、被加熱材のある部分が温度検出器間を通過する時間が求められる。
From the conveyance speed of the
図2に示すように、先端からi番目の区間1、区間2、区間3における移動速度をそれぞれ、ν1(i)、ν2(i)、ν3(i)とすると温度検出器間の通過時間は以下の式(64)で求められる。
したがって、誘導加熱装置6の入側および出側の温度検出器7では、時間差tb(i)をもって、鋼材1の同じ位置の温度が検出される。そして、その際の温度検出器7の検出した温度差が鋼材1の実昇温量となる。さらに、温度検出器7の検出を周期的に行うことにより、鋼材1全体の昇温量を検出することができる。
Therefore, the
尚、鋼材1の先端からi番目の区間の検出温度をTbi(i)として、入り側温度検出器位置での温度分布は一様であると仮定する。
式(30)で、i番目の効率をβ(i)として、供給電力量ub(i)を与えた場合、出側温度検出器位置での温度Tb0(i)は式(66)となる。
加熱効率は、与えられた電力供給量のうち実際に加熱に使用される電力量の割合であり、式(66)を変形して、式(67)で表わされる。
そして、推定された加熱効率を用いて、次段の誘導加熱装置6への供給電力量は以下の式(68)で与えられる。
図2の制御装置10は、周期ごとに上記の計算を行い、誘導加熱装置6へ目標電力量として与える。
The
すなわち、温度検出器7での計測を周期的に行い、加熱効率を推定する。そして、この加熱効率の推定結果を現鋼材1が次に通過する誘導加熱装置6での投入電力計算に反映させる。それにより、鋼材1の温度制御の精度を向上させることができる。
That is, the measurement with the
また、上で求めた効率β(i)を当該誘導加熱装置6における次ブロックの投入電力を計算する際に使用することもできる。すなわち、加熱効率と投入電力は、以下の式(69)、(70)で表される。
鋼材1の温度分布を考慮した効率推定を行い、その結果を次ブロックに反映させて行くため、温度制御の精度を向上させることができる。
Efficiency estimation considering the temperature distribution of the
B.空冷学習
式(9)に示す温度推定計算の中で、大気との対流や熱伝達による抜熱の量を推定することにより、鋼材の伝熱計算の学習を行う。
B. Air cooling learning In the temperature estimation calculation shown in Equation (9), the heat transfer calculation of steel is learned by estimating the amount of heat removal due to convection with the atmosphere and heat transfer.
式(71)に示すように、熱量Qに調整係数γを乗じたQ'を大気の抜熱量とする。この調整係数γを変更しながら温度計算を行い、実測温度と推定温度が近くなるように収束計算を行う。
γは、鋼材のサイズや鋼種により分類して保存しておくことも考えられる。 It is conceivable that γ is classified and stored according to the size of steel and the type of steel.
C.矯正装置での温度降下量推定とモデル学習
矯正装置5での温度降下量は、矯正装置5のロールによる抜熱、矯正装置内での大気による抜熱と冷却水による抜熱を考慮することにより、式(72)で求めることができる。
しかしながら、これらの温度推定値は、実計測に伴う計測誤差や、ロールの磨耗、冷却水のかかり具合などの経年変化による影響が大きくなっている。そこで、矯正装置5の前後で実績した温度を用いて、これらの推定式に補正を加える。補正式は式(77)で与える。
式(78)で求めた調整係数を用いれば、矯正装置5の温度推定式の誤差を補正し、温度降下量の経年変化を補正することができる。
By using the adjustment coefficient obtained by the equation (78), it is possible to correct the error of the temperature estimation formula of the
このようにして求めた調整係数αは、次材以降の加熱電力を決定する際に使用する。また、鋼材1の厚みや幅や昇温量ごとに分類して保存しておき、次材以降、同様の加熱条件の鋼材に使用することができる。
The adjustment coefficient α obtained in this way is used when determining the heating power for the next and subsequent materials. Moreover, it classify | categorizes and preserve | saves according to the thickness of the
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
1…鋼材、2…加熱炉、3…圧延機、4…加速冷却装置、5…矯正装置、6…誘導加熱装置、7…温度検出器、10…制御装置、11…、12…電力供給装置、13…生産管理コンピュータ、14…事前処理演算装置、15…搬送速度設定装置、16…修正処理演算装置、18…FF制御電力演算装置、19…FB制御電力演算装置。
DESCRIPTION OF
Claims (30)
鋼材の圧延ライン上で、前記加速冷却装置と前記複数台の誘導加熱装置との中間に設置された前記鋼材を矯正するための矯正装置と、
前記圧延ライン上に設置され前記鋼材の温度を検出する少なくとも1つの温度検出器と、
前記鋼材のサイズと、前記鋼材の搬送速度と、前記鋼材の加熱目標温度と、前記誘導加熱装置の前段における前記鋼材の前記温度検出器で測定した実測温度とに基づいて、前記誘導加熱装置に供給する供給予定電力を演算する演算装置と、
前記演算装置により演算された供給予定電力を前記誘導加熱装置に供給する電源装置とを有し、
前記演算装置は、
前記誘導加熱装置による加熱中の前記鋼材の表面温度が第1の目標温度以下で、加熱終了時の鋼材厚み方向内部の所定位置における温度と第2の目標温度との差が所定範囲内になるように加熱するために前記誘導加熱装置に供給する供給予定電力、または前記誘導加熱装置による加熱終了時の前記鋼材の表面温度が第3の目標温度以上となり、加熱中の鋼材厚み方向内部の所定位置における温度が第4の目標温度以下となるように加熱するために前記誘導加熱装置に供給する供給予定電力を演算すること
を特徴とする熱処理装置。 A plurality of induction heating devices installed on the rolling line of steel material and arranged at the subsequent stage of the accelerated cooling device for rapidly cooling the rolled steel material;
A straightening device for straightening the steel material installed between the accelerated cooling device and the plurality of induction heating devices on a steel material rolling line;
At least one temperature detector installed on the rolling line for detecting the temperature of the steel material;
Based on the size of the steel material, the conveyance speed of the steel material, the target heating temperature of the steel material, and the actual temperature measured by the temperature detector of the steel material in the previous stage of the induction heating device, the induction heating device An arithmetic unit for calculating the supply power to be supplied;
A power supply unit that supplies the planned heating power calculated by the arithmetic unit to the induction heating unit;
The arithmetic unit is:
The surface temperature of the steel material being heated by the induction heating device is equal to or lower than the first target temperature, and the difference between the temperature at a predetermined position inside the steel material thickness direction at the end of heating and the second target temperature is within a predetermined range. Power to be supplied to the induction heating device for heating, or the surface temperature of the steel material at the end of heating by the induction heating device is equal to or higher than a third target temperature, and a predetermined value inside the thickness direction of the steel material being heated A heat treatment apparatus for calculating a supply power to be supplied to the induction heating apparatus for heating so that a temperature at a position is equal to or lower than a fourth target temperature.
前記搬送速度と前記温度検出器で測定した鋼材温度に基づいて加熱後の鋼材温度を推定する推定手段と、
推定した鋼材温度が所定温度範囲内にない場合には、前記搬送速度を変更して前記推定手段を繰り返して実行させる繰り返し手段と、
推定した鋼材温度が所定温度範囲内にある場合には、該搬送速度に基づいて前記鋼材を目標温度に加熱するために前記誘導加熱装置に供給する供給予定電力を演算する電力演算手段と
を有することを特徴とする請求項1に記載の熱処理装置。 The arithmetic unit is:
An estimation means for estimating a steel material temperature after heating based on the steel material temperature measured by the conveyance speed and the temperature detector;
When the estimated steel temperature is not within a predetermined temperature range, a repeating unit that repeatedly executes the estimating unit by changing the conveyance speed;
When the estimated steel material temperature is within a predetermined temperature range, power calculating means for calculating the supply power to be supplied to the induction heating device for heating the steel material to a target temperature based on the conveying speed is provided. The heat treatment apparatus according to claim 1.
前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、
前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、
前記温度条件に適合する場合は、その演算に用いられた供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段と
を有することを特徴とする請求項1に記載の熱処理装置。 The arithmetic unit is:
Temperature estimation means for estimating the surface temperature of the steel material and the internal temperature in the thickness direction after induction heating from the data including the conveyance speed of the steel material and the scheduled power supply;
Suitability determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition;
If the temperature conditions are not met, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the suitability determination means;
2. The heat treatment apparatus according to claim 1, further comprising: a power determining unit configured to supply power to be supplied to the induction heating apparatus when the temperature condition is met, to supply power to the induction heating apparatus.
前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、
前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、
前記温度条件に適合する場合は、その演算に用いられた供給予定電力に基づいて、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力量判定手段と、
前記電力条件に適合する場合は、その演算に用いられた供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段と、
前記電力条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する電力条件判定処理手段と
を有することを特徴とする請求項1に記載の熱処理装置。 The arithmetic unit is:
Temperature estimation means for estimating the surface temperature of the steel material and the internal temperature in the thickness direction after induction heating from the data including the conveyance speed of the steel material and the scheduled power supply;
Suitability determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition;
If the temperature conditions are not met, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the suitability determination means;
When the temperature condition is met, based on the planned supply power used for the calculation, the power condition where the total amount of power of each induction heating device used for heating the steel material is equal to or less than a predetermined value Electric energy determination means for determining whether or not the
If the power condition is met, the power determining means for setting the power to be supplied to the induction heating device to be supplied power used for the calculation ,
Power condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the conformity determination means when the power condition is not satisfied. Item 2. The heat treatment apparatus according to Item 1.
前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、
前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、
前記温度条件に適合する場合は、前記温度条件に適合する供給予定電力の内、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が最小になる供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段と
を有することを特徴とする請求項1に記載の熱処理装置。 The arithmetic unit is:
Temperature estimation means for estimating the surface temperature of the steel material and the internal temperature in the thickness direction after induction heating from the data including the conveyance speed of the steel material and the scheduled power supply;
Suitability determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition;
If the temperature conditions are not met, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the suitability determination means;
If the temperature condition is met, the planned supply power that minimizes the total power amount of each induction heating device used for heating the steel material among the planned supply power that meets the temperature condition is induced. The heat treatment apparatus according to claim 1, further comprising a power determination unit configured to supply power to the heating apparatus.
前記誘導加熱装置による加熱後の前記鋼材の厚み方向の温度分布を推定する温度分布推定手段を更に備えることを特徴とする請求項1乃至5のいずれかに記載の熱処理装置。 The arithmetic unit is:
The heat treatment apparatus according to any one of claims 1 to 5, further comprising temperature distribution estimation means for estimating a temperature distribution in a thickness direction of the steel material after being heated by the induction heating apparatus.
前記鋼材の搬送速度に基づいて、前記誘導加熱装置内における前記鋼材の厚み方向の誘導電流分布を求めて前記鋼材内部の発生熱量を算出する発生熱量算出手段と、
前記誘導加熱装置外における前記鋼材から大気への放散熱量を算出する放散熱量算出手段と、
前記発生熱量と前記放散熱量とを境界条件として前記鋼材の内部への熱伝導を演算して前記鋼材の表面温度と厚み方向の内部温度とを推定する温度演算手段と
を有することを特徴とする請求項6に記載の熱処理装置。 The temperature distribution estimating means includes
Based on the conveying speed of the steel material, the generated heat amount calculating means for calculating the generated heat amount inside the steel material by obtaining the induction current distribution in the thickness direction of the steel material in the induction heating device;
A dissipated heat amount calculating means for calculating a dissipated heat amount from the steel material to the atmosphere outside the induction heating device;
Temperature calculation means for calculating heat conduction to the inside of the steel material using the generated heat amount and the dissipated heat amount as a boundary condition to estimate the surface temperature of the steel material and the internal temperature in the thickness direction is provided. The heat treatment apparatus according to claim 6.
前記鋼材の長手方向の各位置に対応して前記鋼材の加熱に使用された電力と前記鋼材の温度検出値との履歴を管理する加熱履歴管理手段を更に有することを特徴とする請求項1乃至8のいずれかに記載の熱処理装置。 The arithmetic unit is:
The heating history management means for managing the history of the electric power used for heating the steel material and the temperature detection value of the steel material corresponding to each position in the longitudinal direction of the steel material. The heat treatment apparatus according to claim 8.
前記鋼材の先頭部分と後端部分においては、前記加熱目標温度に基づいてそれぞれの誘導加熱装置に供給する電力を算出し、前記鋼材の先頭部分と後端部分の移動に合わせて前記電力を制御して前記電源装置に供給する電力供給手段と、
前記鋼材の先頭部分と後端部分に挟まれた中間部分においては、前記鋼材の先頭部分の実測温度と、後端部分の実測温度または推定温度と、当該中間部分の実測温度または推定温度とに基づいて、前記鋼材の先頭部分と後端部分の誘導加熱装置毎の加熱目標温度を補正して前記中間部分の誘導加熱装置毎の加熱目標温度を算出する中間部分目標温度算出手段と、
前記中間部分の誘導加熱装置毎の加熱目標温度に基づいてそれぞれの誘導加熱装置に供給する中間電力を算出し、前記鋼材の中間部分の移動に合わせて前記中間電力を制御して前記電源装置に供給する中間電力制御手段と
を備えることを特徴とする請求項9記載の熱処理装置。 Based on the temperature of the head portion of the steel material detected by the temperature detector provided on the entrance side of the first stage induction heating device, the measured or estimated temperature of the rear end portion, and the conveying speed of the steel material, Target temperature calculation means for calculating the heating target temperature for each induction heating device for the head portion and the rear end portion of
In the head portion and the rear end portion of the steel material, power supplied to each induction heating device is calculated based on the heating target temperature, and the power is controlled in accordance with the movement of the head portion and the rear end portion of the steel material. Power supply means for supplying to the power supply device,
In the intermediate portion sandwiched between the head portion and the rear end portion of the steel material, the measured temperature of the head portion of the steel material, the measured temperature or estimated temperature of the rear end portion, and the measured temperature or estimated temperature of the intermediate portion Based on the intermediate part target temperature calculation means for correcting the heating target temperature for each induction heating device of the intermediate part by correcting the heating target temperature for each induction heating device of the leading portion and the rear end portion of the steel material,
The intermediate power supplied to each induction heating device is calculated based on the heating target temperature for each induction heating device of the intermediate portion, and the intermediate power is controlled in accordance with the movement of the intermediate portion of the steel material to the power supply device. The heat treatment apparatus according to claim 9, further comprising intermediate power control means for supplying the heat treatment apparatus.
前記演算装置は、
前記誘導加熱装置に供給した電力と前記温度検出器で測定した前記鋼材の上昇温度とに基づいて前記誘導加熱装置の加熱効率を推定する加熱効率推定手段と、
次に熱処理予定の前記鋼材に対して求めた電力を前記加熱効率を用いて補正演算する補正演算手段と
を有することを特徴とする請求項1乃至10のいずれかに記載の熱処理装置。 Having the temperature detector before and after at least one induction heating device;
The arithmetic unit is:
Heating efficiency estimation means for estimating the heating efficiency of the induction heating device based on the power supplied to the induction heating device and the temperature rise of the steel material measured by the temperature detector;
11. The heat treatment apparatus according to claim 1, further comprising a correction calculation unit that corrects the electric power obtained for the steel material to be heat-treated using the heating efficiency.
前記圧延ラインにおける前記鋼材の大気への放散熱量を実測温度によって修正する温度降下量修正手段と、
次に熱処理予定の前記鋼材に対して、前記修正された放散熱量によって推定された温度降下量に基づいて、前記鋼材を目標温度に加熱するための供給予定電力を演算する冷却補正電力演算手段と
を有することを特徴とする請求項7に記載の熱処理装置。 The arithmetic unit is:
A temperature drop amount correcting means for correcting the amount of heat dissipated into the atmosphere of the steel material in the rolling line by an actually measured temperature ;
Next, with respect to the steel material to be heat-treated, based on the amount of temperature drop estimated by the corrected amount of heat dissipated, cooling correction power calculation means for calculating power to be supplied for heating the steel material to a target temperature; The heat treatment apparatus according to claim 7 , comprising:
前記圧延ラインにおける前記鋼材の前記矯正装置による温度降下量を、前記矯正装置の前後に設置された温度検出器によって測定された実測温度によって修正する温度降下量修正手段と、
次に熱処理予定の前記鋼材に対して、前記修正された矯正装置での温度降下量に基づいて、前記鋼材を目標温度に加熱するための供給予定電力を演算する冷却補正電力演算手段と
を有することを特徴とする請求項1乃至12のいずれかに記載の熱処理装置。 The arithmetic unit is:
A temperature drop amount correcting means for correcting the temperature drop amount of the steel material in the rolling line by the correction device by an actual temperature measured by a temperature detector installed before and after the correction device;
Next, with respect to the steel material to be heat-treated, it has cooling correction power calculation means for calculating power to be supplied for heating the steel material to a target temperature based on the temperature drop amount in the corrected straightening device. The heat treatment apparatus according to claim 1, wherein the heat treatment apparatus is a heat treatment apparatus.
前記温度検出器で測定した鋼材温度と、予め与えられたその位置での目標温度との差に基づいて前段の誘導加熱装置に供給する電力を制御するフィードバック制御手段と、
前記温度検出器で測定した鋼材温度と、予め与えられたその位置での目標温度との差に基づいて後段の誘導加熱装置に供給する電力を制御するフィードフォワード制御手段と
を更に備えたことを特徴とする請求項1乃至13のいずれかに記載の熱処理装置。 Having at least one temperature detector between the induction heating devices;
Feedback control means for controlling the power supplied to the induction heating device of the previous stage based on the difference between the steel material temperature measured by the temperature detector and the target temperature at the position given in advance;
A feedforward control means for controlling electric power supplied to a subsequent induction heating device based on a difference between a steel material temperature measured by the temperature detector and a target temperature at the position given in advance; The heat treatment apparatus according to claim 1, wherein the heat treatment apparatus is a heat treatment apparatus.
前記鋼材の長手方向の各位置に対応して前記温度検出器で測定した鋼材温度と、予め与えられたその位置での目標温度との差に基づいて前段の誘導加熱装置に供給する電力を制御することを特徴とする請求項14記載の熱処理装置。 The feedback control means includes
The electric power supplied to the induction heating device of the previous stage is controlled based on the difference between the steel material temperature measured by the temperature detector corresponding to each position in the longitudinal direction of the steel material and the target temperature at that position given in advance. The heat treatment apparatus according to claim 14.
前記鋼材の長手方向の各位置に対応して前記温度検出器で測定した鋼材温度と、予め与えられたその位置での目標温度との差に基づいて後段の誘導加熱装置に供給する電力を制御することを特徴とする請求項14記載の熱処理装置。 The feedforward control means includes
The electric power supplied to the induction heating device in the subsequent stage is controlled based on the difference between the steel material temperature measured by the temperature detector corresponding to each position in the longitudinal direction of the steel material and the target temperature at that position given in advance. The heat treatment apparatus according to claim 14.
前記複数台の誘導加熱装置の前段に設置され、前記鋼材を矯正するための矯正装置と、
前記鋼材のサイズと、前記鋼材の搬送速度と、前記鋼材の加熱目標温度と、前記誘導加熱装置の前段における前記鋼材の予定温度とに基づいて、前記誘導加熱装置に供給する供給予定電力を演算する演算装置と、
前記演算装置により演算された供給予定電力を前記誘導加熱装置に供給する電源装置とを有し、
前記演算装置は、
前記誘導加熱装置による加熱中の前記鋼材の表面温度が第1の目標温度以下で、加熱終了時の鋼材厚み方向内部の所定位置における温度と第2の目標温度との差が所定範囲内になるように加熱するために前記誘導加熱装置に供給する供給予定電力、または前記誘導加熱装置による加熱終了時の前記鋼材の表面温度が第3の目標温度以上となり、加熱中の鋼材厚み方向内部の所定位置における温度が第4の目標温度以下となるように加熱するために前記誘導加熱装置に供給する供給予定電力を演算することを特徴とする熱処理装置。 A plurality of induction heating devices for heating steel materials;
Straightening device installed in the front stage of the plurality of induction heating devices, for straightening the steel material,
Based on the size of the steel material, the conveying speed of the steel material, the target heating temperature of the steel material, and the planned temperature of the steel material in the previous stage of the induction heating device, the planned supply power to be supplied to the induction heating device is calculated. An arithmetic unit to
A power supply unit that supplies the planned heating power calculated by the arithmetic unit to the induction heating unit;
The arithmetic unit is:
The surface temperature of the steel material being heated by the induction heating device is equal to or lower than the first target temperature, and the difference between the temperature at a predetermined position inside the steel material thickness direction at the end of heating and the second target temperature is within a predetermined range. Power to be supplied to the induction heating device for heating, or the surface temperature of the steel material at the end of heating by the induction heating device is equal to or higher than a third target temperature, and a predetermined value inside the thickness direction of the steel material being heated A heat treatment apparatus for calculating a supply power to be supplied to the induction heating apparatus for heating so that a temperature at a position is equal to or lower than a fourth target temperature.
前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、
前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、
前記温度条件に適合する場合は、その演算に用いられた供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段と
を有することを特徴とする請求項17乃至19のいずれかに記載の熱処理装置。 The arithmetic unit is:
Temperature estimation means for estimating the surface temperature of the steel material and the internal temperature in the thickness direction after induction heating from the data including the conveyance speed of the steel material and the scheduled power supply;
Suitability determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition;
If the temperature conditions are not met, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the suitability determination means;
20. When the temperature condition is satisfied, the apparatus includes a power determining unit that uses the scheduled supply power used for the calculation as power to be supplied to the induction heating device. Heat treatment equipment.
前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、
前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、
前記温度条件に適合する場合は、その演算に用いられた供給予定電力に基づいて、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力量判定手段と、
前記電力条件に適合する場合は、その演算に用いられた供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段と、
前記電力条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する電力条件判定処理手段と
を有することを特徴とする請求項17乃至19のいずれかに記載の熱処理装置。 The arithmetic unit is:
Temperature estimation means for estimating the surface temperature of the steel material and the internal temperature in the thickness direction after induction heating from the data including the conveyance speed of the steel material and the scheduled power supply;
Suitability determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition;
If the temperature conditions are not met, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the suitability determination means;
When the temperature condition is met, based on the planned supply power used for the calculation, the power condition where the total amount of power of each induction heating device used for heating the steel material is equal to or less than a predetermined value Electric energy determination means for determining whether or not the
If the power condition is met, the power determining means for setting the power to be supplied to the induction heating device to be supplied power used for the calculation ,
Power condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the conformity determination means when the power condition is not satisfied. Item 20. The heat treatment apparatus according to any one of Items 17 to 19.
前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、
前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、
前記温度条件に適合する場合は、前記温度条件に適合する供給予定電力の内、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が最小になる供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段と
を有することを特徴とする請求項17乃至19のいずれかに記載の熱処理装置。 The arithmetic unit is:
Temperature estimation means for estimating the surface temperature of the steel material and the internal temperature in the thickness direction after induction heating from the data including the conveyance speed of the steel material and the scheduled power supply;
Suitability determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition;
If the temperature conditions are not met, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the suitability determination means;
If the temperature condition is met, the planned supply power that minimizes the total power amount of each induction heating device used for heating the steel material among the planned supply power that meets the temperature condition is induced. The heat treatment apparatus according to any one of claims 17 to 19, further comprising a power determination unit configured to supply power to the heating apparatus.
前記誘導加熱装置による加熱後の前記鋼材の厚み方向の温度分布を推定する温度分布推定手段を更に備えたことを特徴とする請求項17乃至22のいずれかに記載の熱処理装置。 The arithmetic unit is:
The heat treatment apparatus according to any one of claims 17 to 22, further comprising temperature distribution estimation means for estimating a temperature distribution in a thickness direction of the steel material after being heated by the induction heating apparatus.
前記誘導加熱装置内における前記鋼材の厚み方向の誘導電流分布を求めて前記鋼材内部の発生熱量を算出する発生熱量算出手段と、
前記誘導加熱装置外における前記鋼材から大気への放散熱量を算出する放散熱量算出手段と、
前記発生熱量と前記放散熱量とを境界条件として前記鋼材の内部への熱伝導を演算して前記鋼材の表面温度と厚み方向の内部温度とを推定する温度演算手段とを有することを特徴とする請求項23記載の熱処理装置。 The temperature distribution estimating means includes
A calorific value calculation means for calculating a calorific value generated in the steel material by obtaining an induction current distribution in the thickness direction of the steel material in the induction heating device;
A dissipated heat amount calculating means for calculating a dissipated heat amount from the steel material to the atmosphere outside the induction heating device;
Temperature calculation means for calculating heat conduction to the inside of the steel material using the generated heat amount and the dissipated heat amount as a boundary condition to estimate the surface temperature of the steel material and the internal temperature in the thickness direction is provided. The heat treatment apparatus according to claim 23.
前記鋼材を長手方向の仮想的な複数の区画に分割し、この区画単位で前記鋼材の加熱に使用された電力と前記鋼材の温度検出値との履歴を管理する加熱履歴管理手段を更に有することを特徴とする請求項17乃至25のいずれかに記載の熱処理装置。 The arithmetic unit is:
The steel material is further divided into a plurality of virtual sections in the longitudinal direction , and further has a heating history management means for managing the history of the electric power used for heating the steel material and the temperature detection value of the steel material in this section unit. The heat treatment apparatus according to any one of claims 17 to 25.
前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、
前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、
前記温度条件に適合する場合は、前記温度条件に適合する供給予定電力の内、前記鋼材の搬送速度が最大になる供給予定電力を前記誘導加熱装置に供給する電力とする電力決定手段とを有することを特徴とする請求項17または18に記載の熱処理装置。 The arithmetic unit is:
Temperature estimation means for estimating the surface temperature of the steel material and the internal temperature in the thickness direction after induction heating from the data including the conveyance speed of the steel material and the scheduled power supply;
Suitability determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition;
If the temperature conditions are not met, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the suitability determination means;
When the temperature condition is met, power determining means for setting the power to be supplied to the induction heating device, which is the supply power that maximizes the conveying speed of the steel material, among the power to be supplied that meets the temperature condition. The heat treatment apparatus according to claim 17 or 18, characterized by the above.
前記鋼材の搬送速度と前記供給予定電力を含むデータから誘導加熱後における前記鋼材の表面温度と厚み方向の内部温度とを推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度条件に適合するかどうかを判定する適合判定手段と、
前記温度条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する温度条件判定処理手段と、
前記温度条件に適合する場合は、その演算に用いられた供給予定電力に基づいて、前記鋼材の加熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が所定の値以下である電力条件に適合するかどうかを判定する電力量判定手段と、
前記電力条件に適合する場合は、前記搬送速度を増加した新たな搬送速度を用いて前記温度推定手段、前記適合判定手段、前記温度条件判定処理手段、前記電力量判定手段を前記温度条件に適合しなくなるまで繰り返して実行し、前記温度条件と前記電力条件に適合する最終の演算に用いられた搬送速度を新たな搬送速度として獲得する搬送速度演算手段と、
前記電力条件に適合しない場合は、前記供給予定電力を修正して前記温度推定手段と前記適合判定手段とを繰り返して実行する電力条件判定処理手段と
を有することを特徴とする請求項17または18に記載の熱処理装置。 The arithmetic unit is:
Temperature estimation means for estimating the surface temperature of the steel material and the internal temperature in the thickness direction after induction heating from the data including the conveyance speed of the steel material and the scheduled power supply;
Suitability determination means for determining whether the surface temperature of the steel material and the internal temperature in the thickness direction meet a predetermined temperature condition;
If the temperature conditions are not met, the temperature condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the suitability determination means;
When the temperature condition is met, based on the planned supply power used for the calculation, the power condition where the total amount of power of each induction heating device used for heating the steel material is equal to or less than a predetermined value Electric energy determination means for determining whether or not the
When the power condition is met, the temperature estimation means, the conformity determination means, the temperature condition determination processing means, and the power amount determination means are adapted to the temperature condition using a new transport speed obtained by increasing the transport speed. Repetitively executing until it stops, a transport speed calculating means for acquiring the transport speed used for the final calculation that matches the temperature condition and the power condition as a new transport speed ;
Power condition determination processing means for correcting the scheduled power supply and repeatedly executing the temperature estimation means and the conformity determination means when the power condition is not satisfied. Item 19. A heat treatment apparatus according to Item 17 or 18.
鋼材の圧延ライン上で、前記加速冷却装置と前記複数台の誘導加熱装置との中間に設置された前記鋼材を矯正するための矯正装置と、
前記圧延ライン上に設置され前記鋼材の温度を検出する少なくとも1つの温度検出器と、
前記鋼材のサイズと、前記鋼材の搬送速度と、前記鋼材の加熱目標温度と、前記誘導加熱装置の前段における前記鋼材の予定温度とに基づいて、前記誘導加熱装置に供給する第1の供給予定電力を演算する第1の演算装置と、
前記鋼材のサイズと、前記鋼材の搬送速度と、前記鋼材の加熱目標温度と、前記誘導加熱装置の前段における前記鋼材の前記温度検出器で測定した実測温度とに基づいて、前記誘導加熱装置に供給する第2の供給予定電力を演算する第2の演算装置と、
前記鋼材の予定温度と前記鋼材の実測温度との差が所定の範囲内にあれば前記第1の供給予定電力を供給予定電力として選択し、前記鋼材の予定温度と前記鋼材の実測温度との差が所定の範囲内になければ前記第2の供給予定電力を供給予定電力として選択する電力選択装置と、
前記電力選択装置により選択された供給予定電力を前記誘導加熱装置に供給する電源装置とを有し、
前記第1及び第2の演算装置は、
前記誘導加熱装置による加熱中の前記鋼材の表面温度が第1の目標温度以下で、加熱終了時の鋼材厚み方向内部の所定位置における温度と第2の目標温度との差が所定範囲内になるように加熱するために前記誘導加熱装置に供給する供給予定電力、または前記誘導加熱装置による加熱終了時の前記鋼材の表面温度が第3の目標温度以上となり、加熱中の鋼材厚み方向内部の所定位置における温度が第4の目標温度以下となるように加熱するために前記誘導加熱装置に供給する供給予定電力を演算することを特徴とする熱処理装置。 A plurality of induction heating devices installed on the rolling line of steel material and arranged at the subsequent stage of the accelerated cooling device for rapidly cooling the rolled steel material;
A straightening device for straightening the steel material installed between the accelerated cooling device and the plurality of induction heating devices on a steel material rolling line;
At least one temperature detector installed on the rolling line for detecting the temperature of the steel material;
A first supply schedule to be supplied to the induction heating device based on the size of the steel material, the conveyance speed of the steel material, the target heating temperature of the steel material, and the planned temperature of the steel material in the previous stage of the induction heating device. A first computing device for computing power;
Based on the size of the steel material, the conveyance speed of the steel material, the target heating temperature of the steel material, and the actual temperature measured by the temperature detector of the steel material in the previous stage of the induction heating device, the induction heating device A second computing device that computes a second scheduled supply power to be supplied;
If the difference between the estimated temperature of the steel material and the measured temperature of the steel material is within a predetermined range, the first scheduled power supply is selected as the scheduled supply power, and the estimated temperature of the steel material and the measured temperature of the steel material A power selection device that selects the second scheduled power supply as the planned power supply if the difference is not within a predetermined range;
A power supply device that supplies the planned heating power selected by the power selection device to the induction heating device;
The first and second arithmetic units are:
The surface temperature of the steel material being heated by the induction heating device is equal to or lower than the first target temperature, and the difference between the temperature at a predetermined position inside the steel material thickness direction at the end of heating and the second target temperature is within a predetermined range. Power to be supplied to the induction heating device for heating, or the surface temperature of the steel material at the end of heating by the induction heating device is equal to or higher than a third target temperature, and a predetermined value inside the thickness direction of the steel material being heated A heat treatment apparatus for calculating a supply power to be supplied to the induction heating apparatus for heating so that a temperature at a position is equal to or lower than a fourth target temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004219110A JP4923390B2 (en) | 2003-08-06 | 2004-07-27 | Heat treatment apparatus and steel material manufacturing method |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003288072 | 2003-08-06 | ||
JP2003288070 | 2003-08-06 | ||
JP2003288072 | 2003-08-06 | ||
JP2003288070 | 2003-08-06 | ||
JP2003288071 | 2003-08-06 | ||
JP2003288071 | 2003-08-06 | ||
JP2004219110A JP4923390B2 (en) | 2003-08-06 | 2004-07-27 | Heat treatment apparatus and steel material manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005068553A JP2005068553A (en) | 2005-03-17 |
JP4923390B2 true JP4923390B2 (en) | 2012-04-25 |
Family
ID=34426991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004219110A Expired - Lifetime JP4923390B2 (en) | 2003-08-06 | 2004-07-27 | Heat treatment apparatus and steel material manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4923390B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5503571B2 (en) * | 2010-03-29 | 2014-05-28 | パナソニック株式会社 | Manufacturing method of planar warmer and manufacturing apparatus of planar warmer |
WO2015162728A1 (en) * | 2014-04-23 | 2015-10-29 | 東芝三菱電機産業システム株式会社 | Rolling system |
JP7207335B2 (en) * | 2020-01-08 | 2023-01-18 | Jfeスチール株式会社 | Plate temperature control method, heating control device, and metal plate manufacturing method |
CN113008595B (en) * | 2021-02-26 | 2023-07-07 | 中冶东方工程技术有限公司 | Comprehensive robot sampling and preparing system and method in metallurgical industry |
CN114889170B (en) * | 2022-05-16 | 2023-12-12 | 山东明科电气技术有限公司 | Online regulation and control preheating device and method using induction heating |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164330A (en) * | 1998-11-27 | 2000-06-16 | Nkk Corp | Control method and control device for induction heating device |
JP3327231B2 (en) * | 1998-12-11 | 2002-09-24 | 日本鋼管株式会社 | Method and apparatus for induction heating of rolled material |
JP3767663B2 (en) * | 1999-01-14 | 2006-04-19 | Jfeスチール株式会社 | Heating control method of induction heating device |
EP1359230B1 (en) * | 2000-12-18 | 2008-05-07 | JFE Steel Corporation | Production method for steel plate and equipment therefor |
JP4066603B2 (en) * | 2001-02-02 | 2008-03-26 | Jfeスチール株式会社 | Heat treatment method for steel |
-
2004
- 2004-07-27 JP JP2004219110A patent/JP4923390B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005068553A (en) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100585540B1 (en) | Heat treating device, heat treating method, recording medium recording heat treating program and steel product | |
JP4752764B2 (en) | Material control method and apparatus for rolling, forging or straightening line | |
JP2000167615A (en) | Method for controlling coiling temperature and controller | |
CN106119520A (en) | A kind of cold rolling hot dip galvanizing annealing furnace plate temperature coordinated control system and method | |
KR101516476B1 (en) | Apparatus for calculating set value, method of calculating set value, and program recording medium for calculating set value | |
JP4598586B2 (en) | Cooling control method, apparatus, and computer program | |
KR102043529B1 (en) | Method for controlling coil width and apparatus thereof | |
JP4923390B2 (en) | Heat treatment apparatus and steel material manufacturing method | |
KR102075245B1 (en) | Prediction apparatus for iron loss reduction of electric steel sheet | |
JP4598580B2 (en) | Cooling control method, apparatus, and computer program | |
JP4631247B2 (en) | Steel material heat treatment method and program thereof | |
JP5749416B2 (en) | Steel material heat treatment apparatus and steel material manufacturing method | |
JP4396237B2 (en) | Steel material heat treatment apparatus and steel material manufacturing method | |
JP4561810B2 (en) | Steel heat treatment method and manufacturing method and manufacturing equipment | |
JP4178976B2 (en) | Steel material heat treatment method and program thereof | |
JP4258341B2 (en) | Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet | |
JP4333282B2 (en) | Manufacturing method of high-strength steel sheet | |
JP2005089785A (en) | Method for manufacturing high-tensile-strength steel sheet | |
JP4561809B2 (en) | Steel heat treatment method and manufacturing method and manufacturing equipment | |
JP5552885B2 (en) | Induction heating method for thick steel plate | |
JP4062183B2 (en) | Steel heat treatment method and manufacturing method and manufacturing equipment | |
JP2010247234A (en) | Method, device and computer program for controlling cooling | |
JP3945212B2 (en) | Heat treatment apparatus and method for thick steel plate | |
CN115522040A (en) | Automatic temperature control method for cold rolling continuous annealing furnace | |
JP2010167503A (en) | Method, device and computer program for controlling cooling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120123 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4923390 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |