JP4923183B2 - Method for producing chloroethylene carbonate - Google Patents

Method for producing chloroethylene carbonate Download PDF

Info

Publication number
JP4923183B2
JP4923183B2 JP2005280033A JP2005280033A JP4923183B2 JP 4923183 B2 JP4923183 B2 JP 4923183B2 JP 2005280033 A JP2005280033 A JP 2005280033A JP 2005280033 A JP2005280033 A JP 2005280033A JP 4923183 B2 JP4923183 B2 JP 4923183B2
Authority
JP
Japan
Prior art keywords
cec
reaction
impurities
amount
ethylene carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005280033A
Other languages
Japanese (ja)
Other versions
JP2007091603A (en
Inventor
潤彦 谷川
宗弘 比嘉
俊光 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2005280033A priority Critical patent/JP4923183B2/en
Publication of JP2007091603A publication Critical patent/JP2007091603A/en
Application granted granted Critical
Publication of JP4923183B2 publication Critical patent/JP4923183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エチレンカーボネート(EC)を光塩素化するクロロエチレンカーボネート(CEC)の製造方法に関し、特に蒸留精製によっても分離・除去することの難しい不純物の少ないCECの製造方法に関する。   The present invention relates to a method for producing chloroethylene carbonate (CEC) in which ethylene carbonate (EC) is photochlorinated, and more particularly to a method for producing CEC with few impurities that are difficult to separate and remove by distillation purification.

CECはECを塩素化することによって合成される。   CEC is synthesized by chlorinating EC.

Figure 0004923183
Figure 0004923183

CECはビニレンカーボネート(VC)を製造する際の原料となる物質である。   CEC is a material used as a raw material when producing vinylene carbonate (VC).

CECを脱塩化水素化することによって合成されるVCは、リチウムイオン二次電池電解液の溶媒および添加剤として有用な物質であり、電池性能を向上させるためには高純度化されたVCが求められている。この用途には、特に塩素を含有する不純物が注目され、全塩素含有量が100ppm以下、好ましくは20ppm以下の高純度VCが求められている。純度の低いCECを使用してVCを製造した場合、VCの純度も低下させることにつながり、高純度VCを合成することは困難である。よって、CECの段階で不純物の少ない製品が求められている。   VC synthesized by dehydrochlorinating CEC is a substance useful as a solvent and additive for lithium ion secondary battery electrolyte, and highly purified VC is required to improve battery performance. It has been. In this application, impurities containing chlorine are particularly noticed, and high purity VC having a total chlorine content of 100 ppm or less, preferably 20 ppm or less is required. When VC is produced using CEC having low purity, the purity of VC is also lowered, and it is difficult to synthesize high purity VC. Therefore, a product with less impurities is required at the CEC stage.

ECを塩素化することによるCECの製造方法として、非特許文献1には、光照射下において塩素ガスによる光塩素化反応での製造方法が記載されている。また、特許文献1にはラジカル開始剤の共存下で塩化スルフリル等の塩素化剤を用いる製造方法、特許文献2にはAIBN存在下にハロゲン化スルフリルを塩素化剤とする製造方法、特許文献3には紫外線(UV)照射下にハロゲン化スルフリルを塩素化剤とする製造方法が記載されている。   As a method for producing CEC by chlorinating EC, Non-Patent Document 1 describes a production method by photochlorination reaction with chlorine gas under light irradiation. Patent Document 1 discloses a production method using a chlorinating agent such as sulfuryl chloride in the presence of a radical initiator, Patent Document 2 discloses a production method using a halogenated sulfuryl chlorinating agent in the presence of AIBN, and Patent Document 3 Describes a production method using a sulfuryl halide as a chlorinating agent under ultraviolet (UV) irradiation.

特開平11‐171882号公報JP-A-11-171882 特表2002‐529461号公報Special Table 2002-529461 特表2002‐529460号公報Special Table 2002-529460 J.Am.Chem.Soc.,75,1263−1264(1953)J. et al. Am. Chem. Soc. , 75, 1263-1264 (1953)

しかしながら、これらのいずれの方法でECの塩素化を行った場合でも、得られるCECには蒸留精製によっても分離・除去することの難しい不純物(難分離性不純物)が少なからず含まれているのが現状である。
原料であるECや、逐次反応の過塩素化で生成するジクロロエチレンカーボネート(DCEC)等については、主成分であるCECに対して比較的沸点が離れており(飽和蒸気圧が離れており)蒸留精製の工程により比較的容易に分離除去可能である。これに対して、塩素化反応で生成する副生成物には主成分であるCECと沸点の近い(飽和蒸気圧が近接した)化合物が複数ピーク検出されており、蒸留精製を行った場合でも、CECの純度を高めることは難しい。純度を良くするためこれらの副生成物を除去しようとすると収率が低くなってしまう。
ここで、分子内に塩素原子を持つ難分離性不純物は、所定の条件で得られるGCクロマトグラムにおいてCECのピーク付近、特にピークの後ろに検出される成分群であり、CECを脱HCl化してVCを合成する場合の品質悪化を招き易いものである。VC製造の中間体として好適なCECを得る為には、塩素化反応の段階で副生成物、特にこの難分離性不純物の生成をできるかぎり抑制する必要がある。
However, even when EC is chlorinated by any of these methods, the obtained CEC contains not a few impurities (hardly separable impurities) that are difficult to separate and remove by distillation purification. Currently.
Distillation purification of EC, which is a raw material, and dichloroethylene carbonate (DCEC), which is produced by perchlorination of successive reactions, has a relatively low boiling point (saturated vapor pressure is separated) from CEC, which is the main component. This process can be separated and removed relatively easily. On the other hand, in the by-product generated by the chlorination reaction, multiple peaks of compounds having boiling points close to the main component CEC (saturated vapor pressure close) are detected, and even when distillation purification is performed, It is difficult to increase the purity of CEC. An attempt to remove these by-products in order to improve the purity results in a low yield.
Here, the hard-to-separate impurities having a chlorine atom in the molecule are a group of components detected in the GC chromatogram obtained under predetermined conditions in the vicinity of the CEC peak, particularly behind the peak. When VC is synthesized, the quality is likely to deteriorate. In order to obtain CEC suitable as an intermediate for the production of VC, it is necessary to suppress the production of by-products, particularly this hardly separable impurity, as much as possible at the stage of chlorination reaction.

そこで、本発明は、以上の技術的課題を解決するためになされたものであって、副生成物のうち特に難分離性不純物の生成を抑制することができ、ビニレンカーボネート(VC)の製造の中間体として好適なクロロエチレンカーボネート(CEC)の製造方法の提供を目的とする。   Therefore, the present invention has been made to solve the above technical problem, and can suppress the generation of difficult-to-separate impurities among by-products, and can produce vinylene carbonate (VC). It aims at providing the manufacturing method of chloroethylene carbonate (CEC) suitable as an intermediate body.

本願発明者等は、このような課題を解決するため鋭意検討の結果、光照射下、エチレンカーボネートと塩素ガスとを反応させるCECの製造方法において、エチレンカーボネートと芳香族塩化物とを共存させた系に塩素ガスを導入することによって、光照射下の塩素化反応時に生成する副生成物のうち、特に、蒸留精製によって分離することが難しい不純物が大きく減少することを見出し、本発明を完成した。 As a result of intensive studies to solve such problems, the inventors of the present application made ethylene carbonate and aromatic chloride coexist in a CEC production method in which ethylene carbonate and chlorine gas were reacted under light irradiation. By introducing chlorine gas into the system, among the by-products generated during the chlorination reaction under light irradiation, it has been found that impurities that are difficult to separate by distillation purification are greatly reduced, and the present invention has been completed. .

すなわち、本発明のクロロエチレンカーボネートの製造方法は、エチレンカーボネートと芳香族塩化物とを共存させた系に塩素ガスを導入し、光照射下、エチレンカーボネートと塩素ガスとを反応させるものである。 That is, in the method for producing chloroethylene carbonate of the present invention, chlorine gas is introduced into a system in which ethylene carbonate and aromatic chloride coexist, and ethylene carbonate and chlorine gas are reacted under light irradiation.

本発明のクロロエチレンカーボネートの製造方法において、反応生成物中の不純物量が減少する理由としては、(1)芳香族塩化物がECとともに共存することによって、芳香族塩化物がECに配位し、不純物を生成するような塩素化反応を起こりにくくしていること、(2)芳香族塩化物が共存することによって、目的生成物であるCECに配位し、不純物を生成するような分解反応を起こりにくくしていること、等が考えられる。そのため、共存させる芳香族塩化物が比較的少量であっても不純物の生成を低減させる効果がある。 In the method for producing chloroethylene carbonate of the present invention, the amount of impurities in the reaction product is reduced because (1) the aromatic chloride coexists with EC, so that the aromatic chloride is coordinated with EC. , Making the chlorination reaction less likely to generate impurities, and (2) the decomposition reaction that co-ordinates with the target product CEC and produces impurities by the coexistence of aromatic chloride It is possible that it is difficult to occur. Therefore, even if a relatively small amount of aromatic chloride is present, there is an effect of reducing the generation of impurities.

すなわち、エチレンカーボネートと芳香族塩化物とを共存させた系に塩素ガスを導入し、光照射下、エチレンカーボネートと塩素ガスとを反応させることにより、蒸留によって容易に精製可能な、クロロエチレンカーボネートを高収率かつ高選択的に製造することができるものである。 That is, by introducing chlorine gas into a system in which ethylene carbonate and aromatic chloride coexist, and reacting ethylene carbonate and chlorine gas under light irradiation, chloroethylene carbonate that can be easily purified by distillation is obtained. It can be produced with high yield and high selectivity.

本発明のクロロエチレンカーボネートの製造方法において、エチレンカーボネートと、エチレンカーボネートに対して0.1〜7.0倍モルの芳香族塩化物とを共存させた系に塩素ガスを導入し、光照射下、エチレンカーボネートと塩素ガスとを反応させることが好ましい。特に、被塩素化物質に対して約10倍モル以上の芳香族塩化物を共存させた系はいわゆる溶媒系と呼ばれ、特に、溶媒系で発現する効果を溶媒効果と呼ぶが、本発明のクロロエチレンカーボネートの製造方法においては、芳香族塩化物の存在比は小さく、一般的な溶媒効果とはそのメカニズムが異なると判断される。 In the method for producing chloroethylene carbonate of the present invention, chlorine gas is introduced into a system in which ethylene carbonate and 0.1 to 7.0 times moles of aromatic chloride with respect to ethylene carbonate coexist, It is preferable to react ethylene carbonate and chlorine gas. In particular, a system in which an aromatic chloride of about 10 times mol or more with respect to the chlorinated substance coexists is called a so-called solvent system. In particular, an effect manifested in the solvent system is called a solvent effect. In the production method of chloroethylene carbonate, the abundance ratio of aromatic chloride is small, and it is judged that the mechanism is different from the general solvent effect.

本発明のクロロエチレンカーボネートの製造方法において、エチレンカーボネートとともに共存させる芳香族塩化物の量が少ないと、難分離性不純物の低減効果が少ない。したがって、反応系に共存させる芳香族塩化物の量は、エチレンカーボネートに対して0.1倍モル以上であることが好ましく、0.3倍モル以上であることがより好ましい。 In the method for producing chloroethylene carbonate of the present invention, if the amount of aromatic chloride coexisting with ethylene carbonate is small, the effect of reducing hardly separable impurities is small. Therefore, the amount of the aromatic chloride coexisting in the reaction system is preferably 0.1 times mol or more, more preferably 0.3 times mol or more with respect to ethylene carbonate.

一方、エチレンカーボネートとともに共存させる芳香族塩化物の量がエチレンカーボネートに対するモル比で1.0倍を超えると、難分離性不純物の低減効果が鈍ってくる。実際の製造装置において、共存させる芳香族塩化物の量を多くすると、体積効率が悪化し、生産性が低くなるため、不経済である。したがって、共存させる芳香族塩化物の量はエチレンカーボネートに対して7.0倍モル以下であることが好ましく、3.5倍モル以下であることがより好ましい。エチレンカーボネートとともに共存させる芳香族塩化物としては、好ましくは、モノクロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等であるOn the other hand, when the amount of the aromatic chloride coexisting with ethylene carbonate exceeds 1.0 times in molar ratio to ethylene carbonate, the effect of reducing difficult-to-separate impurities becomes dull. In an actual production apparatus, if the amount of the aromatic chloride to be coexisted is increased, the volume efficiency is deteriorated and the productivity is lowered, which is uneconomical. Therefore, the amount of the aromatic chloride to be coexisted is preferably 7.0 times mol or less, more preferably 3.5 times mol or less with respect to ethylene carbonate. The aromatic chloride that coexists with ethylene carbonate is preferably monochlorobenzene, dichlorobenzene, trichlorobenzene or the like .

光塩素化の為の光照射に用いる光源としては、波長ピークが313、365nm等の紫外線領域にあれば特に制限しないが、高圧水銀灯などを用いることができる。内部照射型の反応容器が光の効率上好ましいが、外部照射型の反応容器でもその効果を得ることができる。   The light source used for light irradiation for photochlorination is not particularly limited as long as the wavelength peak is in the ultraviolet region such as 313 and 365 nm, but a high-pressure mercury lamp or the like can be used. An internal irradiation type reaction vessel is preferable in terms of light efficiency, but an external irradiation type reaction vessel can also obtain the effect.

光塩素化の反応温度は、原料であるECの融点(36〜38℃)以上である必要があり、低く設定すると塩素化反応速度が低下(反応性そのものが低下)することから50℃以上が好ましい。反応温度が高いと副生成物の生成量が増大することから80℃以下が好ましく70℃以下がより好ましい。   The reaction temperature for photochlorination must be equal to or higher than the melting point (36 to 38 ° C.) of EC as a raw material, and if it is set low, the chlorination reaction rate decreases (reactivity itself decreases). preferable. When the reaction temperature is high, the amount of by-products increases, so that it is preferably 80 ° C. or lower, more preferably 70 ° C. or lower.

光塩素化反応の終点についての考え方としては、後工程での不純物除去を考慮して、特定不純物の含有量(濃度)を目安に反応を終了させることが好ましい。
たとえば、光塩素化反応の段階で難分離性不純物の生成を抑え、その含有量を少なくしておくとの本発明の趣旨から、除去にあまり負担のかからないよう、反応の終点における難分離性不純物の含有量は、2%以下であることが好ましく、1.5%以下であることがより好ましい。
DCECは蒸留で容易に分離できるので、除去の観点からは量がいくらあってもかまわない。しかし、DCECの含有量が多すぎると蒸留除去量及びこれに同伴して留去される主成分量が増え、反応の進行に伴う多様な不純物成分量が増えることにもなる。このため、反応の終点におけるDCECの含有量は8%以下であることが好ましく、7%以下であることがより好ましい。
実際には、主成分であるCECの生成量がある程度確保できて、DCECと難分離性不純物のどちらかが目安の含有量(濃度)に達する塩素化度をもって反応を終了させることができる。ここで、反応の終点における塩素化度は、0.70〜1.00であることが好ましく、0.75〜0.90であることがより好ましい。
As a way of thinking about the end point of the photochlorination reaction, it is preferable to terminate the reaction with reference to the content (concentration) of a specific impurity in consideration of impurity removal in a subsequent process.
For example, in the stage of the photochlorination reaction, the production of difficult-to-separate impurities is suppressed and the content is kept low. The content of is preferably 2% or less, and more preferably 1.5% or less.
Since DCEC can be easily separated by distillation, any amount can be used from the viewpoint of removal. However, if the content of DCEC is too large, the amount of distillation removed and the amount of main components distilled off accompanying this increase, and the amount of various impurity components increases as the reaction proceeds. For this reason, the content of DCEC at the end point of the reaction is preferably 8% or less, and more preferably 7% or less.
In practice, the production amount of CEC as the main component can be ensured to some extent, and the reaction can be completed with a degree of chlorination in which either DCEC or hardly separable impurities reach a target content (concentration). Here, the chlorination degree at the end point of the reaction is preferably 0.70 to 1.00, and more preferably 0.75 to 0.90.

本発明によれば、エチレンカーボネート(EC)を光塩素化してクロロエチレンカーボネート(CEC)を製造するに際して、難分離性不純物の生成量を大幅に低減することができ、CECの精製コストの低廉化とともに蒸留精製後のCECの純度を容易に改善できる。更に、本発明の製造方法により得られるCECをビニレンカーボネート(VC)製造の中間体として用いた場合には、VCの精製コストをも低廉化できると期待される。   According to the present invention, when producing chloroethylene carbonate (CEC) by photochlorination of ethylene carbonate (EC), it is possible to greatly reduce the amount of difficult-to-separate impurities produced, and to reduce the CEC purification cost. At the same time, the purity of CEC after purification by distillation can be easily improved. Furthermore, when CEC obtained by the production method of the present invention is used as an intermediate for producing vinylene carbonate (VC), it is expected that the purification cost of VC can be reduced.

以下に示す実施例により、本発明を更に具体的に説明するが、本発明はここに開示の実施例により限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the examples disclosed herein.

<実施例1>
塩素ガスの導入口、熱電対、コンデンサーを介して排ガス除去装置に繋がる排気口等を備えた反応容器に、所定量のECと、ECに対するにモル比で0.33倍のモノクロロベンゼンとを共存させ、系内を窒素置換した後、反応系を60℃まで加熱したところで、この反応容器から15cm離れた位置から200W高圧水銀灯を点灯して光照射した。反応温度は60℃を保つように、所定量の塩素ガスを供給し反応を開始した。反応は、DCEC含有量が6.0%程度となるところ、もしくは難分離性不純物の含有量が2.0%以下となるところを終点とし、塩素ガスの供給を停止させ、反応終了とした。
<Example 1>
A reaction vessel equipped with a chlorine gas inlet, a thermocouple, an exhaust port connected to the exhaust gas removal device via a condenser, etc. coexists with a predetermined amount of EC and monochlorobenzene in a molar ratio of 0.33 to EC. After the inside of the system was purged with nitrogen, the reaction system was heated to 60 ° C., and a 200 W high pressure mercury lamp was turned on and irradiated with light from a position 15 cm away from the reaction vessel. A predetermined amount of chlorine gas was supplied to start the reaction so that the reaction temperature was kept at 60 ° C. The reaction was terminated when the DCEC content was about 6.0% or the content of difficult-to-separate impurities was 2.0% or less, the supply of chlorine gas was stopped, and the reaction was completed.

Figure 0004923183
Figure 0004923183

反応液のサンプリングを反応開始から一定時間毎に実施して、ガスクロマトグラフィー(装置:GC14B(島津製作所社製)、カラム:TC−1701、(0.25mmIDX30m、膜厚1μm、GLサイエンス社製)、検出器:FlD、INJ(気化室温度):200℃、DET(検出器温度):200℃、カラム温度:140℃を5min維持し、1℃/minの昇温速度で150℃まで昇温し、更に5℃/minの昇温速度で250℃まで昇温し、その後250℃を維持する。)による定量分析を行うと共に、GC−MS分析によりEC、CEC及びDCECの各ピークを特定した。各反応液のGCクロマトグラムにおいて、更に、CECのピーク以降に、分子内に少なくとも塩素原子を持つ難分離性不純物が複数検出された。各成分の保持時間は、DCEC:6.6min、EC:11.4min、CEC:13.6minであり、保持時間でCEC以降に検出された難分離性不純物は13.6minを越えて30minまでに検出される成分の合計である。実施例1の定量分析結果を表2に示す。16h後の反応液のGC分析結果は、EC:15.2%、CEC:75.6%、DCEC:4.2%、保持時間でCEC以降に検出された難分離性不純物は合計で0.9%、また、塩素化度は0.89であった。   Sampling of the reaction solution was carried out at regular intervals from the start of the reaction, gas chromatography (apparatus: GC14B (manufactured by Shimadzu Corporation), column: TC-1701, (0.25 mm IDX 30 m, film thickness 1 μm, manufactured by GL Sciences) Detector: FlD, INJ (vaporization chamber temperature): 200 ° C., DET (detector temperature): 200 ° C., column temperature: 140 ° C. is maintained for 5 min, and the temperature is increased to 150 ° C. at a rate of 1 ° C./min. In addition, the temperature was raised to 250 ° C. at a rate of 5 ° C./min, and then maintained at 250 ° C.), and each peak of EC, CEC and DCEC was identified by GC-MS analysis. . In the GC chromatogram of each reaction solution, a plurality of difficult-to-separate impurities having at least chlorine atoms in the molecule were detected after the CEC peak. The retention time of each component is DCEC: 6.6 min, EC: 11.4 min, CEC: 13.6 min, and hardly separable impurities detected after CEC in the retention time exceed 13.6 min and reach 30 min. This is the sum of the components detected. The quantitative analysis results of Example 1 are shown in Table 2. The results of GC analysis of the reaction solution after 16 hours are EC: 15.2%, CEC: 75.6%, DCEC: 4.2%, and the total number of difficult-to-separate impurities detected after CEC at a retention time of 0. The chlorination degree was 9% and 0.89.

塩素化度は塩素がどれだけ置換されたかを評価する数値であって、塩素化度が1の場合、原料と同mol量の塩素が置換された状態であることを示す。以下の評価においては、EC=0、CEC=1、DCEC=2、CEC以降に検出された難分離性不純物=1、その他=1とし、各時刻にサンプリングした反応液の塩素化度を次式にしたがって求めた。ただし、組成量の値はGC検出強度比をそのまま利用した。   The degree of chlorination is a numerical value for evaluating how much chlorine is substituted. When the degree of chlorination is 1, it indicates that the same amount of chlorine as the raw material is substituted. In the following evaluation, EC = 0, CEC = 1, DCEC = 2, difficult-to-separate impurities detected after CEC = 1, and other = 1, and the chlorination degree of the reaction solution sampled at each time is expressed by the following equation: It was calculated according to However, the value of the composition amount used the GC detection intensity ratio as it is.

塩素化度={(EC組成量(%))×0+(CEC組成量(%))×1+(DCEC組成量(%))×2+(CEC以降に検出された難分離性不純物量(%))×1+(その他組成量(%))×1}/100   Chlorination degree = {(EC composition amount (%)) × 0 + (CEC composition amount (%)) × 1 + (DCEC composition amount (%)) × 2 + (difficult-to-separate impurity amount (%) detected after CEC) ) × 1 + (other composition amount (%)) × 1} / 100

Figure 0004923183
Figure 0004923183

このようにして得られた反応液305.0gについて、理論段数21段の蒸留塔を用いて還流比5の条件で減圧下に蒸留を行い、112〜116℃/17〜20mmHgの精留分119.8gを得た。蒸留収率はCEC基準で68.4%、CECの純度は99.31%、難分離性不純物の含有量は0.12%であった。   305.0 g of the reaction solution thus obtained was distilled under reduced pressure using a distillation column having a theoretical plate number of 21 under a reflux ratio of 5, and a rectified fraction 119 having a temperature of 112 to 116 ° C./17 to 20 mmHg. .8 g was obtained. The distillation yield was 68.4% based on CEC, the purity of CEC was 99.31%, and the content of hardly separable impurities was 0.12%.

<実施例2>
表1に示すように、ECとともに共存させるモノクロロベンゼンの対ECモル比を0.66倍とし、それ以外は実施例1と同様に光塩素化反応を実施した。実施例2のGC分析結果を表3に示す。
<Example 2>
As shown in Table 1, the photochlorination reaction was carried out in the same manner as in Example 1 except that the molar ratio of monochlorobenzene coexisting with EC to EC was 0.66 times. The GC analysis results of Example 2 are shown in Table 3.



Figure 0004923183
Figure 0004923183

<実施例3>
表1に示すように、ECとともに共存させるモノクロロベンゼンの対ECモル比を1.05倍とし、それ以外は実施例1と同様に光塩素化反応を実施した。実施例3のGC分析結果を表4に示す。
<Example 3>
As shown in Table 1, the photochlorination reaction was carried out in the same manner as in Example 1 except that the molar ratio of monochlorobenzene to EC that coexists with EC was 1.05 times. The GC analysis results of Example 3 are shown in Table 4.

Figure 0004923183
Figure 0004923183

<実施例4>
表1に示すように、ECとともに共存させるモノクロロベンゼンの対ECモル比を3.28倍とし、それ以外は実施例1と同様に光塩素化反応を実施した。実施例4のGC分析結果を表5に示す。
<Example 4>
As shown in Table 1, the photochlorination reaction was carried out in the same manner as in Example 1 except that the molar ratio of monochlorobenzene coexisting with EC to EC was 3.28 times. The GC analysis results of Example 4 are shown in Table 5.

Figure 0004923183
Figure 0004923183

<実施例5>
表1に示すように、所定量のECと、ECに対するにモル比で1.18倍のオルソジクロロベンゼンとを共存させた。それ以外は、実施例1と同様に光塩素化反応を実施した。実施例5のGC分析結果を表6に示す。
<Example 5>
As shown in Table 1, a predetermined amount of EC was coexisted with orthodichlorobenzene having a molar ratio of 1.18 to the EC. Otherwise, the photochlorination reaction was carried out in the same manner as in Example 1. The GC analysis results of Example 5 are shown in Table 6.



Figure 0004923183
Figure 0004923183

<比較例1>
表1に示すように、芳香族塩化物としてはECに何も加えず、実施例1と同様に光塩素化反応を実施した。比較例のGC分析結果を表7に示す。
<Comparative Example 1>
As shown in Table 1, as an aromatic chloride , nothing was added to EC, and the photochlorination reaction was carried out in the same manner as in Example 1. Table 7 shows the GC analysis results of the comparative examples.

Figure 0004923183
Figure 0004923183

このようにして得られた反応液209.5gについて、理論段数21段の蒸留塔を用いて還流比5の条件で減圧下に精製蒸留を行い、112〜116℃/17〜20mmHgの精留分82.0gを得た。蒸留収率はCEC基準で70.7%、CECの純度は98.88%、難分離性不純物の含有量は0.51%であった。   About 209.5 g of the reaction solution thus obtained, purified distillation was performed under reduced pressure using a distillation column having a theoretical plate number of 21 under a reflux ratio of 5 to obtain a rectified fraction of 112 to 116 ° C./17 to 20 mmHg. 82.0 g was obtained. The distillation yield was 70.7% based on CEC, the purity of CEC was 98.88%, and the content of difficult-to-separate impurities was 0.51%.

実施例1〜4及び比較例1の結果について、共存させるモノクロロベンゼンの対ECモル比(MCB共存比)をパラメータとして、塩素化度に対する難分離性不純物精製量の関係を図1に示した。また、図2に図1の塩素化度0.6におけるMCB共存比と難分離性不純物の生成量との関係を示した。   Regarding the results of Examples 1 to 4 and Comparative Example 1, the relationship between the amount of purified refractory impurities with respect to the degree of chlorination is shown in FIG. 1 using the molar ratio of monochlorobenzene to EC (MCB coexistence ratio) as a parameter. FIG. 2 shows the relationship between the MCB coexistence ratio and the amount of hardly separable impurities produced at a chlorination degree of 0.6 in FIG.

MCB共存比に対する難分離性不純物の生成量の違いとして、図1及び図2に示すとおり、MCB共存比0.33倍で反応を行うと、芳香族塩化物を無しとした場合に比べて、難分離性不純物の生成量が1/3となることがわかった。また、芳香族塩化物の共存比(対ECモル比)を増やすことで、さらに難分離性不純物の生成量が減少する傾向がみられた。 As a difference in the amount of the flame separation impurities for MCB coexistence ratio, as shown in FIGS. 1 and 2, when the reaction is carried out in 0.33 MCB coexistence ratio, as compared with the case of the absence of aromatic chlorides, It was found that the amount of hardly separable impurities produced was 1/3. Moreover, the tendency for the production amount of a hard-to-separate impurity to decrease further decreased by increasing the coexistence ratio of aromatic chloride (to EC molar ratio).

しかし、芳香族塩化物の共存比(対ECモル比)を増やせば、容積効率が悪化し、生産性が低下する。実機を想定した条件では、芳香族塩化物の共存比(対ECモル比)を7.0倍以下とすることが好ましいと考えられる。 However, if the coexistence ratio of aromatic chloride (to EC molar ratio) is increased, volumetric efficiency is deteriorated and productivity is lowered. It is considered that the aromatic chloride coexistence ratio (to EC molar ratio) is preferably 7.0 times or less under conditions assuming an actual machine.

図1は、共存させるモノクロロベンゼンの対ECモル比(MCB共存比)をパラメータとして塩素化度に対する難分離性不純物生成量の関係を示したグラフである。FIG. 1 is a graph showing the relationship of the amount of hardly separable impurities produced with respect to the degree of chlorination, using the molar ratio of monochlorobenzene to EC (MCB coexistence ratio) as a parameter. 図2は、図1の塩素化度0.6における共存させるモノクロロベンゼンの対ECモル比(MCB共存比)と難分離性不純物生成量との関係を示したグラフである。FIG. 2 is a graph showing the relationship between the monochlorobenzene to EC molar ratio (MCB coexistence ratio) of the coexisting monochlorobenzene at the chlorination degree of 0.6 in FIG.

Claims (2)

エチレンカーボネートと芳香族塩化物とを共存させた系に塩素ガスを導入し、光照射下、エチレンカーボネートと塩素ガスとを反応させることを特徴とするクロロエチレンカーボネートの製造方法。 Introducing ethylene carbonate and an aromatic system to a chlorine gas are allowed to coexist and chlorides, under light irradiation, a manufacturing method of chloroethylene carbonate, characterized in that the reaction of ethylene carbonate with chlorine gas. エチレンカーボネートとこれに対して0.1〜7.0倍モルの芳香族塩化物とを共存させた系に塩素ガスを導入することを特徴とする請求項1記載のクロロエチレンカーボネートの製造方法。 The method for producing chloroethylene carbonate according to claim 1, wherein chlorine gas is introduced into a system in which ethylene carbonate and 0.1 to 7.0-fold moles of aromatic chloride coexist with ethylene carbonate.
JP2005280033A 2005-09-27 2005-09-27 Method for producing chloroethylene carbonate Expired - Fee Related JP4923183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280033A JP4923183B2 (en) 2005-09-27 2005-09-27 Method for producing chloroethylene carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280033A JP4923183B2 (en) 2005-09-27 2005-09-27 Method for producing chloroethylene carbonate

Publications (2)

Publication Number Publication Date
JP2007091603A JP2007091603A (en) 2007-04-12
JP4923183B2 true JP4923183B2 (en) 2012-04-25

Family

ID=37977722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280033A Expired - Fee Related JP4923183B2 (en) 2005-09-27 2005-09-27 Method for producing chloroethylene carbonate

Country Status (1)

Country Link
JP (1) JP4923183B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876290B1 (en) 2007-06-27 2008-12-29 리켐주식회사 A apparatus for preparing electrolyte solvent
EP2045249B1 (en) * 2007-09-24 2011-10-26 Evonik Degussa GmbH Process for preparing monochloroethylene carbonate and subsequent conversion to vinylene carbonate
CN110003164A (en) * 2019-05-23 2019-07-12 泰兴华盛精细化工有限公司 A kind of synthesis technology of chlorocarbonic acid vinyl acetate
CN114011107B (en) * 2021-11-18 2022-06-24 中建安装集团有限公司 Novel device and method for continuously producing high-purity vinylene carbonate
CN115646533B (en) * 2022-12-29 2023-02-28 北京探微精细化工科技有限公司 Solid catalyst for converting deep chlorination product in monochloroethylene carbonate raw material, preparation method and application
CN117510454B (en) * 2024-01-05 2024-04-05 山东海化集团有限公司 Preparation method of chloroethylene carbonate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021340A (en) * 1953-04-13 1962-02-13 Du Pont 2-oxodioxolanes
US3677957A (en) * 1969-12-17 1972-07-18 American Cyanamid Co Chemiluminescent reaction of chlorinated ethylene carbonate with hydrogen peroxide in the presence of a fluorescer
US4535175A (en) * 1984-04-18 1985-08-13 E. I. Du Pont De Nemours And Company Fluorodioxoles
DE19912359A1 (en) * 1998-11-05 2000-05-11 Merck Patent Gmbh Process for the preparation of monohalogenated 2-oxo-1,3-dioxolanes with azobisisobutyronitrile

Also Published As

Publication number Publication date
JP2007091603A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP5871633B2 (en) Bis (1,1-dichloro-3,3,3-trifluoropropyl) ether and method for producing the same
JP4923183B2 (en) Method for producing chloroethylene carbonate
US7468467B2 (en) Process for obtaining a purified hydrofluoroalkane
US7799959B2 (en) Process for producing 1,2,3,4-tetrachlorohexafluorobutane
WO2012081482A1 (en) Method for producing c3 chlorinated hydrocarbon
JP2013121971A (en) Photochlorination of 1,1,1,3,3-pentafluoropropane
KR20110086037A (en) Process for the production of chlorinated and/or fluorinated propens
JP4923184B2 (en) Method for producing chloroethylene carbonate
JP4984469B2 (en) Method for producing chloroethylene carbonate
FR2903685A1 (en) PROCESS FOR OBTAINING 1,2-DICHLOROETHANE BY DIRECT CHLORINATION WITH DIRECT EVAPORATION CATALYST SEPARATION STEP AND INSTALLATION FOR CARRYING OUT SAID METHOD
JP2010001244A (en) Method for producing fluorine-containing olefin compound
JP5610917B2 (en) Method for producing chloropropane
JP6041643B2 (en) Method for producing 3,3,3-trifluoropropionyl compound
JP5858830B2 (en) Process for producing polychloropropane
JP5365064B2 (en) Novel halogen-containing compounds and methods for producing them
JP5250199B2 (en) Method for producing trichloromethanesulfonyl chloride
KR20190039404A (en) Method for conversion of butene and method for purification of monofluorobutane
JP5803420B2 (en) Process for producing β, β-difluoro-α, β-unsaturated carbonyl compound
EP4234529A1 (en) Method for producing composition containing purified fluorine-containing ether compound
JPWO2007063939A1 (en) Method for producing tetrafluorocyclobutenone
JP4542480B2 (en) Method for producing maleonitriles
JP2017008006A (en) Practical manufacturing method of 3,3-difluoro-1-chloro-2-propanone
JP2011079763A (en) Process for producing fluorine-containing alkyl bromide
JPS646178B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees