JP4921649B2 - Functional porous particles - Google Patents

Functional porous particles Download PDF

Info

Publication number
JP4921649B2
JP4921649B2 JP2001182483A JP2001182483A JP4921649B2 JP 4921649 B2 JP4921649 B2 JP 4921649B2 JP 2001182483 A JP2001182483 A JP 2001182483A JP 2001182483 A JP2001182483 A JP 2001182483A JP 4921649 B2 JP4921649 B2 JP 4921649B2
Authority
JP
Japan
Prior art keywords
iodine
porous particles
activated carbon
weight
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001182483A
Other languages
Japanese (ja)
Other versions
JP2002369869A (en
Inventor
政憲 山中
良憲 岩島
一男 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Enviro Chemicals Ltd
Original Assignee
Japan Enviro Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Enviro Chemicals Ltd filed Critical Japan Enviro Chemicals Ltd
Priority to JP2001182483A priority Critical patent/JP4921649B2/en
Publication of JP2002369869A publication Critical patent/JP2002369869A/en
Application granted granted Critical
Publication of JP4921649B2 publication Critical patent/JP4921649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、脱臭作用に加え、抗菌性も有する機能性多孔質粒子に関する。この機能性多孔質粒子は、例えば、病院等の医療現場や、医薬品、食品、液晶、半導体等の工場におけるクリーンルームの空気清浄に有用である。
【0002】
【従来の技術】
活性炭等の多孔質粒子(吸着剤)は、脱臭や消臭等に汎用されているが、吸着剤に対し、さらに抗菌性等の機能を付与しようという試みがあり、特開昭57−119738号公報には、ヨウ素−ヨウ化カリウムを担持させた活性炭布が開示されている。同公報では、前記活性炭布が外科用手当用品に使用できるとされている。
【0003】
しかしながら、同公報に開示されている活性炭布は、ヨウ素の含有量が少ない。同公報に活性炭布の具体的なヨウ素含有量の記載はないが、本発明者等が同公報のその他の記載から算出したところ、前記活性炭布のヨウ素の平衡吸着量は約2重量%であり、場合によっては0.4重量%以下である。前記活性炭布は、外科用手当用品として人体に接触させて使用されるものであるから、このような少ないヨウ素含有量であっても効果があると考えられる。また、前記活性炭布の比表面積および細孔容積は非常に小さいと推察され、このため少量のヨウ素しか担持できないということも考えられる。しかし、空気中の微生物を殺菌するには、約2重量%や0.4重量%以下というヨウ素含有量では低すぎる。特に、病院等の医療現場の空気清浄では、MRSA(メシチリン耐性黄色ブドウ球菌)等の病原菌の感染を防ぐ必要があるため、空気清浄においてもレベルの高い抗菌作用が要求される。
【0004】
【発明が解決しようとする課題】
本発明は、このような事情に鑑みなされたもので、脱臭・消臭作用に加え、充分な抗菌力をも有する機能性多孔質粒子の提供を、その目的とする。
【0005】
【課題を解決するための手段】
前記目的を達成するために、本発明の機能性多孔質粒子は、その表面および細孔内にヨウ素を有する多孔質粒子であって、前記ヨウ素の割合が、多孔質粒子無水重量当たり10〜60質量%の範囲であるという構成である。
【0006】
このように、本発明の機能性多孔質粒子は、十分量のヨウ素を含有するため、空気中の微生物であっても充分に殺菌可能である。したがって、本発明の機能性多孔質粒子は、特に用途は制限されないが、空気清浄フィルタに適用することが好ましい。
【0007】
前記「多孔質粒子無水重量」は、多孔質粒子を乾燥させて水を除去した重量である。例えば、「JIS K 1474 活性炭試験方法」にある乾燥減量の測定において、115℃(±5℃)に保った恒温乾燥機中で3時間乾燥させるとある。本発明もそのようにして多孔質粒子を乾燥させて秤量したものを「多孔質粒子無水重量」としてもよいし、若しくは予め乾燥減量を測定し、wet品を秤量して、これを換算して「多孔質粒子無水重量」としてもよい。
【0008】
前記ヨウ素は、水分に接触するとヨウ素が溶出する電解質錯体に含まれていることが好ましい。後述のように、前記電解質錯体は、アルカリ金属ヨウ化物水溶液若しくはアルカリ土類金属ヨウ化物水溶液にヨウ素を溶解することにより得られるものである。前記電解質錯体としては、例えば、三ヨウ化カリウム、三ヨウ化ナトリウム等があり、これらが好ましい。なお、前記水分は、例えば、空気中の水分などである。
【0009】
本発明の機能性多孔質粒子において、BET法による比表面積が300〜2000m2/gであり、細孔容積0.1〜1.5cm3/gであり、細孔径が1〜30nm、粒子径が0.01〜10mmであることが好ましい。このように、大きな比表面製および細孔容量を有することにより、さらに十分量のヨウ素を担持することが可能である。
【0010】
本発明の機能性多孔質粒子は、活性炭であることが好ましいが、本発明はこれに限定されない。
【0011】
つぎに、本発明の機能性粒子の第1製造方法は、アルカリ金属ヨウ化物水溶液およびアルカリ土類金属ヨウ化物水溶液の少なくとも一方にヨウ素を溶解したヨウ素液を準備し、このヨウ素液を多孔質粒子の表面および細孔内部に接触させることにより、水分に接触するとヨウ素を溶出する電解質錯体を前記多孔質粒子の表面および細孔内に吸着させる機能性多孔質粒子の製造方法であって、前記ヨウ素液中のヨウ素の濃度が20〜70重量%の範囲である。
【0012】
また、本発明の機能性多孔質粒子の第2製造方法は、固体状のヨウ素を昇華させて多孔質粒子に接触させる機能性多孔質粒子の製造方法であって、ヨウ素の割合が、多孔質粒子100重量部に対し10〜150重量である。
【0013】
これら第1製造方法および第2製造方法により、本発明の機能性多孔質粒子が製造できるが、本発明の機能性多孔質粒子は、その他の方法によって製造してもよい。
【0014】
前記第2製造方法において、昇華温度は、30〜120℃の範囲であることが好ましい。
【0015】
つぎに、本発明のウレタンフォームシートは、その表面および細孔内に、本発明の機能性多孔質粒子が付着していることを特徴とする。このシートは、例えば、空気清浄フィルタのフィルタ濾材に有用である。
【0016】
【発明の実施の形態】
本発明の機能性多孔質粒子は、前述のように活性炭が好ましいが、活性白土、ゼオライト、シリカゲル、活性アルミナ、粘土鉱物等であってもよい。
【0017】
前記機能性多孔質粒子において、液体窒素温度条件下の窒素吸着によるBET比表面積は300〜2000m2/gのものが好ましく、さらに好ましくは500〜2000m2/gである。前記機能性多孔質粒子の粒子径は、例えば、0.01〜10mm、さらに好ましくは0.02〜10mmである。前記機能性多孔質粒子の細孔径は1〜30nm(10〜300オングストローム)であるものが好ましく、さらに好ましくは1.5〜5.0nm(15〜50オングストローム)である。その細孔容積は0.1〜1.5cm3/gが好ましく、さらに好ましくは0.2〜1.0cm3/gである。
【0018】
活性炭の原料としては、木粉、椰子殻等の植物系原料、無煙炭、石油ピッチ、コークス等の石炭、石油系原料、アクリノレ樹脂、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂等の合成樹脂原料が挙げられるが、椰子殻炭や石炭が好適に用いられる。前述の活性炭原料は、例えば固定床、移動床、流動床等で賦活化される。賦活化は例えば水蒸気、塩素、塩化水素、一酸化炭素、二酸化炭素酸素などを用いるガス賦活、アルカリ、酸、塩化亜鉛等を用いる薬品賦活等もあるが、本発明に用いられる活性炭はそのいずれによって賦活化されたものでも良い。
【0019】
前記電解質錯体は、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属若しくはマグネシウム、カルシウム等のアルカリ土類金属のヨウ素化物水溶液にヨウ素を溶解させて得られる。前記電解質錯体において、通常、アルカリ金属若しくはアルカリ度類金属の3ヨウ化物とヨウ素単体が平衡状態で存在している。このなかで、3ヨウ化カリウムとヨウ素が平衡状態にある物質(ヨウ素−三ヨウ化カリウム)、3ヨウ化ナトリウムとヨウ素が平衡状態にある物質(ヨウ素−三ヨウ化ナトリウム)等が好適である。
【0020】
前記電解質錯体を、多孔質粒子の表面及び細孔に添着する方法としては、例えば、噴霧含浸法、浸漬法等の第1製造方法、気体接触法の第2製造方法が挙げられるが、いずれの方法でも良い。
【0021】
すなわち、第1製造方法では、まず、ヨウ素をヨウ化カリウム水溶液等のアルカリ若しくはアルカリ土類金属ヨウ化物水溶液に溶解し、ヨウ素液を調製する。
この調製において、溶解させるヨウ素と前記ヨウ化物の割合は、例えば、溶解させるヨウ素1重量部に対し、ヨウ化物1〜4質量部が好ましい。前記噴霧含浸法は、常温下で、噴霧器、散布器を用い、前記ヨウ素液を多孔質粒子に噴霧若しくは散布する方法である。また、窒素などのキャリアーガスを用いてヨウ素液を噴霧してもよい。前記浸漬法は、常温下で、前記ヨウ素液中に多孔質粒子を浸漬する方法である。前記ヨウ素液のヨウ素濃度は、20〜70質量%が好ましく、より好ましくは30〜70質量%である。
【0022】
また、第2製造方法(気体接触法)は、固体ヨウ素を昇華させてヨウ素ガスを発生させ、これを多孔質粒子に接触させる方法である。この昇華温度は、30〜120℃が好ましく、より好ましくは50〜120℃である。固体ヨウ素と多孔質粒子の割合は、多孔質粒子100重量部に対し、固体ヨウ素10〜150重量部が好ましく、より好ましくは、固体ヨウ素20〜150重量部である。
【0023】
このようにして、多孔質粒子無水重量当たり10〜60質量%のヨウ素を含有する機能性多孔質粒子が製造できるが、その他の方法で製造してもよい。前記ヨウ素含有量は、好ましくは多孔質粒子無水重量当たり20〜60重量%であり、より好ましくは20〜40重量%である。
【0024】
本発明の機能性多孔質粒子は、多孔質シートの表面及び細孔内に固着することにより、空気清浄フィルタ濾材とすることができる。このフィルタ濾材は、集塵機能、脱臭・消臭機能に加え、抗菌機能をも有する。前記多孔質シートとしては、不織布やウレタンフォームシートが挙げられる。多孔質シートへの機能性多孔質粒子の付着は、例えば、以下のようにして実施できる。
【0025】
まず、機能性多孔質粒子、バインダ、分散剤を水に分散させて、処理液を調製する。そして、この処理液に、ウレタンフォームシート等の多孔質シートを浸漬し、若しくは前記処理液を噴霧若しくは散布して塗布する。その後、乾燥させれば、目的とするフィルタ濾材が得られる。
【0026】
前記バインダは、特に制限されないが、反応性乳化剤により得られた共重合体水性エマルジョンが好ましい。前記反応性乳化剤としては、市販品が使用でき、例えば、商品名スピノマーNaSS(東ソー(株)製)がある。また、共重合体としては、例えば、スチレン−アクリル酸エステル−メタクリル酸エステル共重合体等がある。また、分散剤は、活性炭等の多孔質粒子粉末を分散できるものであれば、特に制限されない。
【0027】
【実施例】
以下に実施例を挙げて、本発明をさらに詳細に説明する。なお、本発明はこれら実施例に限定されない。
【0028】
(実施例1)
蒸留水64.8gにヨウ化カリウム64.0gを加えたヨウ化カリウム水溶液に、ヨウ素41.6gを溶解して電解質錯体を含む水溶液(ヨウ素液)を調製した。また、BET比表面積1540mm2/g、平均細孔径が1.88nm、細孔容積が0.73cm3/gで粒子径が0.05〜0.15mm粉末状椰子殻活性炭200gを2リットル容のポリプロピレン容器に入れ、卓上ミキサーで攪拌(30〜100rpm)しながら、前記ヨウ素液の全量をそれぞれ窒素気流下に噴霧し、目的とする機能性粒子(ヨウ素・ヨウ化カリウム添着活性炭)を得た。得られた活性炭のヨウ素含量を、後記の方法で測定した結果、27.1重量%であった。
【0029】
参考例
実施例1の活性炭200gを2リットルのマイヤーに仕込み、60gの固体ヨウ素をガラス容器に仕込んで前記マイヤー内に吊し、110℃の温度でヨウ素を昇華させて気体状のまま活性炭に含浸させて機能性多孔質粒子(ヨウ素添着活性炭)を得た。得られた活性炭のヨウ素含量を、後記の方法で測定した結果、20.4重量%であった。
【0030】
(実施例3)
蒸留水87.0gにヨウ化カリウム128.09を加えたヨウ化カリウム水溶液に、ヨウ素82.4gを溶解して電解質錯体を含む水溶液(ヨウ素液)を調製した。また、実施例1の活性炭200gを2リットル容のポリプロピレン容器に入れ、卓上ミキサーで攪拌(30〜50rpm)しながら、前記ヨウ素液の全量をそれぞれ窒素気流下に噴霧し、ヨウ素・ヨウ化カリウム添着活性炭を得た。得られた活性炭のヨウ素含量を、後記の方法で測定した結果、41.4重量%であった。
【0031】
(実施例4)
蒸留水154.0gにヨウ化カリウム320.0gを加えたヨウ化カリウム水溶液に、ヨウ素206.0gを溶解して電解質錯体を含む水溶液(ヨウ素液)を調製した。また、実施例1の活性炭200gを2リットル容のポリプロピレン容器に入れ、卓上ミキサーで攪拌(30〜50rpm)しながら、前記ヨウ素液の全量をそれぞれ窒素気流下に噴霧し、ヨウ素・ヨウ化カリウム添着活性炭を得た。得られた活性炭のヨウ素含量を、後記の方法で測定した結果、59.2重量%であった。
【0032】
(比較例1)
実施例1の活性炭にヨウ素を添着せずに使用した。
【0033】
(比較例2)
実施例1の活性炭200gを2リットルのマイヤーに仕込み、1gのヨウ素をガラス容器に仕込んでマイヤー内に吊し、110℃の温度でヨウ素を昇華させて気体状のまま活性炭に含浸させてヨウ素添着活性炭を得た。得られた活性炭のヨウ素含量を、後記の方法で測定した結果、0.2重量%であった。
【0034】
(比較例3)
実施例1の活性炭200gを2リットルのマイヤーに仕込み、10gのヨウ素をガラス容器に仕込んでマイヤー内に吊し、110℃の温度でヨウ素を昇華させて気体状のまま活性炭に含浸させてヨウ素溶着活性炭を得た。得られた活性炭のヨウ素含量を、後記の方法で測定した結果、6.1重量%であった。
【0035】
(比較例4)
蒸留水8gにヨウ化カリウム8gを加えたヨウ化カリウム水溶液に、ヨウ素5.2gを溶解して電解質錯体を含む水溶液(ヨウ素液)を調製した。また、実施例1の活性炭200gを2リットル容のポリプロピレン容器に入れ、卓上ミキサーで攪拌(30〜50rpm)しながら前記ヨウ素液の全量をそれぞれ窒素気流下に噴霧し、ヨウ素・ヨウ化カリウム添着活性炭を得た。得られた活性炭のヨウ素含量を、後記の方法で測定した結果、4.9重量%であった。
【0036】
(ヨウ素含有量の測定方法)
前記実施例、参考例および比較例において、ヨウ素含量の測定は、亜硫酸ソーダを用いた還元抽出法によった。
(1)試料をDry換算で活性炭重量が約2gとなるよう採取し(未乾燥品で10g)、0.5N Na2 SO340mlを加え、30分間振とうさせる。
(2)その後、水60mlを加えて更に30分振とう後、水100mlでさらに30分振とうを繰り返す。
(3)採取したろ液をメスアップし、再度メンブランフィルター(0.45ミクロン)でろ過し、容量分析用0.01mol/1AgNO3水溶液(和光純薬製)を用い沈殿滴定し含量を算出した。ここで測定には電位差自動滴定装置AT−200N銀電極を使用(京都電子工業(株)製)を用いた
【0037】
実施例1、3、4、参考例、および比較例1〜4で得られた活性炭について、下記の方法により殺菌性能を評価した。その結果を下記表1に示す。
【0038】
(殺菌性能評価法)
殺菌性能の評価は湿潤環境下を想定し、シェークフラスコ法によった。
(1)200mlねじ付きフラスコに生理食塩水40mlを秤量してオートクレーブ滅菌後、滅菌したフラスコに0.2gの試料を秤量してそれぞれ投入した。
(2)次に大腸菌および黄色ブドウ球菌の懸濁液を添加し、30℃、24時間振とう培養し、培養開始前と24時間培養後の生菌数を測定した。
【0039】
【表1】

Figure 0004921649
【0040】
前記表1から明らかなように、実施例の活性炭は、大腸菌や耐性の強い黄色ブドウ球菌に対しても、十分な殺菌性を示す。また、前記実施例および比較例の活性炭およびウレタンフォームシートを用いてフィルタ濾材を作製し、これについて、空気中での殺菌性能を評価した。その結果、実施例の活性炭を用いたフィルタ濾材は充分な抗菌性を示したが、比較例の活性炭では抗菌性は不十分であった。
【0041】
【発明の効果】
以上のように、本発明の機能性多孔質粒子は、充分量のヨウ素を含有するから、抗菌性に優れている。例えば、本発明の機能性多孔質粒子を多孔質シートに固着してフィルタ濾材を作製すれば、空気中の微生物も充分に殺菌できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a functional porous particle having antibacterial properties in addition to deodorizing action. This functional porous particle is useful for clean air in a clean room in, for example, a medical field such as a hospital or a factory for pharmaceuticals, foods, liquid crystals, semiconductors and the like.
[0002]
[Prior art]
Porous particles (adsorbents) such as activated carbon are widely used for deodorization and deodorization. However, there is an attempt to impart functions such as antibacterial properties to the adsorbent, and Japanese Patent Application Laid-Open No. 57-119738. The publication discloses an activated carbon cloth carrying iodine-potassium iodide. According to the publication, the activated carbon cloth can be used for a surgical dressing.
[0003]
However, the activated carbon cloth disclosed in the publication has a low iodine content. Although there is no description of the specific iodine content of the activated carbon cloth in the publication, when the inventors calculated from the other description of the publication, the equilibrium adsorption amount of iodine in the activated carbon cloth is about 2% by weight. In some cases, it is 0.4% by weight or less. Since the activated carbon cloth is used in contact with the human body as a surgical dressing, it is considered that such a low iodine content is effective. In addition, the specific surface area and pore volume of the activated carbon cloth are presumed to be very small, and it is also conceivable that only a small amount of iodine can be supported. However, an iodine content of about 2% by weight or 0.4% by weight or less is too low to sterilize microorganisms in the air. In particular, in air cleaning in a medical field such as a hospital, it is necessary to prevent infection by pathogenic bacteria such as MRSA (mesitillin-resistant Staphylococcus aureus), and therefore high level antibacterial action is required even in air cleaning.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and an object thereof is to provide functional porous particles having sufficient antibacterial activity in addition to deodorizing and deodorizing actions.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the functional porous particle of the present invention is a porous particle having iodine in its surface and pores, and the proportion of iodine is 10 to 60 per anhydrous weight of the porous particle. It is the structure that it is the range of the mass%.
[0006]
Thus, since the functional porous particles of the present invention contain a sufficient amount of iodine, even microorganisms in the air can be sufficiently sterilized. Therefore, the use of the functional porous particles of the present invention is not particularly limited, but it is preferably applied to an air cleaning filter.
[0007]
The “anhydrous weight of the porous particles” is a weight obtained by drying the porous particles to remove water. For example, in measurement of loss on drying in “JIS K 1474 activated carbon test method”, there is a case of drying for 3 hours in a constant temperature dryer maintained at 115 ° C. (± 5 ° C.). In the present invention, the porous particles are dried and weighed in such a manner, and may be referred to as “anhydrous weight of porous particles”, or the drying loss is measured in advance, the wet product is weighed, and converted into It may be “anhydrous weight of porous particles”.
[0008]
The iodine is preferably contained in an electrolyte complex from which iodine elutes when it comes into contact with moisture. As described later, the electrolyte complex is obtained by dissolving iodine in an alkali metal iodide aqueous solution or an alkaline earth metal iodide aqueous solution. Examples of the electrolyte complex include potassium triiodide and sodium triiodide, and these are preferable. The moisture is, for example, moisture in the air.
[0009]
In the functional porous particle of the present invention, the specific surface area according to the BET method is 300 to 2000 m 2 / g, the pore volume is 0.1 to 1.5 cm 3 / g, the pore diameter is 1 to 30 nm, and the particle diameter Is preferably 0.01 to 10 mm. Thus, it is possible to carry a further sufficient amount of iodine by having a large specific surface and a pore volume.
[0010]
The functional porous particles of the present invention are preferably activated carbon, but the present invention is not limited to this.
[0011]
Next, in the first method for producing functional particles of the present invention, an iodine solution in which iodine is dissolved in at least one of an alkali metal iodide aqueous solution and an alkaline earth metal iodide aqueous solution is prepared. A method for producing a functional porous particle by adsorbing an electrolyte complex that elutes iodine when contacted with moisture to the surface and pores of the porous particle by contacting the surface and the inside of the pore. The iodine concentration in the liquid is in the range of 20 to 70% by weight.
[0012]
The second method for producing functional porous particles of the present invention is a method for producing functional porous particles in which solid iodine is sublimated and brought into contact with the porous particles, wherein the proportion of iodine is porous. It is 10 to 150 weight with respect to 100 weight part of particle | grains.
[0013]
Although the functional porous particles of the present invention can be produced by these first production method and second production method, the functional porous particles of the present invention may be produced by other methods.
[0014]
In the second production method, the sublimation temperature is preferably in the range of 30 to 120 ° C.
[0015]
Next, the urethane foam sheet of the present invention is characterized in that the functional porous particles of the present invention adhere to the surface and pores thereof. This sheet is useful, for example, as a filter medium for an air cleaning filter.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The functional porous particles of the present invention are preferably activated carbon as described above, but may be activated clay, zeolite, silica gel, activated alumina, clay mineral or the like.
[0017]
In the functional porous particles, BET specific surface area by nitrogen adsorption of liquid nitrogen temperature conditions is preferably a 300~2000m 2 / g, more preferably from 500~2000m 2 / g. The functional porous particles have a particle size of, for example, 0.01 to 10 mm, more preferably 0.02 to 10 mm. The functional porous particles preferably have a pore diameter of 1 to 30 nm (10 to 300 angstroms), more preferably 1.5 to 5.0 nm (15 to 50 angstroms). Its pore volume 0.1~1.5cm 3 / g are preferred, more preferably 0.2~1.0cm 3 / g.
[0018]
Examples of the activated carbon raw materials include plant raw materials such as wood powder and coconut shells, coals such as anthracite, petroleum pitch, coke, petroleum raw materials, acrylore resins, phenolic resins, epoxy resins, polyester resins, and the like. However, coconut shell charcoal and coal are preferably used. The aforementioned activated carbon raw material is activated, for example, in a fixed bed, a moving bed, a fluidized bed, or the like. Activation includes, for example, gas activation using water vapor, chlorine, hydrogen chloride, carbon monoxide, carbon dioxide oxygen, chemical activation using alkali, acid, zinc chloride, etc., and activated carbon used in the present invention depends on any of them. It may be activated.
[0019]
The electrolyte complex is obtained, for example, by dissolving iodine in an aqueous solution of an iodide of an alkali metal such as lithium, sodium or potassium or an alkaline earth metal such as magnesium or calcium. In the electrolyte complex, alkali metal or alkali metal triiodide and iodine simple substance are usually present in an equilibrium state. Among these, a substance in which potassium triiodide and iodine are in an equilibrium state (iodine-potassium triiodide), a substance in which sodium triiodide and iodine are in an equilibrium state (iodine-sodium triiodide), and the like are preferable. .
[0020]
Examples of the method for attaching the electrolyte complex to the surface and pores of the porous particles include a first production method such as a spray impregnation method and an immersion method, and a second production method such as a gas contact method. The method is fine.
[0021]
That is, in the first production method, iodine is first dissolved in an alkali or alkaline earth metal iodide aqueous solution such as an aqueous potassium iodide solution to prepare an iodine solution.
In this preparation, the ratio of iodine to be dissolved and the iodide is, for example, preferably 1 to 4 parts by weight of iodide with respect to 1 part by weight of iodine to be dissolved. The spray impregnation method is a method of spraying or spraying the iodine liquid onto the porous particles using a sprayer and a sprayer at room temperature. Alternatively, the iodine solution may be sprayed using a carrier gas such as nitrogen. The immersion method is a method of immersing porous particles in the iodine solution at room temperature. The iodine concentration of the iodine solution is preferably 20 to 70% by mass, and more preferably 30 to 70% by mass.
[0022]
The second production method (gas contact method) is a method in which solid iodine is sublimated to generate iodine gas, which is brought into contact with porous particles. The sublimation temperature is preferably 30 to 120 ° C, more preferably 50 to 120 ° C. The ratio of solid iodine to porous particles is preferably 10 to 150 parts by weight of solid iodine, more preferably 20 to 150 parts by weight of solid iodine with respect to 100 parts by weight of porous particles.
[0023]
In this way, functional porous particles containing 10 to 60% by mass of iodine per anhydrous weight of the porous particles can be produced, but may be produced by other methods. The iodine content is preferably 20 to 60% by weight, more preferably 20 to 40% by weight, based on the anhydrous weight of the porous particles.
[0024]
The functional porous particles of the present invention can be used as an air purifying filter medium by adhering to the surface and pores of a porous sheet. This filter medium has an antibacterial function in addition to a dust collecting function and a deodorizing / deodorizing function. Examples of the porous sheet include a nonwoven fabric and a urethane foam sheet. Attachment of the functional porous particles to the porous sheet can be performed, for example, as follows.
[0025]
First, functional porous particles, a binder, and a dispersant are dispersed in water to prepare a treatment liquid. Then, a porous sheet such as a urethane foam sheet is immersed in the treatment liquid, or the treatment liquid is applied by spraying or spraying. Then, if it dries, the target filter medium will be obtained.
[0026]
The binder is not particularly limited, but a copolymer aqueous emulsion obtained with a reactive emulsifier is preferable. Commercially available products can be used as the reactive emulsifier, for example, trade name Spinomer NaSS (manufactured by Tosoh Corporation). Examples of the copolymer include a styrene-acrylic acid ester-methacrylic acid ester copolymer. Moreover, a dispersing agent will not be restrict | limited especially if porous particle powders, such as activated carbon, can be disperse | distributed.
[0027]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.
[0028]
Example 1
An aqueous solution (iodine solution) containing an electrolyte complex was prepared by dissolving 41.6 g of iodine in an aqueous potassium iodide solution obtained by adding 64.0 g of potassium iodide to 64.8 g of distilled water. Further, 200 g of powdered coconut shell activated carbon having a BET specific surface area of 1540 mm 2 / g, an average pore diameter of 1.88 nm, a pore volume of 0.73 cm 3 / g, and a particle diameter of 0.05 to 0.15 mm is 2 liters. While putting into a polypropylene container and stirring (30-100 rpm) with a desktop mixer, the whole amount of the iodine solution was sprayed under a nitrogen stream to obtain the intended functional particles (iodine / potassium iodide impregnated activated carbon). As a result of measuring the iodine content of the obtained activated carbon by the method described later, it was 27.1% by weight.
[0029]
( Reference example )
200 g of activated carbon of Example 1 is charged into a 2 liter Meyer, 60 g of solid iodine is charged into a glass container and suspended in the Mayer, iodine is sublimated at a temperature of 110 ° C., and impregnated into activated carbon in a gaseous state. Functional porous particles (iodine-impregnated activated carbon) were obtained. As a result of measuring the iodine content of the obtained activated carbon by the method described later, it was 20.4% by weight.
[0030]
(Example 3)
An aqueous solution (iodine solution) containing an electrolyte complex was prepared by dissolving 82.4 g of iodine in a potassium iodide aqueous solution obtained by adding 128.09 potassium iodide to 87.0 g of distilled water. Further, 200 g of the activated carbon of Example 1 was put in a 2 liter polypropylene container, and the whole amount of the iodine solution was sprayed under a nitrogen stream while stirring with a desktop mixer (30 to 50 rpm), and iodine / potassium iodide was added. Activated carbon was obtained. As a result of measuring the iodine content of the obtained activated carbon by the method described later, it was 41.4% by weight.
[0031]
Example 4
An aqueous solution (iodine solution) containing an electrolyte complex was prepared by dissolving 206.0 g of iodine in a potassium iodide aqueous solution obtained by adding 320.0 g of potassium iodide to 154.0 g of distilled water. Further, 200 g of the activated carbon of Example 1 was put in a 2 liter polypropylene container, and the whole amount of the iodine solution was sprayed under a nitrogen stream while stirring with a desktop mixer (30 to 50 rpm), and iodine / potassium iodide was added. Activated carbon was obtained. As a result of measuring the iodine content of the obtained activated carbon by the method described later, it was 59.2% by weight.
[0032]
(Comparative Example 1)
The activated carbon of Example 1 was used without being impregnated with iodine.
[0033]
(Comparative Example 2)
200 g of activated carbon of Example 1 is charged into a 2 liter Meyer, 1 g of iodine is charged into a glass container, suspended in the Mayer, iodine is sublimated at a temperature of 110 ° C., impregnated into activated carbon in a gaseous state, and impregnated with iodine. Activated carbon was obtained. As a result of measuring the iodine content of the obtained activated carbon by the method described later, it was 0.2% by weight.
[0034]
(Comparative Example 3)
200 g of activated carbon of Example 1 is charged into a 2 liter Meyer, 10 g of iodine is charged into a glass container, suspended in the Mayer, iodine is sublimated at a temperature of 110 ° C., impregnated into activated carbon in a gaseous state, and iodine-welded. Activated carbon was obtained. As a result of measuring the iodine content of the obtained activated carbon by the method described later, it was 6.1% by weight.
[0035]
(Comparative Example 4)
An aqueous solution (iodine solution) containing an electrolyte complex was prepared by dissolving 5.2 g of iodine in an aqueous potassium iodide solution obtained by adding 8 g of potassium iodide to 8 g of distilled water. Further, 200 g of the activated carbon of Example 1 was put in a 2 liter polypropylene container, and the total amount of the iodine solution was sprayed under a nitrogen stream while stirring (30-50 rpm) with a desktop mixer, respectively. Got. As a result of measuring the iodine content of the obtained activated carbon by the method described later, it was 4.9% by weight.
[0036]
(Measurement method of iodine content)
In the examples , reference examples and comparative examples, the iodine content was measured by a reduction extraction method using sodium sulfite.
(1) A sample is collected so that the weight of activated carbon is about 2 g in terms of Dry (10 g for an undried product), and 40 ml of 0.5N Na 2 SO 3 is added and shaken for 30 minutes.
(2) Then, after adding 60 ml of water and shaking for another 30 minutes, shaking with 100 ml of water for another 30 minutes is repeated.
(3) The collected filtrate was made up, filtered again with a membrane filter (0.45 micron), and titrated with a 0.01 mol / 1 AgNO 3 aqueous solution for volumetric analysis (manufactured by Wako Pure Chemical Industries) to calculate the content. . Here, an automatic potentiometric titrator AT- 200N silver electrode (manufactured by Kyoto Electronics Co., Ltd.) was used for the measurement .
[0037]
The sterilization performance of the activated carbons obtained in Examples 1 , 3, 4, Reference Examples and Comparative Examples 1 to 4 was evaluated by the following method. The results are shown in Table 1 below.
[0038]
(Sterilization performance evaluation method)
The sterilization performance was evaluated by a shake flask method assuming a wet environment.
(1) 40 ml of physiological saline was weighed into a 200 ml threaded flask and sterilized by autoclave, and 0.2 g of the sample was weighed and put into each sterilized flask.
(2) Next, a suspension of Escherichia coli and Staphylococcus aureus was added, and cultured with shaking at 30 ° C. for 24 hours, and the number of viable bacteria before and after the start of culture was measured.
[0039]
[Table 1]
Figure 0004921649
[0040]
As is clear from Table 1, the activated carbons of the examples show sufficient bactericidal properties against E. coli and highly resistant Staphylococcus aureus. Moreover, the filter material was produced using the activated carbon and the urethane foam sheet of the said Example and a comparative example, and the bactericidal performance in the air was evaluated about this. As a result, the filter media using the activated carbon of the example showed sufficient antibacterial properties, but the antibacterial property of the activated carbon of the comparative example was insufficient.
[0041]
【Effect of the invention】
As described above, since the functional porous particles of the present invention contain a sufficient amount of iodine, they are excellent in antibacterial properties. For example, if the functional porous particles of the present invention are fixed to a porous sheet to produce a filter medium, microorganisms in the air can be sufficiently sterilized.

Claims (5)

その表面および細孔にヨウ素を有する多孔質粒子であって、前記ヨウ素が、水分に接触するとヨウ素が溶出する電解質錯体に含まれており、前記ヨウ素の含有量が、多孔質粒子無水重量当たり20〜60量%の範囲である、抗菌性多孔質粒子。Porous particles having iodine on their surfaces and pores, wherein the iodine is contained in an electrolyte complex that elutes iodine when contacted with moisture, and the iodine content is 20 per anhydrous porous particle weight. in the range of 60 by weight%, the antibacterial porous particles. BET法による比表面積が300〜2000m2/gであり、細孔容積0.1〜1.5cm3/gであり、細孔径が1〜30nm、粒子径が0.01〜10mmである請求項1記載の抗菌性多孔質粒子。Specific surface area according to BET method is 300 to 2000 m 2 / g, pore volume is 0.1 to 1.5 cm 3 / g, pore diameter is 1 to 30 nm, and particle diameter is 0.01 to 10 mm. Item 2. The antibacterial porous particle according to Item 1. 多孔質粒子が、活性炭である請求項1または2に記載の抗菌性多孔質粒子。The antibacterial porous particle according to claim 1 or 2 , wherein the porous particle is activated carbon. アルカリ金属ヨウ化物水溶液およびアルカリ土類金属ヨウ化物水溶液の少なくとも一方にヨウ素を溶解したヨウ素液を準備し、このヨウ素液を多孔質粒子の表面および細孔内部に接触させることにより、水分に接触するとヨウ素を溶出する電解質錯体を前記多孔質粒子の表面および細孔内に吸着させる請求項1に記載の抗菌性多孔質粒子の製造方法であって、前記ヨウ素液中のヨウ素の濃度が20〜70重量%の範囲である製造方法。When an iodine solution in which iodine is dissolved in at least one of an alkali metal iodide aqueous solution and an alkaline earth metal iodide aqueous solution is prepared, and the iodine solution is brought into contact with moisture by contacting the surface of the porous particles and the inside of the pores. The method for producing antibacterial porous particles according to claim 1, wherein an electrolyte complex eluting iodine is adsorbed on the surface and pores of the porous particles, wherein the iodine concentration in the iodine solution is 20 to 70. Manufacturing method in the range of wt% 多孔質粒子が活性炭である請求項に記載の製造方法。Porous particles of activated carbon, the manufacturing method according to claim 4.
JP2001182483A 2001-06-15 2001-06-15 Functional porous particles Expired - Lifetime JP4921649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182483A JP4921649B2 (en) 2001-06-15 2001-06-15 Functional porous particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182483A JP4921649B2 (en) 2001-06-15 2001-06-15 Functional porous particles

Publications (2)

Publication Number Publication Date
JP2002369869A JP2002369869A (en) 2002-12-24
JP4921649B2 true JP4921649B2 (en) 2012-04-25

Family

ID=19022581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182483A Expired - Lifetime JP4921649B2 (en) 2001-06-15 2001-06-15 Functional porous particles

Country Status (1)

Country Link
JP (1) JP4921649B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170159A1 (en) * 2019-02-19 2020-08-27 Delox - Investigação, Processos E Equipamentos Científicos, Lda Sterilization particle containing a sterilization material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126946B2 (en) 2007-03-28 2013-01-23 株式会社豊田中央研究所 Sulfur gas removal filter and sulfur gas removal method using the same
JP7270902B2 (en) * 2019-03-01 2023-05-11 株式会社ヨードラボ Iodine-supported activated carbon

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486485A (en) * 1977-12-21 1979-07-10 Takeda Chem Ind Ltd Treating method for gas containing lower aldehydes
JPS62161373A (en) * 1986-01-13 1987-07-17 清水建設株式会社 Deodorant and its production
JPH0459046A (en) * 1990-06-22 1992-02-25 Hitachi Plant Eng & Constr Co Ltd Production of air cleaning agent
JP3358382B2 (en) * 1995-04-10 2002-12-16 株式会社豊田中央研究所 Deodorant
JPH09239012A (en) * 1996-03-07 1997-09-16 Bio Medeiku Kenkyusho:Kk Deodorant composition and deodorant antimicrobial agent
JP3766771B2 (en) * 1999-11-08 2006-04-19 日本エンバイロケミカルズ株式会社 Adsorbent
JP2001137701A (en) * 1999-11-12 2001-05-22 Ebara Corp Adsorbent and deodorization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170159A1 (en) * 2019-02-19 2020-08-27 Delox - Investigação, Processos E Equipamentos Científicos, Lda Sterilization particle containing a sterilization material

Also Published As

Publication number Publication date
JP2002369869A (en) 2002-12-24

Similar Documents

Publication Publication Date Title
RU2446875C2 (en) Sorption filtration material and its application
KR102054023B1 (en) Deodorant against aldehyde-based gases and process for manufacturing same
EP0311364B1 (en) Wound dressing with activated carbon
US9561458B2 (en) Antibacterial filter comprising copper-based sulfur compound
JP6993846B2 (en) Antibacterial agent
JP4921649B2 (en) Functional porous particles
JP2001070741A (en) Humidity control agent
JP5083748B2 (en) Method for producing calcium carbonate / zeolite compound composite
JP2008178788A (en) Adsorbent
JP3419998B2 (en) Antibacterial filter
JP2838601B2 (en) Odor gas adsorbent
JPH11189481A (en) Porous functional material
JP2015024405A (en) Acidic gas adsorbent and remover and adsorption and removing filter using the same
JPH05237374A (en) Oxygen absorbent
JP2012120953A (en) Moisture absorbent material
JPH03190806A (en) Antibacterial agent having deodorant property
US9597625B1 (en) Method of manufactring an antibacterial filter comprising copper-based compound particles
JP6749759B2 (en) Biomaterial adsorbent, method for producing the same, and resin, fiber, clothes, filter and mask containing the biomaterial adsorbent
JP3284226B2 (en) Activated carbon ozonolysis material and method for producing the same
JPH06196B2 (en) Air purifier
JPH03137298A (en) Antibacterial paper and its preparation
KR102611597B1 (en) Metal-supported composite using ultra-high temperature plasma and its manufacturing method
JP2003001026A (en) Functional filter medium and functional filter using the same
KR0144183B1 (en) Impregnated active carbon datalyst having oxidatively catalytic and antibiotic character
JPH07328102A (en) Deodorant for isothiocyanate ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

R150 Certificate of patent or registration of utility model

Ref document number: 4921649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term