JP4920615B2 - Algae culture equipment - Google Patents

Algae culture equipment Download PDF

Info

Publication number
JP4920615B2
JP4920615B2 JP2008040303A JP2008040303A JP4920615B2 JP 4920615 B2 JP4920615 B2 JP 4920615B2 JP 2008040303 A JP2008040303 A JP 2008040303A JP 2008040303 A JP2008040303 A JP 2008040303A JP 4920615 B2 JP4920615 B2 JP 4920615B2
Authority
JP
Japan
Prior art keywords
culture
culture solution
amount
bubble
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008040303A
Other languages
Japanese (ja)
Other versions
JP2009195162A (en
Inventor
和広 秋間
真吾 武市
裕司 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCS Inc
Original Assignee
CCS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCS Inc filed Critical CCS Inc
Priority to JP2008040303A priority Critical patent/JP4920615B2/en
Publication of JP2009195162A publication Critical patent/JP2009195162A/en
Application granted granted Critical
Publication of JP4920615B2 publication Critical patent/JP4920615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control culture conditions by quickly grasping the multiplication situation of algae even without measuring turbidity, dry weight etc. <P>SOLUTION: The culture apparatus for algae is equipped with a culture tank for storing a culture solution and culturing algae in the culture solution, a flow-in passage for making the culture solution flow into the culture tank, a flow-out passage for making the culture solution flow out from the culture solution, a bubble supply part for supplying micronized and foamed CO<SB>2</SB>to the culture solution flowing into the culture tank, a flow-in bubble measurement part for measuring a micronized foam amount in the culture solution flowing into the culture tank, a flow-out bubble measurement part for measuring a micronized foam amount in the culture solution flowing out from the culture solution, a bubble difference calculation part for calculating difference between the micronized foam amount in the culture solution flowing into the culture tank and the micronized foam amount in the culture solution flowing out from the culture tank and a control part for controlling the culture apparatus based on the difference in the micronized foam amounts. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、濁度や乾燥重量等を測定しなくとも藻類の増殖状況を容易に把握して培養条件を制御することが可能な藻類培養装置に関する。   The present invention relates to an algae culture apparatus capable of easily grasping the growth status of algae and controlling the culture conditions without measuring turbidity, dry weight or the like.

例えば海では、植物プランクトン→動物プランクトン→小型甲殻類→魚介類・・・と繋がった食物連鎖が観察される。この食物連鎖系を人工的に構築できれば、従来の養殖から進んだいわゆる魚工場を構成することができる。海における食物連鎖の最下層に位置する植物プランクトンのうち藻類は各種の有用物質を産生する点からも注目されている。   For example, in the sea, a food chain connected to phytoplankton → zooplankton → small crustaceans → seafood is observed. If this food chain system can be constructed artificially, a so-called fish factory that has advanced from conventional aquaculture can be constructed. Of the phytoplankton located at the bottom of the food chain in the sea, algae are attracting attention because they produce various useful substances.

藻類を人工的に培養する場合、通常その増殖状況は培養液の濁度や藻類の乾燥重量等により把握されるが(特許文献1、特許文献2参照)、濁度を測定する場合、増殖が進行し濃度が高くなると培養液を希釈する必要が生じ作業が煩雑になる。また、乾燥重量を測定するには藻類を乾燥する工程が必要となるので迅速な増殖状況の把握は困難である。   When artificially cultivating algae, the growth state is usually grasped by the turbidity of the culture solution or the dry weight of the algae (see Patent Document 1 and Patent Document 2). As the concentration progresses and the concentration increases, it is necessary to dilute the culture solution, and the work becomes complicated. Moreover, since a step of drying algae is required to measure the dry weight, it is difficult to quickly grasp the growth state.

これに対して、COの消費量から増殖状況を把握することができれば、培養液の希釈作業や乾燥工程は不要であり、即時に増殖状況の把握が可能となり、経時的な増殖状況の追跡に極めて有効である。
特開平11−346760号公報 特開2002−315569号公報
On the other hand, if the growth situation can be grasped from the consumption of CO 2 , the dilution operation and the drying process of the culture solution are unnecessary, and the growth situation can be immediately grasped, and the growth situation over time is traced. Is extremely effective.
Japanese Patent Laid-Open No. 11-346760 JP 2002-315569 A

しかしながら、培養液中に通気したCOは通常0.1mm以上の直径の気泡を形成するが、このような気泡の培養液中の滞留時間は短いので、ほとんど培養液中には溶解せず、略そのまま排出される。このため、単にCOの供給量と排出量とを比較してもCOの消費量を的確に把握することは困難である。 However, CO 2 aerated in the culture solution usually forms bubbles with a diameter of 0.1 mm or more, but since the residence time of such bubbles in the culture solution is short, it hardly dissolves in the culture solution, It is discharged almost as it is. For this reason, it is difficult to accurately grasp the consumption amount of CO 2 simply by comparing the supply amount and the discharge amount of CO 2 .

そこで本発明は、濁度や乾燥重量等を測定しなくとも藻類の増殖状況を迅速に把握して培養条件を制御可能とすることを所期課題とするものである。   Accordingly, an object of the present invention is to enable quick control of the culture conditions by quickly grasping the growth status of algae without measuring turbidity, dry weight, and the like.

すなわち本発明に係る藻類培養装置は、培養液を収容してその中で藻類を培養することが可能な培養槽と、前記培養槽に培養液を流入させる流入路と、前記培養槽から培養液を流出させる流出路と、前記培養槽に流入する培養液中に微細気泡化したCOを供給するバブル供給部と、前記培養槽に流入する培養液中の微細気泡量を計測する流入バブル計測部と、前記培養槽から流出した培養液中の微細気泡量を計測する流出バブル計測部と、前記培養槽に流入した培養液中の微細気泡量と、前記培養槽から流出した培養液中の微細気泡量との差を算出するバブル差分算出部と、前記微細気泡量の差に基づき培養装置を制御する制御部と、を備えていることを特徴とする。 That is, the algae culture apparatus according to the present invention includes a culture tank capable of containing a culture solution and cultivating algae therein, an inflow path through which the culture solution flows into the culture vessel, and a culture solution from the culture vessel. An outflow path for flowing out the gas, a bubble supply unit for supplying microbubbled CO 2 into the culture solution flowing into the culture vessel, and an inflow bubble measurement for measuring the amount of fine bubbles in the culture solution flowing into the culture vessel Part, an outflow bubble measuring unit for measuring the amount of fine bubbles in the culture solution flowing out of the culture tank, the amount of fine bubbles in the culture solution flowing into the culture tank, and the amount of fine bubbles in the culture solution flowing out of the culture tank A bubble difference calculation unit that calculates a difference from the amount of fine bubbles and a control unit that controls the culture apparatus based on the difference in the amount of fine bubbles are provided.

なお、本発明において、微細気泡とは、直径がマイクロ(50μm以下)〜ピコオーダの気泡(マイクロバブル、ナノバブル、ピコバブル)を意味する。このような微細な気泡は、通常の気泡が液中を急激に上昇し液面で破裂するのに対して、上昇速度が遅く長時間液中に留まり続ける。そして、液中の微細気泡は気相と液相との界面間で生じた界面張力により加圧されより一層小さくなる。更に、微細気泡は負に帯電しており、互いに反発するので、結合することがなく、気泡濃度が低下しない。このため、微細気泡は液中に高密度で分散することができる。   In the present invention, the fine bubbles mean bubbles (micro bubbles, nano bubbles, pico bubbles) having a diameter of micro (50 μm or less) to pico order. Such fine bubbles rapidly rise in the liquid and burst at the liquid level, whereas the rising speed is slow and the bubbles remain in the liquid for a long time. Then, the fine bubbles in the liquid are pressurized by the interfacial tension generated between the interface between the gas phase and the liquid phase, and become smaller. Furthermore, since the fine bubbles are negatively charged and repel each other, they do not combine and the bubble concentration does not decrease. For this reason, the fine bubbles can be dispersed in the liquid at a high density.

従って、このような本発明に係る藻類培養装置によれば、培養液中の微細気泡化したCO(以下、COバブルという。)の密度を常に高く維持することができ、藻類が光合成に伴いCOを消費することにより培養液中の溶存CO濃度(CO 2−濃度)が低下しても、常にCOバブルからCOが供給されるので、溶存CO濃度を略飽和濃度に維持することができる。このため、COバブルの減少量を藻類の増殖に伴い減少した培養液中の溶存CO量と略みなすことができる。従って、減少したCOバブル量を藻類の増加量と相関する変数として処理することにより、濁度や乾燥重量等を測定しなくとも、単にCOバブルの減少量を測定することにより藻類の増殖状況の概要を迅速に把握することが可能となる。 Therefore, according to the algae culture apparatus according to the present invention, the density of microbubbled CO 2 (hereinafter referred to as “CO 2 bubble”) in the culture solution can always be kept high, and the algae can be used for photosynthesis. It is dissolved CO 2 concentration in the culture fluid by consuming with CO 2 (CO 3 2-density) decreases, so always CO 2 is supplied from the CO 2 bubbles, substantially the saturation concentration of dissolved CO 2 concentration Can be maintained. For this reason, the amount of decrease in CO 2 bubbles can be roughly regarded as the amount of dissolved CO 2 in the culture solution that has decreased with the growth of algae. Therefore, by treating the reduced CO 2 bubble amount as a variable correlated with increased amounts of algae, even without measuring the turbidity and dry weight, etc., simply algae by measuring the decrease of CO 2 bubble growth It becomes possible to quickly grasp the outline of the situation.

更に、微細気泡化したCOには、藻類細胞中へのCO(CO 2−)吸収率の向上作用や、殺菌作用や水質浄化作用もある。このため、微細気泡化したCOにより、藻類の光合成が活性化されるともに、藻類の培養環境を清浄に保つこともできる。 Furthermore, the microbubbled CO 2 also has an action of improving the absorption rate of CO 2 (CO 3 2− ) into the algal cells, a bactericidal action, and a water purification action. For this reason, photosynthesis of algae is activated by the microbubbled CO 2 and the culture environment of algae can be kept clean.

なお、培養液を収容してその中で藻類を培養することが可能な培養槽と、前記培養槽に培養液を流入させる流入路と、前記培養槽から培養液を流出させる流出路と、前記培養槽に流入する培養液中に微細気泡化したCOを供給するバブル供給部と、前記培養槽に流入する培養液中の微細気泡量を計測する流入バブル計測部と、前記培養槽から流出した培養液中の微細気泡量を計測する流出バブル計測部と、を備えている培養装置を制御するためのシステムであって、前記培養槽に流入する培養液中の微細気泡量と、前記培養槽から流出した培養液中の微細気泡量との差を算出するバブル差分算出部と、前記微細気泡量の差に基づき培養装置を制御する制御部と、を備えている藻類培養制御システムもまた、本発明の1つである。 In addition, a culture tank capable of containing the culture liquid and culturing algae therein, an inflow path for flowing the culture liquid into the culture tank, an outflow path for discharging the culture liquid from the culture tank, A bubble supply unit for supplying microbubbled CO 2 into the culture solution flowing into the culture vessel, an inflow bubble measuring unit for measuring the amount of fine bubbles in the culture solution flowing into the culture vessel, and an outflow from the culture vessel An outflow bubble measuring unit for measuring the amount of microbubbles in the culture broth, a system for controlling the culture apparatus, the amount of microbubbles in the culture broth flowing into the culture tank, and the culture An algal culture control system comprising: a bubble difference calculation unit that calculates a difference between the amount of fine bubbles in the culture solution flowing out of the tank; and a control unit that controls the culture apparatus based on the difference in the amount of fine bubbles. This is one of the present inventions.

また、培養液を収容してその中で藻類を培養することが可能な培養槽と、前記培養槽に培養液を流入させる流入路と、前記培養槽から培養液を流出させる流出路と、前記培養槽に流入する培養液中に微細気泡化したCOを供給するバブル供給部と、前記培養槽に流入する培養液中の微細気泡量を計測する流入バブル計測部と、前記培養槽から流出した培養液中の微細気泡量を計測する流出バブル計測部と、を備えている培養装置を制御するシステムを作動させるためのコンピュータに、前記培養槽に流入する培養液中の微細気泡量と、前記培養槽から流出した培養液中の微細気泡量との差を算出するバブル差分算出部と、前記微細気泡量の差に基づき培養装置を制御する制御部と、しての機能を実現させるためのプログラムもまた、本発明の1つである。 A culture tank capable of containing the culture medium and culturing algae therein; an inflow path for allowing the culture liquid to flow into the culture tank; an outflow path for allowing the culture liquid to flow out of the culture tank; A bubble supply unit for supplying microbubbled CO 2 into the culture solution flowing into the culture vessel, an inflow bubble measuring unit for measuring the amount of fine bubbles in the culture solution flowing into the culture vessel, and an outflow from the culture vessel An outflow bubble measuring unit that measures the amount of fine bubbles in the culture broth, and a computer for operating a system that controls the culture apparatus, the amount of fine bubbles in the culture broth flowing into the culture tank, In order to realize the functions of a bubble difference calculation unit that calculates the difference between the amount of fine bubbles in the culture medium flowing out of the culture tank and a control unit that controls the culture apparatus based on the difference in the amount of fine bubbles. The program of the present invention is also It is one of.

しかして、本発明によれば、濁度や乾燥重量を測定しなくとも、単にCOバブルの減少量を計測することにより、迅速かつ簡便に藻類の増殖状況の概要を把握して、培養条件を速やかに制御することができる。このため、培養装置の運転の自動化も可能である。 Thus, according to the present invention, without measuring turbidity or dry weight, simply measuring the amount of CO 2 bubble reduction, it is possible to quickly and easily obtain an overview of the algal growth status, Can be controlled promptly. For this reason, the operation of the culture apparatus can be automated.

以下に本発明の一実施形態について図面を参照して説明する。   An embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る藻類培養装置1は、図1に模式的に示すように、培養液を収容してその中で藻類を培養することが可能な培養槽2と、培養槽2に培養液を流入させる流入路3と、培養槽2から培養液を流出させる流出路4と、培養槽2に流入する培養液中にCOバブルを供給するバブル供給部5と、培養槽2に流入する培養液中のCOバブル量を計測する流入バブル計測部6と、培養槽2から流出した培養液中のCOバブル量を計測する流出バブル計測部7と、培養槽2等に制御信号を送信する情報処理装置8と、を備えている。 As schematically shown in FIG. 1, the algal culture apparatus 1 according to the present embodiment stores a culture solution and can culture the algae therein, and the culture solution in the culture vessel 2. An inflow path 3 for inflow, an outflow path 4 for outflowing the culture medium from the culture tank 2, a bubble supply unit 5 for supplying CO 2 bubbles into the culture liquid flowing into the culture tank 2, and a culture flowing into the culture tank 2 transmitting a inflow bubble measuring unit 6 which measures the CO 2 bubbles of the liquid, the outflow bubble measuring unit 7 for measuring the CO 2 bubbles amount of culture solution flowing out from the culture tank 2, a control signal to the culture tank 2, etc. And an information processing apparatus 8 that performs the processing.

培養槽2は、培養液を収容してその中で藻類を培養するためのものであり、培養液を攪拌する攪拌部21と、培養液の温度を調節する温度調節部22と、培養槽2中に光を照射する光照射部23と、を備えている。   The culture tank 2 is for containing the culture solution and culturing the algae therein, and includes a stirring unit 21 for stirring the culture solution, a temperature adjusting unit 22 for adjusting the temperature of the culture solution, and the culture vessel 2. A light irradiating unit 23 for irradiating light therein.

攪拌部21は、培養槽2中の培養液を攪拌して、藻類やCOバブル等を培養液中に均一に分散するためのものであり、駆動機構を備えた攪拌棒の先端に攪拌用フィンが設けてあり、攪拌棒が回転することにより、先端に設けられたフィンが培養液を攪拌するように構成してある。 The agitating unit 21 agitates the culture solution in the culture tank 2 and uniformly disperses algae, CO 2 bubbles, and the like in the culture solution. A fin is provided, and the fin provided at the tip is configured to stir the culture medium when the stirring rod rotates.

温度調節部22は、培養槽2中の培養液の温度を藻類の増殖に適した温度に調整するためのものであり、例えば、シートヒータ、ブロックヒータ、恒温水を循環させる装置、ペルチェ素子を用いた装置等が挙げられる。   The temperature control unit 22 is for adjusting the temperature of the culture solution in the culture tank 2 to a temperature suitable for algae growth. For example, a seat heater, a block heater, a device for circulating constant temperature water, and a Peltier device The apparatus etc. which were used are mentioned.

光照射部23は、培養槽2中の藻類に上方から光を照射するものであり、例えば、光源として蛍光灯やLED等を備えており、適宜、増殖に適した波長や光量を有する光を照射するように構成してある。   The light irradiation unit 23 irradiates the algae in the culture tank 2 with light from above. For example, the light irradiation unit 23 includes a fluorescent lamp, an LED, or the like as a light source, and appropriately emits light having a wavelength or light amount suitable for growth. It is configured to irradiate.

流入路3は、培養槽2中に培養液を流入させるためのものであり、培養槽2に設けてある流入口31をその下流端とする。流入路3を流通した培養液は流入口31から培養槽2中に流入する。   The inflow path 3 is for allowing the culture medium to flow into the culture tank 2, and has an inlet 31 provided in the culture tank 2 as a downstream end thereof. The culture solution flowing through the inflow path 3 flows into the culture tank 2 from the inlet 31.

流出路4は、培養槽2中から培養液を流出させるためのものであり、培養槽2に設けてある流出口41をその上流端とする。本実施形態では、流出口41が培養槽2の上部に設けてあり、培養槽2中の培養液が所定の液量を超え、培養液の液面の高さがHを超えると、余剰の培養液が流出口31から流出路4へ流出するように構成してある。   The outflow path 4 is for letting a culture solution flow out from the culture tank 2, and uses the outflow port 41 provided in the culture tank 2 as the upstream end. In this embodiment, the outlet 41 is provided in the upper part of the culture tank 2, and when the culture liquid in the culture tank 2 exceeds a predetermined liquid amount and the height of the liquid level of the culture liquid exceeds H, surplus The culture solution is configured to flow out from the outlet 31 to the outlet 4.

本実施形態では、バルブ11を開けることにより、流入路3と流出路4とが繋がり、循環流路を構成する。   In this embodiment, by opening the valve 11, the inflow path 3 and the outflow path 4 are connected to form a circulation path.

バブル供給部5は、流入路3上に設けられ、流入路3から培養槽2中に流入する培養液中にCOバブルを供給するためのものであり、加圧溶解による方法(加圧して気体をより多く溶解した状態からキャビテーション等を用いて微細気泡を発生させる方法)や、超音波による方法(超音波を与えることにより気泡を加振させて分裂させる方法)や、剪断による方法(激しい流れの中に気体を吹き込んで気体を引きちぎって気泡を細かくする方法)や、衝撃波による方法(ベンチェリ管による衝撃波を用いて発生させる方法)や、微細孔のある中空構造体に気体を通気させる方法等を用いて、COをマイクロバブル〜ピコバブル化する。 The bubble supply unit 5 is provided on the inflow path 3 and is used to supply CO 2 bubbles into the culture solution flowing into the culture tank 2 from the inflow path 3. A method in which fine bubbles are generated using cavitation or the like from a state where more gas is dissolved), a method using ultrasonic waves (a method in which bubbles are vibrated and split by applying ultrasonic waves), a method using shearing (violent A method of blowing gas into the flow to tear the gas to make the bubbles finer), a method using a shock wave (a method using a shock wave generated by a Benchery tube), or a method of venting a gas through a hollow structure with micropores Etc. are used to make CO 2 into microbubbles to picobubbles.

流入バブル計測部6は、流入路3から培養槽2中に流入する培養液中のCOバブル量を計測するものであり、電気抵抗法やレーザ遮光法等を用いてCOバブル量(数、密度等)を計測し、測定されたCOバブル量の検出信号を後述する情報処理装置8に送信する。 The inflow bubble measuring unit 6 measures the amount of CO 2 bubbles in the culture solution flowing into the culture tank 2 from the inflow channel 3, and uses an electric resistance method, a laser shading method, or the like to measure the amount of CO 2 bubbles (several , Density, etc.), and a measurement signal of the measured CO 2 bubble amount is transmitted to the information processing apparatus 8 described later.

流出バブル計測部7は、培養槽2中から流出路4へ流出した培養液中のCOバブル量を計測するものであり、流入バブル計測部6と同様に電気抵抗法やレーザ遮光法等を用いてCOバブル量(数、密度等)を計測し、測定されたCOバブル量の検出信号を後述する情報処理装置8に送信する。 The outflow bubble measuring unit 7 measures the amount of CO 2 bubble in the culture solution that has flowed out of the culture tank 2 into the outflow channel 4, and similarly to the inflow bubble measuring unit 6, an electrical resistance method or a laser shading method is used. The amount of CO 2 bubble (number, density, etc.) is measured and a detection signal of the measured amount of CO 2 bubble is transmitted to the information processing apparatus 8 described later.

情報処理装置8は、CPUや、メモリ、入出力チャンネル、キーボード等の入力手段、ディスプレイ等の出力手段、A/D変換器、D/A変換器等を備えた汎用乃至専用のものであり、前記CPU及びその周辺機器が、前記メモリの所定領域に格納されたプログラムに従って協働動作することにより、少なくともバブル差分算出部81、制御部82として機能する。なお、この情報処理装置8は、物理的に一体である必要はなく、有線又は無線により複数の機器に分割されていてもよい。   The information processing apparatus 8 is a general purpose or dedicated device including a CPU, memory, input / output channels, input means such as a keyboard, output means such as a display, A / D converter, D / A converter, etc. The CPU and its peripheral devices cooperate with each other according to a program stored in a predetermined area of the memory to function as at least a bubble difference calculation unit 81 and a control unit 82. Note that the information processing apparatus 8 does not have to be physically integrated, and may be divided into a plurality of devices by wire or wireless.

バブル差分算出部81は、流入バブル計測部6から培養槽2に流入した培養液中のCOバブル量の検出信号を受け取り、流出バブル計測部7から培養槽2から流出した培養液中のCOバブル量の検出信号を受け取って、培養槽2に流入した培養液中のCOバブル量と、培養槽2から流出した培養液中のCOバブル量との差を算出するものである。そして、COバブル量が減少していた場合(流入COバブル量>流出COバブル量)は、COバブルの減少量を藻類の増殖に伴い減少した培養液中の溶存CO量とみなすことができる。バブル差分算出部81は算出したCOバブル量の差の検出信号を制御部7に出力する。 The bubble difference calculation unit 81 receives a detection signal of the amount of CO 2 bubble in the culture solution flowing into the culture tank 2 from the inflow bubble measurement unit 6, and receives CO 2 in the culture solution flowing out of the culture tank 2 from the outflow bubble measurement unit 7. The two- bubble amount detection signal is received, and the difference between the CO 2 bubble amount in the culture solution flowing into the culture tank 2 and the CO 2 bubble amount in the culture solution flowing out from the culture tank 2 is calculated. And when the amount of CO 2 bubbles has decreased (inflow CO 2 bubble amount> outflow CO 2 bubble amount), the amount of CO 2 bubble decreased due to the growth of algae and the amount of dissolved CO 2 in the culture solution Can be considered. The bubble difference calculation unit 81 outputs a detection signal of the calculated difference in the CO 2 bubble amount to the control unit 7.

制御部82は、バブル差分算出部81からCOバブル量の差の検出信号を受け取り、これに基づいて、攪拌部21、温度調節部22、光照射部23、バブル供給部5等に制御信号を出力して、適宜、培養条件を制御するものである。 The control unit 82 receives the detection signal of the difference in the CO 2 bubble amount from the bubble difference calculation unit 81, and based on this, the control signal is sent to the stirring unit 21, the temperature adjustment unit 22, the light irradiation unit 23, the bubble supply unit 5, and the like. And appropriately control the culture conditions.

藻類培養装置1は、更に培養液タンク9を有しており、培養槽2中の藻類が充分に増殖した場合は、バルブ11を閉じる一方、バルブ10、12を開けて、新たな培養液を培養液タンク9から培養槽2に供給しつつ、培養槽2中の藻類を培養液とともに藻類培養装置1外に排出し回収して、例えば魚工場の動物プランクトンに餌として与えてもよい。   The algae culture apparatus 1 further has a culture medium tank 9, and when the algae in the culture tank 2 has sufficiently grown, the valve 11 is closed while the valves 10 and 12 are opened to obtain a new culture medium. The algae in the culture tank 2 may be discharged to the outside of the algae culture apparatus 1 together with the culture liquid and collected and supplied to, for example, zooplankton in a fish factory, while being supplied from the culture tank 9 to the culture tank 2.

一方、培養の初期段階では、バルブ11を開ける一方、バルブ10、12を閉じて、培養液タンク9からの新たな培養液の供給は行なわずに培養液を循環させた方が、藻類が希釈されず、また培養液の組成の変化に伴う負担が藻類にかからないので、速やかに対数増殖期に移行することができる。   On the other hand, in the initial stage of culture, the algae is diluted by opening the valve 11 and closing the valves 10 and 12 and circulating the culture solution without supplying a new culture solution from the culture solution tank 9. In addition, the burden associated with the change in the composition of the culture solution is not applied to the algae, so that it is possible to quickly shift to the logarithmic growth phase.

藻類培養装置1で培養する藻類としては特に限定されないが、例えば、キートセラス、ナンノクロロプシス、イソクリシス、パブロバ、テトラセルミス等の単細胞藻類が好適である。   Although it does not specifically limit as algae cultured with the algae culture apparatus 1, For example, single-celled algae, such as ketoceros, Nannochloropsis, isochrysis, pavlova, tetracermis, are suitable.

このような構成を有する本実施形態によれば、COバブルの減少量を、藻類が光合成に伴いCOを消費することにより減少した培養液中の溶存CO量と略みなすことができる。従って、減少したCOバブル量を藻類の増加量と相関する変数として取り扱うことができる。このため、COバブルの減少量から藻類の増殖状況の概要を把握することができるので、濁度や乾燥重量等を測定しなくとも、即時に増殖状況の把握が可能となり、経時的な増殖状況の追跡が容易になる。 According to the present embodiment having such a configuration, the amount of CO 2 bubbles that can be reduced can be roughly regarded as the amount of dissolved CO 2 in the culture solution that is reduced as algae consume CO 2 during photosynthesis. Therefore, the decreased amount of CO 2 bubbles can be treated as a variable that correlates with the increased amount of algae. For this reason, since the outline of the growth status of algae can be grasped from the amount of CO 2 bubble decrease, it is possible to immediately grasp the growth situation without measuring turbidity, dry weight, etc. The situation can be easily tracked.

そして、COバブルの減少量に基づき把握された増殖状況から即時に、光(光量、波長等)、攪拌状態(攪拌棒の回転数)、温度、COバブル供給量等の培養条件を制御して、増殖速度等を調節することが可能となる。 Then, immediately the grasped proliferation conditions on the basis of the reduction amount of CO 2 bubbles, light (light intensity, wavelength, etc.), (the speed of the stirring bar) stirring state, temperature, CO 2 bubbles controlled culture conditions of the supply amount, etc. Thus, the growth rate and the like can be adjusted.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

攪拌部21は振盪器、マグネット攪拌器等であってもよい。   The stirring unit 21 may be a shaker, a magnetic stirrer, or the like.

光照射部23の設置位置は培養槽2の上方に限られず、培養槽2の側方や下方又は培養液中に挿入された光源から光を照射するように設けてあってもよい。また、光照射部23は培養槽2の外部に設けたLED等の人工光源からの人工光又は太陽光を、光ファイバを用いて栽培槽2内に導光して照射するものであってもよい。   The installation position of the light irradiation unit 23 is not limited to the upper side of the culture tank 2 and may be provided so as to irradiate light from the side or lower side of the culture tank 2 or from a light source inserted in the culture solution. Moreover, even if the light irradiation part 23 guides and irradiates the artificial light or sunlight from artificial light sources, such as LED provided in the exterior of the culture tank 2, in the cultivation tank 2 using an optical fiber. Good.

その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてもよく、本発明の趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it is needless to say that some or all of the above-described embodiments and modified embodiments may be appropriately combined, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態に係る藻類培養装置を示す模式的構成図。The typical block diagram which shows the algae culture apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1・・・藻類培養装置
2・・・培養槽
3・・・流入路
4・・・流出路
5・・・バブル供給部
6・・・流入バブル計測部
7・・・流出バブル計測部
81・・・バブル差分算出部
82・・・制御部
DESCRIPTION OF SYMBOLS 1 ... Algae culture apparatus 2 ... Culture tank 3 ... Inflow path 4 ... Outflow path 5 ... Bubble supply part 6 ... Inflow bubble measurement part 7 ... Outflow bubble measurement part 81- ..Bubble difference calculation unit 82 ... control unit

Claims (5)

培養液を収容してその中で藻類を培養することが可能な培養槽と、
前記培養槽に培養液を流入させる流入路と、
前記培養槽から培養液を流出させる流出路と、
前記培養槽に流入する培養液中に微細気泡化したCOを供給するバブル供給部と、
前記培養槽に流入する培養液中の微細気泡量を計測する流入バブル計測部と、
前記培養槽から流出した培養液中の微細気泡量を計測する流出バブル計測部と、
前記培養槽に流入した培養液中の微細気泡量と、前記培養槽から流出した培養液中の微細気泡量との差を算出するバブル差分算出部と、
前記微細気泡量の差に基づき培養装置を制御する制御部と、を備えている藻類培養装置。
A culture vessel capable of containing a culture solution and culturing algae therein;
An inflow path through which the culture solution flows into the culture tank;
An outflow path for allowing the culture medium to flow out of the culture tank;
A bubble supply unit for supplying microbubbled CO 2 into the culture solution flowing into the culture tank;
An inflow bubble measuring unit for measuring the amount of fine bubbles in the culture solution flowing into the culture tank;
An outflow bubble measuring unit for measuring the amount of fine bubbles in the culture solution flowing out of the culture tank,
A bubble difference calculation unit for calculating a difference between the amount of fine bubbles in the culture solution flowing into the culture tank and the amount of fine bubbles in the culture solution flowing out of the culture tank;
A control unit that controls the culture device based on the difference in the amount of fine bubbles.
前記微細気泡は、マイクロバブル、ナノバブル、又は、ピコバブルである請求項1記載の藻類培養装置。   The algae culture apparatus according to claim 1, wherein the fine bubbles are microbubbles, nanobubbles, or picobubbles. 培養液を収容してその中で藻類を培養することが可能な培養槽と、
前記培養槽に培養液を流入させる流入路と、
前記培養槽から培養液を流出させる流出路と、
前記培養槽に流入する培養液中に微細気泡化したCOを供給するバブル供給部と、
前記培養槽に流入する培養液中の微細気泡量を計測する流入バブル計測部と、
前記培養槽から流出した培養液中の微細気泡量を計測する流出バブル計測部と、を備えている培養装置を制御するためのシステムであって、
前記培養槽に流入する培養液中の微細気泡量と、前記培養槽から流出した培養液中の微細気泡量との差を算出するバブル差分算出部と、
前記微細気泡量の差に基づき培養装置を制御する制御部と、を備えている藻類培養制御システム。
A culture vessel capable of containing a culture solution and culturing algae therein;
An inflow path through which the culture solution flows into the culture tank;
An outflow path for allowing the culture medium to flow out of the culture tank;
A bubble supply unit for supplying microbubbled CO 2 into the culture solution flowing into the culture tank;
An inflow bubble measuring unit for measuring the amount of fine bubbles in the culture solution flowing into the culture tank;
An outflow bubble measuring unit that measures the amount of fine bubbles in the culture solution that has flowed out of the culture tank, and a system for controlling a culture device comprising:
A bubble difference calculation unit for calculating the difference between the amount of fine bubbles in the culture solution flowing into the culture tank and the amount of fine bubbles in the culture solution flowing out of the culture tank;
A control unit that controls the culture apparatus based on the difference in the amount of fine bubbles.
培養液を収容してその中で藻類を培養することが可能な培養槽と、
前記培養槽に培養液を流入させる流入路と、
前記培養槽から培養液を流出させる流出路と、
前記培養槽に流入する培養液中に微細気泡化したCOを供給するバブル供給部と、
前記培養槽に流入する培養液中の微細気泡量を計測する流入バブル計測部と、
前記培養槽から流出した培養液中の微細気泡量を計測する流出バブル計測部と、を備えている培養装置を制御するシステムを作動させるためのコンピュータに、
前記培養槽に流入する培養液中の微細気泡量と、前記培養槽から流出した培養液中の微細気泡量との差を算出するバブル差分算出部と、
前記微細気泡量の差に基づき培養装置を制御する制御部と、しての機能を実現させるためのプログラム。
A culture vessel capable of containing a culture solution and culturing algae therein;
An inflow path through which the culture solution flows into the culture tank;
An outflow path for allowing the culture medium to flow out of the culture tank;
A bubble supply unit for supplying microbubbled CO 2 into the culture solution flowing into the culture tank;
An inflow bubble measuring unit for measuring the amount of fine bubbles in the culture solution flowing into the culture tank;
An outflow bubble measuring unit that measures the amount of fine bubbles in the culture solution that has flowed out of the culture tank, and a computer for operating a system that controls the culture apparatus,
A bubble difference calculation unit for calculating the difference between the amount of fine bubbles in the culture solution flowing into the culture tank and the amount of fine bubbles in the culture solution flowing out of the culture tank;
The program for implement | achieving the function as a control part which controls a culture apparatus based on the difference of the amount of said fine bubbles.
請求項1又は2記載の藻類培養装置を用いて藻類を培養する方法であって、  A method for culturing algae using the algae culture apparatus according to claim 1 or 2,
微細気泡化したCO  Microbubbled CO 2 が供給された培養液中で藻類を培養することを特徴とする藻類培養方法。A method of culturing algae in a culture solution supplied with algae.
JP2008040303A 2008-02-21 2008-02-21 Algae culture equipment Expired - Fee Related JP4920615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008040303A JP4920615B2 (en) 2008-02-21 2008-02-21 Algae culture equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008040303A JP4920615B2 (en) 2008-02-21 2008-02-21 Algae culture equipment

Publications (2)

Publication Number Publication Date
JP2009195162A JP2009195162A (en) 2009-09-03
JP4920615B2 true JP4920615B2 (en) 2012-04-18

Family

ID=41139406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008040303A Expired - Fee Related JP4920615B2 (en) 2008-02-21 2008-02-21 Algae culture equipment

Country Status (1)

Country Link
JP (1) JP4920615B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507126A (en) * 2009-10-07 2013-03-04 エイチ アール ディー コーポレーション Algae processing
JP2012023978A (en) * 2010-07-20 2012-02-09 Hitachi Plant Technologies Ltd Apparatus and method for culturing photosynthetic microorganism
JP5828238B2 (en) * 2011-02-01 2015-12-02 株式会社Ihi Apparatus and method for culturing microalgae
KR101476135B1 (en) * 2012-10-10 2014-12-24 (주)아크에이르 Method of promoting the culture of algae and microorganism by regulating on pneumatic air and a luminous source
JP2015057951A (en) * 2013-09-17 2015-03-30 独立行政法人農業環境技術研究所 Microorganism culture medium, proliferation method of microorganism and decomposing method of organochlorine compound, and nano-bubble liquid, nano-bubble liquid production device and production method of nano-bubble liquid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414590A (en) * 1977-07-04 1979-02-02 Nippon Sangyo Gijutsu Kk Culturing apparatus for photosynthetic algaes
JPH0678745A (en) * 1992-08-31 1994-03-22 Mitsui Eng & Shipbuild Co Ltd Carbon dioxide feeder for algal culture and method for feeding carbon dioxide
JPH07203945A (en) * 1994-01-12 1995-08-08 Hitachi Ltd Apparatus for culturing cell of living body
JPH11346760A (en) * 1998-06-12 1999-12-21 Mitsubishi Heavy Ind Ltd Cultivation of microalga
US8372632B2 (en) * 2006-06-14 2013-02-12 Malcolm Glen Kertz Method and apparatus for CO2 sequestration

Also Published As

Publication number Publication date
JP2009195162A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4920615B2 (en) Algae culture equipment
JP2009195163A (en) Culture apparatus for algae
US7892821B2 (en) Culture chamber, culture apparatus and liquid supplying method for cell or tissue cultivation
JP5292923B2 (en) Microorganism detection method, microorganism detection apparatus, and slurry supply apparatus using the same
JP2009204445A (en) Automatic analysis apparatus
JP5015074B2 (en) Ultrasonic cleaning equipment
JP2011092117A (en) Method and device for culturing biological cell
KR102302030B1 (en) Apparatus for Treating Drain Water of Continuous Processing Type
JP2011189254A (en) Water purifying method, and water purifier
JP2017079628A (en) Method for controlling oxygen concentration dissolved in breeding water
JP4942070B2 (en) Breeding facilities using deep ocean water and water quality adjustment method
JP4949873B2 (en) Biological reaction method and biological reaction apparatus
WO2010016538A1 (en) Aquatic photosynthetic organism-culture apparatus
JP2010004868A (en) Culturing system for aquatic photosynthesizing organism
JP2019514408A (en) Aquaculture system
JP2009160530A (en) Nano bubble generating nozzle and nano bubble generator
JP2018153159A (en) Aquarium fish growth system
KR20190118101A (en) Ultrasonic Wave Processing Apparatus
JP6447597B2 (en) Buffer tank and culture system
WO2013051603A1 (en) Supply device for dissolved gas
JP7051598B2 (en) Aquatic organism breeding equipment
KR20190111645A (en) Apparatus for Making Nanobubble and Structure with it
US6730235B2 (en) Method and apparatus of obtaining water conditioning utilizing localized hot zone
JP2016002040A (en) Cell culture method and cell culture apparatus
JP2019063734A (en) Oxygen supply system, water treatment system and oxygen supply method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees