JP4920013B2 - Gas nozzle device for burner - Google Patents

Gas nozzle device for burner Download PDF

Info

Publication number
JP4920013B2
JP4920013B2 JP2008177717A JP2008177717A JP4920013B2 JP 4920013 B2 JP4920013 B2 JP 4920013B2 JP 2008177717 A JP2008177717 A JP 2008177717A JP 2008177717 A JP2008177717 A JP 2008177717A JP 4920013 B2 JP4920013 B2 JP 4920013B2
Authority
JP
Japan
Prior art keywords
gas
nozzle
thermal power
predetermined
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008177717A
Other languages
Japanese (ja)
Other versions
JP2010019434A (en
Inventor
啓介 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2008177717A priority Critical patent/JP4920013B2/en
Publication of JP2010019434A publication Critical patent/JP2010019434A/en
Application granted granted Critical
Publication of JP4920013B2 publication Critical patent/JP4920013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Burners (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

本発明は、ガスバーナの混合管の上流端の流入口に臨むガスノズルを備えるバーナ用ガスノズル装置に関する。   The present invention relates to a gas nozzle device for a burner including a gas nozzle facing an inlet at an upstream end of a mixing tube of a gas burner.

元来、この種のガスノズルのノズル本体の先端部にはノズル孔が開設されており、ノズル孔から混合管の流入口に向けて燃料ガスを噴出させ、噴出ガス流によるエゼクタ効果で混合管に一次空気を吸引するようにしている。   Originally, a nozzle hole was established at the tip of the nozzle body of this type of gas nozzle. Fuel gas was ejected from the nozzle hole toward the inlet of the mixing tube, and the ejector effect caused by the ejected gas flow caused the mixing tube to Primary air is sucked.

また、従来、このようなガスノズルにおいて、ノズル本体内に、ノズル孔に流れ込むガス流に乱れを生じさせる障害物を設けたものも知られている。このものでは、ガスノズルへの燃料ガスの供給量の減少でノズル孔からのガス噴出速度が減速しても、ノズル孔から燃料ガスが乱流状態で噴出するため、混合管に一次空気が良好に吸引され、火力を弱火に絞っても失火しないとしている。   Conventionally, in such a gas nozzle, there is also known one in which an obstacle that causes disturbance in the gas flow flowing into the nozzle hole is provided in the nozzle body. In this case, even if the gas ejection speed from the nozzle hole is reduced due to a decrease in the supply amount of the fuel gas to the gas nozzle, the fuel gas is ejected in a turbulent state from the nozzle hole, so that the primary air is excellent in the mixing pipe. It is said that it will not be misfired even if the heat is reduced to a low heat.

然し、上記ガスノズルを用いても、最大火力のインプット(燃料ガスの供給量)を大きくするために、ノズル孔の孔径を大きくすると、火力を絞ったときは、ノズル孔の孔径が小さなガスノズルに比しガス噴出速度が低下して、一次空気の吸引不足を生じ、最小絞り時の燃焼状態が不安定になる。そのため、燃焼状態が安定するまでインプットを上げる必要があり、絞り性能の一層の向上を図ることが困難になっている。
特開平11−211028号公報
However, even if the gas nozzle is used, if the nozzle hole diameter is increased in order to increase the maximum thermal power input (fuel gas supply amount), when the thermal power is reduced, the nozzle hole diameter is smaller than that of the gas nozzle. However, the gas ejection speed is lowered, the primary air is insufficiently sucked, and the combustion state at the time of minimum throttling becomes unstable. Therefore, it is necessary to increase the input until the combustion state is stabilized, and it is difficult to further improve the throttle performance.
JP-A-11-211028

本発明は、以上の点に鑑み、絞り性能を可及的に向上できるようにしたバーナ用ガスノズル装置を提供することをその課題としている。   This invention makes it the subject to provide the gas-nozzle apparatus for burners which enabled it to improve aperture | throttle performance as much as possible in view of the above point.

上記課題を解決するために、本発明は、ガスバーナの混合管の上流端の流入口に臨むガスノズルを備えるバーナ用ガスノズル装置であって、ガスノズルのノズル本体の先端部に開設したノズル孔から流入口に向けて燃料ガスを噴出させ、噴出ガス流によるエゼクタ効果で混合管に一次空気を吸引するものにおいて、前記ノズル本体の先端部に前記ノズル孔が複数開設され、共通のガス供給路から分岐させた各分岐ガス通路を介して各ノズル孔に個別に燃料ガスが供給され、これら分岐ガス通路のうちの所定の1つの分岐ガス通路以外の分岐ガス通路に開閉弁が介設され、開閉弁を閉弁することでノズル孔のトータルの有効開口面積を減少させ、前記複数のノズル孔のうち前記所定の分岐ガス通路に対応する所定のノズル孔を除く少なくとも1つのノズル孔の孔径を所定のノズル孔の孔径より大きくし、開度を複数段で調節される流量調節弁が前記共通のガス供給路に配設され、コントローラが、前記ガスバーナの火力を、最小火力から所定の中間火力までの火力範囲では、前記開閉弁の開閉と前記流量調節弁の開度調節とにより複数段で調節し、また、前記所定の中間火力から最大火力までの火力範囲では、全部の開閉弁を開弁しつつ、前記流量調節弁の開度を複数段で調節することにより複数段で調節するようにしていることを特徴とする。 In order to solve the above-mentioned problems, the present invention is a gas nozzle device for a burner comprising a gas nozzle facing an inlet at an upstream end of a mixing pipe of a gas burner, and the inlet from a nozzle hole opened at the tip of a nozzle body of the gas nozzle The fuel gas is ejected toward the nozzle , and primary air is sucked into the mixing tube by the ejector effect of the ejected gas flow, and a plurality of the nozzle holes are opened at the tip of the nozzle body and branched from a common gas supply path. Fuel gas is individually supplied to each nozzle hole via each branch gas passage, and an opening / closing valve is provided in a branch gas passage other than a predetermined one of the branch gas passages. By closing the valve, the total effective opening area of the nozzle holes is reduced, and at least one of the plurality of nozzle holes excluding a predetermined nozzle hole corresponding to the predetermined branch gas passage. The nozzle hole diameter is larger than the predetermined nozzle hole diameter, and a flow rate adjusting valve whose opening degree is adjusted in multiple stages is disposed in the common gas supply path, and the controller minimizes the heating power of the gas burner. In the thermal power range from thermal power to a predetermined intermediate thermal power, it is adjusted in multiple stages by opening and closing of the on-off valve and opening adjustment of the flow rate control valve, and in the thermal power range from the predetermined intermediate thermal power to the maximum thermal power, While opening all the on-off valves, the opening degree of the flow rate adjusting valve is adjusted in multiple stages to adjust in multiple stages .

本発明によれば、燃料ガスの供給量の減少に応じてノズル孔の有効開口面積が減少するため、絞り時においてもガス噴出速度は低下せず、一次空気の吸引性能が良好に維持される。その結果、最大火力のインプットを大きくして、且つ、最小絞り時のインプットをかなり低く設定しても、最小絞り時に安定して燃焼する。従って、絞り性能を可及的に向上できる。   According to the present invention, the effective opening area of the nozzle hole is reduced according to the decrease in the supply amount of the fuel gas, so that the gas ejection speed does not decrease even during the throttle, and the primary air suction performance is maintained well. . As a result, even if the maximum thermal power input is increased and the input at the minimum throttle is set to be considerably low, stable combustion occurs at the minimum throttle. Therefore, the aperture performance can be improved as much as possible.

ところで、ノズル孔の有効開口面積を可変する具体的な構造の1つとしては、ノズル本体の先端部にノズル孔が複数開設され、共通のガス供給路から分岐させた各分岐ガス通路を介して各ノズル孔に個別に燃料ガスが供給され、これら分岐ガス通路のうちの所定の1つの分岐ガス通路以外の分岐ガス通路に開閉弁が介設され、開閉弁を閉弁することでノズル孔のトータルの有効開口面積を減少させることが挙げられる。   By the way, as one of the specific structures for changing the effective opening area of the nozzle hole, a plurality of nozzle holes are formed at the tip of the nozzle body, and each branch gas passage is branched from a common gas supply path. Fuel gas is individually supplied to each nozzle hole, and an opening / closing valve is provided in a branch gas passage other than a predetermined one of these branch gas passages. It is possible to reduce the total effective opening area.

この場合、最小絞り時には、所定の分岐ガス通路に対応する所定のノズル孔から燃料ガスが噴出することになる。ここで、所定のノズル孔の孔径は、最小絞り時に一次空気の吸引性能を良好に維持するため、ガス噴出速度が速くなるように小径に設定される。そして、他のノズル孔を全てこのような小径に形成したのでは、最大火力のインプットを大きくするために、ノズル孔の個数を増やすことが必要になる。これに対し、複数のノズル孔のうち所定の分岐ガス通路に対応する所定のノズル孔を除く少なくとも1つのノズル孔の孔径を所定のノズル孔の孔径より大きくすれば、ノズル孔の個数を然程増やさずに最大火力のインプットを大きくすることができ、有利である。   In this case, at the time of the minimum throttling, the fuel gas is ejected from the predetermined nozzle hole corresponding to the predetermined branch gas passage. Here, the hole diameter of the predetermined nozzle hole is set to a small diameter so as to increase the gas ejection speed in order to maintain a good primary air suction performance at the time of the minimum throttling. If all the other nozzle holes are formed in such a small diameter, it is necessary to increase the number of nozzle holes in order to increase the maximum thermal power input. On the other hand, if the hole diameter of at least one nozzle hole excluding the predetermined nozzle hole corresponding to the predetermined branch gas passage among the plurality of nozzle holes is made larger than the hole diameter of the predetermined nozzle hole, the number of nozzle holes is substantially reduced. It is advantageous to increase the maximum thermal power input without increasing it.

図1を参照して、1はコンロ等に設置するブンゼン式ガスバーナの混合管を示している。混合管1には、その上流端の流入口1aに臨ませて配置したガスノズル2から燃料ガスが供給される。そして、ガスノズル2からの噴出ガス流によるエゼクタ効果で混合管1に一次空気が吸引されて、混合管1内で燃料ガスと一次空気とが混合され、混合ガスがガスバーナの図示しない炎孔から噴出して燃焼する。   Referring to FIG. 1, reference numeral 1 denotes a bunsen gas burner mixing tube installed on a stove or the like. Fuel gas is supplied to the mixing tube 1 from a gas nozzle 2 disposed facing the inlet 1a at the upstream end. Then, the primary air is sucked into the mixing pipe 1 by the ejector effect caused by the gas flow ejected from the gas nozzle 2, the fuel gas and the primary air are mixed in the mixing pipe 1, and the mixed gas is ejected from a flame hole (not shown) of the gas burner. And burn.

ガスノズル2のノズル本体3の先端部には、第1乃至第3の3個のノズル孔41,42,43が開設されている。そして、これら各ノズル孔41,42,43に、共通のガス供給路5から分岐させた第1乃至第3の各分岐ガス通路61,62,63を介して個別に燃料ガスを供給している。各分岐ガス通路61,62,63は、ノズル本体3に各ノズル孔41,42,43に連通するように形成した各通路孔6aと、各通路孔6aに連通するようにノズル本体3の尾端部に配管接続される各分岐管6bとで構成されている。これら分岐管6bは、ノズル本体3の尾端部にかしめ付けた押え板6cによりノズル本体4に抜け止めされている。尚、図1では、3個のノズル孔41,42,43がノズル本体3の径方向に並設されているが、実際には、図2に示す如く、3個のノズル孔41,42,43が周方向に間隔を存して配置されている。 First to third three nozzle holes 4 1 , 4 2 , 4 3 are formed at the tip of the nozzle body 3 of the gas nozzle 2. The fuel is individually supplied to the nozzle holes 4 1 , 4 2 , and 4 3 through first to third branched gas passages 6 1 , 6 2 , and 6 3 branched from the common gas supply passage 5. Gas is being supplied. Each branch gas passage 6 1 , 6 2 , 6 3 communicates with each passage hole 6 a formed in the nozzle body 3 so as to communicate with each nozzle hole 4 1 , 4 2 , 4 3 , and with each passage hole 6 a. And each branch pipe 6b connected to the tail end of the nozzle body 3 by a pipe. These branch pipes 6 b are prevented from being detached from the nozzle body 4 by a pressing plate 6 c that is caulked to the tail end portion of the nozzle body 3. In FIG. 1, three nozzle holes 4 1 , 4 2 , 4 3 are arranged in the radial direction of the nozzle body 3, but actually, as shown in FIG. 2, the three nozzle holes 4 1 , 4 2 and 4 3 are arranged at intervals in the circumferential direction.

ガス供給路5には、火力調節摘み7に連動する電動式の流量調節弁8が介設されている。火力調節摘み7は、最小火力位置から最大火力位置までの複数の位置に回動操作可能である。図示例では、最小火力位置を「1」位置とし、最大火力位置を「5」位置としている。そして、火力調節摘み7の操作位置を検出するポジションセンサ7aを設け、該センサ7aからの信号を流量調節弁8を制御するコントローラ9に入力している。流量調節弁8は、火力調節摘み7の「1」位置で最小開度、「5」位置で最大開度になるように制御される。   The gas supply path 5 is provided with an electric flow rate adjusting valve 8 that is linked to the heating power adjusting knob 7. The thermal power adjustment knob 7 can be rotated to a plurality of positions from the minimum thermal power position to the maximum thermal power position. In the illustrated example, the minimum thermal power position is the “1” position, and the maximum thermal power position is the “5” position. A position sensor 7 a for detecting the operation position of the heating power adjustment knob 7 is provided, and a signal from the sensor 7 a is input to the controller 9 for controlling the flow rate adjustment valve 8. The flow rate control valve 8 is controlled so that the thermal power adjustment knob 7 has a minimum opening at the “1” position and a maximum opening at the “5” position.

また、第2と第3の各分岐ガス通路62,63には、コントローラ9で開閉制御される電磁式の開閉弁10が介設されている。そして、火力調節摘み7が「5」位置と「3」位置との間で操作されるときは、第2と第3の両分岐ガス通路62,63に介設した開閉弁10,10を開弁した状態に保持して、第1乃至第3の3つのノズル孔41,42,43から燃料ガスが噴出されるようにしている。また、火力調節摘み7が「2」位置に操作されたときは、第3分岐ガス通路63に介設した開閉弁10を閉弁して、第1と第2の2つのノズル孔41,42から燃料ガスが噴出されるようにし、火力調節摘み7が「1」位置に操作されたときは、第2分岐ガス通路62に介設した開閉弁10も閉弁して、第1ノズル孔41のみから燃料ガスが噴出されるようにする。即ち、第1乃至第3の3つのノズル孔41,42,43のトータルの有効開口面積(燃料ガスが噴出する部分の面積)が燃料ガスの供給量の減少に応じて減少されるようにする。 Further, in each of the second and third branch gas passages 6 2 and 6 3 , an electromagnetic on-off valve 10 controlled to be opened and closed by a controller 9 is interposed. When the heating power adjustment knob 7 is operated between the “5” position and the “3” position, the on-off valves 10 and 10 interposed in the second and third branch gas passages 6 2 and 6 3 are provided. The fuel gas is jetted from the first to third three nozzle holes 4 1 , 4 2 , 4 3 . Further, when the thermal power adjusting knob 7 is operated in the "2" position, the third branch gas passage 6 3 off valve 10 which is interposed to close the first and 4 second two nozzle holes 1 , 4 2 fuel gas is to be ejected from, when thermal power adjusting knob 7 is operated to the "1" position is to be closed-off valve 10 which is interposed in the second branch gas passage 6, second The fuel gas is ejected from only one nozzle hole 4 1 . That is, the total effective opening area of the first to third nozzle holes 4 1 , 4 2 , 4 3 (area of the portion from which the fuel gas is ejected) is reduced according to the decrease in the supply amount of the fuel gas. Like that.

ここで、ノズル孔が1個のみのガスノズルを用いる場合、最大火力でのインプット(バーナへの燃料ガスの供給量)を例えば3450kcal/h(ガス種13A)にするのに必要なノズル孔の孔径(直径)は1.40mmになる。このノズル孔では、最小火力でのインプットを350kcal/h程度にすると、ノズル孔からのガス噴出速度が遅くなりすぎて、一次空気の吸引不足を生じ、燃焼状態が不安定になる。   Here, when a gas nozzle having only one nozzle hole is used, the hole diameter of the nozzle hole necessary to set the input at the maximum heating power (fuel gas supply amount to the burner) to 3450 kcal / h (gas type 13A), for example. The (diameter) is 1.40 mm. In this nozzle hole, if the input at the minimum heating power is set to about 350 kcal / h, the gas ejection speed from the nozzle hole becomes too slow, resulting in insufficient suction of primary air, and the combustion state becomes unstable.

一方、本実施形態では、火力調節摘み7を「1」位置にしたとき、即ち、最小火力に絞ったときは、第1ノズル孔41のみから燃料ガスが噴出する。そして、第1ノズル孔41の孔径を0.48mm程度に設定しておけば、最小火力でのインプットが350kcal/h程度と低くなっても、噴出ガス速度は低下せず、一次空気の吸引性能が良好に維持されて、安定して燃焼する。従って、絞り性能を可及的に向上できる。 On the other hand, in this embodiment, when the thermal power adjusting knob 7 in the "1" position, i.e., when squeezed to a minimum thermal power, the fuel gas is ejected from the first only the nozzle hole 4 1. Then, by setting the first nozzle holes 4 1 with a pore diameter of about 0.48 mm, even if the input of a minimum thermal power becomes low as 350 kcal / h, the gas injected velocity does not decrease, the suction of the primary air Good performance is maintained and combustion is stable. Therefore, the aperture performance can be improved as much as possible.

尚、第2ノズル孔42の孔径は、「2」位置でのインプットが600kcal/h程度である場合、0.42mm程度に設定しておけば良い。また、第3ノズル孔43の孔径は、第1乃至第3の3つのノズル孔41,42,43のトータルで1.40mmになるように、0.64mm程度に設定される。このように、第3ノズル孔43の孔径を第1ノズル孔41の孔径より大きくすることで、ノズル孔の個数を然程増やさずに最大火力のインプットを大きくすることができる。 The second nozzle holes 4 2 pore size, if the input in the "2" position is about 600kcal / h, may be set to about 0.42 mm. The diameter of the third nozzle hole 4 3 is set to about 0.64 mm so that the total of the first to third nozzle holes 4 1 , 4 2 , 4 3 is 1.40 mm. Thus, the third diameter of the nozzle holes 4 3 to be larger than the first nozzle hole 4 1 of pore diameter, it is possible to increase the input of the maximum heating power of the number of the nozzle holes without increasing not that much.

次に、図3に示す参考例について説明する。尚、図3において、上記第1実施形態と同様の部材には上記と同一の符号を付している。図3の参考例では、ノズル本体3の先端部に、大径のノズル孔4が1個だけ開設されている。ノズル本体3内には、ノズル孔4に向けて進退自在なニードル11が設けられている。そして、ニードル11をコントローラ9で制御される駆動源12により進退駆動するようにしている。尚、駆動源12としては、電磁ソレノイドを用いることができ、また、電動モータと該モータの回転をニードル11の直線運動に変換する送りねじ機構とで駆動源12を構成しても良い。また、駆動源12にガス供給路5が干渉しないように、ノズル本体3の周壁部に流入ポート13を開設し、この流入ポート13にガス供給路5の下流端を接続している。 Next, a reference example shown in FIG. 3 will be described. In FIG. 3, the same members as those in the first embodiment are denoted by the same reference numerals. In the reference example of FIG. 3, only one large-diameter nozzle hole 4 is opened at the tip of the nozzle body 3. In the nozzle body 3, a needle 11 is provided that can move forward and backward toward the nozzle hole 4. The needle 11 is driven forward and backward by a drive source 12 controlled by the controller 9. As the drive source 12, an electromagnetic solenoid can be used, and the drive source 12 may be composed of an electric motor and a feed screw mechanism that converts the rotation of the motor into a linear motion of the needle 11. Further, an inflow port 13 is opened in the peripheral wall portion of the nozzle body 3 so that the gas supply path 5 does not interfere with the drive source 12, and the downstream end of the gas supply path 5 is connected to the inflow port 13.

ニードル11は、先端の小径部11aと小径部11aより大径の大径部11bとから成る段付き形状に形成されている。大径部11bは、ノズル孔4の孔径より所定量だけ小径に形成される。   The needle 11 is formed in a stepped shape including a small-diameter portion 11a at the tip and a large-diameter portion 11b having a larger diameter than the small-diameter portion 11a. The large diameter portion 11 b is formed to have a smaller diameter than the nozzle hole 4 by a predetermined amount.

火力調節摘み7が最大火力の「5」位置と「3」位置との間で操作されるときは、ニードル11は小径部11aがノズル孔4に挿入されない後退位置(図3の実線示の位置)に保持される。火力調節摘み7が「2」位置に操作されたときは、ニードル11が駆動源12により所定ストローク前進して、小径部11aがノズル孔4に挿入され、燃料ガスが噴出するノズル孔4の有効開口面積が減少する。火力調節摘み7が「1」位置に操作されたときは、ニードル11が更に前進して、図3に仮想線で示す如く、大径部11bがノズル孔4に挿入され、ノズル孔4の有効開口面積が更に減少する。これにより、インプットを絞ったときの噴出ガス速度の低下が防止され、一次空気の吸引性能が良好に維持される。従って、上記第1実施形態と同様に絞り性能を可及的に向上できる。   When the thermal power adjustment knob 7 is operated between the “5” position and the “3” position of the maximum thermal power, the needle 11 is in a retracted position where the small diameter portion 11a is not inserted into the nozzle hole 4 (the position indicated by the solid line in FIG. 3). ). When the heating power adjustment knob 7 is operated to the “2” position, the needle 11 is advanced by a predetermined stroke by the drive source 12, the small diameter portion 11 a is inserted into the nozzle hole 4, and the nozzle hole 4 from which the fuel gas is ejected is effective. The opening area is reduced. When the thermal power adjustment knob 7 is operated to the “1” position, the needle 11 further advances, and the large diameter portion 11b is inserted into the nozzle hole 4 as shown by the phantom line in FIG. The opening area is further reduced. Thereby, the fall of the jet gas speed when restrict | squeezing an input is prevented, and the attraction | suction performance of primary air is maintained favorable. Therefore, the aperture performance can be improved as much as possible as in the first embodiment.

尚、ニードル11にテーパを付けて、ノズル孔4の有効開口面積を無段階に可変することも可能である。   It is also possible to taper the needle 11 and change the effective opening area of the nozzle hole 4 steplessly.

本発明の第1実施形態のガスノズル装置を示す切断側面図。The cutting side view showing the gas nozzle device of a 1st embodiment of the present invention. 第1実施形態のガスノズルを示す斜視図。The perspective view which shows the gas nozzle of 1st Embodiment. 参考例のガスノズル装置を示す切断側面図。 The cut side view which shows the gas nozzle apparatus of a reference example .

符号の説明Explanation of symbols

1…混合管、1a…流入口、2…ガスノズル、3…ノズル本体、4,41,42,43…ノズル孔、5…ガス供給路、61,62,63…分岐ガス通路、10…開閉弁、11…ニードル、12…駆動源。
DESCRIPTION OF SYMBOLS 1 ... Mixing pipe, 1a ... Inlet, 2 ... Gas nozzle, 3 ... Nozzle body, 4, 4 1 , 4 2 , 4 3 ... Nozzle hole, 5 ... Gas supply path, 6 1 , 6 2 , 6 3 ... Branch gas A passage, 10 ... an on-off valve, 11 ... a needle, 12 ... a drive source.

Claims (1)

ガスバーナの混合管の上流端の流入口に臨むガスノズルを備えるバーナ用ガスノズル装置であって、
ガスノズルのノズル本体の先端部に開設したノズル孔から流入口に向けて燃料ガスを噴出させ、噴出ガス流によるエゼクタ効果で混合管に一次空気を吸引するものにおいて、
前記ノズル本体の先端部に前記ノズル孔が複数開設され、共通のガス供給路から分岐させた各分岐ガス通路を介して各ノズル孔に個別に燃料ガスが供給され、これら分岐ガス通路のうちの所定の1つの分岐ガス通路以外の分岐ガス通路に開閉弁が介設され、開閉弁を閉弁することでノズル孔のトータルの有効開口面積を減少させ、
前記複数のノズル孔のうち前記所定の分岐ガス通路に対応する所定のノズル孔を除く少なくとも1つのノズル孔の孔径を所定のノズル孔の孔径より大きくし、
開度を複数段で調節される流量調節弁が前記共通のガス供給路に配設され、
コントローラが、前記ガスバーナの火力を、最小火力から所定の中間火力までの火力範囲では、前記開閉弁の開閉と前記流量調節弁の開度調節とにより複数段で調節し、また、前記所定の中間火力から最大火力までの火力範囲では、全部の開閉弁を開弁しつつ、前記流量調節弁の開度を複数段で調節することにより複数段で調節するようにしていることを特徴とするバーナ用ガスノズル装置。
A gas nozzle device for a burner comprising a gas nozzle facing an inlet at an upstream end of a mixing pipe of a gas burner,
In which fuel gas is ejected from the nozzle hole established at the tip of the nozzle body of the gas nozzle toward the inlet, and primary air is sucked into the mixing tube by the ejector effect by the ejected gas flow.
A plurality of the nozzle holes are formed at the tip of the nozzle body, and fuel gas is individually supplied to the nozzle holes via the branch gas passages branched from the common gas supply passage. An on / off valve is interposed in a branch gas passage other than the predetermined one of the branch gas passages, and the total effective opening area of the nozzle holes is reduced by closing the on / off valve
Of the plurality of nozzle holes, the diameter of at least one nozzle hole excluding the predetermined nozzle hole corresponding to the predetermined branch gas passage is made larger than the hole diameter of the predetermined nozzle hole,
A flow rate adjusting valve whose opening degree is adjusted in a plurality of stages is disposed in the common gas supply path,
The controller adjusts the thermal power of the gas burner in a plurality of stages by opening and closing the on-off valve and adjusting the opening of the flow rate control valve in a thermal power range from a minimum thermal power to a predetermined intermediate thermal power, and the predetermined intermediate In a thermal power range from thermal power to maximum thermal power , a burner is configured to adjust in multiple stages by adjusting the opening degree of the flow control valve in multiple stages while opening all the on-off valves. Gas nozzle device.
JP2008177717A 2008-07-08 2008-07-08 Gas nozzle device for burner Active JP4920013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177717A JP4920013B2 (en) 2008-07-08 2008-07-08 Gas nozzle device for burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177717A JP4920013B2 (en) 2008-07-08 2008-07-08 Gas nozzle device for burner

Publications (2)

Publication Number Publication Date
JP2010019434A JP2010019434A (en) 2010-01-28
JP4920013B2 true JP4920013B2 (en) 2012-04-18

Family

ID=41704529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177717A Active JP4920013B2 (en) 2008-07-08 2008-07-08 Gas nozzle device for burner

Country Status (1)

Country Link
JP (1) JP4920013B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159940A (en) * 2013-01-23 2014-09-04 World Seiki:Kk Gas burner device, food kiln including the same, burning method of food, and burning temperature control method of food kiln
JP6665004B2 (en) * 2016-03-22 2020-03-13 三菱重工業株式会社 Fuel supply device, marine boiler provided with the same, and method of controlling fuel supply device
JP2019138482A (en) * 2018-02-06 2019-08-22 リンナイ株式会社 Gas combustion device
CN110726248B (en) * 2018-07-16 2021-07-16 宁波方太厨具有限公司 Pull valve control method of multi-way electromagnetic valve of gas water heater
CN113905499B (en) * 2021-08-30 2024-05-03 中国航天空气动力技术研究院 Pneumatic-magnetic field scanning tubular arc plasma heater and use method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123636A (en) * 1973-04-02 1974-11-26
JPS5345132B2 (en) * 1974-11-20 1978-12-04
JPS5976844A (en) * 1982-10-27 1984-05-02 Tanaka Kikinzoku Kogyo Kk Platinum alloy for accessory
JPH04281103A (en) * 1991-03-07 1992-10-06 Nissan Motor Co Ltd Fuel injection valve
JP2002286225A (en) * 2001-03-28 2002-10-03 Osaka Gas Co Ltd Operating method and device of combustion device for heating furnace

Also Published As

Publication number Publication date
JP2010019434A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5597775B2 (en) Channel separation type gas-air mixing device
JP4920013B2 (en) Gas nozzle device for burner
KR101338179B1 (en) Combustion apparatus with improved turn down ratio
US20100330520A1 (en) Combustion apparatus
JP5511862B2 (en) Gas nozzle device for burner
JP6168965B2 (en) Mixed combustion system and fuel gas mixing unit
JP6715624B2 (en) Gas burner
US10801721B2 (en) Gas-fired boiler having a high modulation ratio
JP6476217B2 (en) TDR damper
JP2006138561A (en) Combustion apparatus
JP5107120B2 (en) Gas engine mixer
JP6102350B2 (en) boiler
JPH041247B2 (en)
JP4052768B2 (en) Gas and air mixing equipment in natural gas burners.
JP7069803B2 (en) Combustion device
US20150125799A1 (en) Combustion control device
JP6762664B2 (en) Premixed gas burner
EP3365600B1 (en) Method for reducing harmful gas emissions from a gas-fired sealed combustion chamber forced-draught boiler using flue gas recirculation and according boiler
JP5720874B2 (en) Combustion device
JPH07293863A (en) Air-fuel ratio proportional controller for gas combustion apparatus
JPH0526097B2 (en)
EA040580B1 (en) DEVICE FOR CONTROL OF FUEL AND OXIDANT MIXTURE IN PRE-MIXING GAS BURNERS
JP2019138482A (en) Gas combustion device
JPH02130312A (en) Liquid fuel combustion device
JP2005163723A (en) Gas fuel supply device of gas engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4920013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250