JP4919595B2 - Silver fine particle colloidal dispersion, silver film-forming coating liquid and method for producing the same, and silver film - Google Patents

Silver fine particle colloidal dispersion, silver film-forming coating liquid and method for producing the same, and silver film Download PDF

Info

Publication number
JP4919595B2
JP4919595B2 JP2004332648A JP2004332648A JP4919595B2 JP 4919595 B2 JP4919595 B2 JP 4919595B2 JP 2004332648 A JP2004332648 A JP 2004332648A JP 2004332648 A JP2004332648 A JP 2004332648A JP 4919595 B2 JP4919595 B2 JP 4919595B2
Authority
JP
Japan
Prior art keywords
silver
silver fine
film
fine particles
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004332648A
Other languages
Japanese (ja)
Other versions
JP2006028637A (en
Inventor
裕之 田中
賢二 加藤
雅也 行延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004332648A priority Critical patent/JP4919595B2/en
Publication of JP2006028637A publication Critical patent/JP2006028637A/en
Application granted granted Critical
Publication of JP4919595B2 publication Critical patent/JP4919595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Colloid Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、基材上に銀導電膜を形成するための銀膜形成用塗布液等の製造に用いられる銀微粒子コロイド分散液、特に粒径の大きい銀微粒子コロイド分散液と、その銀微粒子コロイド分散液を用いて製造される銀膜形成用塗布液及びその製造方法、並びに銀膜形成用塗布液を用いて得られる銀膜に関するものである。   The present invention relates to a silver fine particle colloid dispersion used for the production of a silver film forming coating solution for forming a silver conductive film on a substrate, particularly a silver fine particle colloid dispersion having a large particle size, and the silver fine particle colloid. The present invention relates to a silver film-forming coating liquid produced using a dispersion, a method for producing the same, and a silver film obtained using the silver film-forming coating liquid.

従来から、銀を含む貴金属微粒子を溶媒に分散させたコロイド分散液は、コンピュータディスプレイの漏洩電磁波防止に用いられる透明導電層形成塗布液(特開平11−329071号公報、特開2000−268639号公報)や、抗菌コーティング形成塗布液(特開平4−321628号公報)等として用いられている。例えば、前者の用途では、透明導電膜形成塗布液を陰極線管(CRT)の前面ガラス(前面板)にスピンコート法等で塗布し、乾燥した後、200℃程度の温度で焼成して透明導電層を形成している。   Conventionally, a colloidal dispersion liquid in which noble metal fine particles containing silver are dispersed in a solvent is used as a coating liquid for forming a transparent conductive layer used for preventing leakage electromagnetic waves in computer displays (Japanese Patent Laid-Open Nos. 11-329071 and 2000-268639). ), An antibacterial coating-forming coating solution (Japanese Patent Laid-Open No. 4-321628), and the like. For example, in the former application, a transparent conductive film forming coating solution is applied to the front glass (front plate) of a cathode ray tube (CRT) by a spin coat method or the like, dried and then baked at a temperature of about 200 ° C. Forming a layer.

また、高濃度の銀微粒子コロイド分散液(ペースト)を、スクリーン印刷などを用いて印刷し、200℃程度の温度で焼成して銀導電層を得る方法も提案されている(特開2002−334618号公報)。しかし、この用途で用いられる銀微粒子コロイド分散液は、銀を減圧下のガス中で蒸発・凝縮させ、分散剤を含んだ溶剤中に回収するガス中蒸発法を用いて製造されていたため、非常に生産性が悪く、従って得られる銀微粒子コロイド分散液も非常に高価であった。また、この銀微粒子コロイド分散液の場合、分散安定性を高めるため、銀微粒子の表面に強く結合する分散剤が含まれているので、塗布(印刷)・乾燥した後に、200℃程度の高温加熱処理を施して分散剤を分解除去する必要があり、好ましいとは言えなかった。   Also proposed is a method in which a silver conductive layer is obtained by printing a high-concentration silver fine particle colloidal dispersion (paste) using screen printing or the like and firing at a temperature of about 200 ° C. (Japanese Patent Laid-Open No. 2002-334618). Issue gazette). However, the silver fine particle colloidal dispersion used in this application was manufactured using a gas evaporation method in which silver was evaporated and condensed in a gas under reduced pressure and recovered in a solvent containing a dispersant. Further, the productivity was poor, and therefore the resulting silver fine particle colloidal dispersion was very expensive. In addition, in the case of this silver fine particle colloid dispersion liquid, in order to enhance the dispersion stability, a dispersing agent that strongly binds to the surface of the silver fine particles is included, so that it is heated at about 200 ° C. after coating (printing) and drying. It was necessary to perform treatment to decompose and remove the dispersant, which was not preferable.

一方、分散剤を含まない銀微粒子コロイド分散液をより簡単に製造する方法として、Carey−Lea法[Am. J. Sci.,37、38、47(1889)]がある。Carey−Lea法では、硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液に、硝酸銀水溶液を混合して反応させ、得られた銀微粒子凝集体を濾過・洗浄した後、そのケーキに純水を加えることにより、比較的高濃度な銀微粒子コロイド分散液(Ag:0.1〜10重量%)が得られる。尚、本発明者らは、この銀微粒子コロイド分散液を用いて銀膜形成用塗布液を得る方法の一つについて、既にPCT/JP2004/006053号に提案している。   On the other hand, the Carey-Lea method [Am. J. Sci., 37, 38, 47 (1889)] is a method for more easily producing a silver fine particle colloidal dispersion containing no dispersant. In the Carey-Lea method, an aqueous solution of iron nitrate (II) and an aqueous solution of sodium citrate are mixed and reacted with an aqueous solution of silver nitrate, and the resulting silver fine particle aggregate is filtered and washed, and then pure water is added to the cake. Is added to obtain a silver fine particle colloid dispersion (Ag: 0.1 to 10% by weight) having a relatively high concentration. The present inventors have already proposed in PCT / JP2004 / 006053 one method for obtaining a coating solution for forming a silver film using this silver fine particle colloidal dispersion.

上記Carey−Lea法で得られる銀微粒子は、粒径2〜15nmの微細なナノコロイド粒子である。また、実際の製造過程において、一般に行なわれているバッチ式による場合、片方の原料水溶液が入った容器に他方の原料水溶液を一気に加えると液の混合状態が不均一となりやすく、生成する銀微粒子の粒径制御が困難であるため、一部に粗大粒子が生じやすい。例えば、通常の粒径5〜15nm程度の銀微粒子に、粒径30nm程度の粗大粒子が混入することがあり、特に処理液量が多い場合に顕著である。   Silver fine particles obtained by the Carey-Lea method are fine nanocolloid particles having a particle diameter of 2 to 15 nm. In addition, in the actual production process, in the case of the batch type that is generally performed, when the other raw material aqueous solution is added all at once to a container containing one raw material aqueous solution, the mixed state of the liquid tends to be uneven, and the generated silver fine particles Since it is difficult to control the particle size, coarse particles are likely to be generated in part. For example, coarse particles having a particle size of about 30 nm may be mixed with normal silver fine particles having a particle size of about 5 to 15 nm, particularly when the amount of treatment liquid is large.

そこで、製造過程での原料水溶液同士の混合・反応を均一にして、粒度分布が狭い銀微粒子コロイド分散液を効率良く得るために、最近では、スタティックミキサー等を用いて原料水溶液の混合・反応状態を一定に保ちながら連続的に銀微粒子を生成させる方法(特開2004−18891号公報)や、原料水溶液を別々のノズルからそれぞれ吐出させて混合する方法(特開2004−68072号公報)も提案されている。   Therefore, in order to achieve uniform mixing and reaction of raw material aqueous solutions in the manufacturing process and to efficiently obtain a colloidal dispersion of silver fine particles with a narrow particle size distribution, recently, the mixing and reaction state of the aqueous raw material solution using a static mixer etc. A method of continuously generating silver fine particles while maintaining a constant value (Japanese Patent Laid-Open No. 2004-18891) and a method of discharging raw material aqueous solutions from separate nozzles and mixing them (Japanese Patent Laid-Open No. 2004-68072) are also proposed. Has been.

これらの方法によれば、例えば、小さい粒径では2〜7nmの範囲で、あるいは大きい粒径では10〜15nmの範囲で、それぞれ粒度分布の幅の狭い銀微粒子コロイド分散液を得ることが可能である。しかしながら、これらCarey−Lea法を用いた従来の方法においては、その反応条件を変えたとしても、平均粒径が20nmを超える均一な銀微粒子を含む銀微粒子コロイド分散液を得ることはできなかった。   According to these methods, it is possible to obtain a colloidal dispersion of silver fine particles having a narrow particle size distribution, for example, in the range of 2 to 7 nm for a small particle size or in the range of 10 to 15 nm for a large particle size. is there. However, in the conventional methods using the Carey-Lea method, even if the reaction conditions were changed, it was not possible to obtain a silver fine particle colloidal dispersion containing uniform silver fine particles having an average particle size exceeding 20 nm. .

以上の様に、従来のCarey−Lea法を用いた方法では、平均粒径が20nmを超える均一な銀微粒子を含む銀微粒子コロイド分散液を得ることはできず、従って、その銀微粒子コロイド分散液から得られる前述の銀膜形成用塗布液においても同様に、平均粒径が20nmを超える均一な銀微粒子を含むものは得られていなかった。   As described above, the conventional method using the Carey-Lea method cannot obtain a silver fine particle colloidal dispersion containing uniform silver fine particles having an average particle diameter exceeding 20 nm. Similarly, in the above-described coating solution for forming a silver film obtained from No. 1, a liquid containing uniform silver fine particles having an average particle diameter exceeding 20 nm was not obtained.

ところで、最近では、銀導電膜を形成する場合に、その膜厚を厚くして、低抵抗膜化することが要望されている。しかしながら、従来の平均粒径が小さい銀微粒子からなる銀膜形成用塗布液を用いた場合には、膜厚を例えば数μmまで厚膜化した場合、膜焼成時にクラックが発生してしまい、膜の導電性や密着力が大幅に劣化するという問題があった。   Recently, when a silver conductive film is formed, it is desired to increase the film thickness to reduce the resistance. However, when the conventional coating liquid for forming a silver film composed of silver fine particles having a small average particle diameter is used, when the film thickness is increased to, for example, several μm, cracks occur during film firing, There was a problem that the electrical conductivity and adhesion of the material deteriorated significantly.

この問題を克服するためには、膜焼成時の収縮を抑制する必要があり、具体的には、銀微粒子の平均粒径を少なくとも20nm程度以上にすることが必要である。しかしながら、従来のCarey−Lea法では、上述のごとく平均粒径が20nmを超える銀微粒子コロイド分散液を得ることは困難であった。従ってまた、平均粒径が20nmを超える銀微粒子が分散した銀膜形成用塗布液を、安価に且つ簡便な方法で得ることも困難であった。   In order to overcome this problem, it is necessary to suppress shrinkage during film firing. Specifically, it is necessary to make the average particle size of silver fine particles at least about 20 nm or more. However, with the conventional Carey-Lea method, it was difficult to obtain a silver fine particle colloidal dispersion having an average particle size exceeding 20 nm as described above. Therefore, it is also difficult to obtain a coating solution for forming a silver film, in which silver fine particles having an average particle diameter exceeding 20 nm are dispersed, at a low cost and with a simple method.

特開平11−329071号公報Japanese Patent Laid-Open No. 11-329071 特開2000−268639号公報JP 2000-268639 A 特開平4−321628号公報Japanese Patent Laid-Open No. 4-321628 特開2002−334618号公報JP 2002-334618 A 特開2004−18891号公報JP 2004-18891 A 特開2004−68072号公報JP 2004-68072 A Am. J. Sci.,37(1889)Am. J. Sci., 37 (1889) Am. J. Sci.,38(1889)Am. J. Sci., 38 (1889) Am. J. Sci.,47(1889)Am. J. Sci., 47 (1889)

本発明は、このような従来の事情に鑑みてなされたものであり、従来のCarey−Lea法による銀微粒子コロイド分散液と比べて平均粒径が大きく、且つ極めて安価で、分散安定性に優れる銀微粒子コロイド分散液と、その銀微粒子コロイド分散液を用いて製造される銀膜形成用塗布液、及びその製造方法、並びにその銀膜形成用塗布液を用いて形成される銀膜を提供することを目的とする。   The present invention has been made in view of such conventional circumstances, and has an average particle size larger than that of the conventional silver fine particle colloid dispersion by the Carey-Lea method, is extremely inexpensive, and has excellent dispersion stability. Provided are a silver fine particle colloid dispersion, a silver film-forming coating solution produced using the silver fine particle colloid dispersion, a method for producing the same, and a silver film formed using the silver film-forming coating solution. For the purpose.

上記目的を達成するため、本発明が提供する銀微粒子コロイド分散液の製造方法であって、その請求項1に係る発明は、硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液に硝酸銀水溶液を反応させて、クエン酸イオンで保護された粒径2〜15nmの銀微粒子の凝集体を鉄イオンやナトリウムイオンを含む反応液中に生成させる反応工程と、得られたクエン酸イオンで保護された銀微粒子の凝集体を含む前記反応液を該銀微粒子が凝集した状態のまま40〜100℃の温度で放置して、平均粒径が20〜200nmで粒状に粒成長し且つクエン酸イオンで保護された銀微粒子の凝集体を得る熟成工程と、該銀微粒子の凝集体を濾過して粒状に粒成長し且つクエン酸イオンで保護された銀微粒子凝集体のケーキを得る濾過工程と、該ケーキに純水を加えて粒状に粒成長し且つクエン酸イオンで保護された銀微粒子のコロイド分散液を得る分散工程とを備えることを特徴とする。 In order to achieve the above object, a method for producing a colloidal dispersion of silver fine particles provided by the present invention, wherein the invention according to claim 1 includes a silver nitrate aqueous solution in a mixed solution of an iron (II) sulfate aqueous solution and a sodium citrate aqueous solution. To produce aggregates of silver fine particles having a particle diameter of 2 to 15 nm protected with citrate ions in a reaction solution containing iron ions and sodium ions, and the resulting citrate ions protect the aggregates. the reaction was left at a temperature still 40 to 100 ° C. in a state where silver particles are aggregated with containing aggregates of fine silver particles having an average particle diameter grain growth granulated with 20~200nm and citrate ion A ripening step for obtaining an aggregate of protected silver fine particles, a filtration step for obtaining a cake of silver fine particle agglomerates by filtering the silver fine particle agglomerates and growing into granules and protected with citrate ions, Ke Characterized in that it comprises a dispersion step of obtaining a colloidal dispersion of fine silver particles protected with grain growth and citrate ions granulated by adding pure water to key.

本発明が提供する銀膜形成用塗布液の製造方法であって、その請求項に係る発明は、上記請求項1に記載の反応工程、熟成工程、濾過工程及び分散工程により銀微粒子のコロイド分散液を製造し、得られた銀微粒子のコロイド分散液を濃縮・洗浄して銀微粒子コロイド濃縮洗浄分散液を得る濃縮・洗浄工程と、この銀微粒子コロイド濃縮洗浄分散液に有機溶媒を加える溶媒配合工程とを備えることを特徴とする。 A method for producing a coating solution for forming a silver film provided by the present invention, wherein the invention according to claim 2 is a colloid of silver fine particles formed by the reaction step, the aging step, the filtration step and the dispersion step according to claim 1. A concentration and washing step for producing a dispersion liquid, concentrating and washing the obtained colloidal dispersion of silver fine particles to obtain a silver fine particle colloid concentrated washing dispersion liquid, and a solvent for adding an organic solvent to the silver fine particle colloid concentrated washing dispersion liquid And a blending step.

本発明が提供する銀膜形成用塗布液の製造方法であって、その請求項に係る発明は、上記請求項の銀膜形成用塗布液の製造方法において、前記有機溶媒が少なくともジメチルスルホキシドを含むことを特徴とする。その請求項に係る発明は、上記請求項2又は3の銀膜形成用塗布液の製造方法において、前記濃縮・洗浄工程で銀微粒子コロイド濃縮洗浄分散液から銀微粒子を除去した溶媒部分の電気伝導度を500μS/cm以下とすることを特徴とする。 A method for producing a coating solution for forming a silver film provided by the present invention, wherein the invention according to claim 3 is the method for producing a coating solution for forming a silver film according to claim 2 , wherein the organic solvent is at least dimethyl sulfoxide. It is characterized by including. The invention according to claim 4 is the method for producing a coating solution for forming a silver film according to claim 2 or 3 above, wherein the electricity of the solvent part is obtained by removing silver fine particles from the silver fine particle colloid concentrated washing dispersion liquid in the concentration and washing step. The conductivity is 500 μS / cm or less.

また、本発明が提供する銀膜形成用塗布液の製造方法であって、その請求項に係る発明は、上記請求項2〜4のいずれかの銀膜形成用塗布液の製造方法において、前記銀膜形成用塗布液中の銀微粒子の濃度が10〜70重量%であることを特徴とする。また、その請求項に係る発明は、上記請求項2〜5のいずれかの銀膜形成用塗布液の製造方法において、前記銀膜形成用塗布液中の銀微粒子の平均粒径が20〜200nmであることを特徴とする。 Further, the present invention provides a method for producing a coating solution for forming a silver film, wherein the invention according to claim 5 is the method for producing a coating solution for forming a silver film according to any one of claims 2 to 4 , The silver fine particle concentration in the coating solution for forming a silver film is 10 to 70% by weight . The invention according to claim 6 is the method for producing a coating solution for forming a silver film according to any one of claims 2 to 5 , wherein the average particle size of silver fine particles in the coating solution for forming a silver film is 20 to 20%. It is characterized by 200 nm .

本発明によれば、Carey−Lea法を用いた簡単な方法により、従来の銀微粒子コロイド分散液と比べて、銀微粒子の平均粒径が20〜200nmと大きく且つその粒度分布が小さく、分散安定性に優れた銀微粒子コロイド分散液と、その銀微粒子コロイド分散液を用いて製造される銀膜形成用塗布液を、安価に提供することができる。   According to the present invention, by a simple method using the Carey-Lea method, the average particle size of silver fine particles is as large as 20 to 200 nm and the particle size distribution is small compared with conventional silver fine particle colloidal dispersions. A silver fine particle colloid dispersion having excellent properties and a silver film forming coating solution produced using the silver fine particle colloid dispersion can be provided at low cost.

また、本発明の銀膜形成用塗布液中の銀微粒子は、含まれる銀微粒子の平均粒径が20〜200nmと大きいため、銀膜形成用塗布液を用いた塗布法により成膜可能な膜厚の範囲が広がり、膜厚や焼成温度等で膜抵抗値等を制御することが可能となることから、銀導電膜として広範な用途に展開することができる。例えば、バーコーティング、スクリーン印刷等を用いて塗布印刷し、焼成して得られる銀導電膜について、膜焼成時の収縮を抑制してクラックの発生を防止することができ、厚膜化の要請を達成することが可能となる。   In addition, since the silver fine particles in the silver film forming coating liquid of the present invention have a large average particle diameter of 20 to 200 nm, the film that can be formed by a coating method using the silver film forming coating liquid. Since the thickness range is widened and the film resistance value and the like can be controlled by the film thickness, the firing temperature, and the like, the silver conductive film can be used in a wide range of applications. For example, the silver conductive film obtained by applying and printing using bar coating, screen printing, etc., and firing can suppress the shrinkage during film firing and prevent the occurrence of cracks. Can be achieved.

本発明方法では、まず、反応工程において、公知のCarey−Lea法[Am. J. Sci.,37、38、47(1889)参照]を用いて、粒径の小さい銀微粒子の凝集体を比較的高濃度に含む反応液を得る。即ち、硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液に、硝酸銀水溶液を混合して銀微粒子を生成させる。この銀微粒子の生成反応は、下記化学式1のように表される。   In the method of the present invention, first, in the reaction step, aggregates of silver fine particles having a small particle diameter are compared using a well-known Carey-Lea method [Am. J. Sci., 37, 38, 47 (1889)]. A reaction solution containing a high concentration is obtained. That is, a silver nitrate aqueous solution is mixed with a mixed solution of an iron (II) sulfate aqueous solution and a sodium citrate aqueous solution to form silver fine particles. The formation reaction of the silver fine particles is represented by the following chemical formula 1.

[化1]
Ag +Fe2+ → Ag+Fe3+
[Chemical 1]
Ag + + Fe 2+ → Ag + Fe 3+

上記化学式1を含む一連の反応は、各原料水溶液の混合後1〜2秒以内に起きる。また、生成した銀微粒子は、共存するクエン酸イオンの保護作用を受けると同時に、高濃度の鉄イオン、ナトリウムイオン等により急速に凝集するため、クエン酸イオンで保護された銀微粒子の凝集体が形成される。尚、このとき生成する銀微粒子の粒径は、通常の2〜15nm程度である。   A series of reactions including the above chemical formula 1 occurs within 1 to 2 seconds after mixing the raw material aqueous solutions. In addition, the produced silver fine particles are protected by the coexisting citrate ions, and at the same time, rapidly aggregate due to high concentrations of iron ions, sodium ions, etc., so the aggregates of silver fine particles protected with citrate ions It is formed. In addition, the particle size of the silver fine particles produced | generated at this time is about 2-15 nm usual.

尚、硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液に、硝酸銀水溶液を混合する方法としては、バッチ式であっても連続式であってもよい。例えば、スタティックミキサー(機械的可動部分が存在しない混合装置)等を用いて、混合・反応状態を一定に保ちながら、連続的に銀微粒子を生成させることも可能である。   In addition, as a method of mixing a silver nitrate aqueous solution into a mixed solution of an iron (II) sulfate aqueous solution and a sodium citrate aqueous solution, a batch method or a continuous method may be used. For example, using a static mixer (mixing device having no mechanically movable part) or the like, it is possible to continuously generate silver fine particles while keeping the mixing / reaction state constant.

次に、熟成工程において、上記反応工程で得られた銀微粒子凝集体を含む反応液を放置する。この放置・熟成によって、粒状に粒成長した銀微粒子の凝集体が得られ、最終的に銀微粒子コロイド分散液としたときの銀微粒子の平均粒径を20nm以上とすることができる。尚、平均粒径が200nmを超えると、銀微粒子が沈降を起こすため好ましくない。また、この熟成工程では、反応液をそのままの状態で放置することが好ましいが、例えば連続的に生成させた反応液などは容器に移して放置することも可能である。   Next, in the ripening step, the reaction solution containing the silver fine particle aggregate obtained in the reaction step is allowed to stand. By this standing and aging, aggregates of silver fine particles grown in a granular form are obtained, and the average particle diameter of the silver fine particles when finally obtained as a silver fine particle colloidal dispersion can be set to 20 nm or more. An average particle diameter exceeding 200 nm is not preferable because silver fine particles cause sedimentation. In this ripening step, it is preferable to leave the reaction solution as it is, but for example, the reaction solution produced continuously may be left in the container.

上記銀微粒子凝集体を含む反応液の放置条件、即ち銀微粒子の熟成(粒成長)条件としては、放置温度を0〜100℃とすることが好ましく、40〜100℃とすることが更に好ましい。放置時間は放置温度に依存し、数分〜数ヶ月、好ましくは数十分〜数日の範囲である。放置温度と放置時間の設定によって最終的な銀微粒子の平均粒径が決められ、放置温度が高いほど又は放置時間が長いほど、銀微粒子の平均粒径は大きくなる。特に放置温度を40〜100℃とすることにより、平均粒径30nmを越える銀微粒子が24時間以内の放置時間で得られるため、生産効率の点で特に好ましい。また、上澄み液を除いたり、クエン酸塩を加えたりして、反応液中のイオン量を変えることによっても、銀微粒子の粒径を制御することができる。   As the leaving condition of the reaction solution containing the silver fine particle aggregate, that is, the aging (grain growth) condition of the silver fine particles, the leaving temperature is preferably 0 to 100 ° C, and more preferably 40 to 100 ° C. The standing time depends on the standing temperature, and ranges from several minutes to several months, preferably several tens of minutes to several days. The final average particle diameter of the silver fine particles is determined by setting the standing temperature and the standing time. The higher the standing temperature or the longer the standing time, the larger the average particle diameter of the silver fine particles. In particular, when the standing temperature is set to 40 to 100 ° C., silver fine particles having an average particle diameter of more than 30 nm can be obtained in a standing time within 24 hours, which is particularly preferable in terms of production efficiency. The particle size of the silver fine particles can also be controlled by changing the amount of ions in the reaction solution by removing the supernatant or adding citrate.

上記銀微粒子凝集体を含む反応液の放置により銀微粒子が粒成長する理由は明らかではないが、反応液中に過剰のクエン酸等のイオンが共存しているためと思われる。例えば、熟成を行う前の上記反応液を濾過して銀微粒子凝集体のケーキとした後、純水を加えて銀微粒子を純水中に再分散させた銀微粒子コロイド分散液では、放置・熟成を行っても均一に粒成長した銀微粒子は得られない。この場合には、特定の銀微粒子が成長し始めると、その銀微粒子だけが成長し、その他の銀微粒子は少しずつ小さくなる現象(オストワルド成長)が起こるため、粒径2〜15nm程度の粒状の銀微粒子に混じって、六角又は三角の板状をなす粗大な銀微粒子が生じることになり、銀微粒子を均一に成長させることができない。   The reason why silver fine particles grow by leaving the reaction solution containing the above-mentioned silver fine particle aggregates is not clear, but it seems that excessive ions such as citric acid coexist in the reaction solution. For example, a silver fine particle colloidal dispersion obtained by filtering the above reaction solution before ripening to obtain a silver fine particle aggregate cake and then re-dispersing the silver fine particles in pure water by adding pure water is allowed to stand and ripen. Even if it carries out, the silver fine particle which carried out the grain growth uniformly cannot be obtained. In this case, when specific silver fine particles begin to grow, only the silver fine particles grow, and other silver fine particles gradually decrease (Ostwald growth). When mixed with silver fine particles, coarse silver fine particles having a hexagonal or triangular plate shape are generated, and silver fine particles cannot be grown uniformly.

上記熟成工程で粒成長した銀微粒子の凝集体は、次の濾過工程において濾過され、銀微粒子凝集体のケーキとされる。銀微粒子凝集体の濾過には、メンブレンフィルター濾過、遠心分離、フィルタープレス等の常用の方法を用いることができる。また、この濾過工程においては、銀微粒子が洗い出されない程度の少量の純水でケーキの洗浄を行うことも可能である。   Aggregates of silver fine particles that have grown in the ripening step are filtered in a subsequent filtration step to obtain a cake of silver fine particle aggregates. Conventional methods such as membrane filter filtration, centrifugation, and filter press can be used for filtration of the silver fine particle aggregates. In this filtration step, it is also possible to wash the cake with a small amount of pure water that does not wash out silver particles.

その後、分散工程において、上記銀微粒子凝集体のケーキに純水を加えることにより、銀微粒子コロイド分散液が得られる。銀微粒子凝集体のケーキに純水を加えると、液中の鉄イオンとナトリウムの濃度が大幅に低下するため、凝集要因がなくなり、クエン酸イオンで保護された銀微粒子は液中に再分散して、銀微粒子のコロイド分散液となるのである。このようなコロイドの製造方法は、一般的に洗い出し法と呼ばれている。   Thereafter, in the dispersing step, pure water is added to the silver fine particle aggregate cake to obtain a silver fine particle colloidal dispersion. When pure water is added to the silver fine particle agglomerated cake, the concentration of iron ions and sodium in the liquid is greatly reduced, eliminating the cause of aggregation, and silver fine particles protected with citrate ions are redispersed in the liquid. Thus, a colloidal dispersion of silver fine particles is obtained. Such a colloid production method is generally called a washing-out method.

上記した本発明の製造方法により得られる銀微粒子コロイド分散液は、従来よりも銀微粒子の平均粒径が大きく、好ましくは20〜200nmであり、更に好ましくは30nmを超え200nm以下である。しかも、簡単な方法で安価に製造できるうえ、分散剤などの不純物が少なく、分散安定性にも優れている。尚、本発明における粒径とは、透過電子顕微鏡(TEM)で観察される銀微粒子の粒径である。   The silver fine particle colloidal dispersion obtained by the production method of the present invention described above has a larger average particle size of silver fine particles than the conventional one, preferably 20 to 200 nm, more preferably more than 30 nm and 200 nm or less. In addition, it can be produced at a low cost by a simple method, has few impurities such as a dispersant, and is excellent in dispersion stability. The particle size in the present invention is the particle size of silver fine particles observed with a transmission electron microscope (TEM).

次に、上記銀微粒子コロイド分散液を用いて、本発明の銀膜形成用塗布液を製造する方法について説明する。まず、上記銀微粒子コロイド分散液(銀微粒子濃度:0.1〜10重量%)を、濃縮・洗浄工程において濃縮及び洗浄することにより、水の溶媒中に銀微粒子が高濃度に分散した銀微粒子コロイド濃縮洗浄分散液とする。銀微粒子コロイド分散液の濃縮処理は、減圧エバポレーター、限外濾過等の常用の方法で行うことができる。また、洗浄処理としては、透析、電気透析、イオン交換、限外濾過等の方法を用いて行うことができるが、中でも限外濾過法は濃縮処理と洗浄処理を同時に行うことが可能であるため、好ましい方法である。   Next, a method for producing the silver film-forming coating solution of the present invention using the above-mentioned silver fine particle colloidal dispersion will be described. First, the silver fine particle colloid dispersion liquid (silver fine particle concentration: 0.1 to 10% by weight) is concentrated and washed in the concentration / washing step so that silver fine particles are dispersed in a high concentration in a solvent of water. A colloid concentrated washing dispersion is obtained. The concentration treatment of the silver fine particle colloidal dispersion can be performed by a common method such as a vacuum evaporator or ultrafiltration. The washing treatment can be performed using methods such as dialysis, electrodialysis, ion exchange, and ultrafiltration. Among them, the ultrafiltration method can perform concentration treatment and washing treatment at the same time. Is the preferred method.

得られる銀微粒子コロイド濃縮洗浄分散液においては、洗浄処理により溶媒中の電解質濃度が低下するため、銀微粒子の分散安定性が向上する。この分散安定性の向上は、電解質濃度が高い場合には一般にコロイドは電解質で凝集してしまうが、電解質濃度が低いと凝集が妨げられるからである。銀微粒子の分散安定性を実用レベルまで高めるためには、濃縮・洗浄工程において、銀微粒子コロイド濃縮洗浄分散液から銀微粒子を除去した溶媒部分の電気伝導度が500μS(ジーメンス)/cm以下、好ましくは200μS/cm以下となるまで、電解質濃度を低下させることが好ましい。   In the resulting silver fine particle colloid concentrated cleaning dispersion, the electrolyte concentration in the solvent is reduced by the cleaning treatment, so that the dispersion stability of the silver fine particles is improved. This improvement in dispersion stability is because colloids generally aggregate in the electrolyte when the electrolyte concentration is high, but aggregation is hindered when the electrolyte concentration is low. In order to increase the dispersion stability of the silver fine particles to a practical level, the electric conductivity of the solvent portion from which the silver fine particles are removed from the silver fine particle colloid concentrated washing dispersion liquid in the concentration and washing step is preferably 500 μS (Siemens) / cm or less, preferably It is preferable to reduce the electrolyte concentration until it becomes 200 μS / cm or less.

上記銀微粒子コロイド濃縮洗浄分散液は、そのままでも印刷・塗布が可能であるが、溶媒が水系であるため、プラスチック等の基材の種類によっては成膜工程においてハジキ等の塗布欠陥を生じる場合がある。そこで、次の溶媒配合工程において、銀微粒子コロイド濃縮洗浄分散液に有機溶媒を加えることにより、本発明の銀膜形成用塗布液とする。この銀膜形成用塗布液の塗布性は、有機溶媒の添加により大幅に改善されている。   The silver fine particle colloid concentrated cleaning dispersion liquid can be printed and applied as it is, but since the solvent is aqueous, depending on the type of base material such as plastic, coating defects such as repelling may occur in the film forming process. is there. Therefore, in the next solvent blending step, an organic solvent is added to the silver fine particle colloid concentrated cleaning dispersion liquid to obtain the coating solution for forming a silver film of the present invention. The applicability of this silver film forming coating solution is greatly improved by the addition of an organic solvent.

尚、電解質濃度の低下により銀微粒子の分散安定性が向上するのは、有機溶媒が配合された銀膜形成用塗布液においても同様である。従って、上記銀微粒子コロイド濃縮洗浄分散液に有機溶媒を加えて銀微粒子コロイド分散濃縮液を得る溶媒配合工程において、例えば、更にイオン交換樹脂を添加する等の洗浄工程を付加し、電解質濃度を低下させることもできる。   Incidentally, the dispersion stability of the silver fine particles is improved by the decrease in the electrolyte concentration as well in the silver film-forming coating solution containing an organic solvent. Therefore, in the solvent blending step of adding an organic solvent to the silver fine particle colloid concentrated cleaning dispersion liquid to obtain a silver fine particle colloid dispersion concentrated liquid, for example, a washing step such as adding an ion exchange resin is added to lower the electrolyte concentration. It can also be made.

上記有機溶媒としては、少なくともジメチルスルホキシドを含む有機溶媒を用いることが好ましい。ジメチルスルホキシド(DMSO)は、銀微粒子に作用して、銀膜形成用塗布液中の銀微粒子の安定性を向上させる効果があるからである。また、ジメチルスルホキシドの配合量は、銀微粒子100重量部に対し0.5〜300重量部の範囲が好ましく、2〜50重量部の範囲が更に好ましい。上記ジメチルスルホキシドの配合量が0.5重量部未満ではジメチルスルホキシドの添加効果が認められず、また300重量部を超えても銀微粒子の安定性に更なる向上は見られず、逆に印刷・塗布後の乾燥時間が長くなるだけである。   As the organic solvent, an organic solvent containing at least dimethyl sulfoxide is preferably used. This is because dimethyl sulfoxide (DMSO) acts on the silver fine particles and has an effect of improving the stability of the silver fine particles in the coating solution for forming a silver film. The blending amount of dimethyl sulfoxide is preferably in the range of 0.5 to 300 parts by weight and more preferably in the range of 2 to 50 parts by weight with respect to 100 parts by weight of the silver fine particles. When the amount of the dimethyl sulfoxide is less than 0.5 parts by weight, the effect of adding dimethyl sulfoxide is not observed, and when the amount exceeds 300 parts by weight, no further improvement in the stability of the silver fine particles is observed. It only increases the drying time after application.

ジメチルスルホキシド以外の有機溶媒としては、上記銀微粒子コロイド濃縮洗浄分散液との相溶性、基材に対する溶解性、成膜条件等を考慮して、適宜選定することができる。例えば、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール(DAA)等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル等のグリコール誘導体、ホルムアミド(FA)、N−メチルホルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、N−メチル−2−ピロリドン(NMP)、エチレングリコール、ジエチレングリコール、トルエン、キシレン、テトラヒドロフラン(THF)、クロロホルム、メシチレン、ドデシルベンゼン等のベンゼン誘導体等が挙げられるが、これらに限定されるものではない。   An organic solvent other than dimethyl sulfoxide can be appropriately selected in consideration of compatibility with the above-described silver fine particle colloid concentrated cleaning dispersion, solubility in a substrate, film forming conditions, and the like. For example, alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol (DAA), acetone, methyl ethyl ketone (MEK) Ketone solvents such as methyl propyl ketone, methyl isobutyl ketone (MIBK), cyclohexanone, isophorone, ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS), ethylene glycol isopropyl ether (IPC), propylene glycol methyl ether (PGM), propylene glycol ethyl ether (PE), propylene glycol methyl ether acetate (PGM-AC), propylene glycol ether Ether ether (PE-AC), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, dipropylene Glycol derivatives such as glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide N- methyl-2-pyrrolidone (NMP), ethylene glycol, diethylene glycol, toluene, xylene, tetrahydrofuran (THF), chloroform, mesitylene, but as benzene derivatives such as dodecyl benzene, but is not limited thereto.

上記濃縮・洗浄工程及び溶媒配合工程により得られる銀膜形成用塗布液は、その銀微粒子の濃度を10〜70重量%の範囲とすることが好ましく、15〜60重量%の範囲が更に好ましい。銀微粒子の濃度が10重量%未満では1回の印刷で十分な厚さの膜を得ることが困難であるが、10重量%以上になると十分な厚さの膜を形成することができ、特に15重量%以上とすることで優れた低抵抗の銀導電膜を印刷法で安定して形成することができる。逆に銀微粒子の濃度が70重量%を超えると、銀膜形成用塗布液における銀微粒子の分散安定性が悪化し、凝集しやすくなるため好ましくない。   The silver film forming coating solution obtained by the concentration / washing step and the solvent blending step preferably has a concentration of silver fine particles in the range of 10 to 70% by weight, and more preferably in the range of 15 to 60% by weight. If the concentration of silver fine particles is less than 10% by weight, it is difficult to obtain a film having a sufficient thickness by one printing, but if it is 10% by weight or more, a film having a sufficient thickness can be formed. By setting the content to 15% by weight or more, an excellent low-resistance silver conductive film can be stably formed by a printing method. Conversely, if the concentration of the silver fine particles exceeds 70% by weight, the dispersion stability of the silver fine particles in the coating solution for forming a silver film deteriorates and is likely to aggregate, which is not preferable.

このようにして得られる本発明の銀膜形成用塗布液は、平均粒径20nm以上の銀微粒子が水及び有機溶媒中に分散され、且つこの銀微粒子が印刷法に適用し得る高濃度で含まれ、不純物含有量が少なく、分散安定性に優れている。また、この銀膜形成用塗布液は、分散安定性に優れるだけでなく、膜厚を厚くしても膜焼成時の収縮が抑制され、クラックの発生を防止できる。そのため、例えば厚さが数μmで、且つ優れた導電性を有する銀膜を形成することが可能となる。   The coating solution for forming a silver film of the present invention thus obtained contains silver fine particles having an average particle diameter of 20 nm or more dispersed in water and an organic solvent, and the silver fine particles are contained at a high concentration that can be applied to a printing method. Therefore, the impurity content is low and the dispersion stability is excellent. In addition, this silver film-forming coating solution is not only excellent in dispersion stability, but even when the film thickness is increased, shrinkage during film baking is suppressed, and the occurrence of cracks can be prevented. Therefore, for example, a silver film having a thickness of several μm and excellent conductivity can be formed.

銀膜形成用塗布液中の銀微粒子の平均粒径は、20〜200nmの範囲が好ましく、30nmを超え200nm以下であることが更に好ましい。銀膜形成用塗布液中の銀微粒子の平均粒径が20nm未満では、厚さ数μm以上の銀膜でクラックの発生を抑制できない。逆に、平均粒径が200nmを超えると、銀微粒子が銀膜形成用塗布液中で沈降し易くなり、更には銀膜形成用塗布液の印刷及び乾燥後の加熱処理において銀微粒子同士の焼結が進み難くなるため、低抵抗の導電膜を得ることが難しくなる。また、銀膜形成用塗布液中の銀微粒子は均一性にも優れ、例えば、平均粒径±20nmの銀微粒子が全体の90%以上を占めることが好ましい。   The average particle diameter of the silver fine particles in the coating solution for forming a silver film is preferably in the range of 20 to 200 nm, more preferably more than 30 nm and 200 nm or less. If the average particle diameter of the silver fine particles in the coating solution for forming a silver film is less than 20 nm, the occurrence of cracks cannot be suppressed with a silver film having a thickness of several μm or more. On the other hand, when the average particle diameter exceeds 200 nm, the silver fine particles are likely to settle in the silver film forming coating solution, and further, the silver fine particles are baked in the heat treatment after printing and drying the silver film forming coating solution. Since it becomes difficult to proceed, it is difficult to obtain a conductive film having a low resistance. Moreover, the silver fine particles in the coating solution for forming a silver film are excellent in uniformity. For example, it is preferable that silver fine particles having an average particle diameter of ± 20 nm occupy 90% or more of the whole.

銀膜形成用塗布液による銀膜の形成は、塗布法により簡単に形成することができる。即ち、銀膜形成用塗布液を基材上に塗布した後、通常は60〜250℃又はそれ以上の数百℃の温度で加熱処理し、塗布液の乾燥及び銀微粒子の焼結を行うことにより、銀膜を形成することができる。本発明の銀膜形成用塗布液は、バインダーなどの添加成分を加えなければ60℃程度の加熱処理によっても低抵抗の銀導電膜を得ることが可能であるが、加熱温度は適用する基材の耐熱性を考慮して決めればよいため、特に限定されない。   The silver film can be easily formed by a coating method using the silver film forming coating solution. That is, after coating the coating solution for forming a silver film on the substrate, it is usually heat-treated at a temperature of several hundreds of degrees Celsius of 60 to 250 ° C. or more to dry the coating solution and sinter the silver fine particles. Thus, a silver film can be formed. The coating liquid for forming a silver film of the present invention can obtain a silver conductive film having a low resistance even by a heat treatment at about 60 ° C. unless an additive component such as a binder is added. Since it may be determined in consideration of the heat resistance, there is no particular limitation.

銀膜形成用塗布液を塗布する基材は、用途に応じて適宜選択すればよい。例えば、アクリル(PMMA)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリイミド(PI)等のプラスチックからなるフィルム又は板、あるいはガラス板等を用いることができる。また、銀膜形成用塗布液を基材上に印刷・塗布する方法としては、例えば、スクリーン印刷、グラビア印刷、インクジェット印刷、ワイヤーバーコーティング法、ドクターブレードコーティング法、ロールコーティング法、スピンコーティング法等の各種方式が適用可能である。   What is necessary is just to select the base material which apply | coats the coating liquid for silver film formation suitably according to a use. For example, a film or plate made of plastic such as acrylic (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyimide (PI), or glass plate Can be used. Examples of methods for printing and applying the silver film forming coating solution on the substrate include screen printing, gravure printing, ink jet printing, wire bar coating method, doctor blade coating method, roll coating method, spin coating method, etc. The various methods are applicable.

以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、本文中の「%」は「重量%」を示し、「部」は「重量部」を示している。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. Further, “%” in the text indicates “% by weight”, and “part” indicates “part by weight”.

[実施例1]
23.1%硫酸鉄(FeSO・7HO)水溶液208gと37.5%クエン酸ナトリウム(C(OH)(COONa)・2HO)水溶液256gの混合液に、9.1%硝酸銀(AgNO)水溶液176gを混合・反応させ、銀微粒子凝集体を含む反応液を得た。尚、硫酸鉄水溶液とクエン酸ナトリウム水溶液の混合液及び硝酸銀水溶液の液温は、それぞれ20℃と10℃に設定した。
[Example 1]
To a mixture of 208 g of an aqueous solution of 23.1% iron sulfate (FeSO 4 · 7H 2 O) and 256 g of an aqueous solution of 37.5% sodium citrate (C 3 H 4 (OH) (COONa) 3 · 2H 2 O), 9. 176 g of 1% silver nitrate (AgNO 3 ) aqueous solution was mixed and reacted to obtain a reaction solution containing silver fine particle aggregates. The liquid temperature of the iron sulfate aqueous solution and sodium citrate aqueous solution and the silver nitrate aqueous solution were set to 20 ° C. and 10 ° C., respectively.

得られた反応液を容器に入れたまま、5℃の冷蔵庫中に6ヶ月間放置した。この熟成工程を経た反応液から銀微粒子凝集体を遠心分離機で濾過し、銀微粒子凝集体のケーキを得た。このケーキに純水を加えて洗い出しを行い、銀微粒子コロイド分散液(Ag:0.94%)1050gを得た。   The obtained reaction solution was left in a container and left in a refrigerator at 5 ° C. for 6 months. Silver fine particle aggregates were filtered from the reaction solution that had undergone the ripening step with a centrifugal separator to obtain a cake of silver fine particle aggregates. Pure water was added to the cake and washed out to obtain 1050 g of a silver fine particle colloid dispersion (Ag: 0.94%).

得られた銀微粒子コロイド分散液中の銀微粒子は、その平均粒径が60nmであり、粒径40〜80nmの粒状の銀微粒子が全体の90%以上を占める均一な粒度分布のものであった。尚、銀微粒子の粒径測定は、銀微粒子コロイド分散液の透過電子顕微鏡(TEM)観察によって行った。   The silver fine particles in the obtained silver fine particle colloidal dispersion had an average particle size of 60 nm and a uniform particle size distribution in which the granular silver fine particles having a particle size of 40 to 80 nm account for 90% or more of the total. . The particle size of the silver fine particles was measured by observing the silver fine particle colloid dispersion with a transmission electron microscope (TEM).

[実施例2]
上記実施例1と同様にして、銀微粒子凝集体を含む反応液を得た。得られた反応液を容器に入れたまま、65℃のインキュベータ中に16時間放置した。この熟成工程を経た反応液から銀微粒子凝集体を遠心分離機で濾過し、得られた銀微粒子凝集体のケーキに純水を加えて洗い出しを行い、銀微粒子コロイド分散液(Ag:0.96%)1050gを得た。
[Example 2]
In the same manner as in Example 1, a reaction solution containing silver fine particle aggregates was obtained. The obtained reaction liquid was left in a container in a 65 ° C. incubator for 16 hours. The silver fine particle aggregate is filtered from the reaction solution that has undergone the ripening step with a centrifuge, and the resulting silver fine particle aggregate cake is washed out by adding pure water to a silver fine particle colloidal dispersion (Ag: 0.96). %) 1050 g was obtained.

得られた銀微粒子コロイド分散液中の銀微粒子は、その平均粒径が50nmであり、粒径35〜65nmの粒状の銀微粒子が全体の90%以上を占める均一な粒度分布のものであった。   The silver fine particles in the obtained silver fine particle colloidal dispersion had an average particle size of 50 nm, and a uniform particle size distribution in which granular silver fine particles having a particle size of 35 to 65 nm accounted for 90% or more of the total. .

[実施例3]
上記実施例2で得られた銀微粒子コロイド分散液(Ag:0.96%)を、限外濾過により濃縮・洗浄することによって、銀微粒子コロイド濃縮洗浄分散液(Ag:65%、残部:水)を得た。この銀微粒子コロイド濃縮洗浄分散液中の溶媒である水の電気伝導度は、限外濾過の濾液を測定して得た値で、200μS/cmであった。
[Example 3]
By concentrating and washing the silver fine particle colloid dispersion (Ag: 0.96%) obtained in Example 2 above by ultrafiltration, the silver fine particle colloid concentrated washing dispersion (Ag: 65%, balance: water) ) The electric conductivity of water as a solvent in the silver fine particle colloid concentrated cleaning dispersion was 200 μS / cm as a value obtained by measuring the filtrate of ultrafiltration.

上記銀微粒子コロイド濃縮洗浄分散液に、有機溶媒としてジメチルスルホキシド(DMSO)、1−ブタノール(NBA)、ジアセトンアルコール(DAA)、及びエタノール(EA)を加え、銀膜形成用塗布液(Ag:40%、DMSO:2.5%、HO:21.5%、EA:21.0%、NBA:5%、DAA:10%)を得た。得られた銀膜形成用塗布液中の銀微粒子は、その平均粒径が50nmであり、粒径35〜65nmの粒状の銀微粒子が全体の90%以上を占める均一な粒度分布のものであった。また、銀膜形成用塗布液の粘度は5mPa・sであった。 Dimethyl sulfoxide (DMSO), 1-butanol (NBA), diacetone alcohol (DAA), and ethanol (EA) are added as an organic solvent to the silver fine particle colloid concentrated cleaning dispersion, and a silver film forming coating solution (Ag: 40%, DMSO: 2.5%, H 2 O: 21.5%, EA: 21.0%, NBA: 5%, DAA: 10%). The silver fine particles in the obtained coating solution for forming a silver film have an average particle size of 50 nm and a uniform particle size distribution in which the granular silver fine particles having a particle size of 35 to 65 nm account for 90% or more of the whole. It was. The viscosity of the silver film forming coating solution was 5 mPa · s.

次に、上記銀膜形成用塗布液を、基材であるPETフィルム(帝人(株)製、テトロン HLEW、厚さ:100μm、プライマー処理品)上に、線径1.0mmのワイヤーバーで塗布した後、大気中にて70℃×3分間−130℃×60分間の加熱処理を施すことにより銀導電膜を得た。   Next, the above-mentioned coating solution for forming a silver film is applied to a PET film (Teijin Limited, Tetron HLEW, thickness: 100 μm, primer-treated product) as a base material with a wire bar having a wire diameter of 1.0 mm. After that, a silver conductive film was obtained by performing a heat treatment at 70 ° C. for 3 minutes to 130 ° C. for 60 minutes in the air.

得られた銀導電膜は、膜厚が3.0μmであり、表面抵抗値は0.08Ω/□(比抵抗値に換算すると24.0μΩ・cm)であった。また、走査電子顕微鏡観察の結果、銀導電膜にはクラック(亀裂)が生じていないことが確認された。銀導電膜と基材フィルムの密着力は、クロスカットセロテープ剥離試験法(JIS
K 5400)で評価したところ、100/100(剥離なし)と良好であった。
The obtained silver conductive film had a film thickness of 3.0 μm and a surface resistance value of 0.08 Ω / □ (24.0 μΩ · cm in terms of a specific resistance value). In addition, as a result of observation with a scanning electron microscope, it was confirmed that no cracks occurred in the silver conductive film. The adhesion between the silver conductive film and the substrate film is determined by the cross-cut cello tape peel test method (JIS
K 5400), it was 100/100 (no peeling) and was good.

尚、銀微粒子コロイド分散濃縮液の粘度は、山一電機(株)製の振動式粘度計VM−100−Lを用いて測定した。また、銀導電膜の表面抵抗は、三菱化学(株)製の表面抵抗計ロレスタAP(MCP−T400)を用いて測定した。銀導電膜の膜厚は、膜断面の透過電子顕微鏡(TEM)観察によって行った。   The viscosity of the silver fine particle colloid dispersion concentrate was measured using a vibration viscometer VM-100-L manufactured by Yamaichi Electronics Co., Ltd. The surface resistance of the silver conductive film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation. The film thickness of the silver conductive film was measured by transmission electron microscope (TEM) observation of the film cross section.

[実施例4]
上記実施例3の銀膜形成用塗布液を用い、同様に基材に塗布した後、大気中にて80℃×180分間の加熱処理を施した以外は実施例3と同様にして、銀導電膜を形成した。この銀導電膜の膜厚は3.0μmであり、表面抵抗値は0.09Ω/□(比抵抗値に換算すると27μΩ・cm)であった。
[Example 4]
In the same manner as in Example 3 except that the silver film-forming coating solution of Example 3 was applied to the substrate in the same manner and then heat-treated at 80 ° C. for 180 minutes in the air. A film was formed. The film thickness of this silver conductive film was 3.0 μm, and the surface resistance value was 0.09 Ω / □ (27 μΩ · cm in terms of specific resistance value).

尚、走査電子顕微鏡(TEM)観察の結果、銀導電膜にはクラック(亀裂)が生じていないことが確認された。また、銀導電膜と基材フィルムの密着力は、クロスカットセロテープ剥離試験法(JIS
K 5400)で評価したところ、100/100(剥離なし)と良好であった。
As a result of observation with a scanning electron microscope (TEM), it was confirmed that no cracks occurred in the silver conductive film. In addition, the adhesion between the silver conductive film and the substrate film is determined by the cross-cut cello tape peeling test method (JIS
K 5400), it was 100/100 (no peeling) and was good.

[実施例5]
上記実施例3の銀膜形成用塗布液を用い、ポリイミドフィルム(宇部興産(株)製、ユーピレックスS、厚さ:50μm)の光沢面上に、線径1.0mmのワイヤーバーで塗布し、大気中にて70℃×3分間−220℃×60分間の加熱処理を施した以外は実施例3と同様にして、銀導電膜を形成した。
[Example 5]
Using the silver film-forming coating solution of Example 3 above, a polyimide film (Ube Industries, Ltd., Upilex S, thickness: 50 μm) was coated with a wire bar with a wire diameter of 1.0 mm, A silver conductive film was formed in the same manner as in Example 3 except that heat treatment was performed at 70 ° C. for 3 minutes to −220 ° C. for 60 minutes in the air.

この銀導電膜は、膜厚が3.2μmであり、表面抵抗値は0.04Ω/□(比抵抗値に換算すると12.8μΩ・cm)であった。尚、TEM観察の結果、銀導電膜にはクラック(亀裂)が生じていないことが確認された。また、銀導電膜と基材フィルムの密着力は、クロスカットセロテープ剥離試験法(JIS
K 5400)で評価したところ、100/100(剥離なし)と良好であった。
This silver conductive film had a film thickness of 3.2 μm and a surface resistance value of 0.04 Ω / □ (12.8 μΩ · cm when converted to a specific resistance value). As a result of TEM observation, it was confirmed that no cracks occurred in the silver conductive film. In addition, the adhesion between the silver conductive film and the substrate film is determined by the cross-cut cello tape peeling test method (JIS
K 5400), it was 100/100 (no peeling) and was good.

[実施例6]
上記実施例3の銀膜形成用塗布液を用い、ポリイミドフィルム(東レデュポン(株)製、カプトンH、厚さ:25μm)の光沢面上に、線径1.0mmのワイヤーバーで塗布し、大気中にて70℃×3分間−220℃×60分間の加熱処理を施した以外は実施例3と同様にして、銀導電膜を形成した。
[Example 6]
Using the coating solution for forming a silver film of Example 3 above, coated with a wire bar with a wire diameter of 1.0 mm on the glossy surface of a polyimide film (manufactured by Toray DuPont, Kapton H, thickness: 25 μm), A silver conductive film was formed in the same manner as in Example 3 except that heat treatment was performed at 70 ° C. for 3 minutes to −220 ° C. for 60 minutes in the air.

この銀導電膜は、膜厚が3.1μmであり、表面抵抗値は0.04Ω/□(比抵抗値に換算すると12.4μΩ・cm)であった。尚、TEM観察の結果、銀導電膜にはクラック(亀裂)が生じていないことが確認された。また、銀導電膜と基材フィルムの密着力は、クロスカットセロテープ剥離試験法(JIS
K 5400)で評価したところ、100/100(剥離なし)と良好であった。
This silver conductive film had a film thickness of 3.1 μm and a surface resistance value of 0.04 Ω / □ (12.4 μΩ · cm when converted to a specific resistance value). As a result of TEM observation, it was confirmed that no cracks occurred in the silver conductive film. In addition, the adhesion between the silver conductive film and the substrate film is determined by the cross-cut cello tape peeling test method (JIS
K 5400), it was 100/100 (no peeling) and was good.

[比較例1]
23.1%硫酸鉄(FeSO・7HO)水溶液208gと37.5%クエン酸ナトリウム(C(OH)(COONa)・2HO)水溶液256gの混合液に、9.1%硝酸銀(AgNO)水溶液176gを混合・反応させ、銀微粒子凝集体を含む反応液を得た。尚、硫酸鉄水溶液とクエン酸ナトリウム水溶液の混合液及び硝酸銀水溶液の液温は、それぞれ20℃と10℃に設定した。
[Comparative Example 1]
To a mixture of 208 g of an aqueous solution of 23.1% iron sulfate (FeSO 4 · 7H 2 O) and 256 g of an aqueous solution of 37.5% sodium citrate (C 3 H 4 (OH) (COONa) 3 · 2H 2 O), 9. 176 g of 1% silver nitrate (AgNO 3 ) aqueous solution was mixed and reacted to obtain a reaction solution containing silver fine particle aggregates. The liquid temperature of the iron sulfate aqueous solution and sodium citrate aqueous solution and the silver nitrate aqueous solution were set to 20 ° C. and 10 ° C., respectively.

得られた反応液は、放置による熟成工程を経ることなく、銀微粒子凝集体を遠心分離機で濾過し、銀微粒子凝集体のケーキを得た。その後、このケーキに純水を加えて洗い出しを行い、銀微粒子コロイド分散液(Ag:0.75%)1050gを得た。この銀微粒子コロイド分散液中の銀微粒子は、粒径2〜10nmの粒状の銀微粒子からなり、その平均粒径は7nmであった。   The resulting reaction solution was filtered through a centrifuge to obtain a cake of silver fine particle aggregates without going through an aging step by standing. Thereafter, pure water was added to the cake for washing, and 1050 g of a silver fine particle colloid dispersion (Ag: 0.75%) was obtained. The silver fine particles in this silver fine particle colloidal dispersion consisted of granular silver fine particles having a particle diameter of 2 to 10 nm, and the average particle diameter was 7 nm.

[比較例2]
上記比較例1で得た銀微粒子コロイド分散液を、25℃のインキュベータに入れて2ヶ月間放置した。その後、銀微粒子コロイド分散液を透過電子顕微鏡観察すると、粒径2〜10nm程度の粒状の銀微粒子に混じって、粒径20〜150nmの三角又は六角の板状の粗大銀微粒子が生じていた。
[Comparative Example 2]
The silver fine particle colloidal dispersion obtained in Comparative Example 1 was placed in an incubator at 25 ° C. and left for 2 months. Thereafter, when the colloidal dispersion of silver fine particles was observed with a transmission electron microscope, triangular or hexagonal plate-like coarse silver fine particles having a particle diameter of 20 to 150 nm were produced by being mixed with granular silver fine particles having a particle diameter of about 2 to 10 nm.

[比較例3]
上記比較例1で得た銀微粒子コロイド分散液(Ag:0.75%)を、限外濾過により濃縮・洗浄することによって、銀微粒子コロイド濃縮洗浄分散液(Ag:40%、残部:水)を得た。この銀微粒子コロイド濃縮洗浄分散液中の溶媒である水の電気伝導度は、限外濾過の濾液を測定して得た値で、190μS/cmであった。
[Comparative Example 3]
By concentrating and washing the silver fine particle colloid dispersion liquid (Ag: 0.75%) obtained in Comparative Example 1 above by ultrafiltration, the silver fine particle colloid concentrated washing dispersion liquid (Ag: 40%, balance: water) Got. The electric conductivity of water as a solvent in the silver fine particle colloid concentrated cleaning dispersion was 190 μS / cm as a value obtained by measuring the filtrate of ultrafiltration.

上記銀微粒子コロイド濃縮洗浄分散液に、ジメチルスルホキシド(DMSO)、1−ブタノール(NBA)、ジアセトンアルコール(DAA)、及びエタノール(EA)を加え、銀膜形成用塗布液(Ag:10%、DMSO:2.5%、HO:15%、EA:48.5%、NBA:8%、DAA:16%)を得た。得られた銀膜形成用塗布液中の銀微粒子は、粒径2〜10nmの粒状の銀微粒子からなり、その平均粒径は7nmであった。また、銀膜形成用塗布液の粘度は、4mPa・sであった。 To the silver fine particle colloid concentrated washing dispersion liquid, dimethyl sulfoxide (DMSO), 1-butanol (NBA), diacetone alcohol (DAA), and ethanol (EA) are added, and a silver film forming coating liquid (Ag: 10%, DMSO: 2.5%, H 2 O: 15%, EA: 48.5%, NBA: 8%, DAA: 16%). The silver fine particles in the obtained coating solution for forming a silver film were composed of granular silver fine particles having a particle diameter of 2 to 10 nm, and the average particle diameter was 7 nm. Moreover, the viscosity of the coating solution for forming a silver film was 4 mPa · s.

次に、上記銀膜形成用塗布液を、上記実施例3と同様に、PETフィルム(厚さ:100μm、プライマー処理品)上に、線径1.0mmのワイヤーバーで塗布し、大気中にて70℃×3分間−130℃×60分間の加熱処理を施すことにより、銀導電膜を形成した。   Next, in the same manner as in Example 3 above, the silver film forming coating solution was applied onto a PET film (thickness: 100 μm, primer-treated product) with a wire bar having a wire diameter of 1.0 mm, and then into the atmosphere. A silver conductive film was formed by performing a heat treatment at 70 ° C. × 3 minutes to −130 ° C. × 60 minutes.

この銀導電膜は、膜厚は0.8μmであったが、銀導電膜の全面にクラック(亀裂)が生じていることが目視で観察され、表面抵抗値は1×10Ω/□以上であった。また、銀導電膜と基材フィルムの密着力は、クロスカットセロテープ剥離試験法(JIS
K 5400)で評価したところ、0/100であり全て剥離した。
This silver conductive film had a thickness of 0.8 μm, but it was visually observed that cracks occurred on the entire surface of the silver conductive film, and the surface resistance value was 1 × 10 6 Ω / □ or more. Met. In addition, the adhesion between the silver conductive film and the substrate film is determined by the cross-cut cello tape peeling test method (JIS
K 5400), it was 0/100 and all peeled off.

上記実施例1〜2と比較例1の結果から、Carey−Lea法を用いた従来方法による比較例1では銀微粒子の平均粒径が7nmであるのに対し、本発明方法の各実施例では平均粒径が30nmを超える粒状の銀微粒子が分散した銀微粒子コロイド分散液が極めて簡単に得られることが分る。また、比較例2では、反応液を放置・熟成せず、コロイド分散液としてから放置・熟成したため、通常の粒径2〜10nm程度の粒状銀微粒子に混じって、オストワルド成長した粒径20〜150の三角又は六角の板状をなす粗大な銀微粒子が生じている。   From the results of Examples 1 and 2 and Comparative Example 1, in Comparative Example 1 by the conventional method using the Carey-Lea method, the average particle diameter of the silver fine particles is 7 nm, whereas in each Example of the method of the present invention, It can be seen that a silver fine particle colloidal dispersion in which granular silver fine particles having an average particle diameter exceeding 30 nm are dispersed can be obtained very easily. Further, in Comparative Example 2, the reaction solution was not allowed to stand and ripen, but was left to stand and ripened as a colloidal dispersion. Coarse silver particles having a triangular or hexagonal plate shape are generated.

また、上記の実施例3〜6と比較例3の結果から、従来方法による平均粒径が7nmの銀微粒子からなる銀膜形成用塗布液を用いた比較例3の銀導電膜では、膜厚が0.8μmと薄くても膜全面にクラック(亀裂)が生じたのに対し、本発明による各実施例では平均粒径が30nmを超える粒状の銀微粒子が分散した銀膜形成用塗布液を用いているため、膜厚が3.0〜3.2μmと厚くなっても膜にクラック(亀裂)が生じず、導電性の優れた銀導電膜が得られることが分る。   Further, from the results of Examples 3 to 6 and Comparative Example 3 above, in the silver conductive film of Comparative Example 3 using the silver film forming coating solution composed of silver fine particles having an average particle diameter of 7 nm according to the conventional method, the film thickness Even though the thickness of the film was as small as 0.8 μm, cracks were generated on the entire surface of the film, whereas in each example according to the present invention, a coating solution for forming a silver film in which granular silver fine particles having an average particle diameter exceeding 30 nm were dispersed was used. Therefore, it can be seen that even when the film thickness is as thick as 3.0 to 3.2 μm, no crack occurs in the film, and a silver conductive film having excellent conductivity can be obtained.

また、上記実施例4の結果から、本発明の銀膜形成用塗布液の場合、塗布後の加熱処理温度が80℃と低くても、表面抵抗値が0.09Ω/□という優れた導電性の銀導電膜が得られることが分る。


Further, from the results of Example 4 above, in the case of the coating solution for forming a silver film of the present invention, even when the heat treatment temperature after coating is as low as 80 ° C., the surface resistance is 0.09Ω / □. It can be seen that a silver conductive film is obtained.


Claims (6)

硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液に硝酸銀水溶液を反応させて、クエン酸イオンで保護された粒径2〜15nmの銀微粒子の凝集体を鉄イオンやナトリウムイオンを含む反応液中に生成させる反応工程と、得られたクエン酸イオンで保護された銀微粒子の凝集体を含む前記反応液を該銀微粒子が凝集した状態のまま40〜100℃の温度で放置して、平均粒径が20〜200nmで粒状に粒成長し且つクエン酸イオンで保護された銀微粒子の凝集体を得る熟成工程と、該銀微粒子の凝集体を濾過して粒状に粒成長し且つクエン酸イオンで保護された銀微粒子凝集体のケーキを得る濾過工程と、該ケーキに純水を加えて粒状に粒成長し且つクエン酸イオンで保護された銀微粒子のコロイド分散液を得る分散工程とを備えることを特徴とする銀微粒子コロイド分散液の製造方法。 A mixture of an aqueous iron (II) sulfate solution and an aqueous sodium citrate solution is reacted with an aqueous silver nitrate solution, and an aggregate of silver fine particles having a particle diameter of 2 to 15 nm protected with citrate ions is reacted with iron ions and sodium ions. a reaction step of producing during the silver particles the reaction solution containing aggregates of fine silver particles protected with the resulting citrate ion is allowed to stand at a temperature of still 40 to 100 ° C. in an aggregated state, the average a ripening step of particle size obtained aggregates of fine silver particles protected with grain growth and citrate ions granulated with 20 to 200 nm, and grain growth granulated filtration aggregates of silver particles and citrate ions provided in a filtration step to obtain a cake of protected agglomerate of fine silver particles and a dispersion step of obtaining a colloidal dispersion of a protective silver particles with a grain growth and citrate ions granulated by adding pure water to the cake Method for producing a fine silver particle colloidal dispersion, characterized in that. 請求項1に記載の反応工程、熟成工程、濾過工程及び分散工程により銀微粒子のコロイド分散液を製造し、得られた銀微粒子のコロイド分散液を濃縮・洗浄して銀微粒子コロイド濃縮洗浄分散液を得る濃縮・洗浄工程と、この銀微粒子コロイド濃縮洗浄分散液に有機溶媒を加える溶媒配合工程とを備えることを特徴とする銀膜形成用塗布液の製造方法 A colloidal dispersion of silver fine particles is produced by the reaction step, the ripening step, the filtration step and the dispersion step according to claim 1, and the resulting silver fine particle colloidal dispersion is concentrated and washed to obtain a silver fine particle colloid concentrated washing dispersion. And a solvent blending step of adding an organic solvent to the silver fine particle colloid concentrated cleaning dispersion . 前記有機溶媒が少なくともジメチルスルホキシドを含むことを特徴とする、請求項2に記載の銀膜形成用塗布液の製造方法 The method for producing a coating solution for forming a silver film according to claim 2, wherein the organic solvent contains at least dimethyl sulfoxide . 前記濃縮・洗浄工程において、銀微粒子コロイド濃縮洗浄分散液から銀微粒子を除去した溶媒部分の電気伝導度を500μS/cm以下とすることを特徴とする、請求項2又は3に記載の銀膜形成用塗布液の製造方法 4. The silver film formation according to claim 2, wherein in the concentration and washing step, the electric conductivity of the solvent part from which the silver fine particles are removed from the silver fine particle colloid concentrated washing dispersion liquid is 500 μS / cm or less. 5. Method for producing a coating liquid for use . 前記銀膜形成用塗布液中の銀微粒子の濃度が10〜70重量%であることを特徴とする、請求項2〜4のいずれかに記載の銀膜形成用塗布液の製造方法 The method for producing a coating solution for forming a silver film according to any one of claims 2 to 4, wherein the concentration of silver fine particles in the coating solution for forming a silver film is 10 to 70% by weight . 前記銀膜形成用塗布液中の銀微粒子の平均粒径が20〜200nmであることを特徴とする、請求項2〜5のいずれかに記載の銀膜形成用塗布液の製造方法 The method for producing a coating liquid for forming a silver film according to any one of claims 2 to 5, wherein an average particle diameter of silver fine particles in the coating liquid for forming a silver film is 20 to 200 nm .
JP2004332648A 2004-06-14 2004-11-17 Silver fine particle colloidal dispersion, silver film-forming coating liquid and method for producing the same, and silver film Expired - Fee Related JP4919595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332648A JP4919595B2 (en) 2004-06-14 2004-11-17 Silver fine particle colloidal dispersion, silver film-forming coating liquid and method for producing the same, and silver film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004174891 2004-06-14
JP2004174891 2004-06-14
JP2004332648A JP4919595B2 (en) 2004-06-14 2004-11-17 Silver fine particle colloidal dispersion, silver film-forming coating liquid and method for producing the same, and silver film

Publications (2)

Publication Number Publication Date
JP2006028637A JP2006028637A (en) 2006-02-02
JP4919595B2 true JP4919595B2 (en) 2012-04-18

Family

ID=35895338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332648A Expired - Fee Related JP4919595B2 (en) 2004-06-14 2004-11-17 Silver fine particle colloidal dispersion, silver film-forming coating liquid and method for producing the same, and silver film

Country Status (1)

Country Link
JP (1) JP4919595B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033113A (en) * 2007-06-22 2009-02-12 Mitsubishi Materials Corp Electromagnetic wave shielding composition and method of forming electromagnetic wave shield using the composition
JP2009067849A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Antimicrobial coated film, cooking vessel having the same and antimicrobial coating agent
WO2010001496A1 (en) 2008-06-30 2010-01-07 Dowa エレクトロニクス 株式会社 Metal microparticle containing composition and process for production of the same
JP5399100B2 (en) * 2009-03-04 2014-01-29 三ツ星ベルト株式会社 Metal colloidal particle aggregate and method for producing the same
EP2896476B1 (en) 2012-09-12 2019-05-01 M. Technique Co., Ltd. Method for manufacturing metal microparticles
JP6816982B2 (en) * 2016-06-24 2021-01-20 トッパン・フォームズ株式会社 Silver ink composition
JP6816981B2 (en) * 2016-06-24 2021-01-20 トッパン・フォームズ株式会社 Treatment method of silver ink composition
JP6816980B2 (en) * 2016-06-24 2021-01-20 トッパン・フォームズ株式会社 Silver ink composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130407A (en) * 1984-11-30 1986-06-18 Ube Ind Ltd Production of metallic magnetic powder
JP3429958B2 (en) * 1996-08-28 2003-07-28 三井金属鉱業株式会社 Method for producing silver colloid liquid
JPH10265812A (en) * 1997-03-24 1998-10-06 Sumitomo Metal Mining Co Ltd Production of superfine silver particle
JPH10317022A (en) * 1997-05-22 1998-12-02 Daiken Kagaku Kogyo Kk Production of metallic particulate powder
JPH11323410A (en) * 1998-05-14 1999-11-26 Fujitsu Ltd Formation of chromium fine grain, production of photomask and method for modifying photomask
JP4679716B2 (en) * 2000-12-08 2011-04-27 日揮触媒化成株式会社 Method for producing metal colloid solution

Also Published As

Publication number Publication date
JP2006028637A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US8524786B2 (en) Process for producing fine silver particle colloidal dispersion, fine silver particle colloidal dispersion, and conductive silver film
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
US7922938B2 (en) Fine silver particle colloidal dispersion, coating liquid for silver film formation, processes for producing these, and silver film
JP6005852B2 (en) Metallic nanoparticle dispersion system
US7445731B2 (en) Metallic colloidal solution and inkjet-use metallic ink
TWI530963B (en) Sheet-like silver microparticles and methods for producing the same, and a paste using the same and a paste
EP3016763B1 (en) A metallic nanoparticle dispersion
KR101777342B1 (en) A method to prepare a metallic nanoparticle dispersion
US20110155968A1 (en) Fine metal particle-containing composition and method for manufacturing the same
JP4919595B2 (en) Silver fine particle colloidal dispersion, silver film-forming coating liquid and method for producing the same, and silver film
JP2009030111A (en) Silver fine particle colloid-dispersed liquid, and silver film
EP2684917A1 (en) Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
CN108610743A (en) A kind of conductive ink composition and preparation method thereof
JP6598934B2 (en) Photosintering composition and method for forming conductive film using the same
JP2004183060A (en) Polyaniline-based resin coated copper powder, its manufacturing method, and conductive paste obtained by using the powder
CZ307129B6 (en) A method of preparing a bimodal mixture of nanoparticles and copper microparticles with a polymeric protective layer
JP5239700B2 (en) Coating film forming method using metal fine particle dispersion and coating film using the same
WO2021099486A1 (en) A method to form copper nanoparticles
JP2013079448A (en) Silver-covered copper fine particle, dispersed liquid thereof and method for producing the same
TW201209107A (en) Low-temperature sinterable silver nanoparticle composition and electronic article formed by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100726

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees