JP4919463B2 - Silica glass for laser media - Google Patents

Silica glass for laser media Download PDF

Info

Publication number
JP4919463B2
JP4919463B2 JP2006053583A JP2006053583A JP4919463B2 JP 4919463 B2 JP4919463 B2 JP 4919463B2 JP 2006053583 A JP2006053583 A JP 2006053583A JP 2006053583 A JP2006053583 A JP 2006053583A JP 4919463 B2 JP4919463 B2 JP 4919463B2
Authority
JP
Japan
Prior art keywords
laser
glass
concentration
rare earth
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006053583A
Other languages
Japanese (ja)
Other versions
JP2007230815A (en
Inventor
哲司 上田
道成 大内
裕幸 西村
朗 藤ノ木
靖 藤本
正大 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2006053583A priority Critical patent/JP4919463B2/en
Publication of JP2007230815A publication Critical patent/JP2007230815A/en
Application granted granted Critical
Publication of JP4919463B2 publication Critical patent/JP4919463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)
  • Lasers (AREA)

Description

本発明は、希土類金属元素及びアルミニウムを含有し、レーザー増幅、レーザー発振を目的としたレーザー媒質用シリカガラス並びにそれを用いたレーザー装置に関する。   The present invention relates to a silica glass for a laser medium containing a rare earth metal element and aluminum and intended for laser amplification and laser oscillation, and a laser apparatus using the same.

近年、ガラス、セラミックス、単結晶などに機能性元素を含有させ、波長変換、レーザー増幅、レーザー発振、ホールバーンニングなどの光学特性を付与した様々な機能性材料が開発されている。これらの材料の中でシリカガラスは、近赤外から紫外域までの光透過性が高く、熱衝撃に強く、化学的にも安定しており、大型化も比較的容易であることから、ホスト材として注目されている。   In recent years, various functional materials have been developed in which functional elements are contained in glass, ceramics, single crystals, etc., and optical properties such as wavelength conversion, laser amplification, laser oscillation, and hole burning are imparted. Among these materials, silica glass has high light transmission from the near infrared to the ultraviolet region, is resistant to thermal shock, is chemically stable, and is relatively easy to increase in size. It is attracting attention as a material.

シリカガラスをホスト材とした機能性材料の1つとして、希土類金属元素などを含有したレーザー媒質用シリカガラスが提案されている。今日用いられているレーザー媒質ガラスは、希土類金属元素をリン酸系ガラスに含有させた物であるが、リン酸系ガラスは熱衝撃定数が0.43W/cmと小さいため、繰り返し発振を行うとその熱衝撃に耐えられずに破損する、という欠点がある。シリカガラスは熱衝撃定数が14.5W/cmとリン酸系ガラスと比べて2桁高いため、希土類金属元素をドープしたシリカガラスは高繰り返し発振可能なレーザーガラス材料として注目、研究されてきた。   As one of functional materials using silica glass as a host material, a silica glass for a laser medium containing a rare earth metal element has been proposed. The laser medium glass used today is a material in which a rare earth metal element is contained in a phosphate glass, but the phosphate glass has a small thermal shock constant of 0.43 W / cm. There is a drawback in that it can not withstand the thermal shock and breaks. Silica glass has a thermal shock constant of 14.5 W / cm, which is two orders of magnitude higher than phosphoric acid-based glass. Therefore, silica glass doped with rare earth metal elements has been attracting attention and researched as a laser glass material capable of high repetition oscillation.

しかし、シリカガラスに希土類金属元素のみを高濃度にドープしようとすると、希土類金属元素同士が会合を起こして濃度消光をおこすことが多く、そのため高濃度のドープができないという問題が知られている。濃度消光とは、ドープされる希土類金属元素間の距離が短いことに起因して発光効率が落ちる現象であり、これによりレーザーの発振効率が著しく悪くなる。   However, when doping silica glass with only a rare earth metal element at a high concentration, the rare earth metal elements often associate with each other to cause concentration quenching, so that there is a problem that high concentration doping cannot be performed. Concentration quenching is a phenomenon in which the light emission efficiency is lowered due to the short distance between the doped rare earth metal elements, which significantly deteriorates the laser oscillation efficiency.

濃度消光を抑えた希土類金属元素ドープシリカガラスとしては、希土類金属元素と共にAl23やP25を共ドープしたガラスが公知とされている(特許文献1)。また、希土類金属元素の会合をより抑えた機能性シリカガラスとして、希土類金属元素が安定に固定したゼオライトとシリカ原料とを焼結してなるシリカガラスが提案されている(特許文献2)。 As rare earth metal element-doped silica glass in which concentration quenching is suppressed, glass co-doped with Al 2 O 3 and P 2 O 5 together with rare earth metal elements is known (Patent Document 1). Further, as a functional silica glass in which the association of rare earth metal elements is further suppressed, a silica glass obtained by sintering a zeolite in which a rare earth metal element is stably fixed and a silica raw material has been proposed (Patent Document 2).

また、特許文献3では、主成分のSiO2と、原子番号3〜6、11〜13、19〜32、37〜51、55〜84及び87〜108の各金属元素の少なくとも一種類の金属酸化物を上記主成分SiO2に対しモル比で0.01〜30%添加した活性物質としての添加物質と、Al23又はP25のいずれか一方又は両方を上記活性物質に対しモル比で0〜30倍添加した補助添加物質の添加物質とを含有するレーザーガラスである、CGS単位系の単位体積あたりの少くとも屈折率の変動幅で示される均質性が1×10-5以下であるように添加物質が分布されたガラス体であることを特徴とするドープト石英ガラスが示されている。
特開昭60−11245 特開平9−86952 特開昭64−76933
In Patent Document 3, and SiO 2 of the main component, at least one metal oxide of the respective metal elements of atomic numbers 3~6,11~13,19~32,37~51,55~84 and 87-108 0.01 to 30% and additive material as active substance was added, Al 2 O 3 or any one or mole both with respect to the active substance P 2 O 5 molar ratio objects to the main component SiO 2 It is a laser glass containing a supplementary additive substance added in a ratio of 0 to 30 times, and the homogeneity indicated by at least the fluctuation range of the refractive index per unit volume of the CGS unit system is 1 × 10 −5 or less A doped quartz glass characterized by a glass body in which additive substances are distributed is shown.
JP 60-11245 JP-A-9-86952 JP-A-64-76933

しかし、特許文献1、2記載のガラスでは、ガラス中の泡や微小な屈折率の変動すなわち粒状構造については全く考慮されていない。泡や粒状構造が存在すると、ガラスの内部で光の散乱が起きて光量のロスをもたらす。また、ガラス中の泡は、レンズのような役割を果たして光を集光し、クラックなどのダメージをガラスに与える。このため、特許文献1、2記載のガラスではレーザー増幅、レーザー発振が出来なかったり、できたとしても効率が著しく悪くなった。また、特許文献3は、屈折率という物性値を用いるに際して、粒状構造や泡のないことが必要条件となる、と記載しているが、光損失という視点から粒状構造や泡に注目したものではなく、その評価方法も不十分である。実際に特許文献3記載のドープ石英ガラスは発振効率が低く、不十分なものであった。   However, in the glasses described in Patent Documents 1 and 2, no consideration is given to bubbles in the glass and minute refractive index fluctuations, that is, a granular structure. If bubbles or granular structures are present, light scattering occurs inside the glass, resulting in loss of light. In addition, bubbles in the glass play a role like a lens to collect light and cause damage such as cracks to the glass. For this reason, the glass described in Patent Documents 1 and 2 cannot perform laser amplification and laser oscillation, or even if it can, the efficiency is remarkably deteriorated. In addition, Patent Document 3 describes that, when using a physical property value of refractive index, it is necessary to have no granular structure or bubbles, but from the viewpoint of light loss, attention is paid to granular structures and bubbles. In addition, the evaluation method is insufficient. Actually, the doped quartz glass described in Patent Document 3 has a low oscillation efficiency and is insufficient.

さらに、これらのガラスでは、ガラス中のOH基濃度についての考慮が全くなされていない。レーザー媒質では、励起によって反転分布を形成し、誘導放出により波長、位相、方向のそろった光を放出することでレーザー増幅、レーザー発振をするが、レーザーガラス中にOH基が多いと、励起された電子がOH基の格子振動準位を介して光を放出せずに下準位へと緩和する非輻射遷移が起こり、増幅、発振効率が著しく悪くなる。そのためガラス中のOH基濃度を制御することが、非常に重要である。   Further, in these glasses, no consideration is given to the OH group concentration in the glass. In laser media, an inversion distribution is formed by excitation, and laser amplification and laser oscillation are performed by emitting light with the same wavelength, phase, and direction by stimulated emission. However, when there are many OH groups in the laser glass, the laser medium is excited. The non-radiative transition in which the electrons relax to the lower level without emitting light through the lattice vibration level of the OH group occurs, and the amplification and oscillation efficiency are remarkably deteriorated. Therefore, it is very important to control the OH group concentration in the glass.

本発明者らは、上記した問題に鑑み、高効率で安定なレーザー増幅、レーザー発振を行うのに好適なレーザーガラスの発明に鋭意取り組み、希土類金属元素濃度とアルミニウム濃度を適切な範囲内に収め、可視から赤外領域の吸収波長以外の波長における光損失係数を一定値以下にし、泡が少なく、OH基濃度を一定値以下にすることにより、高効率で安定なレーザー増幅、レーザー発振可能なレーザーガラスが得られることを見出し、本発明を完成させた。   In view of the above-mentioned problems, the present inventors have earnestly worked on the invention of a laser glass suitable for performing high-efficiency and stable laser amplification and laser oscillation so that the rare earth metal element concentration and the aluminum concentration are within appropriate ranges. By making the light loss coefficient at a wavelength other than the absorption wavelength in the visible to infrared region below a certain value, having less bubbles, and keeping the OH group concentration below a certain value, highly efficient and stable laser amplification and laser oscillation are possible. The present inventors have found that laser glass can be obtained and completed the present invention.

本発明の第1の目的は、希土類金属元素およびアルミニウムが適切な濃度でドーピングされ、かつ低散乱低吸収であり、泡が少なく低OH濃度であり、高効率のレーザー発振可能なレーザー媒質用シリカガラスを提供することにある。   A first object of the present invention is a silica for a laser medium which is doped with a rare earth metal element and aluminum at an appropriate concentration, has low scattering and low absorption, has few bubbles and has a low OH concentration, and is capable of laser oscillation with high efficiency. To provide glass.

本発明の第2の目的は、希土類金属元素ドープシリカガラスを用いたレーザー装置を提供することにある。   A second object of the present invention is to provide a laser device using rare earth metal element-doped silica glass.

本発明は、希土類金属元素ドープシリカガラスをコアに用いたファイバーレーザー装置を提供することも可能である。 The present invention can also provide a fiber laser device using a rare earth metal element-doped silica glass as a core .

上記目的を達成するために、本発明のレーザー媒質用シリカガラスは、希土類金属元素とアルミニウムを含有し、かつ希土類金属元素濃度が0.2wt%以上5wt%以下、[アルミニウムモル数]/[希土類金属元素モル数]で表されるアルミニウムと希土類金属元素のモル比が2以上10未満であり、可視から赤外領域の吸収波長以外の波長における光損失係数が0.02cm -1 以下、100cm3あたりの泡の総断面積が0.10mm2以下、OH基濃度が20ppm以下であり、前記希土類金属元素及びアルミニウムが、イオン交換により希土類金属元素が固定されたゼオライトを用いて導入され、かつ前記希土類金属元素がNdであることを特徴とする。 In order to achieve the above object, the silica glass for laser medium of the present invention contains a rare earth metal element and aluminum, the rare earth metal element concentration is 0.2 wt% or more and 5 wt% or less, [number of moles of aluminum] / [rare earth]. The molar ratio of aluminum and the rare earth metal element represented by [number of moles of metal element] is 2 or more and less than 10, and the light loss coefficient at wavelengths other than the absorption wavelength in the visible to infrared region is 0.02 cm −1 or less, 100 cm. the total cross-sectional area of per 3 foam 0.10 mm 2 or less, OH group concentration of Ri der less 20 ppm, the rare earth metal elements and aluminum is introduced using a zeolite with a rare earth metal element is fixed by ion exchange, The rare earth metal element is Nd .

前記希土類金属元素としては、Ndの他にYb、Er、Tm及びHoからなる群から選択される1種を適用することもできる。 As the rare earth metal element, one selected from the group consisting of Yb, Er, Tm and Ho can be applied in addition to Nd .

前記希土類金属元素及びアルミニウムが、イオン交換により希土類金属元素が固定されたゼオライトを用いて導入されるのが好適である。   It is preferable that the rare earth metal element and aluminum are introduced using zeolite in which the rare earth metal element is fixed by ion exchange.

本発明のレーザー装置は、本発明のレーザー媒質用シリカガラスを用いるものである。   The laser apparatus of the present invention uses the silica glass for a laser medium of the present invention.

本ファイバーレーザー装置は、本発明のレーザー媒質用シリカガラスをコアに用いるものである。   This fiber laser apparatus uses the silica glass for a laser medium of the present invention as a core.

本発明のレーザー媒質用シリカガラスによれば、高効率で安定なレーザー増幅、レーザー発振を行うことができるという大きな効果が達成される。   According to the silica glass for a laser medium of the present invention, a great effect that a highly efficient and stable laser amplification and laser oscillation can be performed is achieved.

以下に本発明のレーザー媒質用シリカガラスの実施の形態について説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   Embodiments of the silica glass for laser medium of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention. .

本発明のレーザー媒質用シリカガラスにおいて、ガラス中の希土類金属元素濃度は0.2wt%以上5wt%以下である。希土類金属元素濃度が低すぎるとレーザー増幅、発振効率が非常に悪くなるため、0.2wt%以上であることが必要で、0.5wt%以上であるとより好ましい。また、希土類金属元素濃度が高すぎる場合、加熱溶融した際に失透と呼ばれる結晶化が起こり、透光性を失ってしまう。そのため、希土類金属元素濃度は5wt%以下であることが必要であり、4wt%以下であるとより好ましい。   In the silica glass for laser medium of the present invention, the rare earth metal element concentration in the glass is 0.2 wt% or more and 5 wt% or less. If the rare earth metal element concentration is too low, the laser amplification and oscillation efficiency will be very poor. Therefore, it should be 0.2 wt% or more, and more preferably 0.5 wt% or more. Further, when the rare earth metal element concentration is too high, crystallization called devitrification occurs when heated and melted, and the translucency is lost. Therefore, the rare earth metal element concentration needs to be 5 wt% or less, and more preferably 4 wt% or less.

また、本発明のレーザー媒質用シリカガラスにおいて、Alは希土類金属元素を分散させて濃度消光を防ぐ役割をはたすものであり、必須の要素である。このアルミニウムと希土類金属元素の比は、[アルミニウムのモル数]/[希土類金属元素のモル数]が2以上10未満であることが必要である。Alが希土類金属元素に対して少なすぎると、希土類金属元素のクラスター化を十分に防ぐことができず、濃度消光が起きてレーザー増幅、レーザー発振効率が著しく悪くなるため、Alが希土類金属元素の2倍以上であることが必要であり、3倍以上であるとほぼ完全に濃度消光を防ぐことができるのでより好ましい。また、一方、Alが希土類金属元素に対して多すぎると失透をおこしやすくなるため、Alは希土類金属元素の10倍未満であることが必要であり、8倍未満であるとより好ましい。   Moreover, in the silica glass for laser medium of the present invention, Al plays a role of preventing concentration quenching by dispersing rare earth metal elements and is an essential element. As for the ratio of aluminum to the rare earth metal element, [mole number of aluminum] / [mole number of rare earth metal element] needs to be 2 or more and less than 10. If the Al content is too small relative to the rare earth metal element, clustering of the rare earth metal element cannot be sufficiently prevented, and concentration quenching occurs and laser amplification and laser oscillation efficiency are remarkably deteriorated. It is necessary to be 2 times or more, and 3 times or more is more preferable because concentration quenching can be almost completely prevented. On the other hand, if there is too much Al relative to the rare earth metal element, devitrification is likely to occur. Therefore, Al needs to be less than 10 times that of the rare earth metal element, and more preferably less than 8 times.

また、本発明のレーザー媒質用シリカガラスにおいては、可視から赤外領域の吸収波長以外の波長における光損失係数が0.02cm -1 以下であることが必須である。 In the silica glass for laser medium of the present invention, it is essential that the light loss coefficient at wavelengths other than the visible to infrared absorption wavelength is 0.02 cm −1 or less.

光損失係数は、散乱、吸収によるレーザー媒質内での光のロスを表す。可視から赤外領域の吸収波長以外の波長における光損失係数が0.02cm -1 より大きいと、光のロスが大きすぎて、レーザー発振、レーザー増幅の効率が著しく悪くなる。光損失はレーザー発振効率、レーザー増幅効率に強く影響するため、0.005cm -1 以下であると好ましく、0.001/cm-1以下であるとより好ましい。 The light loss coefficient represents the loss of light in the laser medium due to scattering and absorption. If the light loss coefficient at a wavelength other than the absorption wavelength in the visible to infrared region is larger than 0.02 cm −1 , the loss of light is too large, and the efficiency of laser oscillation and laser amplification is remarkably deteriorated. Since light loss that affects strongly the laser oscillation efficiency, the laser amplification efficiency, preferable to be 0.005 cm -1 or less, and more preferably 0.001 / cm -1 or less.

尚、本明細書における、可視から赤外領域の吸収波長以外の波長とは、波長400nm以上3000nm以下の波長領域においてシリカガラスおよびドープされた金属元素による吸収がない波長のことである。例えば、NdとAlをドープした場合、波長1000nm以上1200nm以下の範囲内の波長のことであり、レーザー増幅、発振波長近傍である1040nm以上1080nm以下で測定すると、増幅、発振性能と直接比較できるため、特に好ましい。 また、YbとAlをドープした場合は1060nm以上1100nm以下、ErとAlをドープした場合は、1530nm以上1580nm以下の範囲で測定する。   In the present specification, the wavelength other than the absorption wavelength in the visible to infrared region refers to a wavelength that is not absorbed by silica glass and a doped metal element in a wavelength region of 400 nm to 3000 nm. For example, when Nd and Al are doped, the wavelength is in the range of 1000 nm to 1200 nm, and when measured at 1040 nm to 1080 nm, which is near the laser amplification and oscillation wavelength, it can be directly compared with the amplification and oscillation performance. Is particularly preferred. When Yb and Al are doped, measurement is performed in the range of 1060 nm to 1100 nm, and when Er and Al are doped, measurement is performed in the range of 1530 nm to 1580 nm.

また、本発明のレーザー媒質用シリカガラスにおいては、100cm3あたりの泡の総断面積が0.10mm2以下であることが必要である。レーザー媒質中に泡があると、その散乱により増幅、発振効率が落ちるためである。また、ガラス中の泡は、レンズのような役割を果たして光を集光し、ガラスにダメージを与えることがある。そのため、ガラス中の泡は100cm3あたりの泡の総断面積が0.10mm2以下であることが必要であり、0.01mm2以下であると望ましい。 In the silica glass for laser medium of the present invention, the total cross-sectional area of bubbles per 100 cm 3 is required to be 0.10 mm 2 or less. This is because if there are bubbles in the laser medium, the amplification and oscillation efficiency decrease due to the scattering. In addition, bubbles in the glass may act as a lens to collect light and damage the glass. Therefore, it bubbles in the glass is necessary that the total cross-sectional area of bubbles per 100 cm 3 is 0.10 mm 2 or less, desirably When it is 0.01 mm 2 or less.

また、本発明のレーザー媒質用シリカガラスにおいては、OH基濃度が20ppm以下であることが必要である。レーザーガラス中のOH基は励起された電子が光を放出せずに緩和する非輻射遷移を引き起こして、発光効率を低下させるため、OH基濃度を低くすることが必要である。高効率なレーザー増幅、レーザー発振をするためにはOH基濃度を20ppm以下にする必要があり、5ppm以下であると発光効率にはほとんど影響を与えずに非常に高効率のレーザー増幅、レーザー発振ができる。   In the silica glass for laser medium of the present invention, the OH group concentration needs to be 20 ppm or less. Since the OH group in the laser glass causes a non-radiative transition in which excited electrons relax without emitting light, thereby reducing the light emission efficiency, it is necessary to lower the OH group concentration. In order to perform high-efficiency laser amplification and laser oscillation, the OH group concentration needs to be 20 ppm or less, and if it is 5 ppm or less, very high-efficiency laser amplification and laser oscillation have almost no effect on the light emission efficiency. Can do.

また、本発明のレーザー媒質用シリカガラスにおいては、ドーピングされる希土類金属元素及びアルミニウムが、イオン交換されたゼオライトとしてドープされたものであると、より好ましい。これは、特許文献2に示されているように、希土類金属元素同士の会合を十分に抑えることができ、より高効率のレーザー媒質用シリカガラスとなるからである。   Moreover, in the silica glass for laser media of the present invention, it is more preferable that the rare earth metal element and aluminum to be doped are doped as ion-exchanged zeolite. This is because, as shown in Patent Document 2, the association of rare earth metal elements can be sufficiently suppressed, and the silica glass for a laser medium becomes more efficient.

また、本発明のレーザー媒質用シリカガラスは、波長632nmにおける屈折率分布が5×10-6以下、複屈折量が10nm/cm以下であると好ましい。屈折率分布や複屈折量はレーザーのビーム品質に影響する。そのため、屈折率分布は5×10-6以下、より好ましくは3×10-6以下であり、複屈折量は10nm/cm以下、より好ましくは5nm/cm以下であると良い。 Further, the silica glass for laser medium of the present invention preferably has a refractive index distribution at a wavelength of 632 nm of 5 × 10 −6 or less and a birefringence of 10 nm / cm or less. The refractive index distribution and the amount of birefringence affect the laser beam quality. Therefore, the refractive index distribution is 5 × 10 −6 or less, more preferably 3 × 10 −6 or less, and the birefringence is 10 nm / cm or less, more preferably 5 nm / cm or less.

また、本発明のレーザー媒質用シリカガラスは、脈理フリーであると好ましい。ガラス中の脈理は、光を屈折させ、これによりレーザーのビーム品質が劣化する。そのため、レーザーの光軸方向から見て脈理がない方が好ましく、3方向脈理フリーであると、より好ましい。   The silica glass for laser medium of the present invention is preferably free of striae. The striae in the glass refract light and thereby degrade the beam quality of the laser. Therefore, it is preferable that there is no striae when viewed from the optical axis direction of the laser, and it is more preferable that the three-way striae is free.

本発明のレーザー装置とは、レーザー増幅装置、レーザー発振装置を包含するものである。図1に示すように、本発明のレーザー増幅装置10は、基本的構造においては従来のレーザー増幅装置と同様であり、フラッシュランプやレーザーダイオードなどの励起用光源12と、レーザー媒質14で構成され、他の装置で発振されたレーザー光の強度を強める装置である。本発明のレーザー増幅装置10の特徴はレーザー媒質14として本発明のレーザー媒質用シリカガラスを用いる点にある。図2に示すように、本発明のレーザー発振装置20は、基本的構造においては従来のレーザー発振装置と同様であり、フラッシュランプやレーザーダイオードなどの励起用光源22と、レーザー媒質24、光反射鏡26および部分反射鏡28で構成され、レーザー光を発振する装置である。本発明のレーザー発振装置20の特徴はレーザー媒質24として本発明のレーザー媒質用シリカガラスを用いる点にある。   The laser device of the present invention includes a laser amplification device and a laser oscillation device. As shown in FIG. 1, the laser amplification device 10 of the present invention is basically the same as a conventional laser amplification device, and includes a pumping light source 12 such as a flash lamp or a laser diode, and a laser medium 14. This is a device for increasing the intensity of laser light oscillated by another device. The feature of the laser amplifying apparatus 10 of the present invention is that the silica glass for laser medium of the present invention is used as the laser medium 14. As shown in FIG. 2, the laser oscillation device 20 of the present invention is basically the same as a conventional laser oscillation device, and includes an excitation light source 22 such as a flash lamp and a laser diode, a laser medium 24, and light reflection. The apparatus includes a mirror 26 and a partial reflection mirror 28, and oscillates laser light. The laser oscillator 20 of the present invention is characterized in that the silica glass for laser medium of the present invention is used as the laser medium 24.

また、本発明のファイバーレーザー装置とは、ファイバーレーザー発振装置、ファイバーレーザー増幅装置及びこれら装置内に用いられるファイバーレーザーを包含するものである。図3に示すように、本発明のファイバーレーザー30は、基本的構造においては従来のファイバーレーザーと同様であり、光ファイバーのコアに相当する部分にレーザー媒質ガラス32を、クラッドに相当する部分にレーザー媒質より屈折率の低いシリカガラス34を用いたもので、ファイバー状のレーザー媒質を示すものである。本発明のファイバーレーザー30の特徴はレーザー媒質ガラス32として本発明のレーザー媒質用シリカガラスを用いる点にある。また、本発明のファイバーレーザー増幅装置40は、基本的構造においては従来のレーザー発振装置と同様であり、図4に示すように、レーザーダイオード42、WDMカプラー44、ファイバーレーザー30、入力側コネクター46及び出力側コネクター48を有している。本発明のファイバーレーザー増幅装置40の特徴はファイバーレーザーとして本発明のファイバーレーザー30を用いる点にある。   The fiber laser device of the present invention includes a fiber laser oscillation device, a fiber laser amplification device, and a fiber laser used in these devices. As shown in FIG. 3, the fiber laser 30 of the present invention is the same as the conventional fiber laser in the basic structure, and a laser medium glass 32 is provided in the portion corresponding to the core of the optical fiber, and the laser is provided in the portion corresponding to the clad. A silica glass 34 having a refractive index lower than that of the medium is used, and indicates a fiber-like laser medium. The feature of the fiber laser 30 of the present invention is that the silica glass for laser medium of the present invention is used as the laser medium glass 32. The fiber laser amplifying apparatus 40 of the present invention is the same as the conventional laser oscillation apparatus in the basic structure, and as shown in FIG. 4, a laser diode 42, a WDM coupler 44, a fiber laser 30, and an input side connector 46. And an output side connector 48. A feature of the fiber laser amplifying apparatus 40 of the present invention is that the fiber laser 30 of the present invention is used as a fiber laser.

(実施例1)
Ndイオン交換ゼオライトを以下の工程で作成した。ケイ素とアルミニウムのモル比がSi:Al=4:3であるX型ゼオライト2000gを濃度150g/Lの硝酸ネオジウム水溶液10Lに浸し、100℃において還流をしながら5日間加熱した。その後、吸引ろ過によりゼオライトを濾別し、このゼオライトに純水を注いで攪拌してから濾別する洗浄工程を3回繰り返した後、乾燥機を用いて300度にて乾燥することにより、Ndイオン交換ゼオライトを得た。このゼオライトの組成を蛍光X線分析装置で測定したところ、Nd濃度は15wt%、Al濃度は18wt%であった。
Example 1
Nd ion exchanged zeolite was prepared by the following steps. 2000 g of X-type zeolite having a molar ratio of silicon to aluminum of Si: Al = 4: 3 was immersed in 10 L of an aqueous neodymium nitrate solution having a concentration of 150 g / L, and heated at 100 ° C. for 5 days while refluxing. Thereafter, the zeolite is separated by suction filtration, and the washing step of pouring pure water into the zeolite and stirring and then separating by filtration is repeated three times, followed by drying at 300 ° C. using a dryer. An ion exchange zeolite was obtained. When the composition of this zeolite was measured with a fluorescent X-ray analyzer, the Nd concentration was 15 wt% and the Al concentration was 18 wt%.

上記方法によって得たNdイオン交換ゼオライト1000gとシリカガラス粉6000gおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉とゼオライト粉の混合粉体を得た。   1000 g of Nd ion-exchanged zeolite obtained by the above method, 6000 g of silica glass powder and 2000 g of alumina balls having a diameter of 10 mm are placed in an alumina ball mill, and the ball mill is rotated at 120 rpm for 48 hours to obtain a mixed powder of silica powder and zeolite powder. Got the body.

この混合粉体を図7に示すステンレス製の金型(外径240mm×内径200mm×厚さ15mmの底板)50に入れ、100kgf/cm2の圧力をかけて、直径200mm×高さ140mmの粉体成型体とした。これを金型から取り出して加熱炉内に設置し、大気中において1300度で100時間加熱した後に、内径220mmのカーボンるつぼ内に設置し、このカーボンるつぼごと真空加熱炉内に設置して真空下で1800度にて1時間加熱し、直径220mm高さ80mmのNd含有シリカガラスを得た。 This mixed powder is put into a stainless steel mold (outer diameter 240 mm × inner diameter 200 mm × thickness 15 mm bottom plate) 50 shown in FIG. 7, and a pressure of 100 kgf / cm 2 is applied to make a powder of diameter 200 mm × height 140 mm. A body molded body was obtained. This was taken out of the mold and placed in a heating furnace, heated in the atmosphere at 1300 ° C. for 100 hours, then placed in a carbon crucible with an inner diameter of 220 mm, and the whole carbon crucible was placed in a vacuum heating furnace and placed under vacuum. And heated at 1800 degrees for 1 hour to obtain a Nd-containing silica glass having a diameter of 220 mm and a height of 80 mm.

これから80mm×80mm×180mmのガラスを切り出し、特開平7−267662に記載の帯域溶融せん断法、すなわち被処理物であるガラスを旋盤に把持された石英ガラス棒に加熱溶接し、バーナーにより加熱した状態で左右の旋盤の回転数を相違させつつバーナーを移動する方法により、ガラスの均質化を行った。均質化後のガラスのNd濃度、Al濃度を蛍光X線分析装置にて調べたところ、Nd2.14wt%、Al2.57wt%であった。この結果から、[アルミニウムモル数]/[ネオジウムモル数]を算出すると、6.4となる。   A glass of 80 mm × 80 mm × 180 mm is cut out from this, the zone melt shearing method described in JP-A-7-267762, that is, the glass to be processed is heated and welded to a quartz glass rod held by a lathe and heated by a burner. Then, the glass was homogenized by moving the burner while changing the rotational speed of the left and right lathes. When the Nd concentration and Al concentration of the homogenized glass were examined with a fluorescent X-ray analyzer, they were Nd 2.14 wt% and Al 2.57 wt%. From this result, [aluminum mole number] / [neodymium mole number] is calculated to be 6.4.

この石英ガラス中の泡を調べたところ、100cm3あたり0.01mm2と非常に少なかった。また、OH基濃度は1ppmであった。 When the bubbles in the quartz glass were examined, it was very small as 0.01 mm 2 per 100 cm 3 . The OH group concentration was 1 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは2×10-6、複屈折は1.5nm/cmであった。また、この試料ロッドの両端面に反射防止膜をつけ、波長1064nmにおける光損失係数を測定したところ、0.001cm -1 であり、光のロスが極めて少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 2 × 10 −6 and a birefringence of 1.5 nm / cm. Further, antireflection films were attached to both end faces of this sample rod, and the light loss coefficient at a wavelength of 1064 nm was measured. As a result, it was 0.001 cm −1 and the light loss was extremely small.

この試料ロッドについて図5に示す光学系を用いて、増幅試験を行ったところ、レーザー増幅が確認できた。図5に示したレーザー増幅装置10Aは、図1に示したレーザー増幅装置10と同様の構造を有するものであるが、CWレーザー16及びパワーメーター18が追加されており、レーザー媒質として上記試料ロッド15が用いられている。また、この試料ロッドについて図6に示す光学系を用いて発振試験を行ったところ、波長1064nmにてレーザー発振を達成でき、レーザー媒質用シリカガラスとして極めて好適なものであった。図6に示したレーザー発振装置20Aは、図2に示したレーザー発振装置20と同様の構造を有するものであるが、パワーメーター29が追加されており、レーザー媒質として上記試料ロッド15が用いられている。なお、図5及び図6において、符号Lはレーザー光である。   When this sample rod was subjected to an amplification test using the optical system shown in FIG. 5, laser amplification was confirmed. The laser amplifying apparatus 10A shown in FIG. 5 has the same structure as the laser amplifying apparatus 10 shown in FIG. 1, except that a CW laser 16 and a power meter 18 are added, and the sample rod is used as a laser medium. 15 is used. When this sample rod was subjected to an oscillation test using the optical system shown in FIG. 6, laser oscillation could be achieved at a wavelength of 1064 nm, which was extremely suitable as silica glass for a laser medium. The laser oscillation device 20A shown in FIG. 6 has the same structure as the laser oscillation device 20 shown in FIG. 2, but a power meter 29 is added, and the sample rod 15 is used as a laser medium. ing. In FIGS. 5 and 6, the symbol L is a laser beam.

なお、各種物性の測定方法を以下に示す。   In addition, the measuring method of various physical properties is shown below.

化学組成:蛍光X線分析法により測定。
OH基濃度:フーリエ変換赤外分光装置(Nicolet社製 AVATOR360)にて2.7μmのO−H伸縮振動バンドの強度から算出。
光損失係数測定:レーザーの入射光強度I0[mW]、出射光強度IT[mW]、試料厚さd[cm]を用いて以下の式により算出。尚、Ndドープガラスでは波長1064nm、Ybドープガラスでは波長1080nm、Erドープガラスでは波長1540nmのレーザーを用いた。
Chemical composition: measured by fluorescent X-ray analysis.
OH group concentration: Calculated from the intensity of an OH stretching vibration band of 2.7 μm using a Fourier transform infrared spectrometer (AVATOR360 manufactured by Nicolet).
Optical loss coefficient measurement: Calculated by the following equation using laser incident light intensity I 0 [mW], outgoing light intensity I T [mW], and sample thickness d [cm]. A laser having a wavelength of 1064 nm was used for Nd-doped glass, a wavelength of 1080 nm was used for Yb-doped glass, and a wavelength of 1540 nm was used for Er-doped glass.

Figure 0004919463
Figure 0004919463

屈折率分布:ZYGO MARK GPI−XP(フィゾー型干渉計)を用いてオイル・オン・プレート方により632.8nmにおける屈折率分布を測定。
複屈折:Hinds社製 複屈折測定装置 EXICOR350ATを用いて632.8nmにおける複屈折を測定。
増幅試験:試験装置の構成は図5に示したものと同様である。試験に用いたレーザーは、ドープ元素がNdの時は波長1064nmのCW(連続発振)レーザー、Ybの時は波長1080nm、Erの時は波長1540nmのレーザーを用いた。初めに試料を励起していない状態、すなわちキセノンフラッシュランプを点灯していない状態で、試料を透過した後のレーザー光のパワーをパワーメーターで計測した。続いて、試料を励起した状態、すなわちキセノンフラッシュランプを点灯した状態で、試料を透過した後のレーザー光のパワーをパワーメーターで計測し、励起していない状態と比較して、パワーメーターの値が大きくなった場合を、増幅あり、とした。
発振試験:試験装置の構成は図6に示したものと同様である。レーザーの出力鏡の透過率は20%とし、励起時(フラッシュランプ点灯時)の出力をパワーメーターにて計測し、出力が確認できた場合を、発振あり、とした。計測波長は、ドープ元素がNdの時は波長1064nmのCW(連続発振)レーザー、Ybの時は波長1080nm、Erの時は波長1540nmのレーザーを用いた。
Refractive index distribution: A refractive index distribution at 632.8 nm was measured by an oil-on-plate method using a ZYGO MARK GPI-XP (Fizeau interferometer).
Birefringence: Birefringence measuring apparatus manufactured by Hinds, Inc. Measure birefringence at 632.8 nm using EXICOR350AT.
Amplification test: The configuration of the test apparatus is the same as that shown in FIG. The laser used for the test was a CW (continuous oscillation) laser with a wavelength of 1064 nm when the doping element is Nd, a laser with a wavelength of 1080 nm when Yb, and a laser with a wavelength of 1540 nm when Er. First, the power of the laser beam after passing through the sample was measured with a power meter in a state where the sample was not excited, that is, in a state where the xenon flash lamp was not turned on. Subsequently, when the sample is excited, that is, with the xenon flash lamp turned on, the power of the laser beam after passing through the sample is measured with a power meter, and compared with the state where it is not excited, the value of the power meter Amplification is considered to be amplification.
Oscillation test: The configuration of the test apparatus is the same as that shown in FIG. The transmittance of the laser output mirror was 20%, and the output at the time of excitation (when the flash lamp was lit) was measured with a power meter. The measurement wavelength used was a CW (continuous oscillation) laser with a wavelength of 1064 nm when the doping element was Nd, a laser with a wavelength of 1080 nm when Yb, and a laser with a wavelength of 1540 nm when Er.

(実施例2)
Ndイオン交換ゼオライトを実施例1と同様の方法で作成した。このゼオライトの組成を蛍光X線分析装置で確認したところ、Nd濃度は15wt%、Al濃度は18wt%であった。
(Example 2)
Nd ion-exchanged zeolite was prepared in the same manner as in Example 1. When the composition of this zeolite was confirmed with a fluorescent X-ray analyzer, the Nd concentration was 15 wt% and the Al concentration was 18 wt%.

上記方法によって得たNdイオン交換ゼオライト1500gとシリカガラス粉5500gおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉とゼオライト粉の混合粉体を得た。この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、NdおよびAlを含むシリカガラスを作成した。   1500 g of Nd ion-exchanged zeolite obtained by the above method, 5500 g of silica glass powder and 2000 g of alumina balls having a diameter of 10 mm are placed in an alumina ball mill, and the ball mill is rotated at 120 rpm for 48 hours to obtain a mixed powder of silica powder and zeolite powder. Got the body. Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to prepare silica glass containing Nd and Al.

均質化後のガラスのNd濃度、Al濃度を蛍光X線にて調べたところ、Nd3.21wt%、Al3.86wt%であった。この結果から、[アルミニウムモル数]/[ネオジウムモル数]を求めると、6.4であった。   When the Nd concentration and Al concentration of the homogenized glass were examined by fluorescent X-ray, they were Nd 3.21 wt% and Al 3.86 wt%. From this result, [aluminum mole number] / [neodymium mole number] was found to be 6.4.

この石英ガラス中の泡を調べたところ、100cm3あたり0.01mm2と非常に少なかった。また、OH基濃度は1ppmであった。 When the bubbles in the quartz glass were examined, it was very small as 0.01 mm 2 per 100 cm 3 . The OH group concentration was 1 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは4×10-6、複屈折は5nm/cmであった。また、この試料ロッドの両端面に反射防止膜をつけ、波長1064nmにおける光損失係数を測定したところ、0.002cm -1 であり、光のロスが極めて少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 4 × 10 −6 and a birefringence of 5 nm / cm. Further, antireflection films were attached to both end faces of this sample rod, and the light loss coefficient at a wavelength of 1064 nm was measured. As a result, it was 0.002 cm −1 and the light loss was extremely small.

この試料ロッドを実施例1と同様に増幅試験を行ったところ、レーザー増幅が確認できた。また、実施例1と同様に発振試験を行ったところ、波長1064nmにてレーザー発振を達成でき、レーザー媒質用シリカガラスとして極めて好適なものであった。   When this sample rod was subjected to an amplification test in the same manner as in Example 1, laser amplification was confirmed. Further, when an oscillation test was conducted in the same manner as in Example 1, laser oscillation could be achieved at a wavelength of 1064 nm, which was extremely suitable as silica glass for a laser medium.

(実施例3)
Ndイオン交換ゼオライトを実施例1と同様の方法で作成した。このゼオライトの組成を蛍光X線分析装置で確認したところ、Nd濃度は15wt%、Al濃度は18wt%であった。
(Example 3)
Nd ion-exchanged zeolite was prepared in the same manner as in Example 1. When the composition of this zeolite was confirmed with a fluorescent X-ray analyzer, the Nd concentration was 15 wt% and the Al concentration was 18 wt%.

上記方法によって得たNdイオン交換ゼオライト250gとシリカガラス粉6750gおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉とゼオライト粉の混合粉体を得た。   250 g of Nd ion-exchanged zeolite obtained by the above method, 6750 g of silica glass powder and 2000 g of alumina balls having a diameter of 10 mm are placed in an alumina ball mill, and the ball mill is rotated at 120 rpm for 48 hours to obtain a mixed powder of silica powder and zeolite powder. Got the body.

この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、NdおよびAlを含むシリカガラスを作成した。   Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to prepare silica glass containing Nd and Al.

均質化後のガラスのNd濃度、Al濃度を蛍光X線にて調べたところ、Nd0.54wt%、Al0.64wt%であった。この結果から、[アルミニウムモル数]/[ネオジウムモル数]を求めると、6.2であった。   When the Nd concentration and Al concentration of the homogenized glass were examined by fluorescent X-rays, they were Nd 0.54 wt% and Al 0.64 wt%. From this result, [aluminum mole number] / [neodymium mole number] was determined to be 6.2.

この石英ガラス中の泡を調べたところ100cm3あたり0.01mm2と非常に少なかった。また、OH基濃度は3ppmであった。 When the bubbles in the quartz glass were examined, it was very small as 0.01 mm 2 per 100 cm 3 . The OH group concentration was 3 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは1×10-6、複屈折は1nm/cmであった。また、この試料ロッドの両端面に反射防止膜をつけ、波長1064nmにおける光損失係数を測定したところ、0.0005cm -1 であり、光のロスが極めて少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 1 × 10 −6 and a birefringence of 1 nm / cm. Further, antireflection films were attached to both end faces of this sample rod, and the light loss coefficient at a wavelength of 1064 nm was measured. As a result, it was 0.0005 cm −1 and the light loss was extremely small.

この試料ロッドを実施例1と同様に増幅試験を行ったところ、レーザー増幅が確認できた。また、実施例1と同様に発振試験を行ったところ、波長1064nmにてレーザー発振を達成でき、レーザー媒質用シリカガラスとして極めて好適なものであった。   When this sample rod was subjected to an amplification test in the same manner as in Example 1, laser amplification was confirmed. Further, when an oscillation test was conducted in the same manner as in Example 1, laser oscillation could be achieved at a wavelength of 1064 nm, which was extremely suitable as silica glass for a laser medium.

実験例1
酸化ネオジウム粉150g、酸化アルミニウム粉300g、シリカ粉6550gをおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉と酸化ネオジウム、酸化アルミニウムの混合粉体を得た。
( Experimental example 1 )
150 g of neodymium oxide powder, 300 g of aluminum oxide powder, 6550 g of silica powder, and 2000 g of alumina balls having a diameter of 10 mm were placed in an alumina ball mill, and the ball mill was rotated at 120 rpm for 48 hours to obtain silica powder, neodymium oxide, and aluminum oxide. A mixed powder was obtained.

この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、NdおよびAlを含むシリカガラスを作成した。   Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to prepare silica glass containing Nd and Al.

均質化後のガラスのNd濃度、Al濃度を蛍光X線にて調べたところ、Nd1.84wt%、Al2.27wt%であった。この結果から、[アルミニウムモル数]/[ネオジウムモル数]を求めると、6.6であった。   When the Nd concentration and Al concentration of the homogenized glass were examined by fluorescent X-ray, they were Nd 1.84 wt% and Al 2.27 wt%. From this result, [aluminum mole number] / [neodymium mole number] was found to be 6.6.

この石英ガラス中の泡を調べたところ100cm3あたり0.01mm2と非常に少なかった。また、OH基濃度は1ppmであった。 When the bubbles in the quartz glass were examined, it was very small as 0.01 mm 2 per 100 cm 3 . The OH group concentration was 1 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは2×10-6、複屈折は2nm/cmであった。また、この試料ロッドの両端面に反射防止膜をつけ、波長1064nmにおける光損失係数を測定したところ、0.001cm -1 であり、光のロスが極めて少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 2 × 10 −6 and a birefringence of 2 nm / cm. Further, antireflection films were attached to both end faces of this sample rod, and the light loss coefficient at a wavelength of 1064 nm was measured. As a result, it was 0.001 cm −1 and the light loss was extremely small.

この試料ロッドを実施例1と同様に増幅試験を行ったところ、レーザー増幅が確認できた。また、実施例1と同様に発振試験を行ったところ、波長1064nmにてレーザー発振を達成でき、レーザー媒質用シリカガラスとして極めて好適なものであった。   When this sample rod was subjected to an amplification test in the same manner as in Example 1, laser amplification was confirmed. Further, when an oscillation test was conducted in the same manner as in Example 1, laser oscillation could be achieved at a wavelength of 1064 nm, which was extremely suitable as silica glass for a laser medium.

実験例2
酸化ネオジウム粉150g、酸化アルミニウム粉150g、シリカ粉6700gをおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉と酸化ネオジウム、酸化アルミニウムの混合粉体を得た。
( Experimental example 2 )
150 g of neodymium oxide powder, 150 g of aluminum oxide powder, 6700 g of silica powder, and 2000 g of alumina balls having a diameter of 10 mm are placed in an alumina ball mill, and the ball mill is rotated at 120 rpm for 48 hours to obtain silica powder, neodymium oxide, and aluminum oxide. A mixed powder was obtained.

この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、NdおよびAlを含むシリカガラスを作成した。   Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to prepare silica glass containing Nd and Al.

均質化後のガラスのNd濃度、Al濃度を蛍光X線にて調べたところ、Nd1.84wt%、Al1.13wt%であった。この結果から、[アルミニウムモル数]/[ネオジウムモル数]を求めると、3.3であった。   When the Nd concentration and Al concentration of the homogenized glass were examined by fluorescent X-rays, they were Nd 1.84 wt% and Al 1.13 wt%. From this result, when [number of moles of aluminum] / [number of moles of neodymium] was determined, it was 3.3.

この石英ガラス中の泡を調べたところ100cm3あたり0.01mm2と非常に少なかった。また、OH基濃度は1ppmであった。 When the bubbles in the quartz glass were examined, it was very small as 0.01 mm 2 per 100 cm 3 . The OH group concentration was 1 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは3×10-6、複屈折は4nm/cmであった。また、この試料ロッドの両端面に反射防止膜をつけ、波長1064nmにおける光損失係数を測定したところ、0.003cm -1 であり、光のロスが極めて少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 3 × 10 −6 and a birefringence of 4 nm / cm. Further, antireflection films were attached to both end faces of this sample rod, and the light loss coefficient at a wavelength of 1064 nm was measured. As a result, it was 0.003 cm −1 and the light loss was extremely small.

この試料ロッドを実施例1と同様に増幅試験を行ったところ、レーザー増幅が確認できた。また、実施例1と同様に発振試験を行ったところ、波長1064nmにてレーザー発振を達成でき、レーザー媒質用シリカガラスとして極めて好適なものであった。   When this sample rod was subjected to an amplification test in the same manner as in Example 1, laser amplification was confirmed. Further, when an oscillation test was conducted in the same manner as in Example 1, laser oscillation could be achieved at a wavelength of 1064 nm, which was extremely suitable as silica glass for a laser medium.

実験例3
酸化ネオジウム粉150g、酸化アルミニウム粉400g、シリカ粉6450gをおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉と酸化ネオジウム、酸化アルミニウムの混合粉体を得た。
( Experimental example 3 )
150 g of neodymium oxide powder, 400 g of aluminum oxide powder, 6450 g of silica powder, and 2000 g of alumina balls having a diameter of 10 mm are placed in an alumina ball mill, and the ball mill is rotated at 120 rpm for 48 hours to obtain silica powder, neodymium oxide, and aluminum oxide. A mixed powder was obtained.

この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、NdおよびAlを含むシリカガラスを作成した。   Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to prepare silica glass containing Nd and Al.

均質化後のガラスのNd濃度、Al濃度を蛍光X線にて調べたところ、Nd1.84wt%、Al3.02wt%であった。この結果から、[アルミニウムモル数]/[ネオジウムモル数]を求めると、8.5であった。   When the Nd concentration and Al concentration of the homogenized glass were examined by fluorescent X-rays, they were Nd 1.84 wt% and Al 3.02 wt%. From this result, [aluminum mole number] / [neodymium mole number] was determined to be 8.5.

この石英ガラス中の泡を調べたところ100cm3あたり0.01mm2と非常に少なかった。また、OH基濃度は1ppmであった。 When the bubbles in the quartz glass were examined, it was very small as 0.01 mm 2 per 100 cm 3 . The OH group concentration was 1 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは5×10-6、複屈折は7nm/cmであった。この試料ロッドの両端面に反射防止膜をつけ、波長1064nmにおける光損失係数を測定したところ、0.0005cm -1 であり、光のロスが極めて少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 5 × 10 −6 and a birefringence of 7 nm / cm. Antireflection films were attached to both end faces of this sample rod, and the light loss coefficient at a wavelength of 1064 nm was measured. As a result, it was 0.0005 cm −1 and the light loss was extremely small.

この試料ロッドを実施例1と同様に増幅試験を行ったところ、レーザー増幅が確認できた。また、実施例1と同様に発振試験を行ったところ、波長1064nmにてレーザー発振を達成でき、レーザー媒質用シリカガラスとして極めて好適なものであった。   When this sample rod was subjected to an amplification test in the same manner as in Example 1, laser amplification was confirmed. Further, when an oscillation test was conducted in the same manner as in Example 1, laser oscillation could be achieved at a wavelength of 1064 nm, which was extremely suitable as silica glass for a laser medium.

実験例4
酸化イッテルビウム粉150g、酸化アルミニウム粉300g、シリカ粉6550gをおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉と酸化イッテルビウム、酸化アルミニウムの混合粉体を得た。
( Experimental example 4 )
150 g of ytterbium oxide powder, 300 g of aluminum oxide powder, 6550 g of silica powder, and 2000 g of alumina balls having a diameter of 10 mm are placed in an alumina ball mill, and the ball mill is rotated at 120 rpm for 48 hours. A mixed powder was obtained.

この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、YbおよびAlを含むシリカガラスを作成した。   Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to prepare silica glass containing Yb and Al.

均質化後のガラスのYb濃度、Al濃度を蛍光X線にて調べたところ、Yb1.88wt%、Al2.27wt%であった。この結果から、[アルミニウムモル数]/[イッテルビウムモル数]を求めると、7.7であった。   When the Yb concentration and Al concentration of the homogenized glass were examined by fluorescent X-rays, they were Yb 1.88 wt% and Al 2.27 wt%. From this result, [aluminum moles] / [ytterbium moles] was determined to be 7.7.

この石英ガラス中の泡を調べたところ100cm3あたり0.01mm2と非常に少なかった。また、OH基濃度は1ppmであった。 When the bubbles in the quartz glass were examined, it was very small as 0.01 mm 2 per 100 cm 3 . The OH group concentration was 1 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは2×10-6、複屈折は2nm/cmであった。また、この試料ロッドの両端面に反射防止膜をつけ、波長1080nmにおける光損失係数を測定したところ、0.001cm -1 であり、光のロスが極めて少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 2 × 10 −6 and a birefringence of 2 nm / cm. Further, antireflection films were attached to both end faces of this sample rod, and the light loss coefficient at a wavelength of 1080 nm was measured. As a result, it was 0.001 cm −1 and the light loss was extremely small.

この試料ロッドを、用いるレーザーの発振波長を1080nmとする以外は実施例1と同様に増幅試験を行ったところ、レーザー増幅が確認できた。また、実施例1と同様に発振試験を行ったところ、波長1080mにてレーザー発振を達成でき、レーザー媒質用シリカガラスとして極めて好適なものであった。   When this sample rod was subjected to an amplification test in the same manner as in Example 1 except that the oscillation wavelength of the laser used was 1080 nm, laser amplification was confirmed. Further, when an oscillation test was performed in the same manner as in Example 1, laser oscillation could be achieved at a wavelength of 1080 m, which was extremely suitable as a silica glass for a laser medium.

実験例5
酸化エルビウム粉150g、酸化アルミニウム粉300g、シリカ粉6550gをおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉と酸化エルビウム、酸化アルミニウムの混合粉体を得た。
( Experimental example 5 )
150 g of erbium oxide powder, 300 g of aluminum oxide powder, 6550 g of silica powder, and 2000 g of alumina balls having a diameter of 10 mm were placed in an alumina ball mill, and the ball mill was rotated at 120 rpm for 48 hours to obtain silica powder, erbium oxide, and aluminum oxide. A mixed powder was obtained.

この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、ErおよびAlを含むシリカガラスを作成した。   Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to prepare silica glass containing Er and Al.

均質化後のガラスのEr濃度、Al濃度を蛍光X線にて調べたところ、Er1.87wt%、Al2.27wt%であった。この結果から、[アルミニウムモル数]/[エルビウムモル数]を求めると、7.5であった。   When the Er concentration and Al concentration of the homogenized glass were examined by fluorescent X-rays, they were Er 1.87 wt% and Al 2.27 wt%. From this result, the [number of moles of aluminum] / [number of moles of erbium] was determined to be 7.5.

この石英ガラス中の泡を調べたところ100cm3あたり0.01mm2と非常に少なかった。また、OH基濃度は1ppmであった。 When the bubbles in the quartz glass were examined, it was very small as 0.01 mm 2 per 100 cm 3 . The OH group concentration was 1 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは2×10-6、複屈折は2nm/cmであった。また、この試料ロッドの両端面に反射防止膜をつけ、波長1540nmにおける光損失係数を測定したところは0.001cm -1 であり、光のロスが極めて少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 2 × 10 −6 and a birefringence of 2 nm / cm. Further, antireflection films were attached to both end faces of the sample rod, and the light loss coefficient at a wavelength of 1540 nm was measured. As a result, it was 0.001 cm −1 and the light loss was extremely small.

この試料ロッドを、用いるレーザーの発振波長を1540nmとする以外は実施例1と同様に増幅試験を行ったところ、レーザー増幅が確認できた。また、実施例1と同様に発振試験を行ったところ、波長1540nmにてレーザー発振を達成でき、レーザー媒質用シリカガラスとして極めて好適なものであった。   When this sample rod was subjected to an amplification test in the same manner as in Example 1 except that the oscillation wavelength of the laser used was 1540 nm, laser amplification was confirmed. Further, when an oscillation test was conducted in the same manner as in Example 1, laser oscillation could be achieved at a wavelength of 1540 nm, which was extremely suitable as silica glass for a laser medium.

(比較例1)
Ndイオン交換ゼオライトを実施例1と同様の方法で作成した。このゼオライトの組成を蛍光X線分析装置で確認したところ、Nd濃度は15wt%、Al濃度は18wt%であった。
(Comparative Example 1)
Nd ion-exchanged zeolite was prepared in the same manner as in Example 1. When the composition of this zeolite was confirmed with a fluorescent X-ray analyzer, the Nd concentration was 15 wt% and the Al concentration was 18 wt%.

上記方法によって得たNdイオン交換ゼオライト20gとシリカガラス粉6980gおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉とゼオライト粉の混合粉体を得た。   20 g of Nd ion-exchanged zeolite obtained by the above method, 6980 g of silica glass powder and 2000 g of alumina balls having a diameter of 10 mm are placed in an alumina ball mill, and the ball mill is rotated at 120 rpm for 48 hours to obtain a mixed powder of silica powder and zeolite powder. Got the body.

この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、NdおよびAlを含むシリカガラスを作成した。   Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to prepare silica glass containing Nd and Al.

均質化後のガラスのNd濃度、Al濃度を蛍光X線にて調べたところ、Nd0.04wt%、Al0.05wt%であった。この結果から、[アルミニウムモル数]/[ネオジウムモル数]を求めると、6.7であった。   When the Nd concentration and Al concentration of the homogenized glass were examined with fluorescent X-rays, they were Nd 0.04 wt% and Al 0.05 wt%. From this result, the [number of moles of aluminum] / [number of moles of neodymium] was determined to be 6.7.

この石英ガラス中の泡を調べたところ100cm3あたり0.01mm2と非常に少なかった。また、OH基濃度は1ppmであった。 When the bubbles in the quartz glass were examined, it was very small as 0.01 mm 2 per 100 cm 3 . The OH group concentration was 1 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは1×10-6、複屈折は1nm/cmであった。この試料ロッドの両端面に反射防止膜をつけ、波長1064nmにおける光損失係数を測定したところ、0.0005cm -1 であり、吸収や散乱がきわめて少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 1 × 10 −6 and a birefringence of 1 nm / cm. Antireflection films were attached to both end faces of this sample rod, and the optical loss coefficient at a wavelength of 1064 nm was measured. As a result, it was 0.0005 cm −1 and the absorption and scattering were very small.

この試料ロッドを実施例1と同様に増幅試験を行ったが、レーザー増幅が確認できなかった。また、実施例1と同様に発振試験を行ったが、レーザー発振ができず、レーザー媒質用シリカガラスとして不十分であった。   This sample rod was subjected to an amplification test in the same manner as in Example 1. However, laser amplification could not be confirmed. Further, an oscillation test was conducted in the same manner as in Example 1. However, laser oscillation was not possible, and this was insufficient as silica glass for a laser medium.

(比較例2)
Ndイオン交換ゼオライトを実施例1と同様の方法で2バッチ分作成した。このゼオライトの組成を蛍光X線分析装置で確認したところ、Nd濃度は15wt%、Al濃度は18wt%であった。
(Comparative Example 2)
Two batches of Nd ion-exchanged zeolite were prepared in the same manner as in Example 1. When the composition of this zeolite was confirmed with a fluorescent X-ray analyzer, the Nd concentration was 15 wt% and the Al concentration was 18 wt%.

上記方法によって得たNdイオン交換ゼオライト3000gとシリカガラス粉4000gおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉とゼオライト粉の混合粉体を得た。   3000 g of Nd ion-exchanged zeolite obtained by the above method, 4000 g of silica glass powder and 2000 g of alumina balls having a diameter of 10 mm are placed in an alumina ball mill, and the ball mill is rotated at 120 rpm for 48 hours to obtain a mixed powder of silica powder and zeolite powder. Got the body.

この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、NdおよびAlを含むシリカガラスを作成したが、青白く乳濁していた。このNd濃度、Al濃度を蛍光X線にて調べたところ、Nd6.43wt%、Al7.71wt%であり、[アルミニウムモル数]/[ネオジウムモル数]は6.4であった。   Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to produce silica glass containing Nd and Al, but it was milky white. When the Nd concentration and Al concentration were examined by fluorescent X-ray, they were Nd of 6.43 wt% and Al of 7.71 wt%, and [aluminum mole number] / [neodymium mole number] was 6.4.

泡、光損失係数、OH基濃度、屈折率分布、複屈折は、乳濁により測定できなかった。また、増幅試験、発振試験も行えず、レーザー媒質用シリカガラスとして不十分であった。   Foam, light loss coefficient, OH group concentration, refractive index distribution, and birefringence could not be measured due to emulsion. Moreover, neither an amplification test nor an oscillation test could be performed, which was insufficient as a silica glass for a laser medium.

(比較例3)
酸化ネオジウム粉150g、酸化アルミニウム粉50g、シリカ粉6800gをおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉と酸化ネオジウム、酸化アルミニウムの混合粉体を得た。
(Comparative Example 3)
150 g of neodymium oxide powder, 50 g of aluminum oxide powder, 6800 g of silica powder, and 2000 g of alumina balls having a diameter of 10 mm are placed in an alumina ball mill, and the ball mill is rotated at 120 rpm for 48 hours to obtain silica powder, neodymium oxide, and aluminum oxide. A mixed powder was obtained.

この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、NdおよびAlを含むシリカガラスを作成したが、青白く乳濁していた。このNd濃度、Al濃度を蛍光X線にて調べたところ、Nd1.84wt%、Al0.38wt%であり、[アルミニウムモル数]/[ネオジウムモル数]は1.1であった。   Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to produce silica glass containing Nd and Al, but it was milky white. The Nd concentration and Al concentration were examined by fluorescent X-ray. As a result, Nd was 1.84 wt% and Al was 0.38 wt%, and [aluminum mole number] / [neodymium mole number] was 1.1.

泡、光損失係数、OH基濃度、屈折率分布、複屈折は、乳濁により測定できなかった。また、増幅試験、発振試験も行えず、レーザー媒質用シリカガラスとして不十分であった。   Foam, light loss coefficient, OH group concentration, refractive index distribution, and birefringence could not be measured due to emulsion. Moreover, neither an amplification test nor an oscillation test could be performed, which was insufficient as a silica glass for a laser medium.

(比較例4)
酸化ネオジウム粉150g、酸化アルミニウム粉550g、シリカ粉6300gをおよび直径10mmのアルミナ製ボール2000gをアルミナ製のボールミルにいれ、120rpmにて48時間ボールミルを回転させて、シリカ粉と酸化ネオジウム、酸化アルミニウムの混合粉体を得た。
この混合粉体を原料として実施例1と同様の方法で粉体成型体作成、焼成、真空溶融、均質化を行い、NdおよびAlを含むシリカガラスを作成したが、青白く乳濁していた。このNd濃度、Al濃度を蛍光X線にて調べたところ、Nd1.84wt%、Al4.16wt%であり、[アルミニウムモル数]/[ ネオジウムモル数]は12.1であった。
(Comparative Example 4)
150 g of neodymium oxide powder, 550 g of aluminum oxide powder, 6300 g of silica powder, and 2000 g of alumina balls having a diameter of 10 mm were placed in an alumina ball mill, and the ball mill was rotated at 120 rpm for 48 hours to obtain silica powder, neodymium oxide, and aluminum oxide. A mixed powder was obtained.
Using this mixed powder as a raw material, a powder molded body was prepared, fired, vacuum melted, and homogenized in the same manner as in Example 1 to produce silica glass containing Nd and Al, but it was milky white. When the Nd concentration and Al concentration were examined by fluorescent X-rays, they were Nd 1.84 wt% and Al 4.16 wt%, and [aluminum mole number] / [neodymium mole number] was 12.1.

泡、光損失係数、OH基濃度、屈折率分布、複屈折は、乳濁により測定できなかった。また、増幅試験、発振試験も行えず、レーザー媒質用シリカガラスとして不十分であった。   Foam, light loss coefficient, OH group concentration, refractive index distribution, and birefringence could not be measured due to emulsion. Moreover, neither an amplification test nor an oscillation test could be performed, which was insufficient as a silica glass for a laser medium.

(比較例5)
実施例1と同様にゼオライトイオン交換、混合、粉砕、粉体成型体作成、焼成、真空溶融まで行い、均質化をしていないNdおよびAlを含むシリカガラスを作成した。
(Comparative Example 5)
In the same manner as in Example 1, zeolite ion exchange, mixing, pulverization, powder molding production, firing, and vacuum melting were performed to produce silica glass containing Nd and Al that were not homogenized.

このガラスのNd濃度、Al濃度を蛍光X線にて調べたところ、Nd2.14wt%、Al2.57wt%であった。この結果から、[アルミニウムモル数]/[ネオジウムモル数]を求めると、6.4であった。   When the Nd concentration and Al concentration of this glass were examined by fluorescent X-ray, they were Nd 2.14 wt% and Al 2.57 wt%. From this result, [aluminum mole number] / [neodymium mole number] was found to be 6.4.

この石英ガラス中の泡を調べたところ100cm3あたり0.2mm2であった。また、OH基濃度は1ppmであった。 When the bubbles in the quartz glass were examined, it was 0.2 mm 2 per 100 cm 3 . The OH group concentration was 1 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは2×10-5、複屈折は15nm/cmであった。この試料ロッドの両端面に反射防止膜をつけ、波長1064nmにおける光損失係数を測定したところ、0.05cm -1 であり、光のロスが大きかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 2 × 10 −5 and a birefringence of 15 nm / cm. Antireflection films were attached to both end faces of this sample rod, and the light loss coefficient at a wavelength of 1064 nm was measured. As a result, it was 0.05 cm −1 and the loss of light was large.

この試料ロッドを用いて実施例1と同様に増幅試験を行ったが、レーザー増幅が確認できなかった。また、実施例1と同様に発振試験を行ったが、レーザー発振ができず、レーザー媒質用シリカガラスとして不十分であった。   Using this sample rod, an amplification test was conducted in the same manner as in Example 1. However, laser amplification could not be confirmed. Further, an oscillation test was conducted in the same manner as in Example 1. However, laser oscillation was not possible, and this was insufficient as silica glass for a laser medium.

(比較例6)
Ndイオン交換ゼオライトを実施例1と同様の方法で作成した。このゼオライトの組成を蛍光X線分析装置で確認したところ、Nd濃度は15wt%、Al濃度は18wt%であった。
(Comparative Example 6)
Nd ion-exchanged zeolite was prepared in the same manner as in Example 1. When the composition of this zeolite was confirmed with a fluorescent X-ray analyzer, the Nd concentration was 15 wt% and the Al concentration was 18 wt%.

上記方法によって得たNdイオン交換ゼオライト1000gとシリカガラス粉6000gをV型混合器を用いて8時間混合した。得られた混合粉体を酸水素火炎中に導入して溶融堆積することにより、直径10cm長さ30cmのインゴットを得た。このインゴットを実施例1と同様に均質化してNdおよびAlを含むシリカガラスを作成した。   1000 g of Nd ion-exchanged zeolite obtained by the above method and 6000 g of silica glass powder were mixed for 8 hours using a V-type mixer. The obtained mixed powder was introduced into an oxyhydrogen flame and melted and deposited to obtain an ingot having a diameter of 10 cm and a length of 30 cm. This ingot was homogenized in the same manner as in Example 1 to prepare a silica glass containing Nd and Al.

このガラスのNd濃度、Al濃度を蛍光X線にて調べたところ、Nd2.14wt%、Al2.57wt%であった。この結果から、[アルミニウムモル数]/[ネオジウムモル数]を求めると、6.4であった。   When the Nd concentration and Al concentration of this glass were examined by fluorescent X-ray, they were Nd 2.14 wt% and Al 2.57 wt%. From this result, [aluminum mole number] / [neodymium mole number] was found to be 6.4.

この石英ガラス中の泡を調べたところ、100cm3あたり0.08mm2であった。また、OH基濃度は50ppmであった。 When the bubbles in the quartz glass were examined, it was 0.08 mm 2 per 100 cm 3 . The OH group concentration was 50 ppm.

このガラスから直径10mmの試料ロッドを切り出し、両端面を高精度研磨して長さ100mmとした。この試料ロッドの長手方向の屈折率分布Δnは6×10-6、複屈折は15nm/cmであった。この試料ロッドの両端面に反射防止膜をつけ、波長1064nmにおける光損失係数を測定したところ、0.01cm -1 であり、光のロスは少なかった。 A sample rod having a diameter of 10 mm was cut from this glass, and both end surfaces were polished with high precision to a length of 100 mm. The sample rod had a refractive index distribution Δn in the longitudinal direction of 6 × 10 −6 and a birefringence of 15 nm / cm. Antireflection films were attached to both end faces of this sample rod, and the light loss coefficient at a wavelength of 1064 nm was measured. As a result, it was 0.01 cm −1 and there was little light loss.

この試料ロッドを用いて実施例1と同様に増幅試験を行ったが、レーザー増幅が確認できなかった。また、実施例1と同様に発振試験を行ったが、レーザー発振ができず、レーザー媒質用シリカガラスとして不十分であった。     Using this sample rod, an amplification test was conducted in the same manner as in Example 1. However, laser amplification could not be confirmed. Further, an oscillation test was conducted in the same manner as in Example 1. However, laser oscillation was not possible, and this was insufficient as silica glass for a laser medium.

本発明のレーザー増幅装置の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the laser amplifier of this invention. 本発明のレーザー発振装置の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the laser oscillation apparatus of this invention. 本発明のファイバーレーザーの構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the fiber laser of this invention. 本発明のファイバーレーザー装置の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the fiber laser apparatus of this invention. 実施例1におけるレーザー増幅装置の構成を示す説明図である。1 is an explanatory diagram illustrating a configuration of a laser amplification device according to Embodiment 1. FIG. 実施例1におけるレーザー発振装置の構成を示す説明図である。FIG. 3 is an explanatory diagram illustrating a configuration of a laser oscillation device according to the first embodiment. 実施例1において用いた金型の構成を示す説明図である。It is explanatory drawing which shows the structure of the metal mold | die used in Example 1. FIG.

符号の説明Explanation of symbols

12,22:励起用光源、14:レーザー媒質、15:試料ロッド、16:レーザー、18:パワーメーター、20:レーザー発振装置、20A:レーザー発振装置、24:レーザー媒質、26:光反射鏡、28:部分反射鏡、29:パワーメーター、30:ファイバーレーザー、32:レーザー媒質ガラス、34:シリカガラス、40:ファイバーレーザー増幅装置、42:レーザーダイオード、44:カプラー、46:入力側コネクター、48:出力側コネクター、50:金型、L:レーザー光。   12, 22: Light source for excitation, 14: Laser medium, 15: Sample rod, 16: Laser, 18: Power meter, 20: Laser oscillator, 20A: Laser oscillator, 24: Laser medium, 26: Light reflector, 28: partial reflection mirror, 29: power meter, 30: fiber laser, 32: laser medium glass, 34: silica glass, 40: fiber laser amplifier, 42: laser diode, 44: coupler, 46: input side connector, 48 : Output side connector, 50: mold, L: laser beam.

Claims (2)

希土類金属元素とアルミニウムを含有し、かつ希土類金属元素濃度が0.2wt%以上5wt%以下、[アルミニウムモル数]/[希土類金属元素モル数]で表されるアルミニウムと希土類金属元素のモル比が2以上10未満であり、可視から赤外領域の吸収波長以外の波長における光損失係数が0.02cm -1 以下、100cm3あたりの泡の総断面積が0.10mm2以下、OH基濃度が20ppm以下であり、前記希土類金属元素及びアルミニウムが、イオン交換により希土類金属元素が固定されたゼオライトを用いて導入され、かつ前記希土類金属元素がNdであることを特徴とするレーザー媒質用シリカガラス。 The rare earth metal element and aluminum are contained, and the rare earth metal element concentration is 0.2 wt% or more and 5 wt% or less, and the molar ratio of aluminum and rare earth metal element represented by [aluminum mole number] / [rare earth metal element mole number] is 2 to less than 10, optical loss coefficient at wavelengths other than visible to infrared absorption wavelength is 0.02 cm −1 or less, total cross-sectional area of bubbles per 100 cm 3 is 0.10 mm 2 or less, OH group concentration Ri der but 20ppm or less, the rare earth metal elements and aluminum is introduced using a zeolite with a rare earth metal element is fixed by ion exchange, and laser medium for silica, wherein the rare earth metal element is Nd Glass. 請求項記載のレーザー媒質用シリカガラスを用いることを特徴とするレーザー装置。 A laser apparatus comprising the silica glass for a laser medium according to claim 1 .
JP2006053583A 2006-02-28 2006-02-28 Silica glass for laser media Active JP4919463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053583A JP4919463B2 (en) 2006-02-28 2006-02-28 Silica glass for laser media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053583A JP4919463B2 (en) 2006-02-28 2006-02-28 Silica glass for laser media

Publications (2)

Publication Number Publication Date
JP2007230815A JP2007230815A (en) 2007-09-13
JP4919463B2 true JP4919463B2 (en) 2012-04-18

Family

ID=38551790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053583A Active JP4919463B2 (en) 2006-02-28 2006-02-28 Silica glass for laser media

Country Status (1)

Country Link
JP (1) JP4919463B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241276B2 (en) * 2013-01-22 2017-12-06 信越化学工業株式会社 Method for manufacturing member for EUV lithography
JP2022002257A (en) * 2020-06-19 2022-01-06 ウシオ電機株式会社 Pulse laser light source device and rare-earth-doped fiber manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502004005867D1 (en) * 2003-12-08 2008-02-14 Heraeus Quarzglas METHOD FOR PRODUCING LASER-ACTIVE QUARTZ GLASS AND USE THEREOF

Also Published As

Publication number Publication date
JP2007230815A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4979960B2 (en) Method for producing optically rare earth metal element-containing silica glass
Wang et al. Recent advances in soft optical glass fiber and fiber lasers
Jiang et al. Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length
Vázquez et al. Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission
Lakshminarayana et al. Nd3+-doped heavy metal oxide based multicomponent borate glasses for 1.06 μm solid-state NIR laser and O-band optical amplification applications
JP4722939B2 (en) Rare earth doped core optical fiber and manufacturing method thereof
EP0665992A4 (en) Phosphate glass useful in high energy lasers.
KR102166973B1 (en) Ultra-broad bandwidth laser glasses for short-pulse and high peak power lasers
JP2012066996A (en) Broadening of rare earth ion emission bandwidth in phosphate-based laser glass
Ceci-Ginistrelli et al. Nd-doped phosphate glass cane laser: From materials fabrication to power scaling tests
Kirchhof et al. Dopant interactions in high-power laser fibers
Zaiter et al. Effect of potassium or yttrium introduction in Yb3+-doped germano-gallate glasses on the structural, luminescence properties and fiber processing
JP4919463B2 (en) Silica glass for laser media
JP2014131951A (en) Tuning rare earth ion emission wavelength in phosphate based glasses using cerium oxide
EP1732856B1 (en) Glass for optical amplifier fiber
Kirchhof et al. Fiber lasers: materials, structures and technologies
Kuhn et al. All-solution doping technique for tailoring core composition toward Yb: AlPO4: SiO2
JP2004277252A (en) Optical amplification glass and optical waveguide
JP2014049457A (en) Fluorescent glass, production method of fluorescent glass, optical fiber and fiber laser
Dhar et al. Fabrication and Properties of Er-Doped Nanocrystalline Phase-Seperated Optical Fibers
Wang et al. Effect of GeO2 on the lasing performance of Yb: Phosphate glass fiber
Dorosz Rare earth ions doped aluminosilicate and phosphate double clad optical fibres
Lipatov et al. Studies on Er 2 O 3 and Yb 2 O 3 concentration limit in alumophosphorosilicate glass
Milanese et al. Nonsilica oxide glass fiber laser sources: part I
Paul et al. A new class of erbium doped optical fiber for high power optical amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4919463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250