JP4918446B2 - Fiber reinforcement for mortar and mortar molding using the same - Google Patents

Fiber reinforcement for mortar and mortar molding using the same Download PDF

Info

Publication number
JP4918446B2
JP4918446B2 JP2007254336A JP2007254336A JP4918446B2 JP 4918446 B2 JP4918446 B2 JP 4918446B2 JP 2007254336 A JP2007254336 A JP 2007254336A JP 2007254336 A JP2007254336 A JP 2007254336A JP 4918446 B2 JP4918446 B2 JP 4918446B2
Authority
JP
Japan
Prior art keywords
mortar
fiber
reinforcing material
core
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007254336A
Other languages
Japanese (ja)
Other versions
JP2009084101A (en
Inventor
晴一 高畑
雅貴 出口
淳 ▲高▼比良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
KB Seiren Ltd
Original Assignee
Seiren Co Ltd
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd, KB Seiren Ltd filed Critical Seiren Co Ltd
Priority to JP2007254336A priority Critical patent/JP4918446B2/en
Publication of JP2009084101A publication Critical patent/JP2009084101A/en
Application granted granted Critical
Publication of JP4918446B2 publication Critical patent/JP4918446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0068Composite fibres, e.g. fibres with a core and sheath of different material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1037Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0051Water-absorbing polymers, hydrophilic polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Multicomponent Fibers (AREA)

Description

本発明は、建築・土木用材料に用いるモルタルに関する。   The present invention relates to a mortar used for a construction / civil engineering material.

モルタルとは、砂(細骨材)とセメントあるいは石灰と水とを練混ぜて作る建築資材であり、通常、セメントと砂とは重量比にして1:2〜1:3の割合で混合されることが多く、ペースト目地材、躯体の調整などに多く用いられている。   Mortar is a building material made by mixing sand (fine aggregate) and cement or lime and water. Usually, cement and sand are mixed in a weight ratio of 1: 2 to 1: 3. It is often used for paste joint materials and frame adjustment.

しかし、建材用に用いられているセメントモルタルは、構造物として用いると脆弱なものであるため、引張強度、曲げ強度および衝撃強度等が低く、これらの応力が発生すると、破損したり、ひび割れ(クラック)が発生したりするため、これらを防止するために、繊維をカットしたものを繊維補強材としてモルタルに混入する方法が種々検討されている。しかし、従来の繊維補強材には、次のような欠点があった。
1.耐アルカリガラス繊維:
脆くて、実用性に欠ける。
2.ポリオレフィン又はポリエステル繊維:
疎水性のため繊維補強材を、セメントに均一に分散できず、成型後、モルタル内部に材料の不均一性による歪みが生じ、ひび割れが発生しやすい。
3.ポリビニルアルコール(PVA)又はナイロン6などのポリアミド:
モルタルへの分散性には優れるが、モルタル成型物の強度が劣化しやすく、モルタルにひび割れが生じ易く、耐久性あるモルタルを得難い。これは、PVA繊維等は吸水性が高く、水に混ぜると膨潤するため、乾燥後に繊維とモルタルの他の部分との間に隙間が発生し、モルタルの強度が劣化し、ひび割れを生じ、クラック脱落が発生し易くなるからである。
However, since cement mortar used for building materials is fragile when used as a structure, its tensile strength, bending strength, impact strength, etc. are low. If these stresses occur, it will break or crack ( In order to prevent such cracks, various methods have been studied in which fibers are cut and mixed into mortar as a fiber reinforcing material. However, the conventional fiber reinforcement has the following drawbacks.
1. Alkali resistant glass fiber:
It is brittle and lacks practicality.
2. Polyolefin or polyester fiber:
The fiber reinforcing material cannot be uniformly dispersed in the cement due to hydrophobicity, and after molding, distortion due to material non-uniformity occurs inside the mortar, and cracking is likely to occur.
3. Polyamides such as polyvinyl alcohol (PVA) or nylon 6:
Although it is excellent in dispersibility in mortar, the strength of the mortar molded product tends to deteriorate, cracks are likely to occur in the mortar, and it is difficult to obtain durable mortar. This is because PVA fibers and the like have high water absorption and swell when mixed with water. Therefore, after drying, gaps are generated between the fibers and other parts of the mortar, the strength of the mortar deteriorates, cracks occur, and cracks occur. This is because dropout is likely to occur.

例えば、特許文献1には、溶融液晶ポリエステルを繊維補強材として含有する水硬性成型物が開示されるが、かかる繊維補強材は、前記2と同様、水硬性成型物(モルタル)への分散性が悪いため、強度あるモルタルを得難く、モルタルにひびわれが生じ易く、実用化し難いものであり、また、特許文献2には、PVA繊維を繊維補強材としたセメントモルタルが開示されているが、この繊維補強材は前記3に述べた通り、水で膨潤するため、乾燥後、繊維補強材とモルタルの他の部分とに隙間が発生し、ひび割れが生じ易く、更に、特許文献3には、ポリメチルペンテンを鞘、ポリプロピレンを芯とする芯鞘複合繊維を繊維補強材として繊維強化セメント成形体を得ることが開示されているが、この繊維補強材も前記2と同様、セメントへの分散性が悪く、実用化し難いものであった。
特開平9−156984号公報 特開昭59−8664号公報 特開平2−199046号公報
For example, Patent Literature 1 discloses a hydraulic molded product containing molten liquid crystalline polyester as a fiber reinforcing material, and the fiber reinforcing material is dispersible in a hydraulic molded product (mortar) as in the above 2. However, it is difficult to obtain a strong mortar, the mortar is easily cracked, and is difficult to put into practical use, and Patent Document 2 discloses a cement mortar using PVA fiber as a fiber reinforcing material. Since this fiber reinforcing material swells with water as described in 3 above, a gap is generated between the fiber reinforcing material and the other part of the mortar after drying, and cracks are likely to occur. It is disclosed that a fiber-reinforced cement molded body is obtained by using a core-sheath composite fiber having polymethylpentene as a sheath and polypropylene as a core as a fiber reinforcing material. Dispersibility is poor, were those difficult to put into practical use.
Japanese Patent Laid-Open No. 9-156984 JP 59-8664 A Japanese Patent Laid-Open No. 2-199046

本発明は、ひび割れやクラック脱落を生じることなく、耐久性よく強度ある繊維強化モルタルを安定して製造するためのモルタル用繊維補強材、およびそれを用いた繊維強化モルタル成型物の提供を課題とする。   It is an object of the present invention to provide a fiber reinforcing material for mortar for stably producing a durable and strong fiber-reinforced mortar without causing cracks and cracks to drop, and a fiber-reinforced mortar molded product using the same. To do.

本発明では、モルタル成型時にモルタル内に混入して使用するモルタル用繊維補強材として、芯成分に疎水性のポリマーを使用し、鞘成分に親水性のポリマーを使用した芯鞘型複合繊維を使用することにより、上記課題を解決した。   In the present invention, a core-sheath type composite fiber using a hydrophobic polymer for the core component and a hydrophilic polymer for the sheath component is used as a fiber reinforcing material for mortar mixed and used in the mortar at the time of molding the mortar By doing so, the above problems were solved.

芯成分には、公定水分率が1.0%以下である繊維形成性ポリマーを使用するのが好ましく、鞘成分には、公定水分率が3.0%以上である繊維形成性ポリマーを使用するのが好ましい。
なお、公定水分率は、次式で表されるもので、式中、W1は25℃、湿度60%の条件下に24時間放置後の質量を示し、W0は真空下で80℃、24時間後の質量を示す。
. 公定水分率(%)=(W1−W0)/W1×100
The core component is preferably a fiber-forming polymer having an official moisture content of 1.0% or less, and the sheath component is a fiber-forming polymer having an official moisture content of 3.0% or more. Is preferred.
The official moisture content is represented by the following formula, where W1 represents the mass after 24 hours under conditions of 25 ° C. and 60% humidity, and W0 is 80 ° C. for 24 hours under vacuum. The latter mass is shown.
Official moisture content (%) = (W1-W0) / W1 × 100

このように、本発明では、鞘成分に公定水分率の高いポリマーを配し、芯成分に公定水分率の低いポリマーを配した芯鞘型複合繊維をモルタル用繊維補強材とすることで、鞘成分により繊維補強材のモルタルへの分散性が良好に保たれ、しかも、芯成分により繊維補強材の水中での膨潤が抑制されるため、寸法安定性に優れているので繊維補強材とモルタル間に隙間が生じにくく、密着性も良好になり、モルタルの初期の強度が安定した保持でき、ひび割れ発生や強度劣化も防止可能となる。
また施工時に液だれが生じ難く、自由な厚みで塗ることができる。したがって、取り扱いが容易で、塗った後の外観にも優れたモルタルが得られる。
Thus, in the present invention, a sheath-core composite fiber in which a polymer having a high official moisture content is arranged in the sheath component and a polymer having a low official moisture content is arranged in the core component is used as a fiber reinforcing material for mortar. The dispersibility of the fiber reinforcing material in the mortar is well maintained by the component, and the swelling of the fiber reinforcing material in water is suppressed by the core component. It is difficult to form a gap in the surface, the adhesiveness is improved, the initial strength of the mortar can be maintained stably, and the occurrence of cracks and the deterioration of strength can be prevented.
In addition, dripping does not occur easily during construction, and it can be applied with a free thickness. Therefore, the mortar which is easy to handle and excellent in appearance after coating can be obtained.

本発明の複合繊維の鞘成分としては、繊維形成性のある親水性のポリマーがいずれも使用できる。例えば、ナイロン6、ナイロン66、ポリビニルアルコール(PVA)、エチレンビニルアルコールおよびそれらの共重合体等が使用できる。なかでも、親水性のポリアミド類、例えばナイロン6、ナイロン66およびこれらの共重体を使用するのが好ましい。また、芯成分としては、繊維形成性のある疎水性ポリマーがいずれも使用できる。具体的なポリマーとして、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)およびこれらポリエステルの共重合体、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン及びこれらの共重合体、ナイロン12、ナイロン11、ナイロンMXD6、6Tナイロン等の芳香族ナイロン、ポリ塩化ビニル、ポリフェニレンサルファイド、液晶ポリエステル等が挙げられる。なかでも、疎水性ポリエステル、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)およびこれらポリエステルの共重合体を使用するのが好ましい。   As the sheath component of the conjugate fiber of the present invention, any hydrophilic polymer having fiber formability can be used. For example, nylon 6, nylon 66, polyvinyl alcohol (PVA), ethylene vinyl alcohol and copolymers thereof can be used. Among these, it is preferable to use hydrophilic polyamides such as nylon 6, nylon 66 and copolymers thereof. As the core component, any fiber-forming hydrophobic polymer can be used. Specific polymers include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN) and copolymers of these polyesters, polyethylene, polypropylene, polymethylpentene, etc. Examples thereof include polyolefins and copolymers thereof, aromatic nylons such as nylon 12, nylon 11, nylon MXD6, and 6T nylon, polyvinyl chloride, polyphenylene sulfide, and liquid crystal polyester. Among these, it is preferable to use hydrophobic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), and copolymers of these polyesters.

なお、本発明の複合繊維は、分散性の良好な点から、比重が1.0以上であるのが好ましく、特に、芯成分の比重が1.2以上で鞘成分の比重が1.0以上であるのが好ましい。具体的には、芯成分にPET、鞘成分にナイロン6および/またはナイロン66の組み合わせが好適な例として挙げられる。   The composite fiber of the present invention preferably has a specific gravity of 1.0 or more from the viewpoint of good dispersibility. Particularly, the specific gravity of the core component is 1.2 or more and the specific gravity of the sheath component is 1.0 or more. Is preferred. Specifically, a suitable example is a combination of PET as the core component and nylon 6 and / or nylon 66 as the sheath component.

また、本発明における複合繊維の鞘成分のポリマーの表面自由エネルギーは40mJ/m以上であるのが好ましく、芯成分の表面自由エネルギーは、鞘成分より低く、鞘成分と芯成分の表面自由エネルギーの差が10mJ/m未満であることが好ましい。この条件下では、複合繊維の鞘成分と芯成分の剥離が生じにくく、また、複合繊維をモルタルに分散させた際にダマになりにくく、強度の高いモルタル成型物が得られやすい。
なお、鞘成分と芯成分の表面自由エネルギーの差が10mJ/mを超えると2種類のポリマーの接着性が不足するため、複合繊維の製造中に、鞘成分と芯成分の剥離が生じるおそれがある。仮に剥離が起こった状態で延伸されると、場合によっては、鞘成分が破裂して、糸切れが生じ、歩留まりが低下する。また、糸切れが生じなかった場合には、鞘成分が破裂した状態で巻き取られ、モルタル補強用繊維として定長にカットされるが、鞘成分の破裂した繊維が混入すると、繊維同士が絡まる要因となり、モルタル内での繊維の分散が極めて悪化する虞があり、十分な補強効果が期待できない虞がある。
代表的なポリマーの表面自由エネルギーを示すと次の通りである。PET(44mJ/m)、ポリエチレン(36mJ/m)、ポリプロピレン(27mJ/m)、ナイロン6(46mJ/m)、ナイロン66(46mJ/m)、ポリビニルアルコール(55mJ/m)。これらの点からも、芯成分にPET、鞘成分にナイロン6またはナイロン66を使用するのが好ましいものとなる。
Further, the surface free energy of the polymer of the sheath component of the composite fiber in the present invention is preferably 40 mJ / m 2 or more, and the surface free energy of the core component is lower than that of the sheath component, and the surface free energy of the sheath component and the core component. The difference is preferably less than 10 mJ / m 2 . Under these conditions, the sheath component and the core component of the composite fiber are unlikely to peel off, and when the composite fiber is dispersed in the mortar, the composite fiber is less likely to become lumpy, and a mortar molded product having high strength is easily obtained.
Note that if the difference in surface free energy between the sheath component and the core component exceeds 10 mJ / m 2 , the adhesion between the two types of polymers is insufficient, and thus the sheath component and the core component may peel off during the production of the composite fiber. There is. If the film is stretched in a state where peeling has occurred, in some cases, the sheath component may rupture, resulting in yarn breakage and a decrease in yield. Further, when yarn breakage does not occur, the sheath component is wound in a ruptured state, and is cut to a fixed length as a mortar reinforcing fiber, but when the ruptured fiber of the sheath component is mixed, the fibers are entangled with each other This is a factor, and the dispersion of fibers in the mortar may be extremely deteriorated, and a sufficient reinforcing effect may not be expected.
The surface free energy of a typical polymer is shown as follows. PET (44 mJ / m 2 ), polyethylene (36 mJ / m 2 ), polypropylene (27 mJ / m 2 ), nylon 6 (46 mJ / m 2 ), nylon 66 (46 mJ / m 2 ), polyvinyl alcohol (55 mJ / m 2 ) . From these points, it is preferable to use PET as the core component and nylon 6 or nylon 66 as the sheath component.

芯成分にPETなどの疎水性のポリエステル、鞘成分にナイロン6および/またはナイロン66などの親水性のポリアミドを使用する例では、鞘成分に保水性があり、芯成分が疎水性で寸法安定性に優れているため、モルタルが柔らかくなり過ぎずに、適度な柔らかさを保てることにより、液だれが生じにくい。鞘のポリアミドに保持されている水が、施工時の「コテ圧」により、モルタル表面近くで、適度にブリージング(水とモルタルと分離して表面に浮いてくること)し、「コテ切れ」を良好にし、芯のポリエステルにより適度な柔らかさを保てるので、自由な厚みで塗ることができ、取り扱いが容易となる。このポリアミドはモルタルと良く馴染むため、施工時にコテを当てることにより、容易に伏せこむことができ、モルタルを塗った後の外観も非常に良好なものとなる。   In an example in which a hydrophobic polyester such as PET is used for the core component and a hydrophilic polyamide such as nylon 6 and / or nylon 66 is used for the sheath component, the sheath component has water retention, the core component is hydrophobic and dimensional stability Therefore, dripping does not easily occur by maintaining moderate softness without the mortar becoming too soft. Water held in the polyamide of the sheath is appropriately breathed near the surface of the mortar due to the “steel pressure” at the time of construction (being separated from the water and the mortar and floating on the surface) Since it is good and moderate softness can be maintained by the polyester of the core, it can be applied with a free thickness and handling becomes easy. Since this polyamide blends well with mortar, it can be easily laid down by applying a trowel at the time of construction, and the appearance after applying the mortar will also be very good.

また、複合繊維として水分率(25℃、60%R.H.での測定値)は3.0%未満であるのが好ましく、アルカリ減量速度(1%NaOH水溶液、80℃以上)は1.0%未満であるのが好ましい。水分率が3.0%以上の場合、モルタル中の水分を早く吸収することで施工中に乾燥が進み施工性が悪くなる虞がある。また、アルカリ減量速度が1%以上の場合、モルタル中のアルカリ成分により繊維自体が脆化する虞がある。   Further, the moisture content (measured value at 25 ° C., 60% RH) of the composite fiber is preferably less than 3.0%, and the alkali weight loss rate (1% NaOH aqueous solution, 80 ° C. or more) is 1. Preferably it is less than 0%. When the moisture content is 3.0% or more, the moisture in the mortar is absorbed quickly, so that the drying progresses during the construction and the workability may be deteriorated. Further, when the alkali weight loss rate is 1% or more, the fiber itself may be embrittled by the alkali component in the mortar.

芯鞘比は特に限定されないが、重量比率で、1:5〜10:1であるのが好ましく、複合繊維の太さは0.5〜10dtex程度、繊維のカット長は2〜30mmが好ましく、さらに3〜15mm程度であるのが好ましい。
なお、繊維のカット長が2mmより短いと、十分な補強効果が得られない虞があり、30mmより長いと繊維同士が絡まり、モルタル中での分散性が悪くなる虞がる。
The core-sheath ratio is not particularly limited, but is preferably 1: 5 to 10: 1 by weight, the thickness of the composite fiber is preferably about 0.5 to 10 dtex, and the cut length of the fiber is preferably 2 to 30 mm. Further, it is preferably about 3 to 15 mm.
If the cut length of the fiber is shorter than 2 mm, a sufficient reinforcing effect may not be obtained. If the cut length is longer than 30 mm, the fibers are entangled with each other, and the dispersibility in the mortar may be deteriorated.

また、芯と鞘の面積比は、複合繊維の横断面において、20:80〜80:20であるのが好ましく、特に40:60〜60:40であるのが、繊維補強材のモルタルへの分散性とモルタル中での耐膨潤性という両面から望ましい。芯の面積が小さすぎると、繊維補強材が水に膨潤し易くなり、逆に芯の面積が大きすぎると、繊維の製造の容易性および繊維補強材のモルタルへの分散性のいずれにおいても、問題が生じる虞がある。
なお、芯鞘型複合繊維として、芯が、外部に露出しないもののほうが好適であるが、一部、分散性が損なわれない限り、外部に露出しても構わない。露出しても構わない比率は、通常、円周長の比率において50%未満である。
Further, the area ratio of the core and the sheath is preferably 20:80 to 80:20, particularly 40:60 to 60:40 in the cross section of the composite fiber, and the fiber reinforcing material to the mortar It is desirable from both aspects of dispersibility and resistance to swelling in mortar. If the area of the core is too small, the fiber reinforcing material tends to swell in water, and conversely if the area of the core is too large, both in the ease of manufacturing the fiber and the dispersibility of the fiber reinforcing material in the mortar, There is a risk of problems.
In addition, as the core-sheath type composite fiber, it is preferable that the core is not exposed to the outside, but the core may be exposed to the outside as long as dispersibility is not impaired. The ratio that may be exposed is usually less than 50% in the ratio of circumferential length.

一般に、モルタル成型物は、例えばセメントと砂からなる主材を水に混練し、施工面に塗布し、乾燥(養生)して得られるものであるが、本発明の繊維補強材を、セメントや砂と共に混合使用することで、非常に施工性よく、ひび割れやクラックを生じにくい補強耐久性に優れたモルタル成型物を得ることが可能となる。   In general, a mortar molded product is obtained by kneading a main material composed of, for example, cement and sand in water, applying it to a construction surface, and drying (curing) it. By using it together with sand, it becomes possible to obtain a mortar molded article having excellent workability and excellent reinforcement durability that hardly causes cracks and cracks.

モルタル成型物は、例えばセメントと砂からなる主材を水に混練し、施工面に塗布し、乾燥(養生)して得られるものであるが、本発明のモルタル成型物は、前述の如きセメント、砂および水の混練物に繊維補強材を混合使用して得られるものであり、この際、繊維補強材はモルタルに対して固形分比率で0.05〜3.0重量%程度含まれるようにするのがよく、特に、0.1〜1.0重量%程度とするのが好ましい。
すなわち、十分な補強効果を得るためには、固形分比率が0.05重量%以上程度が好ましく、良好な分散性を保つ点から、固形分比率3.0重量%以下程度が好ましい。
The mortar molding is obtained by, for example, kneading a main material composed of cement and sand in water, applying it to a construction surface, and drying (curing), but the mortar molding of the present invention is a cement as described above. The fiber reinforcement is obtained by mixing and using a mixture of sand and water, and the fiber reinforcement is included in a solid content ratio of about 0.05 to 3.0% by weight with respect to the mortar. In particular, it is preferably about 0.1 to 1.0% by weight.
That is, in order to obtain a sufficient reinforcing effect, the solid content ratio is preferably about 0.05% by weight or more, and from the viewpoint of maintaining good dispersibility, the solid content ratio is preferably about 3.0% by weight or less.

なお、セメントと砂からなる主材中、セメントの使用量は20〜100重量%でよいが、通常20〜50重量%、すなわち、セメントと砂の割合が、重量比率で、20:80〜50:50であるのが好ましい。   In addition, in the main material consisting of cement and sand, the amount of cement used may be 20 to 100% by weight, but usually 20 to 50% by weight, that is, the ratio of cement and sand is 20:80 to 50% by weight. : 50 is preferable.

本発明の繊維補強材の、セメントに対する使用量は、例えば、セメントと砂の割合が、重量比率で、20:80〜50:50の場合、固形分で0.01〜1.5重量%、特に0.02〜0.5重量%程度であるのが好ましい。また、モルタル製造時の水とセメントの使用量は、重量比率で、1:1〜1:4、特に1:2〜1:3程度であるのが好ましい。   The amount of the fiber reinforcing material of the present invention used for cement is, for example, 0.01 to 1.5% by weight in terms of solid content when the ratio of cement and sand is 20:80 to 50:50 in weight ratio. In particular, it is preferably about 0.02 to 0.5% by weight. Further, the amount of water and cement used in the production of mortar is preferably about 1: 1 to 1: 4, particularly about 1: 2 to 1: 3 in terms of weight ratio.

本発明の繊維補強材は、モルタルに均一に分散し易く、この繊維補強材を使用したモルタルは、施工性に優れ、製品の補強耐久性も非常によいものとなる。本発明の繊維補強材を使用したモルタル成型物は、モルタル塗装して、時間が経過した後でも、十分な強度を保持でき、ひび割れも生じ難く、従来品に比してクラックが生じにくく、非常に品質のよい仕上がりとなる。
また、本発明の芯鞘型複合繊維をモルタル用繊維補強材とすることで、施工時に液だれが生じ難く、自由な厚みで塗ることができる。したがって、本発明の繊維補強材を使用したモルタルは取り扱いが容易で、塗った後の外観にも優れたモルタル成型物を得ることができる。
The fiber reinforcing material of the present invention is easily dispersed uniformly in the mortar, and the mortar using the fiber reinforcing material is excellent in workability and has a very good reinforcing durability of the product. The mortar molded product using the fiber reinforcing material of the present invention is capable of maintaining sufficient strength even after a lapse of time after coating with mortar, is less prone to cracking, is less prone to cracking than conventional products, and is extremely High quality finish.
Further, by using the core-sheath type composite fiber of the present invention as a fiber reinforcing material for mortar, dripping does not easily occur during construction, and it can be applied with a free thickness. Therefore, the mortar using the fiber reinforcing material of the present invention is easy to handle, and a mortar molded product having an excellent appearance after coating can be obtained.

<実施例>
以下に示す試料1〜5の糸を準備してカットし、10mm長のカットファイバーを得た。
試料1:90dtex/24fの芯成分にポリエチレンテレフタレート(公定水分率:0.4、比重:1.38)、鞘成分にナイロン6(公定水分率:4.5、比重:1.14)、芯鞘面積比率が50:50の芯鞘型複合繊維(KBセーレン株式会社製ベルカップル(登録商標)NP)。
試料2:90dtex/24fの芯成分にナイロン6(公定水分率:4.5、比重:1.14)、鞘成分にポリエチレンテレフタレート(公定水分率:0.4、比重:1.38)、芯鞘面積比率が50:50の芯鞘型複合繊維。
試料3:90dtex/24fのナイロン6単独糸(公定水分率:4.5、比重:1.14)。
試料4:100dtex/24fのポリエチレンテレフタレート単独糸(公定水分率:0.4、比重:1.38)。
試料5:100dtex/24fのポリビニルアルコール単独糸(公定水分率:4.0、比重:1.28)。
<Example>
The yarns of Samples 1 to 5 shown below were prepared and cut to obtain 10 mm long cut fibers.
Sample 1: Polyethylene terephthalate (official moisture content: 0.4, specific gravity: 1.38) as core component of 90 dtex / 24f, nylon 6 (official moisture content: 4.5, specific gravity: 1.14) as sheath component, core A core-sheath type composite fiber having a sheath area ratio of 50:50 (Belcouple (registered trademark) NP manufactured by KB Seiren Co., Ltd.).
Sample 2: Nylon 6 (official moisture content: 4.5, specific gravity: 1.14) as core component of 90 dtex / 24f, polyethylene terephthalate (official moisture content: 0.4, specific gravity: 1.38) as sheath component, core A core-sheath type composite fiber having a sheath area ratio of 50:50.
Sample 3: Nylon 6 single yarn of 90 dtex / 24f (official moisture content: 4.5, specific gravity: 1.14).
Sample 4: 100 dtex / 24f polyethylene terephthalate single yarn (official moisture content: 0.4, specific gravity: 1.38).
Sample 5: 100 dtex / 24f polyvinyl alcohol single thread (official moisture content: 4.0, specific gravity: 1.28).

実施例における性能試験および評価は、下記の方法に従った。
(施工性)
JASS15M−103規格のフロー試験に準拠する。
ポルトランドセメント100g、標準砂300g、水50g、カットファイバー0.4gを練混ぜたものを、厚さ5mmのガラス板の上に内径50mm、高さ51mmの塩化ビニル製パイプ(内容積100ml)を置き、該パイプ内部に充填した後、パイプを引き上げる。モルタルの広がりが静止した後、直角2方向の直径を測定しその平均値をフロー値とする。
評価:
◎ 55mm以下(優良)
○ 55mmより大、60mm以下(良好)
× 60mmより大(不良)
The performance test and evaluation in the examples were performed according to the following methods.
(Workability)
It conforms to the flow test of JASS15M-103 standard.
A mixture of 100 g of Portland cement, 300 g of standard sand, 50 g of water and 0.4 g of cut fiber is placed on a 5 mm thick glass plate with a vinyl chloride pipe (internal volume of 100 ml) having an inner diameter of 50 mm and a height of 51 mm. After filling the pipe, the pipe is pulled up. After the spread of the mortar stops, the diameters in two directions at right angles are measured, and the average value is taken as the flow value.
Rating:
◎ 55mm or less (excellent)
○ Greater than 55mm and less than 60mm (good)
× Greater than 60mm (defect)

(分散性)
供試体の作製方法をJISR5201規格のモルタル曲げ試験に準拠する。
ポルトランドセメント450g、標準砂1350g、水225g、カットファイバー1.8gを練混ぜ、モルタル供試体成型用型を用いて断面40mm平方、長さ160mmの角柱を作製した。その供試体を中心部で折り、その断面の補強繊維材の分散状態を目視にて評価した。
評価:
◎ 繊維同士が塊状に絡み合わず、モルタル全体に均一に分散している(優良)
× モルタル全体に分散しておらず繊維がダマになっている(不良)
(Dispersibility)
The production method of the specimen conforms to the mortar bending test of JIS R5201 standard.
450 g of Portland cement, 1350 g of standard sand, 225 g of water, and 1.8 g of cut fiber were mixed together, and a prism having a cross section of 40 mm square and a length of 160 mm was prepared using a mold for molding a mortar specimen. The specimen was folded at the center, and the dispersion state of the reinforcing fiber material in the cross section was visually evaluated.
Rating:
◎ Fibers are not entangled in a lump and are evenly distributed throughout the mortar (excellent)
× The fibers are not dispersed throughout the mortar (defect)

(補強耐久性)
繰り返し乾燥収縮による補強効果の耐久性を以下の要領で評価した。
モルタル下地用合板450mm×450mmを2枚並べ、裏面をアングルで繋ぎ合わせる。繋ぎ合わせた部分を中心にし、ポルトランドセメント1350g、標準砂4050g、水675g、カットファイバー5.4gを練混ぜ、JISR5201規格の供試体の作成方法に準じて10mm×400mm×600mm(厚×長×幅)施工および養生して試験体を作製した。得られた試験体に噴霧器を用いて水340ml染み込ませた後に、試験体表面に照射ランプを用いて3時間、照射量1145MJ/m照射する。この流れを1サイクルとし、20サイクル後、板を繋ぎ合わせた所のモルタルの亀裂の発生状況を観察した。
なお、上記1サイクルは、試験体の3ヶ月実曝を想定した促進試験とした(年平均降水量1360mm、年平均照射量4581MJ/m)。
評価:
◎ ひび割れなし(優良)
○ 16〜20サイクルでひび割れが発生した(良好)
△ 11〜15サイクルでひび割れが発生した(不良)
× 1〜14サイクルでひび割れが発生した(粗悪)
(Reinforcement durability)
The durability of the reinforcing effect by repeated drying shrinkage was evaluated as follows.
Two mortar plywood 450mm x 450mm are placed side by side, and the back side is joined at an angle. Portland cement 1350g, standard sand 4050g, water 675g, and cut fiber 5.4g are mixed, and 10mm x 400mm x 600mm (thickness x length x width) according to the JIS R5201 standard specimen preparation method. ) Construction and curing were carried out to prepare test specimens. The obtained test specimen is soaked with 340 ml of water using a sprayer, and then the irradiation surface is irradiated with an irradiation dose of 1145 MJ / m 2 for 3 hours using an irradiation lamp. This flow was defined as one cycle, and after 20 cycles, the occurrence of cracks in the mortar where the plates were joined together was observed.
In addition, the said 1 cycle was made into the accelerated test which assumed the 3-month actual exposure of the test body (annual average precipitation 1360mm, annual average irradiation amount 4581MJ / m < 2 >).
Rating:
◎ No crack (excellent)
○ Cracks occurred in 16 to 20 cycles (good)
△ Crack occurred in 11-15 cycles (defect)
× Cracks occurred in 1 to 14 cycles (bad)

[実施例1]
試料1のカットファイバーを繊維補強材として、モルタルの施工性、分散性および補強耐久性を評価した。その結果を表1に示す。
芯にポリエチレンテレフタレート、鞘にナイロン6を使用した芯鞘型複合繊維からなる試料1の繊維補強材は、表1に示すように、モルタル用の繊維補強材として施工性、分散性、補強耐久性ともに極めて優れていた。また、施工時に液だれが生じ難く、自由な厚みで塗ることができ、取り扱いが容易で、塗った後の外観も非常に良好なものとなった。
[Example 1]
Using the cut fiber of Sample 1 as a fiber reinforcing material, the workability, dispersibility and reinforcing durability of the mortar were evaluated. The results are shown in Table 1.
As shown in Table 1, the fiber reinforcing material of Sample 1 composed of a core-sheath type composite fiber using polyethylene terephthalate as the core and nylon 6 as the sheath, as shown in Table 1, is workability, dispersibility, and durability as a fiber reinforcing material for mortar. Both were very good. In addition, dripping does not easily occur during construction, and it can be applied with a free thickness, is easy to handle, and the appearance after application is very good.

[比較例1]
カットファイバーを繊維補強材として使用することなく、実施例1と同様の試験をした。
この場合には、表1に示すように、十分な施工性および補強耐久性が得られなかった。
[Comparative Example 1]
The same test as in Example 1 was performed without using the cut fiber as a fiber reinforcement.
In this case, as shown in Table 1, sufficient workability and reinforcement durability were not obtained.

[比較例2〜5]
試料2〜5のカットファイバーを繊維補強材として、モルタルの施工性、分散性および補強耐久性を評価した。その結果を表1に示す。
芯に親水性のナイロンを使用し、鞘に疎水性のポリエステルを使用した芯鞘型複合繊維からなる試料2を用いた比較例2では、繊維補強材がモルタルに分散し難く、そのため施工の際の乾燥にムラが生じ、施工後の外観は、モルタル表面で糸が浮いている部分もあり、補強耐久性はあまりよくなかった。
また、ナイロン6の単独糸からなる試料3を用いた比較例3では、繊維補強材のモルタルへの分散性に優れ、施工性も悪くなかったが、繊維補強材が水膨潤性を有するため、施工後ひび割れを生じ易く補強耐久性ある製品を得ることができなかった。
ポリエチレンテレフタレート単独糸からなる試料4を用いた比較例4では、繊維補強材がモルタルに分散し難く、また、施工の際の乾燥にムラが生じ、施工後の外観は、モルタル表面で糸が浮いている部分もあり、補強耐久性はあまりよくなかった。
更に、ポリビニルアルコール単独糸からなる試料5を用いた比較例5では、試料3を使用した比較例3の場合と同様に、施工後ひび割れを生じ易く補強耐久性ある製品を得ることができなかった。
このような比較例では、いずれも、施工時に液だれが生じやすく、実施例に比して、取り扱い性が悪く、外観のよいモルタルを得ることはできなかった。
[Comparative Examples 2 to 5]
Using the cut fibers of Samples 2 to 5 as fiber reinforcing materials, mortar workability, dispersibility, and reinforcement durability were evaluated. The results are shown in Table 1.
In Comparative Example 2 using Sample 2 made of core-sheath composite fiber using hydrophilic nylon for the core and hydrophobic polyester for the sheath, the fiber reinforcing material is difficult to disperse in the mortar. Unevenness occurred in the drying of the material, and the appearance after construction was not so good in the durability of reinforcement because there was a part where the yarn floated on the mortar surface.
Moreover, in Comparative Example 3 using the sample 3 made of a single yarn of nylon 6, the dispersibility of the fiber reinforcing material in the mortar was excellent and the workability was not bad, but the fiber reinforcing material has water swellability, It was not possible to obtain a reinforced and durable product that was prone to cracking after construction.
In Comparative Example 4 using Sample 4 made of a single polyethylene terephthalate yarn, the fiber reinforcing material is difficult to disperse in the mortar, and unevenness occurs in the drying during construction, and the appearance after the construction is such that the yarn floats on the surface of the mortar. There was also a part, reinforcement durability was not so good.
Furthermore, in Comparative Example 5 using Sample 5 made of a single polyvinyl alcohol yarn, as in Comparative Example 3 using Sample 3, it was not possible to obtain a product having reinforced durability that is likely to crack after construction. .
In any of these comparative examples, dripping was likely to occur during construction, and mortar with poor handleability and good appearance could not be obtained compared to the examples.

Figure 0004918446
Figure 0004918446

[実施例2〜6]
芯成分にPET、鞘成分にナイロン6の芯鞘型複合繊維を、複合比率を変えて紡糸して、10mm長のカットファイバーを得た。これを繊維補強材として、表1と同様の方法で、施工性、分散性および補強耐久性を評価した。その結果を表2に示す。
[Examples 2 to 6]
A core-sheath composite fiber of PET as the core component and nylon-6 as the sheath component was spun at a different composite ratio to obtain a cut fiber having a length of 10 mm. Using this as a fiber reinforcing material, workability, dispersibility, and reinforcement durability were evaluated in the same manner as in Table 1. The results are shown in Table 2.

Figure 0004918446
Figure 0004918446

芯と鞘の面積比が50:50である芯鞘型複合繊維を使用した実施例4では、施工性、分散性、補強耐久性のいずれにおいても、極めて優れた結果が得られた。
芯と鞘の面積比が40:60および60:40である芯鞘型複合繊維を使用した実施例2および実施例5では、芯と鞘の面積比が50:50である実施例3に比較して、若干劣るが、施工性、分散性、補強耐久性に優れた結果が得られた。
芯と鞘の面積比が20:80および80:20である芯鞘型複合繊維を使用した実施例1および実施例6では、芯と鞘の面積比が40:60および60:40である実施例2および実施例5に比較して少し劣るが、施工性、分散性、補強耐久性いずれも実用性あるものであり、従来品に比して良好であった。
In Example 4 in which the core-sheath composite fiber having a core-sheath area ratio of 50:50 was used, extremely excellent results were obtained in all of the workability, dispersibility, and reinforcement durability.
In Example 2 and Example 5 using core-sheath type composite fibers with core / sheath area ratios of 40:60 and 60:40, compared to Example 3 with core / sheath area ratio of 50:50 And although it was a little inferior, the result excellent in workability, dispersibility, and reinforcement durability was obtained.
In Example 1 and Example 6 using core-sheath type composite fibers having core / sheath area ratios of 20:80 and 80:20, the core / sheath area ratios were 40:60 and 60:40. Although it is a little inferior compared with Example 2 and Example 5, all workability, dispersibility, and reinforcement durability are practical, and were favorable compared with the conventional product.

Claims (7)

モルタル成型時にモルタル内に混入して使用する繊維補強材であって、芯成分に疎水性のポリマーとしてポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)又はこれらポリエステルの共重合体を使用し、鞘成分に親水性のポリマーとしてナイロン6又はナイロン66を使用した芯鞘型複合繊維からなることを特徴とするモルタル用繊維補強材。 A fiber reinforcing material used by mixing in mortar when molding mortar, and the core component is polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate as a hydrophobic polymer A fiber reinforcing material for mortar comprising a core-sheath type composite fiber using (PEN) or a copolymer of these polyesters and using nylon 6 or nylon 66 as a hydrophilic polymer as a sheath component. 前記鞘成分が公定水分率3.0%以上の繊維形成性ポリマーからなることを特徴とする請求項1のモルタル用繊維補強材。 The fiber reinforcing material for mortar according to claim 1, wherein the sheath component is made of a fiber-forming polymer having an official moisture content of 3.0% or more. 前記芯成分が公定水分率1.0%以下の繊維形成性ポリマーからなることを特徴とする請求項1又は2のモルタル用繊維補強材。 The fiber reinforcing material for mortar according to claim 1 or 2, wherein the core component comprises a fiber-forming polymer having an official moisture content of 1.0% or less. 前記複合繊維の横断面で芯と鞘の面積比が20:80〜80:20であることを特徴とする請求項1〜3のいずれか1項のモルタル用繊維補強材。 The fiber reinforcing material for mortar according to any one of claims 1 to 3, wherein an area ratio of the core and the sheath is 20:80 to 80:20 in a cross section of the composite fiber. 砂、セメントおよび水に繊維補強材を混練して製造したモルタル成型物であって、前記繊維補強材として、請求項1〜4のいずれかに記載の繊維補強材を使用してなることを特徴とするモルタル成型物。A mortar molded product produced by kneading a fiber reinforcement in sand, cement and water, wherein the fiber reinforcement according to any one of claims 1 to 4 is used as the fiber reinforcement. A mortar molded product. 前記繊維補強材がモルタルに対して固形分比率で0.05〜3.0重量%の割合で含まれていることを特徴とする請求項5のモルタル成型物。6. The molded mortar according to claim 5, wherein the fiber reinforcing material is contained in a proportion of 0.05 to 3.0% by weight in solid content ratio with respect to the mortar. 前記繊維補強材がセメントに対して、0.012〜0.75重量%の割合で使用されていることを特徴とする請求項5又は6のモルタル成型物。The mortar molding according to claim 5 or 6, wherein the fiber reinforcing material is used in a proportion of 0.012 to 0.75% by weight based on cement.
JP2007254336A 2007-09-28 2007-09-28 Fiber reinforcement for mortar and mortar molding using the same Expired - Fee Related JP4918446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254336A JP4918446B2 (en) 2007-09-28 2007-09-28 Fiber reinforcement for mortar and mortar molding using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254336A JP4918446B2 (en) 2007-09-28 2007-09-28 Fiber reinforcement for mortar and mortar molding using the same

Publications (2)

Publication Number Publication Date
JP2009084101A JP2009084101A (en) 2009-04-23
JP4918446B2 true JP4918446B2 (en) 2012-04-18

Family

ID=40658008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254336A Expired - Fee Related JP4918446B2 (en) 2007-09-28 2007-09-28 Fiber reinforcement for mortar and mortar molding using the same

Country Status (1)

Country Link
JP (1) JP4918446B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130269245A1 (en) * 2012-04-13 2013-10-17 Mario Humberto Lozano Cavazos Composite floral sphere
AU2014340205B2 (en) * 2013-10-22 2017-08-31 3M Innovative Properties Company Well cement composition including multi-component fibers and method of cementing using the same
WO2018002808A1 (en) * 2016-06-29 2018-01-04 Reliance Industries Limited Hydrophilic polymeric fibers and a process for preparing the same
WO2023170257A1 (en) * 2022-03-11 2023-09-14 Sika Technology Ag Fiber-reinforced structures

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573750A (en) * 1980-06-09 1982-01-09 Shimizu Construction Co Ltd Fiber reinforced concrete
JPS57156363A (en) * 1981-03-19 1982-09-27 Dainippon Ink & Chemicals Formed body
JPH01203564A (en) * 1988-02-08 1989-08-16 Kanebo Ltd Concrete placing form
JP2606618B2 (en) * 1995-11-27 1997-05-07 東レ株式会社 Manufacturing method of cement structure
JPH11157894A (en) * 1997-12-01 1999-06-15 Kuraray Co Ltd Fiber for reinforcing cement
JPH11255544A (en) * 1998-03-09 1999-09-21 Tesac Corp Reinforcing fiber for cement material and formed cement produced by using the fiber
WO2001042160A1 (en) * 1999-12-08 2001-06-14 Dow Global Technologies Inc. Architectural concrete having a reinforcing polymer and process to make same
JP3614757B2 (en) * 2000-04-20 2005-01-26 トラスト企画株式会社 Fiber for reinforcing concrete and fiber-reinforced concrete composition
JP4744676B2 (en) * 2000-07-12 2011-08-10 ダイワボウホールディングス株式会社 Cement reinforcing composite fiber

Also Published As

Publication number Publication date
JP2009084101A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
KR101956415B1 (en) Fiber reinforced polypropylene resin composition, molding material and prepreg
US6569526B2 (en) Highly dispersible reinforcing polymeric fibers
JP4918446B2 (en) Fiber reinforcement for mortar and mortar molding using the same
JP6263336B2 (en) Synthetic fiber for self-healing of cracks in hardened cement, hardened cement containing the same, and method for repairing cracks in hardened cement
US8912250B2 (en) Synthetic fiber for three-dimensional reinforcement of a cement product
JP5770091B2 (en) Fiber-cement product compositions and shaped products obtained therefrom
JP4454847B2 (en) Shaped fibers-cement products and reinforcing fibers for such products
KR101952069B1 (en) bundle-type short fibers for fiber reinforced concrete using steel conjugate fiber and fiber Reinforced concrete using thereof
JP6453575B2 (en) Fiber reinforced resin composition
JPH0216258B2 (en)
EP2873755B1 (en) Bi-component fibers with EVOH on the surface for concrete reinforcement
JP6777436B2 (en) Fiber for self-healing cracks in hardened cement, its manufacturing method and the hardened cement containing it, and repairing cracks in hardened cement
PT1044939E (en) Shaped fibrous cement products and reinforcement fibers for such products and method for treating such fibers
KR101950849B1 (en) Method for preparing fiber-complex for reinforcing concrete and concrete comprising the fiber-complex
Thomas Fibre composites as construction materials
JP2005239512A5 (en)
JP2003055011A (en) Rod for reinforcing concrete and manufacturing method therefor
JP2005239512A (en) Sized fiber for cement reinforcement
JP4970675B2 (en) Polyolefin fiber for cement reinforcement and method for producing the same
JP2000064116A (en) Fiber for reinforcing concrete
JP2020176035A (en) Cement reinforcement material
WO2019126847A1 (en) Fibre for reinforcing fibre cement, fibre production method and fibre cement article
JP7476112B2 (en) Bundling yarn, hydraulic composition and molded body
RU2457290C2 (en) Polypropylene fibres, production methods thereof and use thereof
FR2479280A1 (en) SYNTHETIC POLYVINYL ALCOHOL FIBERS FOR REINFORCING CEMENT PRODUCTS AND PROCESS FOR THEIR MANUFACTURE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4918446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees