JP4917786B2 - Hydrogen separation member and hydrogen separation module using the hydrogen separation member - Google Patents

Hydrogen separation member and hydrogen separation module using the hydrogen separation member Download PDF

Info

Publication number
JP4917786B2
JP4917786B2 JP2005286023A JP2005286023A JP4917786B2 JP 4917786 B2 JP4917786 B2 JP 4917786B2 JP 2005286023 A JP2005286023 A JP 2005286023A JP 2005286023 A JP2005286023 A JP 2005286023A JP 4917786 B2 JP4917786 B2 JP 4917786B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen separation
metal
permeable membrane
receiving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005286023A
Other languages
Japanese (ja)
Other versions
JP2007090294A (en
Inventor
英臣 石部
裕康 田賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2005286023A priority Critical patent/JP4917786B2/en
Publication of JP2007090294A publication Critical patent/JP2007090294A/en
Application granted granted Critical
Publication of JP4917786B2 publication Critical patent/JP4917786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素を混合する水素混合ガス中の水素ガスを選択的に透過し分離するのに用いうる水素分離部材、及びその水素分離部材を用いた水素分離モジュールに関する。   The present invention relates to a hydrogen separation member that can be used to selectively permeate and separate hydrogen gas in a hydrogen mixed gas mixed with hydrogen, and a hydrogen separation module using the hydrogen separation member.

水素は次世代のエネルギー源として、その生成のための技術が種々提案され、例えば水の電気分解による方法、あるいはメタノール、液化天然ガス、都市ガスなどの各種原料ガスから水蒸気改質によって水素ガスをうる方法などがあるが、特に後者においては、それらのガスの改質、変成によって水素ガスを混合する水素混合ガスが用いられる。しかし、水素ガスを発電燃料等として利用するには、その水素混合ガスから水素ガスのみを99.99%以上の高純度で分離することが必要となる。   Hydrogen has been proposed as a next-generation energy source, and various technologies for its production have been proposed. In particular, in the latter case, a hydrogen mixed gas in which hydrogen gas is mixed by reforming or modifying these gases is used. However, in order to use hydrogen gas as a power generation fuel or the like, it is necessary to separate only hydrogen gas from the hydrogen mixed gas with a high purity of 99.99% or more.

従来、原料ガスから水素を得る方法として、例えば図9に天然ガスの場合を示すように、350゜Cの脱硫器aで脱硫したのち、改質用の水蒸気を導入する800゜Cでの改質器b、400゜Cでの高温CO変成器c、250゜Cでの低温CO変成器dをへて、100゜C以下の温度のPSA(水素生成装置)eで水素を生成して取り出す水素分離プロセスが用いられている。   Conventionally, as a method for obtaining hydrogen from a raw material gas, for example, as shown in the case of natural gas in FIG. 9, after desulfurization with a desulfurizer a at 350 ° C., reforming at 800 ° C. is performed by introducing steam for reforming. Pass the mass device b, the high temperature CO converter c at 400 ° C, and the low temperature CO converter d at 250 ° C, and generate and take out hydrogen with a PSA (hydrogen generator) e at a temperature of 100 ° C or less. A hydrogen separation process is used.

しかしながらこのPSAを用いるプロセスでは、処理工程、使用する機器数が多く、しかも反応が平衡反応で800℃程度の高温加熱温度であることから、通常はセラミックなど耐熱製部材が用いられる。しかし、セラミックによるものでは成形性や機能面、取扱性等の面で問題があり、装置自体の大型化しやすく、又水素精製効率などの面からも改善が望まれている。
However, in the process using this PSA, process steps, many number of devices to be used, yet since the reaction is high heating temperature of about 800 ° C. an equilibrium reaction, typically Ru is used heat made member such as a ceramic. However, ceramics have problems in terms of formability, function, handling, etc., and the size of the device itself is likely to increase, and improvements are also desired in terms of hydrogen purification efficiency.

このため、図10に示すように、脱硫器aの下流に水蒸気とともに導入される原料ガスの改質、変性と同時に、水素分離をともになしうるメンブレンリアクターfが試みられている。このシステムは非平衡反応であり、加熱温度も例えば500〜550゜C程度の低い温度で動作し、またその構造は、例えば原料ガス(例えばメタン)と水蒸気との取入れ口とオフガスの吐出口を有するタンクに水素ガス取出し口を有する水素分離モジュールを設けたもので、また改質,変成のための触媒を装填したものも検討されている。従ってこの方式では、導入される原料ガスと水蒸気から水素を2つの工程で精製分離でき、空間に残留するオフガスは取り出されて燃料ガス、又はその温度が活用され再利用される。また、このメンブレンリアクターを用いる水素分離装置は稼動温度の引下げが可能で、前記従来のプロセスの装置に比して大幅に小型化、簡易化できることから家庭用、スタンド用などのオフサイドの装置として利用できる他、自動車などの移動用装置としての可能性も期待されている。   For this reason, as shown in FIG. 10, an attempt has been made to use a membrane reactor f capable of performing hydrogen separation simultaneously with reforming and denaturation of the raw material gas introduced together with water vapor downstream of the desulfurizer a. This system is a non-equilibrium reaction, and the heating temperature operates at a low temperature of, for example, about 500 to 550 ° C., and its structure has, for example, an inlet for raw material gas (for example, methane) and water vapor and an outlet for off-gas. A tank equipped with a hydrogen separation module having a hydrogen gas outlet and a catalyst for reforming and transformation is being studied. Therefore, in this system, hydrogen can be purified and separated from the introduced raw material gas and water vapor in two steps, and the off-gas remaining in the space is taken out and reused by utilizing the fuel gas or its temperature. In addition, the hydrogen separation device using this membrane reactor can reduce the operating temperature, and can be greatly reduced in size and simplified compared to the conventional process device, so it can be used as an off-side device for home use and stand use. In addition, it is also expected to be a mobile device for automobiles.

このような水素分離膜は、表面に水素ガスを選択的に透過するPd又はその合金を用いた薄膜状の水素透過膜を原料ガス側に向けて配置し、多孔質の受け部材で支持するものであって、水素透過膜に作用する圧力を受け部材で担持しながら多孔質がなす流体流路を通じて水素ガスを取り出すものであり、従来から種々方法で実施されている。   Such a hydrogen separation membrane has a thin hydrogen permeable membrane using Pd or an alloy thereof selectively permeating hydrogen gas on its surface facing the source gas side, and is supported by a porous receiving member. In this case, hydrogen gas is taken out through a fluid flow path made of a porous material while receiving a pressure acting on the hydrogen permeable membrane by a member, and has been practiced by various methods.

例えば特許文献1では、水素透過膜をめっき、真空蒸着、イオンプレーティング、CVC法によって多孔質の支持体上に形成すること、また特許文献2では真空蒸着法により支持体に形成することを記載している。さらにこれら特許文献は、多孔質な受け部材の表面上に薄膜を形成するにあたり、表面上の微細空孔や凹凸間を密にブリッジする為に、予めその外表面をシリカやアルミナゲルなどの空孔充填剤を練り込んで平滑表面にした後に水素透過膜を形成することを提案し、前記空孔充填剤はその後の加熱処理で最終的には除去されるものとしている。   For example, Patent Document 1 describes that a hydrogen permeable film is formed on a porous support by plating, vacuum deposition, ion plating, and CVC, and Patent Document 2 describes that a hydrogen permeable film is formed on the support by vacuum deposition. is doing. Furthermore, in these patent documents, when forming a thin film on the surface of a porous receiving member, the outer surface is preliminarily made of a void such as silica or alumina gel in order to bridge fine pores and irregularities on the surface. It has been proposed to form a hydrogen permeable membrane after kneading the pore filler to make it a smooth surface, and the pore filler is finally removed by subsequent heat treatment.

さらに、水素透過膜を、予め箔状として用いる提案が特許文献3、特許文献4によってなされている。   Further, Patent Document 3 and Patent Document 4 propose to use the hydrogen permeable membrane as a foil shape in advance.

特許2955062号公報Japanese Patent No. 2955062 特開2002−336664号公報JP 2002-336664 A 特許33277640号公報Japanese Patent No. 3277640 特許3174668号公報Japanese Patent No. 3174668

しかしながら、前記特許文献1,2で用いる前記空孔充填剤は一般的に高粘性のゲル状体であり、充填剤の表層部空孔内への均一充填や余剰充填剤の完全かつ均一な除去には高度の技術を必要とし、多大の手間を要することから生産性にも劣る。又空孔充填剤の不均一な塗布は、水素透過膜の厚さを変動させピンホールの原因となって製品歩留まりを低下させる。また、こうした問題を防ぐ為に水素透過膜自体を厚くすることもできるが、その場合には水素ガスの透過効率が低下するばかりでなく、透過膜の生産性を下げたり、高価なPd材料の使用が増すなど別の問題が生じる。   However, the pore filler used in Patent Documents 1 and 2 is generally a highly viscous gel-like body, and the filler is uniformly filled into the surface layer pores and the excess filler is completely and uniformly removed. Requires a high level of technology and requires a great deal of labor, so it is inferior in productivity. In addition, non-uniform application of the pore filler causes the thickness of the hydrogen permeable membrane to fluctuate, causing pinholes and reducing the product yield. In addition, in order to prevent such problems, the hydrogen permeable membrane itself can be made thick. In this case, not only the hydrogen gas transmission efficiency is lowered, but also the productivity of the permeable membrane is lowered, or an expensive Pd material is used. Other problems arise, such as increased use.

さらにこのメンブレンリアクターは、装置使用時には前記温度に加熱され、また中断や停止時には降温し、その繰り返しによって、前記リアクターに付設した水素透過膜には膨張と収縮が繰り返され、この熱影響によって薄膜材料は相変態して熱疲労を招く他、受け部材中の金属が拡散によって侵入し、透過膜の性能を低下させたり、クラックやピンホールq(ピンホール)の原因(図8に例示する)などの欠陥が発生しやすい欠点もある。   Further, this membrane reactor is heated to the above temperature when the apparatus is used, and is lowered when the apparatus is interrupted or stopped. By repeating this, the hydrogen permeable membrane attached to the reactor is repeatedly expanded and contracted. In addition to causing phase fatigue due to phase transformation, the metal in the receiving member penetrates by diffusion and deteriorates the performance of the permeable membrane, causes of cracks and pinhole q (pinhole) (illustrated in FIG. 8), etc. There is also a drawback that this defect is likely to occur.

また、特許文献3は、水素透過性金属箔をAg,Au,Pt,Ni及びCuからなる群から選ばれるいずれかの金属層を介して金属多孔体の表面に接合させてなることを特徴としている。又金属層を介して接合させる方法として、金属多孔体の表面にこれらの金属を真空蒸着などの乾式コーティング法あるいは電気メッキなどの湿式コーティング法によりコーティングしておき、金属箔と合わせて加熱、加圧して接合させることを意味するとしている。さらに特許文献4は金属不織布を受け部材として用いることを要件とする。   Patent Document 3 is characterized in that a hydrogen permeable metal foil is bonded to the surface of a metal porous body via any metal layer selected from the group consisting of Ag, Au, Pt, Ni and Cu. Yes. In addition, as a method of bonding via a metal layer, these metals are coated on the surface of the porous metal body by a dry coating method such as vacuum deposition or a wet coating method such as electroplating, and heated and heated together with the metal foil. It means to press and join. Furthermore, patent document 4 makes it a requirement to use a metal nonwoven fabric as a receiving member.

本発明は、多孔質の焼結体からなり通気可能な支持体に、該支持体の外面を覆い該支持体よりも微細な空孔を有する微細層を配して焼結した複数層状の受け部材とし、かつその外表面に、箔状の水素透過膜を配することを基本として、耐久性に富み、水素分離効率の向上を可能としうる水素分離セルの提供を課題としている。   The present invention provides a multi-layered receiver in which a porous layer made of a sintered body and a breathable support is provided with a fine layer covering the outer surface of the support and having finer pores than the support. It is an object to provide a hydrogen separation cell that is highly durable and can improve the hydrogen separation efficiency on the basis of providing a member and a foil-like hydrogen permeable membrane on the outer surface thereof.

本件請求項1に係る発明は、多孔質の焼結体からなり通気可能な筒状の支持体に、該支持体の外面を覆い該支持体よりも微細な空孔を有する微細層を配して焼結一体化した複層の受け部材、及び該受け部材の外表面に配されるとともに水素混合ガスから水素ガスを選択的に透過する水素透過膜を具え、
前記微細層は、繊維径dが0.1〜20.0μm、繊維長さLと前記繊維径dとの平均アスペクト比L/dが2〜20である金属短繊維がランダムに立体的に配されることにより形成され、しかも
前記微細層は、前記水素透過膜と接する表面に、押圧によって最表面側の前記金属短繊維が部分的に扁平化された平坦面を具え、
前記水素透過膜は、Pd又はPdを含む水素分離金属の引き延ばしによって厚さ2〜30μmとする箔体であり、前記微細層の外表面に非結合状態で付設したことを特徴とする水素分離部材である。
In the invention according to Claim 1, a fine layer having a pore that covers the outer surface of the support and is finer than the support is provided on a cylindrical support made of a porous sintered body and capable of passing air. A multilayered receiving member integrated with sintering, and a hydrogen permeable membrane that is disposed on the outer surface of the receiving member and selectively permeates hydrogen gas from a hydrogen mixed gas,
In the fine layer, short metal fibers having a fiber diameter d of 0.1 to 20.0 μm and an average aspect ratio L / d between a fiber length L and the fiber diameter d of 2 to 20 are randomly and three-dimensionally arranged. The fine layer has a flat surface in which the short metal fibers on the outermost surface are partially flattened by pressing on the surface in contact with the hydrogen permeable membrane,
The hydrogen permeable membrane is a foil having a thickness of 2 to 30 μm by stretching Pd or a hydrogen separation metal containing Pd, and is attached to the outer surface of the fine layer in a non-bonded state. It is.

請求項2に係る発明は、前記金属短繊維の前記アスペクト比が、3〜10であることを特徴とし、請求項3に係る発明は、前記受け部材の前記外表面の少なくとも前記水素透過膜と接する微細層の接触面が、非拡散金属のめっき層が形成され、又請求項5に係る発明は、前記水素分離金属が、Pd金属、Pd−Cu合金又はPd−Ag合金のいずれか1種によることを特徴としている。又請求項6に係る発明は、前記微細層は、単位面積当たりの前記平坦面の面積である平坦度面積比が5〜0%である。又請求項7に係る発明は、前記受け部材は、Ni当量が26%以上のオーステナイト系ステンレス鋼で形成される。
The invention according to claim 2 is characterized in that the aspect ratio of the short metal fibers is 3 to 10, and the invention according to claim 3 is characterized in that at least the hydrogen permeable membrane on the outer surface of the receiving member A non-diffusive metal plating layer is formed on the contact surface of the fine layer in contact, and the invention according to claim 5 is that the hydrogen separation metal is any one of Pd metal, Pd—Cu alloy, and Pd—Ag alloy. It is characterized by. In the invention according to claim 6, the fine layer has a flatness area ratio, which is an area of the flat surface per unit area, of 5 to 0%. In the invention according to claim 7, the receiving member is made of austenitic stainless steel having a Ni equivalent of 26% or more.

請求項に係る水素分離モジュールは、請求項1〜のいずれかの前記水素分離部材に、その一端に接続用の継手金具を、他端に接続用の前記継手金具又は閉止用の閉止金具を設けたものであることを特徴とする。
A hydrogen separation module according to an eighth aspect of the present invention is the hydrogen separation member according to any one of the first to seventh aspects, wherein a joint fitting for connection is provided at one end and the joint fitting for connection or a closure fitting for closing is provided at the other end. Is provided.

請求項1に係る発明は、前記水素透過膜を受け部材の外表面で高密度に支持でき、水素透過膜を広い範囲で安定して非結合状態で保持できる。その結果、水素透過膜に局部的な変形、局部的応力が発生するのを抑制でき、耐久性を向上する。又熱の昇降を繰り返えす熱履歴を受けるときにも、空孔が微細であり、水素透過膜に作用する応力の集中を減じることにより、熱疲労による被害を減じるとともに、均一流量の気体流路を形成でき、水素分離効率の向上に役立つ。   The invention according to claim 1 can support the hydrogen permeable membrane at a high density on the outer surface of the receiving member, and can stably hold the hydrogen permeable membrane in a non-bonded state in a wide range. As a result, it is possible to suppress the occurrence of local deformation and local stress in the hydrogen permeable membrane, thereby improving durability. Also, when receiving thermal history that repeats heating up and down, the pores are fine, reducing the concentration of stress acting on the hydrogen permeable membrane, reducing damage due to thermal fatigue and uniform gas flow rate A channel can be formed, which helps to improve the hydrogen separation efficiency.

又前記水素透過膜は、Pd又はPdを含む水素分離金属の引き延ばしによって厚さ2〜30μmとする箔材料であり、この箔自体を予め検査し、取付方法を管理することにより、化学的手法のめっきの場合に比して均一厚さを具えるとともに、ピンホールなどの欠陥発生を予防できる他、厚さを前記のように薄くできることに伴い、水素分離効率を高め得るとともに、メンブレンリアクターとしての信頼性を高めうる。さらに水素透過膜は受け部材に非結合状態で付設していることから、両者の接触がポイント的な点接触で支持でき、その結果、水素の流通は透過膜の全面を用いるものとなり、処理効率を高めることができ、かつ前記のように、熱疲労による剥離等の発生を抑制できる。   The hydrogen permeable membrane is a foil material having a thickness of 2 to 30 μm by extending Pd or a hydrogen separation metal containing Pd. By inspecting the foil in advance and managing the mounting method, In addition to providing a uniform thickness compared to the case of plating, it is possible to prevent the occurrence of defects such as pinholes, and as the thickness can be reduced as described above, the hydrogen separation efficiency can be increased, and as a membrane reactor Reliability can be improved. Furthermore, since the hydrogen permeable membrane is attached to the receiving member in a non-bonded state, the contact between the two can be supported by point-point contact, and as a result, the flow of hydrogen uses the entire surface of the permeable membrane, and the processing efficiency And, as described above, it is possible to suppress the occurrence of peeling due to thermal fatigue.

又請求項2に係る発明では、金属短繊維の平均アスペクト比を3〜10とすることによって、各短繊維のランダムかつ均一分布を高め、前記支持機能と流通機能の向上し、請求項3及び4に係る発明では、前記水素透過膜と接する面を非拡散金属のめっき層が形成されることで、支持体がFeを含むステンレス鋼などからなる場合であっても、Fe成分などの不要元素が水素透過膜に拡散して水素透過性能を低下が防止でき、耐久性に優れた水素分離部材を提供できる。   Further, in the invention according to claim 2, by setting the average aspect ratio of the short metal fibers to 3 to 10, the random and uniform distribution of each short fiber is improved, and the support function and the distribution function are improved. In the invention according to No. 4, an unnecessary element such as an Fe component is formed even when the support is made of stainless steel containing Fe or the like by forming a non-diffusive metal plating layer on the surface in contact with the hydrogen permeable membrane. Can be prevented from diffusing into the hydrogen permeable membrane to prevent the hydrogen permeation performance from being lowered, and a hydrogen separation member having excellent durability can be provided.

さらに請求項5の発明では、水素ガスの透過性能を増して精製効率を高め、請求項6の発明では、水素分離モジュールとして、その端部に継手用金具や閉止金具を設け、機械装置への取り付けを容易にして用途範囲の拡大を図るものとなる。   Further, in the invention of claim 5, the hydrogen gas permeation performance is increased to improve the purification efficiency, and in the invention of claim 6, as a hydrogen separation module, a fitting metal fitting or a closing metal fitting is provided at an end of the hydrogen separation module. This makes it easy to mount and expand the application range.

以下、本発明実施するための最良の形態を図面を用いて説明する。
図1〜図3において、本発明の水素分離部材1は、多孔質の焼結体からなり通気可能な筒状の支持体2に、該支持体2の外面を覆いかつ金属短繊維3Aを用いて形成された微細な空孔を有する微細層3を配して焼結一体化した2層筒状体からなる受け部材5の外表面5aに、水素透過膜7を配している。又図1では、その一端部に端金具14である継手用金具14Aを、他端部に端金具14である閉止金具14Bを各々設けることにより水素分離モジュール1Aを形成している。
The best mode for carrying out the present invention will be described below with reference to the drawings.
1 to 3, a hydrogen separation member 1 according to the present invention uses a porous sintered body 2 made of a porous sintered body that covers the outer surface of the support 2 and uses short metal fibers 3A. A hydrogen permeable membrane 7 is arranged on the outer surface 5a of the receiving member 5 made of a two-layer cylindrical body in which the fine layer 3 having fine pores formed in this manner is arranged and sintered. In FIG. 1, the hydrogen separation module 1 </ b> A is formed by providing a joint fitting 14 </ b> A that is an end fitting 14 at one end and a closing fitting 14 </ b> B that is an end fitting 14 at the other end.

前記水素分離部材1を構成する受け部材5は、構造体としての必要強度とガスの流通を円滑にする空孔精度を具えており、本形態では、前記支持体2は、例えば♯140/200メッシュ〜200/250程度の比較的粗大な金属粉末、繊維径5〜50μm程度の金属繊維を所定厚さの筒状に成形し焼結した焼結体が用いられる。   The receiving member 5 constituting the hydrogen separation member 1 has the necessary strength as a structural body and the accuracy of pores for smooth gas flow. In this embodiment, the support 2 is, for example, # 140/200 A relatively coarse metal powder having a mesh size of about 200/250 and a sintered body formed by sintering a metal fiber having a fiber diameter of about 5 to 50 μm into a cylindrical shape having a predetermined thickness are used.

その材料の一例として、例えばステンレス鋼の他、インコネル、ハステロイ(登録商標)などのニッケル、ニッケル合金、チタン及びチタン合金など耐食性と耐熱性に優れた金属材料によるものが選定され、前記ステンレス鋼では、例えばSUS316L、SUS317L等の低C材料が好適する。これに限るものではなく、後述するCo金属やCo合金を用いることもできる。また前記粉末の形状については、例えばアトマイズド粉末による球形状や異形状などの他、例えば前記のように短繊維状にしたものなど任意のものが利用でき、比較的大きな空孔を具えるものが必要に応じて選定される。又支持体2は円筒,角筒状とともに有底キャップ状など、種々な形状に形成できる。又受け部材5は、水素脆性を防止するため、例えばNi当量26%以上のオーステナイト系ステンレス鋼で形成するのが好ましい。なおNi当量とは、
Ni当量=Ni+0.65Cr+0.98Mo+1.05Mn
+0.35Si+12.6C
で表される。
As an example of the material, for example, stainless steel, nickel, nickel alloy, titanium and titanium alloy such as Inconel, Hastelloy (registered trademark), and the like are selected from those having excellent corrosion resistance and heat resistance. For example, a low C material such as SUS316L or SUS317L is suitable. However, the present invention is not limited to this, and Co metal and Co alloy described later can also be used. As for the shape of the powder, for example, any shape such as a spherical shape or an irregular shape by atomized powder, for example, a short fiber shape as described above can be used, and the powder has relatively large pores. It is selected as necessary. The support 2 can be formed in various shapes such as a cylindrical shape, a rectangular tube shape, and a bottomed cap shape. In order to prevent hydrogen embrittlement, the receiving member 5 is preferably formed of, for example, austenitic stainless steel having a Ni equivalent of 26% or more. The Ni equivalent is
Ni equivalent = Ni + 0.65Cr + 0.98Mo + 1.05Mn
+ 0.35Si + 12.6C
It is represented by

一方、前記支持体2の表面を覆う前記微細層3は、繊維径dが0.1〜20.0μm、繊維長さLと前記繊維径dとの平均アスペクト比L/dが2〜20である金属短繊維が、向きランダムに立体的に配することで形成するものであり、この金属短繊維による微細層では、各短繊維が方向自由に分布して立体空孔が形成できることから、微細かつ高空孔率を有する多孔質構造体を提供できる利点がある。特に特公昭63−63645号公報が開示する、熱処理による結晶粒界の長さを調整、粒界腐食の工程を含む製造方法で得られるステンレス鋼短繊維では、切断端部にはダレのない直棒状の柱状片であることから、成形時での各短繊維同士の絡み合いを防いで均一分布でき、好ましく採用できる。 On the other hand, the fine layer 3 covering the surface of the support 2 has a fiber diameter d of 0.1 to 20.0 μm, and an average aspect ratio L / d between a fiber length L and the fiber diameter d of 2 to 20. A certain short metal fiber is formed by randomly arranging three-dimensionally in random directions. In the fine layer of this short metal fiber, each short fiber can be freely distributed in the direction to form a three-dimensional pore. Moreover, there is an advantage that a porous structure having a high porosity can be provided. In particular, a stainless steel short fiber obtained by a manufacturing method disclosed in Japanese Patent Publication No. 63-63645, which adjusts the length of a grain boundary by heat treatment and includes a process of intergranular corrosion, Since it is a rod-like columnar piece, it can be uniformly distributed by preventing the short fibers from being entangled with each other at the time of molding, and can be preferably employed.

本発明で繊維径dを20μm以下とする理由は、得られる支持体表面が比較的平滑とするためであり、また粗大短繊維はその表面上に形成されるPd膜との接触、結合する面積が大となり、それに伴って有効透過面積が減少することから透過性能自体を低下させる。   The reason why the fiber diameter d is 20 μm or less in the present invention is that the obtained support surface is relatively smooth, and the coarse and short fibers are in contact with and bonded to the Pd film formed on the surface. Increases, and the effective transmission area decreases accordingly, so that the transmission performance itself is lowered.

繊維径の大きい短繊維や粒子を用いるものでは、そこに形成される凹凸が大きくなり、また水素透過膜7を支持する間隔も広がってガス圧によって該水素透過膜7が破損することが推測される。前記厚さの薄膜に短繊維で支持するには、繊維径の上限を20μm、好ましくは10μm以下、さらに好ましくは5μm以下、より好ましくは2μmよりも小とする。またその下限については特に限定するものではないが、例えば0.1μm程度まで細いものであっても構わない。しかし、このような細径化した短繊維はコスト高であることから、通常は0.5〜10μm程度とする。   In the case of using short fibers or particles having a large fiber diameter, it is assumed that the unevenness formed therein becomes large, the interval for supporting the hydrogen permeable membrane 7 is widened, and the hydrogen permeable membrane 7 is damaged by the gas pressure. The In order to support the thin film having the thickness with short fibers, the upper limit of the fiber diameter is 20 μm, preferably 10 μm or less, more preferably 5 μm or less, and more preferably less than 2 μm. The lower limit is not particularly limited, but may be as thin as about 0.1 μm, for example. However, such a short fiber having a small diameter is expensive, and is usually about 0.5 to 10 μm.

この繊維径dについては、該短繊維の横断面形状が例えば円形の柱状体である場合はその直径でもって示し、また非円形な短繊維ではその横断面における長辺と短辺との平均値とする。   As for the fiber diameter d, when the cross-sectional shape of the short fiber is, for example, a circular columnar body, the diameter is indicated by the diameter. In the case of a non-circular short fiber, the average value of the long side and the short side in the cross-section is shown. And

また前記アスペクト比は、実測繊維長さLを前記平均繊維径dで除したものを意味し、その平均値を2〜20としている。この平均値が20を越えるものでは、多孔体とした場合には、表面凹凸を大きくして孔径分布の幅が広がったり、短繊維の方向性が平面的になりやすい。また、その値が2を下回るものでは、その形状は一般的な粉末に近いものであることから空孔率の増加をなしえず、好ましくは2〜15、より好ましくは3〜10とする。このような形態の短繊維は、図3に見られるように、各短繊維が種々位置でしかも方向自由な向きで他の短繊維と結合し、その間に立体的な空孔を形成することができる。   The aspect ratio means a value obtained by dividing the actually measured fiber length L by the average fiber diameter d, and the average value is 2-20. When the average value exceeds 20, when the porous body is used, the surface unevenness is increased to widen the pore size distribution, and the directionality of the short fibers tends to be planar. In addition, when the value is less than 2, the shape is close to that of a general powder, so the porosity cannot be increased, and is preferably 2 to 15, more preferably 3 to 10. As shown in FIG. 3, the short fibers having such a form can be combined with other short fibers in various positions and in any direction, and form three-dimensional pores therebetween. it can.

なお、前記繊維径d及びアスペクト比L/dの測定は、例えば試料数20点の金属短繊維を任意に取出し、顕微鏡での検査により測定された平均繊維径d、繊維長さLの平均値とする。   In addition, the measurement of the said fiber diameter d and the aspect-ratio L / d is the average value of the average fiber diameter d measured by the microscopic inspection, for example, taking out the short metal fiber of 20 samples, and the fiber length L, for example. And

また前記微細層3での空孔精度の均一化を図る為、各短繊維の繊維径やアスペクト比のばらつきの変動係数(CV)を30%以下にすることも好ましい。変動係数(CV)は、次式による標準偏差(S)を試料数で除した係数でもって示され、この中で、A1,A2,〜Anは各短繊維の測定値、Aはその平均値、またnは測定試料数を示す。
標準偏差(S)=√{(A1−A)2 +(A2−A)2 + …
+(An−A)2 }/n
変動係数(CV)=S/n×100(%)
In order to make the hole accuracy in the fine layer 3 uniform, it is also preferable that the variation coefficient (CV) of variation in the fiber diameter and aspect ratio of each short fiber is 30% or less. The coefficient of variation (CV) is indicated by a coefficient obtained by dividing the standard deviation (S) according to the following equation by the number of samples, in which A1, A2 to An are measured values of each short fiber, and A is an average value thereof. And n represents the number of measurement samples.
Standard deviation (S) = √ {(A1-A) 2 + (A2-A) 2 +
+ (An−A) 2 } / n
Coefficient of variation (CV) = S / n × 100 (%)

この微細層3の金属短繊維は、前記支持体2の場合と同様に、容易に短繊維化でき、かつ耐食性,耐熱性及び機械的特性に優れる金属材料が選択され、例えばSUS304、SUS316をはじめとする種々Ni系ステンレス鋼(更にSUS201.SUS205.SUS302.SUS304N.SUS304L.SUS305.SUS310.SUS316L.SUS316N.SUS317)、Cr系ステンレス鋼を用いる他、前記Ni又はNi合金、Ti又はTi合金で構成することもできる。   The metal short fibers of the fine layer 3 are selected from metal materials that can be easily shortened and excellent in corrosion resistance, heat resistance, and mechanical properties, as in the case of the support 2, such as SUS304 and SUS316. In addition to using various Ni-based stainless steels (SUS201.SUS205.SUS302.SUS304N.SUS304L.SUS305.SUS310.SUS316L.SUS316N.SUS317), Cr-based stainless steel, and the above-mentioned Ni or Ni alloy, Ti or Ti alloy You can also

また本発明では、前記金属短繊維として、例えばCo金属、又は40質量%以上のCoと、C及び/又はCrを含有するCo合金からなるものも用いられ、例えば、質量でC≦4%、Mn≦3%、Si≦2%、Cr:30〜35%、Ni≦5%、Fe≦5%、W:3〜20%と、Co40〜60%を含み、また若干の不可避不純物の含有を許容できるものを用いうる。このものは、前記微細層3用の金属短繊維の場合の他、例えば前記支持体2の粉末材料をこのような組成の材料で形成することもできる。   In the present invention, the short metal fibers include, for example, Co metal, or a Co alloy containing 40 mass% or more of Co and C and / or Cr, for example, C ≦ 4% by mass, Mn ≦ 3%, Si ≦ 2%, Cr: 30 to 35%, Ni ≦ 5%, Fe ≦ 5%, W: 3 to 20%, Co 40 to 60%, and contain some inevitable impurities Acceptable ones can be used. In this case, in addition to the metal short fiber for the fine layer 3, for example, the powder material of the support 2 can be formed of a material having such a composition.

この組成のCo合金については、例えば溶接材料としては一部で使用されているが、通常の金属材料と同様に粉末や種々短繊維にすることも可能であった。表1はその具体的成分の一例を示すものであり、このようなCo金属、Co合金はその表面上に配置される水素透過膜などとの相互拡散を伴わず、該透過膜の性能低下が防止できる利点がある。   The Co alloy having this composition is partly used as a welding material, for example, but could be made into powder or various short fibers as in the case of a normal metal material. Table 1 shows an example of the specific components, and such Co metal and Co alloy are not accompanied by mutual diffusion with the hydrogen permeable film disposed on the surface thereof, and the performance of the permeable film is reduced. There are benefits that can be prevented.

また、他の形態として、例えば前記微細層3を構成する金属短繊維の外面に、銀鏡反応による銀のめっき層を形成することも好ましく、この銀鏡反応には例えば無電解めっき法を好適に採用できる。その場合、銀めっきは水素透過膜であるPd金属との拡散を防ぐことができ、まためっき厚さとしては例えば10μm以下、好ましくは5μm以下、ただし0.2μm以上とする。即ち、この銀のめっき層はを前記Co合金の場合と同様の目的で使用できる。   Further, as another form, for example, it is also preferable to form a silver plating layer by a silver mirror reaction on the outer surface of the short metal fibers constituting the fine layer 3, and for this silver mirror reaction, for example, an electroless plating method is suitably employed. it can. In that case, silver plating can prevent diffusion with Pd metal which is a hydrogen permeable film, and the plating thickness is, for example, 10 μm or less, preferably 5 μm or less, but 0.2 μm or more. That is, this silver plating layer can be used for the same purpose as in the case of the Co alloy.

このように、前記受け部材5は、前記微細層3を比較的粗大な空孔を持つ前記支持体2の表面上に形成し、焼結一体化した筒状体である。このような積層品は、例えば本出願人が提案した国際公開第WO93/06912号公報が記載する、支持体2を、金属短繊維3Aを混和した懸濁液中で真空引きする懸濁吸引法によりその外面に所定厚さで金属短繊維3Aを堆積させ、かつ焼結一体化することにより好ましく形成できる。   Thus, the receiving member 5 is a cylindrical body in which the fine layer 3 is formed on the surface of the support body 2 having relatively coarse pores and integrated by sintering. Such a laminate is, for example, a suspension suction method in which the support 2 is evacuated in a suspension in which short metal fibers 3A are mixed, as described in International Publication No. WO93 / 06912 proposed by the present applicant. Thus, the metal short fibers 3A can be deposited on the outer surface with a predetermined thickness, and can be preferably formed by sintering integration.

このほか、受け部材5は、例えば図4(A),(B)に示すごとく、筒状の支持体2と外型11との間の隙間に微細層3形成用の所定粒子等を充填し、結合材を加えて順次に圧縮成型したのち焼結する粉末成形法によることも可能である。外型11は最後には,化学的,機械的に取り除かれることにより、受け部材5を形成できる。   In addition, the receiving member 5 is filled with predetermined particles or the like for forming the fine layer 3 in the gap between the cylindrical support 2 and the outer mold 11 as shown in FIGS. 4A and 4B, for example. It is also possible to use a powder molding method in which a binder is added and compression molding is sequentially performed and then sintered. Finally, the outer mold 11 can be chemically and mechanically removed to form the receiving member 5.

これら成形法の内、前者の懸濁吸引法では、支持体2の部分的な空孔特性のバラツキを緩和して全体として均一空孔が得られ、また形状的にも例えばカップ形状や軸方向に沿って径の異なる不規則形状品等に対して実施でき、また作業性や設備面からも好ましい。これに対し、後者の粉末成形法では、受け部材5が大型乃至長尺品の場合に採用できるものの、微細層3の粉末充填用の充填隙間が狭いものは作業困難であり、微細層厚さが大きいものとなる。   Among these molding methods, the former suspension suction method alleviates the variation in the partial pore characteristics of the support 2 to obtain uniform pores as a whole, and also has a shape such as a cup shape or an axial direction. It can be applied to irregularly shaped products having different diameters along the line, and is preferable from the viewpoint of workability and equipment. On the other hand, in the latter powder molding method, although the receiving member 5 can be employed when the receiving member 5 is a large or long product, it is difficult to work with a narrow filling gap for filling the powder of the fine layer 3 and the fine layer thickness. Is a big one.

前記受け部材5の寸法、形状、各層の厚さ及び空孔精度等は、使用する装置の仕様に応じて任意に設定されるが、受け部材5は水素分離部材の基体であって、構造品として、前記微細層3での水素透過膜7を実質的支持する強度が必要である。   The dimensions, shape, thickness of each layer, hole accuracy, etc. of the receiving member 5 are arbitrarily set according to the specifications of the apparatus to be used. The receiving member 5 is a base of a hydrogen separation member, and is a structural product. As described above, it is necessary to have a strength to substantially support the hydrogen permeable membrane 7 in the fine layer 3.

本形態では、受け部材5を、例えば外径10〜100mm、肉厚0.5〜5mm程度で長さ20〜1000mmのチューブ状とし、前記微細層3は、前記支持体2の平均空孔径の1/5以下の微細空孔で、かつ厚さ1mm以下(好ましくは例えば0.05〜0.5mm)と比較的薄くして、受け部材5としての強度と通気性能維持する。また、微細層3の外表面を微細かつ均一にすることで、水素透過膜7を広い範囲で均等に高密度かつ安定した支持とすることで、水素透過膜7に局部的に変形、局部的応力の発生を防ぎ、耐久性を向上する。さらに熱の昇降を受ける場合にあっても、平坦に支持されている為、応力の集中を抑制して熱疲労による弊害を減じうるとともに、均一流量の気体通路を形成でき、水素ガスの流れを良好にして水素分離効率を高め得る。

In this embodiment, the receiving member 5 is formed in a tube shape having an outer diameter of 10 to 100 mm, a thickness of about 0.5 to 5 mm and a length of 20 to 1000 mm, and the fine layer 3 has an average pore diameter of the support 2. The strength and ventilation performance of the receiving member 5 are maintained by reducing the thickness to 1/5 or less and relatively thin with a thickness of 1 mm or less (preferably 0.05 to 0.5 mm, for example). Further, by making the outer surface of the fine layer 3 fine and uniform, the hydrogen permeable membrane 7 is uniformly and densely and stably supported in a wide range, so that the hydrogen permeable membrane 7 is locally deformed and localized. Prevents the generation of stress and improves durability. In addition, even when receiving heat rise and fall, since it is supported flat, it can suppress stress concentration and reduce adverse effects due to thermal fatigue, and it can form a uniform flow rate gas passage, reducing the flow of hydrogen gas. This can improve the hydrogen separation efficiency.

なお、受け部材5の積層数については、前記2層に代えて、さらに3層以上の複数層としたもの、乃至層間に微細スクリーンメッシュなど他の多孔体を介在させて強度向上を図り、また粒子径、密度を両面間で無段階に変化させた密度勾配を付与することもできる。さらに必要に応じて、スェージング加工、鍛圧加工、ローラー加工によって微細層3表面を所定圧力で押圧し、図5に示すように最表面側の短繊維3Aを部分的に扁平化した平坦面3Fとして、水素透過膜7の支持をより確実に行うこともできる。この場合の押圧程度は任意の加工量で設定され、例えば単位面積当たりの平坦度面積比が5〜50%程度になるようにするときには、供給ガスの接触面積と透過膜の支持のバランスを向上する。このような特性は例えば前記加工により加工率2〜20%程度とすることにより得られ、又その測定は例えばレーザ顕微鏡などの画像解析法によって、その表面を400倍程度に拡大して求めることができる。

Note that the number of the receiving members 5 stacked is not limited to the two layers, but is further increased to three or more layers, or to improve the strength by interposing another porous body such as a fine screen mesh between the layers. It is also possible to provide a density gradient in which the particle diameter and density are changed steplessly between both surfaces. Further, if necessary, a flat surface 3F in which the surface of the fine layer 3 is pressed at a predetermined pressure by swaging, forging, or roller processing, and the outermost short fibers 3A are partially flattened as shown in FIG. As a result , the hydrogen permeable membrane 7 can be supported more reliably. The degree of pressing in this case is set by an arbitrary processing amount. For example, when the flatness area ratio per unit area is about 5 to 50%, the balance between the contact area of the supply gas and the support of the permeable membrane is improved. To do. Such characteristics can be obtained, for example, by setting the processing rate to about 2 to 20% by the above processing, and the measurement can be obtained by enlarging the surface about 400 times by an image analysis method such as a laser microscope. it can.

次に、前記水素透過膜7は、本形態では、Pd金属、乃至Pd−Cu又はPd−AgによるPd合金のいずれかの水素分離金属から選択された薄膜材料で、厚さ3〜30μm程度とし、かつ前記受け部材5の全面を覆うように配置される。なお膜の厚さについては、水素精製効率の面から必要以上に厚くすることは好ましくないが、3μm未満の薄いものでは損傷しやすく、好ましくは5〜20μmとする。
Next, the hydrogen permeable membrane 7, in this embodiment, Pd metal, or a thin film material selected from any of hydrogen separation metal Pd alloy by Pd-Cu or Pd-Ag, a thickness of 3~30μm about And it arrange | positions so that the whole surface of the said receiving member 5 may be covered. As for the thickness of the membrane, it is not preferable to make it thicker than necessary from the viewpoint of hydrogen purification efficiency, but it is easy to be damaged if it is less than 3 μm, preferably 5 to 20 μm.

前記Pd及びPd合金は、水素ガスのみを選択的に透過する性質を具えるものであるが、この特異現象は、水素分子がPd膜に接触すると水素原子に解離してイオン化し、プロトンとエレクトロンに分かれてPd膜の表面から裏面に到達し、その瞬間に再度結合して水素分子になることによるものと考えられている。   The Pd and Pd alloys have the property of selectively permeating only hydrogen gas, but this unique phenomenon is that when hydrogen molecules come into contact with the Pd film, they dissociate and ionize into hydrogen atoms, and protons and electrons. This is considered to be due to the fact that the Pd film reaches the back surface from the front surface and then recombines to become hydrogen molecules at that moment.

またPd金属は、一般的に水素吸蔵や放出による脆化が発生しやすく、その特性を改善する為に、他の元素を添加したPd合金も用いられる。添加する元素としては、例えばPt,Rh,Ru,In,Fe,Ni,CoなどのVIII族元素、Cu,Ag、Auなどの1b族元素、更にはMo等のVIa族元素から選択される1種以上で、その添加量は添加元素の種類、機能により選択される。例えば、Agを20〜45%含有するPd−Ag合金は水素透過性能を高め、同様にCuを35〜45%含有するPd−Cu合金では水素透過性とともに耐久性を高めることができる。   Further, Pd metal is generally prone to embrittlement due to hydrogen storage and release, and Pd alloys with other elements added are also used to improve the characteristics. The element to be added is selected from, for example, a group VIII element such as Pt, Rh, Ru, In, Fe, Ni, and Co, a group 1b element such as Cu, Ag, and Au, and a group VIa element such as Mo. More than the seed, the amount added is selected depending on the kind and function of the additive element. For example, a Pd—Ag alloy containing 20 to 45% Ag can improve hydrogen permeation performance, and similarly, a Pd—Cu alloy containing 35 to 45% Cu can improve durability as well as hydrogen permeability.

このようにPdを含む金属は、水素ガスを選択的に透過し、一方材料内部の微小欠陥の影響を排除する観点から、通常は2〜30μm厚さの水素透過箔6が用いられ、前記受け部材5上に配置されるが、特にPd金属やPd合金の塊や板材から圧延、プレスなどの製膜方法で延伸し得られるものでは、こうした加工によって靭性に富みかつ組織的にも安定してピンホールのない無欠陥の透過膜をうることができる。更に好ましくは、該材料の溶解方法として、真空溶解やダブルメルト法などの高純度溶解法が好適し、特にコールドクルーシブを用いた真空溶解法が好適する。   Thus, the metal containing Pd selectively permeates hydrogen gas, while from the viewpoint of eliminating the influence of minute defects inside the material, normally, a hydrogen permeable foil 6 having a thickness of 2 to 30 μm is used. Although it is arranged on the member 5, it can be stretched by a film forming method such as rolling or pressing from a lump or plate material of Pd metal or Pd alloy in particular. A defect-free permeable membrane without pinholes can be obtained. More preferably, as a method for dissolving the material, a high-purity melting method such as vacuum melting or a double melt method is preferable, and a vacuum melting method using cold exclusive is particularly preferable.

また、この水素透過膜箔6は、前記受け部材5の外表面5aと結合されない非結合状態で覆うよう、図1,図3に示すごとく、1層又は複数回巻回してその突き合わせ縁同士の重なり部12(図1に仮想線で示す)を、例えば銀ろうなどのロウ付け、または水素透過箔6を破通しない程度の微力な電子ビーム溶接を用いて固着する。   Moreover, as shown in FIG. 1 and FIG. 3, this hydrogen permeable membrane foil 6 is wound by one layer or a plurality of turns so as to cover in a non-bonded state that is not bonded to the outer surface 5a of the receiving member 5, and between the butted edges. The overlapping portion 12 (shown in phantom lines in FIG. 1) is fixed using brazing such as silver brazing or electron beam welding that is so weak that the hydrogen permeable foil 6 is not broken.

このような非結合状態とすることにより、
a)前記外表面5aを前記のごとく、凹凸を減じた平滑状、特に強圧処理をしたときには、外表面5aと固定しないときにも平坦面で支持されることにより、受け面での応力集中の発生がない。
b)例えば500゜C付近でリアクターとして用いられるときにも、微細層3からのFeなどの構成元素の水素透過箔6に拡散して侵入し、水素透過箔6の水素分離性能を損なうことを防ぐ。
c)水素分離部材は、前記温度への加熱及び使用停止での冷却され、それに伴って水素透過箔6自体が膨張、収縮することによる繰り返し疲労を軽減し、また図8に示すように、粒子に接合された接合部pが周囲の水素透過箔6から離れ剥離孔qを生じることを防止する。
d)水素透過箔6と受け部材3での接合部分では、水素が透過しえず、結合部分による水素透過面積の減少を抑制して水素分離能を低下させるのを防ぐことができる。
などの利点がある。
By making such a non-bonded state,
a) As described above, when the outer surface 5a is subjected to a smooth shape with reduced irregularities, particularly strong pressure treatment, the outer surface 5a is supported by a flat surface even when not fixed to the outer surface 5a, thereby reducing stress concentration on the receiving surface. There is no occurrence.
b) Even when used as a reactor near 500 ° C., for example, it diffuses and penetrates into the hydrogen permeable foil 6 of constituent elements such as Fe from the fine layer 3 to impair the hydrogen separation performance of the hydrogen permeable foil 6. prevent.
c) The hydrogen separation member is heated to the above temperature and cooled when the use is stopped, and accordingly, the hydrogen permeable foil 6 itself expands and contracts to reduce repeated fatigue. As shown in FIG. It is possible to prevent the separation portion q from being separated from the surrounding hydrogen permeable foil 6 and the joining portion p joined to the surface.
d) At the joint portion between the hydrogen permeable foil 6 and the receiving member 3, hydrogen cannot permeate, and the reduction of the hydrogen permeation area due to the joint portion can be suppressed, thereby preventing the hydrogen separation ability from being lowered.
There are advantages such as.

水素分離部材1は、前記のように、両端面に端金具14を気密に取付けることにより水素分離モジュール1Aを構成する。例えば図1では、前記端金具14は、前記分離部材1の1端部に取り付けられ機械装置への取付けを可能とする接続ねじ部を設けた継手用金具14Aと、他端部に取り付けられ該他端部を閉止する閉止金具14Bとからなる。なお、前記水素分離部材1と端金具14との一体化は、例えばロウ付、溶接、あるいは特許第3215501号公報が開示するように、端金具14のフランジ面14fに、前記分離部材1の鏡面仕上げされた端面を当設し、該フランジの裏面を溶融させ、その熱で拡散結合する方法が採用できる。特に銀ロウやアモルファスNiロウをその界面に配置してロウ付けしロウ付け層16を形成するものでは、施工が容易で品質的にも好ましく、確実な取付けができる。なお水素ガスは図1に矢示するように、外側から供給された水素混合ガスが水素透過膜7によって水素ガスを選択的に透過し、受け部材5の空こう通って継手金具14Aから取り出される。   As described above, the hydrogen separation member 1 constitutes the hydrogen separation module 1A by attaching the end fittings 14 to both end surfaces in an airtight manner. For example, in FIG. 1, the end metal fitting 14 is attached to one end of the separating member 1 and provided with a joint screw 14A provided with a connecting screw portion that enables attachment to a mechanical device. It consists of the closing metal fitting 14B which closes the other end part. The integration of the hydrogen separation member 1 and the end fitting 14 is performed by brazing, welding, or the flange surface 14f of the end fitting 14 on the mirror surface of the separation member 1 as disclosed in Japanese Patent No. 3215501, for example. A method can be employed in which the finished end face is placed, the back face of the flange is melted, and diffusion bonding is performed with the heat. In particular, when a brazing layer 16 is formed by arranging silver brazing or amorphous Ni brazing at the interface thereof, the construction is easy, quality is preferable, and reliable attachment is possible. As indicated by arrows in FIG. 1, the hydrogen mixed gas supplied from the outside selectively permeates the hydrogen gas through the hydrogen permeable membrane 7 and is taken out from the fitting 14A through the receiving member 5 through the cavity. .

また本形態では、継手用金具14Aと閉止金具14Bを対として用いた例を示しているが、その選択は使用目的に応じて任意にされ、例えばその両方に継手用の継手用金具14A(又は一方に雌ねじを形成)を設けて複数の分離モジュール1Aを連結することもできる。また、例えば特開2000−185209号公報が記載するごとく、水素分離部材1の外周に各種、プリーツ、波状のひだなどを設けて、透過面積を増して水素分離効率を向上することもできる。   Further, in this embodiment, an example in which the fitting 14A and the closing fitting 14B are used as a pair is shown, but the selection is arbitrarily made according to the purpose of use. A plurality of separation modules 1A can be connected by providing a female screw on one side. For example, as described in Japanese Patent Application Laid-Open No. 2000-185209, various pleats, wavy folds and the like can be provided on the outer periphery of the hydrogen separation member 1 to increase the permeation area and improve the hydrogen separation efficiency.

平均粒子径20μmのステンレス鋼のアトマイズ粉末を用いて、平均空孔径30μmの筒状の多孔体(外径15mm,厚さ2mm,長さ80mm)を作成した。その表面を図6(A)に示す。そしてその一端を閉じ、これを繊維径8μm、平均アスペクト比10のSUS316ステンレス鋼短繊維を懸濁した懸濁液中に浸漬して、前記多孔体の他面側から減圧することで、前記短繊維を多孔体の表面上に0.4mm厚さで積層した後、液中から取出して1000℃×1Hrの焼結処理を行った。   A cylindrical porous body (outer diameter 15 mm, thickness 2 mm, length 80 mm) having an average pore diameter of 30 μm was prepared using an atomized powder of stainless steel having an average particle diameter of 20 μm. The surface is shown in FIG. Then, one end thereof is closed, and this is immersed in a suspension in which SUS316 stainless steel short fibers having a fiber diameter of 8 μm and an average aspect ratio of 10 are suspended, and the pressure is reduced from the other surface side of the porous body. After laminating the fibers on the surface of the porous body with a thickness of 0.4 mm, the fibers were taken out from the liquid and subjected to a sintering treatment of 1000 ° C. × 1 Hr.

得られた焼結の支持体は、空孔微細でその表面粗さ(Rz)も2μmと良好なものであった。そこで、この支持体をスウエージング加工機にセットして、加工率0%,8%、20%で表面をスウエージングし各々表面の縮圧加工を行なった結果、仕上げ層の短繊維の平均平坦比率を0,32%、53%の3種類の受け部材を得た。この0%、32%にした受け部材の表面状態を、1000倍に拡大したものを図6(B)、図6(C)に示している。   The obtained sintered support was fine with fine pores and had a good surface roughness (Rz) of 2 μm. Therefore, this support was set on a swaging machine, the surface was swaged at a processing rate of 0%, 8%, and 20%, and each surface was subjected to pressure reduction processing. Three types of receiving members having ratios of 0.32% and 53% were obtained. FIG. 6B and FIG. 6C show the surface state of the receiving member made 0% and 32% enlarged 1000 times.

そして、これら受け部材に各々厚さ3μmの無電解銀メッキを行った。平均平坦率32%の支持体についてその表面状態を図7(A)に示す。さらにその表面に、Ag25質量%のPd−Ag合金からなる厚さ15μmの圧延された水素透過箔6を1層巻きして、その重なりあった辺同士を銀ロウでリークなく固着し、さらにこの端面に端金具を同様の銀ろうでロウ付けして、実施例品1,2,3の水素分離モジュールを得た。   The receiving members were each subjected to electroless silver plating with a thickness of 3 μm. FIG. 7A shows the surface state of a support having an average flatness of 32%. Further, a rolled hydrogen permeable foil 6 made of a Pd—Ag alloy of 25% by mass of Ag and having a thickness of 15 μm is wound on the surface, and the overlapping sides are fixed with silver solder without leaking. End fittings were brazed to the end faces with the same silver brazing to obtain hydrogen separation modules of Examples 1, 2, and 3.

実施例1と同様に、平均粒子径10μmのステンレス鋼アトマイズト粉末で予備成形体を製作した。又前記と同様に減圧吸引法によって、繊維径8μm、平均アスペクト比6のステンレス鋼短繊維層を厚さ0.3mm形成した後、温度1080℃×1Hrの焼結処理を行い、同時にその表面を押圧加工して平均平坦比率60%の支持体を得た。そして、前記実施例と同様にPd−25Ag合金の水素透過箔を取付けるとともに、端金具をロウ付けすることで実施例品4を得た。   In the same manner as in Example 1, a preform was manufactured from stainless steel atomized powder having an average particle diameter of 10 μm. In the same manner as described above, a stainless steel short fiber layer having a fiber diameter of 8 μm and an average aspect ratio of 6 is formed by a reduced pressure suction method to a thickness of 0.3 mm, and then subjected to a sintering treatment at a temperature of 1080 ° C. × 1 Hr. A support having an average flat ratio of 60% was obtained by pressing. Then, in the same manner as in the above example, a hydrogen permeable foil of Pd-25Ag alloy was attached, and an end product was brazed to obtain an example product 4.

比較例品として、平均粒子径50μm のステンレス鋼アトマイズ粉を用いて筒形状の支持体(外径15mm,厚さ2mm,長さ80mm)を成形した。その空孔精度は30μmで、かつ表面粗さ(Rz)は35μmのものであった。その表面に、同様の銀メッキを行い、さらに電解メッキ法によって平均厚さ20μmのPdメッキ膜を形成した。その表面状態は非平滑で、図7(B)に示すように、無被覆部、即ち多数の空孔が形成されたものであった。   As a comparative product, a cylindrical support (outer diameter 15 mm, thickness 2 mm, length 80 mm) was formed using stainless steel atomized powder having an average particle diameter of 50 μm. The hole accuracy was 30 μm, and the surface roughness (Rz) was 35 μm. The same silver plating was performed on the surface, and a Pd plating film having an average thickness of 20 μm was further formed by electrolytic plating. The surface state was non-smooth, and as shown in FIG. 7B, an uncoated portion, that is, a large number of pores were formed.

(剥離テスト)
この各試料について、加熱温度500゜Cと冷却温度200℃で1工程当たり20分間の繰り返し試験を20回繰り返し行い、水素透過性能と透過膜の剥離有無を確認した。
(Peel test)
Each sample was repeatedly tested 20 times for 20 minutes per process at a heating temperature of 500 ° C. and a cooling temperature of 200 ° C. to confirm the hydrogen permeation performance and the presence / absence of peeling of the permeable membrane.

試験の結果、実施例品1〜4は、圧延されたPdAg合金膜を用いたことから、良好な水素分離ができ、また膜自体のクラックやピンホールなどの発生は全く見られなかった。さらに、試験後に前記透過膜だけを取り出して、その小片試料の厚さ方向に伴うオージェ分析を行ったが、本実施例品では、その界面に銀の非拡散金属メッキ層を設けていたことから、受け部材中の金属元素が該透過膜中に侵入することも防止できた。   As a result of the test, since Examples 1 to 4 used the rolled PdAg alloy membrane, good hydrogen separation was possible, and generation of cracks and pinholes in the membrane itself was not observed at all. Furthermore, only the permeable membrane was taken out after the test, and Auger analysis was performed along the thickness direction of the small sample, but in this example product, a silver non-diffusing metal plating layer was provided at the interface. Further, it was possible to prevent the metal element in the receiving member from entering the permeable membrane.

これに対し、比較例の試料では多くの空孔が残留していたことから、水素透過膜としては全く使用に適さず、しかも熱サイクル試験後の切除試料を検鏡した結果、その境界面に付近に微視的なクラックが認められた。   On the other hand, since many holes remained in the sample of the comparative example, it was not suitable for use as a hydrogen permeable membrane at all, and as a result of microscopic examination of the excised sample after the thermal cycle test, Microscopic cracks were observed in the vicinity.

本発明の水素分離部材を用いる水素分離モジュールの一形態を示す断面図である。It is sectional drawing which shows one form of the hydrogen separation module using the hydrogen separation member of this invention. 図1のA−A′断面図である。It is AA 'sectional drawing of FIG. 要部を拡大して略示する拡大断面図である。It is an expanded sectional view which expands and shows a principal part. 受け部材の他の製造方法を示し、(A)はその一部断面正面図、(B)はその側面図である。The other manufacturing method of a receiving member is shown, (A) is the partial cross section front view, (B) is the side view. 押圧によって平坦部分を形成した金属短繊維の斜視図である。It is a perspective view of the short metal fiber which formed the flat part by press. 実施例による各試料表面を示す平面図であり、(A)はアトマイズ粉末による支持体の平面図、(B)は加工率0%の場合の微細層の表面を例示する平面図、(C)は加工率32%の場合の微細層の表面を例示する平面図である。It is a top view which shows each sample surface by an Example, (A) is a top view of the support body by atomized powder, (B) is a top view which illustrates the surface of the fine layer in the case of a processing rate of 0%, (C) These are top views which illustrate the surface of the fine layer when the processing rate is 32%. (A)は無電解銀メッキした場合の表面を例示する平面図、(B)は比較例品の表面を例示する平面図である。(A) is a top view which illustrates the surface at the time of electroless silver plating, (B) is a top view which illustrates the surface of a comparative example product. 受け部材にメッキされた水素透過膜が、繰り返しの温度昇降により剥離孔が生じる状態を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a state in which a peeling hole is formed in a hydrogen permeable film plated on a receiving member by repeated temperature rise and fall. 従来の水素製造プロセスを例示するブロック図である。It is a block diagram which illustrates the conventional hydrogen production process. メンブレンリアクターによる水素製造プロセスを例示するブロック図である。It is a block diagram which illustrates the hydrogen production process by a membrane reactor.

符号の説明Explanation of symbols

1 水素分離部材
1A 水素分離モジュール
2 支持体
3 微細層
3A 金属短繊維
3F 平坦部分
3a 空孔
5 受け部材
5a 外表面
7 水素透過膜
14 端金具
14A 継手金具
14B 閉止金具
DESCRIPTION OF SYMBOLS 1 Hydrogen separation member 1A Hydrogen separation module 2 Support body 3 Fine layer 3A Short metal fiber 3F Flat part 3a Hole 5 Receiving member 5a Outer surface 7 Hydrogen permeable membrane 14 End metal fitting 14A Joint metal fitting 14B Closure metal fitting

Claims (8)

多孔質の焼結体からなり通気可能な筒状の支持体に、該支持体の外面を覆い該支持体よりも微細な空孔を有する微細層を配して焼結一体化した複層の受け部材、及び該受け部材の外表面に配されるとともに水素混合ガスから水素ガスを選択的に透過する水素透過膜を具え、
前記微細層は、繊維径dが0.1〜20.0μm、繊維長さLと前記繊維径dとの平均アスペクト比L/dが2〜20である金属短繊維がランダムに立体的に配されることにより形成され、しかも
前記微細層は、前記水素透過膜と接する表面に、押圧によって最表面側の前記金属短繊維が部分的に扁平化された平坦面を具え、
前記水素透過膜は、Pd又はPdを含む水素分離金属の引き延ばしによって厚さ2〜30μmとする箔体であり、前記微細層の外表面に非結合状態で付設したことを特徴とする水素分離部材。
A multilayered structure in which a porous layer made of a porous sintered body and a breathable cylindrical support covering the outer surface of the support and having a fine layer having pores finer than the support are integrated by sintering A receiving member, and a hydrogen permeable membrane that is disposed on the outer surface of the receiving member and selectively transmits hydrogen gas from a hydrogen mixed gas;
In the fine layer, short metal fibers having a fiber diameter d of 0.1 to 20.0 μm and an average aspect ratio L / d between a fiber length L and the fiber diameter d of 2 to 20 are randomly and three-dimensionally arranged. The fine layer has a flat surface in which the short metal fibers on the outermost surface are partially flattened by pressing on the surface in contact with the hydrogen permeable membrane,
The hydrogen permeable membrane is a foil having a thickness of 2 to 30 μm by stretching Pd or a hydrogen separation metal containing Pd, and is attached to the outer surface of the fine layer in a non-bonded state. .
前記金属短繊維の前記アスペクト比は、3〜10である請求項1に記載の水素分離部材。   The hydrogen separation member according to claim 1, wherein the aspect ratio of the short metal fibers is 3 to 10. 前記受け部材の前記外表面の少なくとも前記水素透過膜と接する微細層の接触面は、非拡散金属のめっき層が形成される請求項1又は2に記載の水素分離部材。   3. The hydrogen separation member according to claim 1, wherein a plating layer of a non-diffusion metal is formed on at least a contact surface of the fine layer in contact with the hydrogen permeable film on the outer surface of the receiving member. 前記非拡散金属は、銀である請求項3に記載の水素分離部材。   The hydrogen separation member according to claim 3, wherein the non-diffusing metal is silver. 前記水素分離金属は、Pd金属、Pd−Cu合金又はPd−Ag合金のいずれか1種によるものである請求項1〜4のいずれかに記載の水素分離部材。   The hydrogen separation member according to any one of claims 1 to 4, wherein the hydrogen separation metal is one of Pd metal, Pd-Cu alloy, or Pd-Ag alloy. 前記微細層は、単位面積当たりの前記平坦面の面積である平坦度面積比が5〜50%である請求項1〜5のいずれかに記載の水素分離部材。The hydrogen separation member according to any one of claims 1 to 5, wherein the fine layer has a flatness area ratio of 5 to 50% which is an area of the flat surface per unit area. 前記受け部材は、下式で表されるNi当量が26%以上のオーステナイト系ステンレス鋼で形成される請求項1乃至6のいずれかに記載の水素分離部材。The hydrogen separator according to any one of claims 1 to 6, wherein the receiving member is formed of austenitic stainless steel having a Ni equivalent represented by the following formula of 26% or more.
Ni当量=Ni+0.65Cr+0.98Mo+1.05MnNi equivalent = Ni + 0.65Cr + 0.98Mo + 1.05Mn
+0.35Si+12.6C              + 0.35Si + 12.6C
請求項1〜7のいずれかの前記水素分離部材に、その一端に接続用の継手金具を、他端に接続用の前記継手金具又は閉止用の閉止金具を設けたものであることを特徴とする水素分離モジュール。The hydrogen separation member according to any one of claims 1 to 7, wherein a connection fitting is provided at one end and the connection fitting or a closing fitting is provided at the other end. Hydrogen separation module.
JP2005286023A 2005-09-30 2005-09-30 Hydrogen separation member and hydrogen separation module using the hydrogen separation member Active JP4917786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286023A JP4917786B2 (en) 2005-09-30 2005-09-30 Hydrogen separation member and hydrogen separation module using the hydrogen separation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286023A JP4917786B2 (en) 2005-09-30 2005-09-30 Hydrogen separation member and hydrogen separation module using the hydrogen separation member

Publications (2)

Publication Number Publication Date
JP2007090294A JP2007090294A (en) 2007-04-12
JP4917786B2 true JP4917786B2 (en) 2012-04-18

Family

ID=37976581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286023A Active JP4917786B2 (en) 2005-09-30 2005-09-30 Hydrogen separation member and hydrogen separation module using the hydrogen separation member

Country Status (1)

Country Link
JP (1) JP4917786B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721520A (en) * 1980-07-08 1982-02-04 Nippon Seisen Kk Stainless steel short fiber and its production
JP2960998B2 (en) * 1991-09-25 1999-10-12 三菱重工業株式会社 Hydrogen gas separation membrane
JPH11276867A (en) * 1998-03-31 1999-10-12 Tokyo Gas Co Ltd Joining of hydrogen-permeable membrane
JP3177512B2 (en) * 1998-10-12 2001-06-18 日本精線株式会社 Metal filter
JP2002219341A (en) * 2001-01-30 2002-08-06 Kobe Steel Ltd Supporting base for hydrogen-permselective membrane and hydrogen-permselective member
JP2002355537A (en) * 2001-05-29 2002-12-10 Daido Steel Co Ltd Hydrogen permeable film and producing method thereof
JP4315641B2 (en) * 2002-05-16 2009-08-19 日本精線株式会社 Filter device
JP2005095851A (en) * 2003-08-26 2005-04-14 Kyocera Corp Fluid separation filter and its production method
JP2005262082A (en) * 2004-03-18 2005-09-29 National Institute Of Advanced Industrial & Technology Hydrogen separation membrane, production method therefor, and hydrogen separation method

Also Published As

Publication number Publication date
JP2007090294A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
EP1499452B1 (en) Process for preparing palladium alloy composite membranes for use in hydrogen separation
JP4959804B2 (en) Gas separation membrane system and method for making it using nanoscale metallic materials
KR101280790B1 (en) Composite membrane material for hydrogen separation and element for hydrogen separation employing the same
US6913736B2 (en) Metal gas separation membrane module design
JP4917787B2 (en) Hydrogen separation member and method for producing the same
JP2007007565A (en) Reinforcing structure for hydrogen-permeable film, and its manufacturing method
US20020028345A1 (en) Process for preparing a composite metal membrane, the composite metal membrane prepared therewith and its use
JP4944656B2 (en) Membrane support for hydrogen separation and module for hydrogen separation using this support
US8226750B2 (en) Hydrogen purifier module with membrane support
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JP2008155118A (en) Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane
JP4917786B2 (en) Hydrogen separation member and hydrogen separation module using the hydrogen separation member
JP5243690B2 (en) Hydrogen separation component
Xiong et al. Fabrication and characterization of Pd/Nb40Ti30Ni30/Pd/porous nickel support composite membrane for hydrogen separation and purification
JP3174668B2 (en) Hydrogen separation membrane
JP6561334B2 (en) Method for producing hydrogen separation membrane
JPH11276867A (en) Joining of hydrogen-permeable membrane
JP2008080234A (en) Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method
KR20230132810A (en) Ultra-thin membrane manufacturing
JP6474953B2 (en) Hydrogen separator and hydrogen production apparatus using hydrogen separator
JP2008023496A (en) Manufacturing method of hydrogen separation membrane cell
JP5736228B2 (en) Gas separator and method for manufacturing gas separator
JP2006032192A (en) Fuel cell, hydrogen separation film module and manufacturing method thereof
JP2020195963A (en) Hydrogen separator
JP2014184381A (en) Hydrogen separation body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250