JP4917635B2 - Two-layer thin film structure, superconducting substance three-layer thin film structure, and manufacturing method thereof - Google Patents

Two-layer thin film structure, superconducting substance three-layer thin film structure, and manufacturing method thereof Download PDF

Info

Publication number
JP4917635B2
JP4917635B2 JP2009188585A JP2009188585A JP4917635B2 JP 4917635 B2 JP4917635 B2 JP 4917635B2 JP 2009188585 A JP2009188585 A JP 2009188585A JP 2009188585 A JP2009188585 A JP 2009188585A JP 4917635 B2 JP4917635 B2 JP 4917635B2
Authority
JP
Japan
Prior art keywords
ceo
layer
thin film
film structure
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009188585A
Other languages
Japanese (ja)
Other versions
JP2011038175A (en
Inventor
亮介 佐藤
勝廣 寺尾
哲成 中村
孝 海老沢
貢 相馬
哲男 土屋
謙一 塚田
巖 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Japan Steel Works Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Steel Works Ltd
Priority to JP2009188585A priority Critical patent/JP4917635B2/en
Publication of JP2011038175A publication Critical patent/JP2011038175A/en
Application granted granted Critical
Publication of JP4917635B2 publication Critical patent/JP4917635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、Al2O3-CeO2二層薄膜構造体、Al2O3-CeO2-超電導物質三層薄膜構造体及びその製造方法に関し、さらに詳しくは、格子定数を変化させたCeO2層の作用で高い臨界電流を有する超電導膜を得る高温酸化物超電導体及びその製造方法に関する。 The present invention relates to an Al 2 O 3 —CeO 2 bilayer thin film structure, an Al 2 O 3 —CeO 2 —superconducting material trilayer thin film structure, and a method for manufacturing the same, and more specifically, CeO 2 with a changed lattice constant. The present invention relates to a high-temperature oxide superconductor for obtaining a superconducting film having a high critical current by the action of a layer and a method for producing the same.

超電導体は、ある温度以下で電流を電気抵抗ゼロで流せるため、さまざまな分野で応用が期待されている。できるかぎり多くの電流を電気抵抗ゼロで流すには、超電導体の結晶性の良さが関わってくる。しかし超電導体に自己磁場などで、下部臨界磁場以上の磁場をかかると量子化磁束が形成され、超電導体中に侵入してしまう。この状態で電流を流すと量子化磁束にローレンツ力が働き、これらが動き出すと電圧が発生して超電導状態が壊れてしまう。そのため、結晶性の良さ以外にも磁束を動き出さないような機構が必要となる。
例えば、酸化物高温超電導体( R E ) B a 2 C u 3 O 7からなる超電導膜において、自然に導入される酸素欠損や微細な不純物などの点状欠陥などが量子化磁束のピン止め機構として機能することが知られている。また、転位などの線状欠陥や結晶粒界等の面状欠陥もピン止め機構として作用することが知られている(非特許文献1参照)。
Superconductors are expected to be applied in various fields because current can flow at zero electrical resistance below a certain temperature. In order to pass as much current as possible with zero electrical resistance, the good crystallinity of the superconductor is involved. However, when a magnetic field higher than the lower critical magnetic field is applied to the superconductor by a self-magnetic field or the like, a quantized magnetic flux is formed and enters the superconductor. When current is passed in this state, Lorentz force acts on the quantized magnetic flux, and when these start to move, voltage is generated and the superconducting state is broken. Therefore, a mechanism that does not start to move the magnetic flux is required in addition to good crystallinity.
For example, in a superconducting film made of oxide high-temperature superconductors (RE) B a 2 C u 3 O 7, etc. point defects such as oxygen deficiency and fine impurities introduced naturally as the pinning mechanism of quantization flux It is known to work. Further, it is known that linear defects such as dislocations and planar defects such as crystal grain boundaries also act as a pinning mechanism (see Non-Patent Document 1).

このようなピン止め機構の強さによって、超電導の臨界電流密度(単位断面積当りに抵抗ゼロで流すことのできる電流値)が変化する。
超電導応用のなかで、大面積超電導薄膜、表面コート超電導テープ線材などの大面積・長尺の高温酸化物超電導薄膜は、限流器、超電導送電ケーブル、超電導マグネットなど、さまざまな電力機器や産業機器への応用が期待されている。このような応用においては、できるだけ大きな電流を抵抗ゼロで流すことが求められ、そのためには、臨界電流密度が高い、高性能の高温超電導酸化物薄膜の作製が必要である。
しかし、代表的な酸化物超電導体である( R E ) B a 2 C u 3 O 7の薄膜の場合には、Al2O3単結晶やニッケル基合金基材(テープ) などのような支持体を用いるとき、支持体と超電導体との格子整合性が悪く、かつ、支持体の元素が超電導層に拡散するなどの問題から臨界電流密度が低下してしまう。そのため超電導薄膜の直接成膜は困難で、支持体と超電導薄膜との間に格子整合と拡散防止のための中間層を作製する必要があり、一般的にはこのような手法が用いられてきた(図1参照) 。
Depending on the strength of such a pinning mechanism, the superconducting critical current density (the current value that can flow with zero resistance per unit cross-sectional area) changes.
In superconducting applications, large-area and long-sized high-temperature oxide superconducting thin films such as large-area superconducting thin films and surface-coated superconducting tape wires are used in various power and industrial equipment such as current limiters, superconducting power cables, and superconducting magnets. Application to is expected. In such an application, it is required to flow a current as large as possible with zero resistance. For that purpose, it is necessary to produce a high-performance high-temperature superconducting oxide thin film having a high critical current density.
However, typical in the case of a thin film of oxide is superconductors (RE) B a 2 C u 3 O 7 , the support, such as Al 2 O 3 or the like single crystal or nickel base alloy substrate (tape) Is used, the critical current density is lowered due to problems such as poor lattice matching between the support and the superconductor and diffusion of the elements of the support into the superconducting layer. For this reason, it is difficult to directly form a superconducting thin film, and it is necessary to prepare an intermediate layer for lattice matching and diffusion prevention between the support and the superconducting thin film. In general, such a method has been used. (See FIG. 1).

これ以外にも支持体を意図的に数度ずらしてカット・研磨したオフカット支持体を用いる方法(非特許文献2参照)や、同支持体上に中間層を作製し、その上に超電導薄膜を形成する(特許文献1参照)方法や、超電導薄膜中に人工欠陥を導入する方法(特許文献2,非特許文献3参照)で臨界電流密度を向上させる手法もある。
しかしこれらの手段をもってしても、依然として問題点が残っている。例えば、(1)中間層の導入では、単結晶基板と超電導膜との間に発生する応力の関係から臨界膜厚などが決まってしまう。例に挙げたAl2O3単結晶とYB a 2 C u 3 O 7の格子定数の違いから、臨界膜厚が300nm程度となってしまう。その結果300nm以上の膜厚ではクラックが生じると言う欠点があった。(2)オフカット支持体は、支持体と膜の間に発生する応力緩和に非常に効果的であるが、高精度の研磨技術が必要となる。
In addition to this, a method using an off-cut support that is intentionally shifted and polished by several degrees (see Non-Patent Document 2), or an intermediate layer is formed on the support, and a superconducting thin film is formed thereon. There is also a method of improving the critical current density by a method of forming a thin film (see Patent Document 1) and a method of introducing artificial defects in a superconducting thin film (see Patent Document 2 and Non-Patent Document 3).
However, even with these measures, problems still remain. For example, (1) when the intermediate layer is introduced, the critical film thickness and the like are determined from the relationship of the stress generated between the single crystal substrate and the superconducting film. Due to the difference in lattice constant between the Al 2 O 3 single crystal and YB a 2 Cu 3 O 7 mentioned in the example, the critical film thickness is about 300 nm. As a result, there is a drawback that cracks occur at a film thickness of 300 nm or more. (2) Although the off-cut support is very effective in relieving stress generated between the support and the film, a high-precision polishing technique is required.

たとえば、市販されている代表的な支持体であるAl2O3単結晶はR面(1102)でカットされているものを使用するが、その面は1〜2°のミスカットがあるのが通常である。そのため、特許文献1の方法のような原子レベルでの制御は生産には向かない。また、(3)人工的な欠陥の導入は特性の劣化を引き起こすこともある。なぜならば人工的な欠陥は局所的に超電導を破壊することを目的としたことであり、入れすぎると特性が逆に劣化してしまう。また欠陥面はランダムに存在するためは制御が難しい。そのため、人工的な欠陥の制御には、高真空といった特殊な環境や、あらかじめ組成を制御した材料やイオンビームアシストなどといった高価な機材が必要となり、生産には向かない。
以上の点から、特殊な環境が必要なく、市販の安価な支持体で高特性の超電導膜を得ることが、超電導の産業応用に必要不可欠である。
For example, an Al 2 O 3 single crystal, which is a typical support that is commercially available, uses one that is cut on the R plane (1102), but the plane has a miscut of 1 to 2 °. It is normal. Therefore, control at the atomic level as in the method of Patent Document 1 is not suitable for production. Also, (3) the introduction of artificial defects may cause deterioration of characteristics. This is because the artificial defect is intended to destroy the superconductivity locally, and if it is put too much, the characteristics will be deteriorated. Moreover, since the defect surface exists at random, it is difficult to control. For this reason, control of artificial defects requires a special environment such as high vacuum, expensive materials such as a material whose composition is controlled in advance, and ion beam assist, and is not suitable for production.
In view of the above, it is indispensable for industrial applications of superconductivity to obtain a superconducting film having high characteristics with a commercially available inexpensive support without requiring a special environment.

特開2005−290528号公報JP-A-2005-290528 特開2006-062896号公報JP 2006-062896 特開2004−244263号公報JP 2004-244263 A

Nature,Vol .399,p439,(1999)Nature, Vol .399, p439, (1999) Pysica C 252 125-137(1995)Pysica C 252 125-137 (1995) Phys.Rev.Lett.89,237001(2002)Phys. Rev. Lett. 89, 237001 (2002) Physca C 329 (2000)Physca C 329 (2000)

本発明は、格子定数を変化させたCeO2層の作用でCeO2面側に高い臨界電流を有する超電導膜を得ることができる格子定数を変化させたCeO2層を有するA l2O3-CeO2二層薄膜構造体、当該Al2O3-CeO2二層薄膜構造体を用いて、格子定数を変化させたCeO2層を活用してCeO2面側に高い臨界電流を有する超電導膜を形成したAl2O3-CeO2-超電導物質三層薄膜構造体及びその製造方法を提供する。 The present invention is, A l 2 O 3 having a CeO 2 layer with varying lattice constant can be obtained superconducting film having a high critical current to a CeO 2 surface side by the action of the CeO 2 layer with varying lattice constant - A superconducting film having a high critical current on the CeO 2 plane side using a CeO 2 layer with a changed lattice constant using the CeO 2 bilayer thin film structure and the Al 2 O 3 -CeO 2 bilayer thin film structure The present invention provides an Al 2 O 3 -CeO 2 -superconducting material three-layer thin-film structure having a structure formed thereon and a method of manufacturing the same.

本発明は、上記目的を達成するために、大気圧下で、市販のAl2O3-CeO2二層薄膜構造体に一定のレーザ光を照射することで、CeO2層の格子定数を変化させたCeO2層とすることにより改質して、格子定数を変化させたCeO2層を有するAl2O3-CeO2二層薄膜構造体とし、製膜方法によらずに高特性の超電導膜のAl2O3-CeO2-超電導物質三層薄膜構造体を得ることを可能としたものである。
すなわち、本発明は、厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体に、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射し、CeO2層の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体である。
また、本発明は、厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体に、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射し、CeO2層の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体のCeO2層側に厚さ100nm〜800nmの超電導薄膜を設けたAl2O3-CeO2-超電導物質三層薄膜構造体である。さらに、本発明においては、CeO2層を設けるAl2O3単結晶層をサファイアR面とすることができる。
In order to achieve the above object, the present invention changes the lattice constant of the CeO 2 layer by irradiating a commercially available Al 2 O 3 -CeO 2 bilayer thin film structure with a constant laser beam under atmospheric pressure. reforming by the CeO 2 layer was, the Al 2 O 3 -CeO 2 bilayer thin film structure having a CeO 2 layer with varying lattice constant, high performance superconductivity regardless of the film forming method It is possible to obtain a three-layer thin film structure of Al 2 O 3 —CeO 2 —superconducting material.
That is, according to the present invention, an energy density of 1 mJ / cm 2 to 250 mJ / is applied to a thin film structure in which a CeO 2 layer having a thickness of 20 nm to 300 nm is provided on an Al 2 O 3 single crystal layer having a thickness of 0.4 mm to 1.0 mm. This is an Al 2 O 3 —CeO 2 bilayer thin film structure having CeO 2 in which the lattice constant of the CeO 2 layer is changed by irradiating 1000 to 100000 pulses of cm 2 laser light.
The present invention also provides an energy density of 1 mJ / cm 2 to 250 mJ / in a thin film structure in which a CeO 2 layer having a thickness of 20 nm to 300 nm is provided on an Al 2 O 3 single crystal layer having a thickness of 0.4 mm to 1.0 mm. the laser beam cm 2 and 1,000 to 1,000,000 pulse irradiation, the thickness 100nm~800nm the CeO 2 layer side of the Al 2 O 3 -CeO 2 bilayer thin film structure having a CeO 2 with varying lattice constant of CeO 2 layer This is a three-layer thin film structure of Al 2 O 3 —CeO 2 —superconducting material provided with a superconducting thin film. Furthermore, in the present invention, the Al 2 O 3 single crystal layer on which the CeO 2 layer is provided can be a sapphire R plane.

さらにまた、本発明は、厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体に、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射し、CeO2層の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体のCeO2層面に、塗布熱分解法、蒸着法、スパッタリング法から選ばれる手法により超電導酸化物層を設けて超電導材料を製造することを特徴とする超電導酸化物材料の製造方法である。
またさらに、本発明の超電導性材料の製造方法では、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を照射するに際して、Al2O3単結晶層側からレーザ光を照射した二層薄膜構造体を用いることが望ましい。
Furthermore, in the present invention, an energy density of 1 mJ / cm 2 to 250 mJ is applied to a thin film structure in which a CeO 2 layer having a thickness of 20 nm to 300 nm is provided on an Al 2 O 3 single crystal layer having a thickness of 0.4 mm to 1.0 mm. / cm 2 of a laser beam 1000-1000000 pulse irradiation, the CeO 2 layer surface of the Al 2 O 3 -CeO 2 bilayer thin film structure having a CeO 2 with varying lattice constant of CeO 2 layer, coating thermal decomposition method A superconducting oxide material is produced by providing a superconducting oxide layer by a method selected from a vapor deposition method and a sputtering method.
Furthermore, in the manufacturing method of the superconductive material of the present invention, when irradiated with a laser beam energy density 1mJ / cm 2 ~250mJ / cm 2 , two-layer thin film is irradiated with laser light from the Al 2 O 3 single crystal layer side It is desirable to use a structure.

本発明の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体は、特殊な環境が必要なく、市販の安価な支持体と中間層にレーザ光を照射することで、製膜方法によらずに、高特性の超電導膜を得られる効果がある。また、得られたAl2O3-CeO2-超電導物質三層薄膜構造体は、高い臨界電流を有する。 The Al 2 O 3 -CeO 2 bilayer thin film structure having CeO 2 with a changed lattice constant according to the present invention does not require a special environment and irradiates a commercially available inexpensive support and intermediate layer with laser light. Thus, there is an effect that a superconducting film having high characteristics can be obtained regardless of the film forming method. Further, the obtained Al 2 O 3 —CeO 2 —superconducting material three-layer thin film structure has a high critical current.

支持体、中間層、超電導膜の関係を示す模式図Schematic diagram showing the relationship between the support, intermediate layer, and superconducting film 本発明によるAl2O3-CeO2二層薄膜構造体の製造プロセスの模式図Schematic diagram of manufacturing process of Al 2 O 3 -CeO 2 bilayer thin film structure according to the present invention 本発明による超電導膜の製造プロセス模式図Manufacturing process schematic diagram of superconducting film according to the present invention 本発明によって作製した中間層の格子定数Lattice constant of the intermediate layer produced by the present invention 本発明におけるレーザ光照射を行う前の中間層の格子定数Lattice constant of intermediate layer before laser light irradiation in the present invention

本発明で用いる、厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体は、Al2O3単結晶上に蒸着法やスパッタリング法により、CeO2層を形成し、当業者が適宜作成することができるが、市販のものを利用することもできる。
また、CeO2層を設けるAl2O3単結晶の面は、サファイヤR面が好ましい。
本発明において用いる光は、レーザ光である。
本発明で用いることができるレーザ光としては、KrFエキシマレーザ 、XeClエキシマレーザ 、YAGレーザ の3倍波光を挙げることができる。
また、CeO2層にレーザ光を照射するに際して、レーザ光の強さは、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射するのが良い。好ましくは、エネルギー密度20mJ/cm2〜150mJ/cm2のレーザ光を3000〜30000パルス照射する。
レーザ光の照射は、CeO2層側から行うこともできるし、Al2O3単結晶基板側から行うこともできる。Al2O3単結晶基板側から行ったAl2O3-CeO2二層薄膜構造体を用いた方が超電導特性が良いAl2O3-CeO2-超電導物質三層薄膜構造体を得ることができる。
A thin film structure in which a CeO 2 layer having a thickness of 20 nm to 300 nm is provided on an Al 2 O 3 single crystal layer having a thickness of 0.4 mm to 1.0 mm used in the present invention is deposited on the Al 2 O 3 single crystal. Alternatively, a CeO 2 layer can be formed by sputtering or a sputtering method and can be appropriately prepared by those skilled in the art, but commercially available products can also be used.
The surface of the Al 2 O 3 single crystal on which the CeO 2 layer is provided is preferably a sapphire R surface.
The light used in the present invention is laser light.
Examples of the laser light that can be used in the present invention include third harmonic light of KrF excimer laser, XeCl excimer laser, and YAG laser.
Furthermore, when irradiating a laser beam to the CeO 2 layer, the intensity of the laser light, the laser light energy density 1mJ / cm 2 ~250mJ / cm 2 better to 1,000 to 1,000,000 pulse irradiation. Preferably, the laser light energy density 20mJ / cm 2 ~150mJ / cm 2 3000~30000 to pulse irradiation.
Laser irradiation can be performed from the CeO 2 layer side or from the Al 2 O 3 single crystal substrate side. To obtain a superconductive material three-layer film structure - Al 2 O 3 person using Al 2 O 3 -CeO 2 bilayer thin film structure was carried out from the single crystal substrate side superconductivity good Al 2 O 3 -CeO 2 Can do.

厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体に、CeO2層側から、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射し、CeO2層の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体を作ることができる(図2参照)。
一定のレーザ光を照射することで、物質と光との相互作用の一次過程は電子励起ではあるが、電子系に付与されたエネルギーは、その後格子系へと伝達され、単結晶基板と界面応力が緩和するように格子が変化する。図4に示すように、X線で格子定数を測定すると変化する。その上に超電導薄膜を形成すると適度な積層欠陥や転位などの結晶欠陥が誘起される。
An energy density of 1 mJ / cm 2 to 250 mJ / from the CeO 2 layer side to a thin film structure in which a CeO 2 layer having a thickness of 20 nm to 300 nm is provided on an Al 2 O 3 single crystal layer having a thickness of 0.4 mm to 1.0 mm. An Al 2 O 3 —CeO 2 bilayer thin film structure having CeO 2 in which the lattice constant of the CeO 2 layer is changed can be produced by irradiating 1000 to 100000 pulses of cm 2 laser light (see FIG. 2).
By irradiating a certain laser beam, the primary process of interaction between matter and light is electronic excitation, but the energy imparted to the electron system is then transferred to the lattice system, and the interface stress between the single crystal substrate and The lattice changes so as to relax. As shown in FIG. 4, it changes when the lattice constant is measured by X-rays. When a superconducting thin film is formed thereon, appropriate stacking faults and crystal defects such as dislocations are induced.

また、本発明は、厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体に、CeO2層側から、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射し、CeO2層の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体のCeO2層側に厚さ100nm〜800nmの超電導薄膜を設けたAl2O3-CeO2-超電導物質三層薄膜構造体を作ることができる(図3参照)。
このような、欠陥や転位が導入は通常の支持体でも部分的に僅かに挿入されることがある(非特許文献4)が、本発明では適量はいることが特徴である。またこの効果はオフカット基板でも同様の効果が得られるが、オフカットといった特殊な作業を必要とすることは無い。このように膜中に適量に挿入された欠陥が支持体と超電導膜との熱膨張係数の差に起因する引っ張り歪みを緩和するため、クラックが生成することなく膜厚を向上させることが可能となり、特性を大きく向上させることができる。また、人工的な欠陥導入とは異なり、制御性も非常によく、生産技術に向いている。
また熱処理でも中間層の改質も行われている(特許文献3参照)が、熱的に処理した場合では、非特許文献3に示されるような表面モホロジーの変化が本発明ではないことや、熱処理だけでは図4に示すような構造が得られていないことから、中間層の小傾角粒界の創製には電子的過程が強く関与していることが考えられ、熱処理による機構とは本質的に異なる。
Further, according to the present invention, an energy density of 1 mJ is applied from a CeO 2 layer side to a thin film structure in which a CeO 2 layer having a thickness of 20 nm to 300 nm is provided on an Al 2 O 3 single crystal layer having a thickness of 0.4 mm to 1.0 mm. / cm 2 ~250mJ / cm 2 of a laser beam 1,000 to 1,000,000 pulse irradiation, Al 2 O 3 -CeO 2 CeO 2 layer side of the two-layer film structure having a CeO 2 with varying lattice constant of CeO 2 layer An Al 2 O 3 —CeO 2 —superconducting material three-layer thin film structure having a superconducting thin film having a thickness of 100 nm to 800 nm can be formed (see FIG. 3).
Such introduction of defects and dislocations may be partially inserted even in a normal support (Non-Patent Document 4), but the present invention is characterized by an appropriate amount. This effect can be obtained with an off-cut substrate, but no special work such as off-cut is required. In this way, defects inserted into the film in an appropriate amount alleviate the tensile strain caused by the difference in thermal expansion coefficient between the support and the superconducting film, so that it is possible to improve the film thickness without generating cracks. The characteristics can be greatly improved. Also, unlike artificial defect introduction, it has very good controllability and is suitable for production technology.
In addition, the intermediate layer is also modified by heat treatment (see Patent Document 3). However, when thermally treated, the change in surface morphology as shown in Non-Patent Document 3 is not the present invention. Since the structure shown in FIG. 4 is not obtained only by heat treatment, it is considered that an electronic process is strongly involved in the creation of the low-angle grain boundary of the intermediate layer, and the mechanism by heat treatment is essential. Different.

さらに、本発明では、厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体に、CeO2層側から、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射し、CeO2層の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体のCeO2層面に、塗布熱分解法、蒸着法、スパッタリング法から選ばれる手法により超電導酸化物層を設けることにより超電導材料を製造することができ、超電導酸化物層を必ずしも精緻な製膜方法を必要としない利点がある。
本発明で用いる超電導材料は周知のものならどれでも用いることができる。典型的には、超電導薄膜は( R E ) B a 2
C u 3 O 7 (ここで、R E は、 Y , N d , S m , E u , G d , D y ,H o , E r , Y bから選ばれる1 種の原子)であることが好ましいが、本発明はこれらに限定されるものではない。
下記に本発明の具体例を示し、さらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
Furthermore, in the present invention, an energy density of 1 mJ is applied from the CeO 2 layer side to a thin film structure in which a CeO 2 layer having a thickness of 20 nm to 300 nm is provided on an Al 2 O 3 single crystal layer having a thickness of 0.4 mm to 1.0 mm. of / cm 2 ~250mJ / cm 2 with a laser beam 1,000 to 1,000,000 and pulse irradiation, the CeO 2 layer surface of the Al 2 O 3 -CeO 2 bilayer thin film structure having a CeO 2 with varying lattice constant of CeO 2 layer It is possible to produce a superconducting material by providing a superconducting oxide layer by a method selected from a coating pyrolysis method, a vapor deposition method, and a sputtering method, and the superconducting oxide layer does not necessarily require a precise film forming method. is there.
Any superconducting material used in the present invention can be used. Typically, superconducting thin films are (RE) B a 2
Preferably, C u 3 O 7 (where RE is one atom selected from Y 1, N d, S m, E u, G d, D y, H 0, E r, and Y b). However, the present invention is not limited to these.
Specific examples of the present invention will be described below in more detail, but the present invention is not limited to these examples.

市販の酸化アルミニウム(Al2O3)単結晶(サファイア)R面基板に酸化セリウム(CeO2)層を形成した基板(図5参照)に、裏面(酸化アルミニウム基板側)からKrFエキシマレーザをエネルギー密度80mJ/cm2を30000パルス照射した。この中間層をX線回折装置で調べたところの格子が変化した(図4参照)。
この上に高温超電導体YBa2Cu3O7塗布溶液を4000rpm; 10秒間でスピンコートし、昇温速度毎分約10℃で500℃まで加熱し、30分間この温度に保って取り出す。ついで石英製管状炉中で以下の条件で本焼成を行う。まず、酸素分圧を100ppm に調整したアルゴンと酸素の混合ガス流中で昇温速度毎分約20℃で780℃まで加熱し、この温度に45分間保ち、ガスを純酸素に切り換えてさらに30分間保った後、徐冷し製膜したところ、厚さ410nm、誘導法により臨界電流密度2.0MA/cm2が得られた。
液体窒素で冷却し、ヒーターを使用して室温まで加熱後SEMによる表面と断面観察を行ったが、クラックなどはみられなかった。
A commercially available aluminum oxide (Al 2 O 3 ) single crystal (sapphire) R-plane substrate with a cerium oxide (CeO 2 ) layer formed on it (see Fig. 5) is energized with KrF excimer laser from the back (aluminum oxide substrate side). A density of 80 mJ / cm 2 was irradiated with 30000 pulses. When this intermediate layer was examined with an X-ray diffractometer, the lattice changed (see FIG. 4).
A high-temperature superconductor YBa 2 Cu 3 O 7 coating solution is spin-coated on this at 4000 rpm for 10 seconds, heated to 500 ° C. at a heating rate of about 10 ° C. per minute, and kept at this temperature for 30 minutes. Next, the main firing is performed in a quartz tube furnace under the following conditions. First, in a mixed gas flow of argon and oxygen with the oxygen partial pressure adjusted to 100 ppm, the temperature was increased to about 780 ° C. at a temperature increase rate of about 20 ° C. per minute, maintained at this temperature for 45 minutes, and the gas was switched to pure oxygen for another 30 After maintaining for a minute and then slowly cooling to form a film, a thickness of 410 nm and a critical current density of 2.0 MA / cm 2 were obtained by an induction method.
After cooling with liquid nitrogen and heating to room temperature using a heater, the surface and cross-section were observed by SEM, but no cracks were observed.

市販の酸化アルミニウム(Al2O3)単結晶(サファイア)R面基板に酸化セリウム(CeO2)層を形成した基板に、表面からKrFエキシマレーザをエネルギー密度20mJ/cm2を30000パルス照射した。この中間層をX線回折装置で調べたところの格子が変化した。
この上に実施例1と他は同様にして作製した膜高温超電導体YBa2Cu3O7を塗布熱分解法で製膜したところ、厚さ440nm、誘導法により臨界電流密度1.2MA/cm2が得られた。
液体窒素で冷却し、ヒーターを使用して室温まで加熱後SEMによる表面と断面観察を行ったが、クラックなどはみられなかった。
(比較例1)
実施例2において、光照射を行わないで、他同様にYBa2Cu3O7を作製したところ、厚さ420nm、誘導法で臨界電流密度が、測定限界以下であった。
A substrate having a cerium oxide (CeO 2 ) layer formed on a commercially available aluminum oxide (Al 2 O 3 ) single crystal (sapphire) R plane substrate was irradiated with 30000 pulses of KrF excimer laser with an energy density of 20 mJ / cm 2 from the surface. When this intermediate layer was examined with an X-ray diffractometer, the lattice changed.
A high-temperature superconductor YBa 2 Cu 3 O 7 produced in the same manner as in Example 1 was formed on this by a coating pyrolysis method. The thickness was 440 nm and the critical current density was 1.2 MA / cm 2 by the induction method. was gotten.
After cooling with liquid nitrogen and heating to room temperature using a heater, the surface and cross-section were observed by SEM, but no cracks were observed.
(Comparative Example 1)
In Example 2, when YBa 2 Cu 3 O 7 was produced in the same manner as above without performing light irradiation, the thickness was 420 nm, and the critical current density was less than the measurement limit by the induction method.

市販の酸化アルミニウム(Al2O3)単結晶(サファイア)R面基板に酸化セリウム(CeO2)層を形成した基板に、表面からKrFエキシマレーザをエネルギー密度20mJ/cm2を30000パルス照射した。この中間層をX線回折装置で調べたところの格子が変化した。(図4参照)
この上に実施例1と他は同様にして作製した高温超電導体YBa2Cu3O7を塗布熱分解法で成膜したところ、厚さ110nm、誘導法により臨界電流密度4.2MA/cm2が得られた。
(比較例2)
実施例3において、中間層に光照射を行わないで、他同様にYBa2Cu3O7を作製したところ、厚さ120nm、誘導法で臨界電流密度1.2MA/cm2が得られた。
A substrate having a cerium oxide (CeO 2 ) layer formed on a commercially available aluminum oxide (Al 2 O 3 ) single crystal (sapphire) R plane substrate was irradiated with 30000 pulses of KrF excimer laser with an energy density of 20 mJ / cm 2 from the surface. When this intermediate layer was examined with an X-ray diffractometer, the lattice changed. (See Figure 4)
A high temperature superconductor YBa 2 Cu 3 O 7 produced in the same manner as in Example 1 was formed on this by a coating pyrolysis method. The thickness was 110 nm, and the critical current density was 4.2 MA / cm 2 by the induction method. Obtained.
(Comparative Example 2)
In Example 3, when YBa 2 Cu 3 O 7 was prepared in the same manner as above without irradiating the intermediate layer with light, a thickness of 120 nm and a critical current density of 1.2 MA / cm 2 were obtained by the induction method.

市販の酸化アルミニウム(Al2O3)単結晶(サファイア)R面基板に面内配向していない酸化セリウム(CeO2)中間層を形成した基板に、表面からKrFエキシマレーザをエネルギー密度20mJ/cm2を30000パルス照射した。この中間層をX線回折装置で調べたところの格子が変化した。
この上に実施例1と他は同様にして作製した高温超電導体YBa2Cu3O7を塗布熱分解法で成膜したところ、厚さ100nm、誘導法により臨界電流密度3.0MA/cm2が得られた。

(比較例3)
実施例4において、中間層に光照射を行わないで、他同様にYBa2Cu3O7を作製したところ、超電導特性は得られなかった。
A commercially available aluminum oxide (Al 2 O 3 ) single crystal (sapphire) R-plane substrate with an in-plane oriented cerium oxide (CeO 2 ) intermediate layer formed on the surface is irradiated with a KrF excimer laser with an energy density of 20 mJ / cm 2 was irradiated with 30000 pulses. When this intermediate layer was examined with an X-ray diffractometer, the lattice changed.
A high-temperature superconductor YBa 2 Cu 3 O 7 produced in the same manner as in Example 1 was deposited on this by coating pyrolysis. As a result, the thickness was 100 nm and the critical current density was 3.0 MA / cm 2 by the induction method. Obtained.

(Comparative Example 3)
In Example 4, when YBa 2 Cu 3 O 7 was prepared in the same manner as above without irradiating the intermediate layer with light, superconducting properties were not obtained.

市販の酸化アルミニウム(Al2O3)単結晶(サファイア)R面基板に酸化セリウム(CeO2)中間層を形成した基板に、裏面からXeClエキシマレーザをエネルギー密度100mJ/cm2を30000パルス照射した。この中間層をX線回折装置で調べたところの格子が変化した。
この上に実施例1と他は同様にして作製した高温超電導体YBa2Cu3O7を塗布熱分解法で成膜したところ、厚さ110nm誘導法で臨界電流密度2.0MA/cm2が得られた。
A commercially available aluminum oxide (Al 2 O 3 ) single crystal (sapphire) R-plane substrate on which a cerium oxide (CeO 2 ) intermediate layer was formed was irradiated with XeCl excimer laser with an energy density of 100 mJ / cm 2 from 30000 pulses from the back side. . When this intermediate layer was examined with an X-ray diffractometer, the lattice changed.
A high-temperature superconductor YBa 2 Cu 3 O 7 produced in the same manner as in Example 1 was formed on this by coating pyrolysis, and a critical current density of 2.0 MA / cm 2 was obtained by a 110 nm thickness induction method. It was.

市販の酸化アルミニウム(Al2O3)単結晶(サファイア)R面基板に酸化セリウム(CeO2)中間層を形成した基板に、表面からYAGレーザ三倍波をエネルギー密度5mJ/cm2を100000パルス照射した。この中間層をX線回折装置で調べたところの格子が変化していた。
この基板を800℃に加熱し、組成 (原子比) がY:Ba:Cu:O =1:2:3:X のターゲットを用いてO2 /(Ar+O2)=7% (体積比)の混合ガス圧力 1 Torrの環境で厚さ300nmの YBa2Cu3O7をスパッタ成膜(300W)したところ、誘導法で臨界電流密度2.4MA/cm2の高温超電導体が得られた。
A commercially available aluminum oxide (Al 2 O 3 ) single crystal (sapphire) R-plane substrate with a cerium oxide (CeO 2 ) intermediate layer formed on it, YAG laser triple wave from the surface with an energy density of 5 mJ / cm 2 and 100,000 pulses Irradiated. When this intermediate layer was examined with an X-ray diffractometer, the lattice was changed.
This substrate was heated to 800 ° C., and a target having a composition (atomic ratio) of Y: Ba: Cu: O = 1: 2: 3: X was O 2 / (Ar + O 2 ) = 7% (volume ratio). When 300 nm thick YBa 2 Cu 3 O 7 was sputter-deposited (300 W) in an environment with a mixed gas pressure of 1 Torr, a high-temperature superconductor with a critical current density of 2.4 MA / cm 2 was obtained by the induction method.

市販の酸化アルミニウム(Al2O3)単結晶(サファイア)R面基板に酸化セリウム(CeO2)中間層を形成した基板に、表面からYAGレーザ三倍波をエネルギー密度5mJ/cm2を100000パルス照射した。この中間層をX線回折装置で調べたところの格子が変化した。
この上に実施例6と他は同様にして作製した高温超電導体GdBa2Cu3O7をスパッタで製膜したところ、厚さ200nm誘導法で臨界電流密度2.2MA/cm2が得られた。
A commercially available aluminum oxide (Al 2 O 3 ) single crystal (sapphire) R-plane substrate with a cerium oxide (CeO 2 ) intermediate layer formed on it, a YAG laser triple wave from the surface with an energy density of 5 mJ / cm 2 and 100,000 pulses Irradiated. When this intermediate layer was examined with an X-ray diffractometer, the lattice changed.
On top of this, a high-temperature superconductor GdBa 2 Cu 3 O 7 produced in the same manner as in Example 6 was formed by sputtering, and a critical current density of 2.2 MA / cm 2 was obtained by a 200 nm thickness induction method.

本発明の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体は、特定の薄膜を形成する上で、可能性を秘めたものであり、Al2O3-CeO2-超電導物質三層薄膜構造体は、高い臨界電流特性の超電導物質膜を作れるので、産業上きわめて利用可能性が高いものである。 The Al 2 O 3 —CeO 2 bilayer thin film structure having CeO 2 with a changed lattice constant according to the present invention has a potential in forming a specific thin film, and Al 2 O 3 − The CeO 2 -superconducting material three-layer thin film structure can be used as a superconducting material film having high critical current characteristics, and is therefore very highly applicable in industry.

1 レーザ光
2 Al2O3
3 CeO2
4 超電導体層
1 Laser light 2 Al 2 O 3 layer 3 CeO 2 layer 4 Superconductor layer

Claims (5)

厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体に、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射し、CeO2層の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体。 On the Al 2 O 3 single crystal layer having a thickness of 0.4Mm~1.0Mm, the thin film structure in which a CeO 2 layer with a thickness of 20 nm to 300 nm, the energy density of 1mJ / cm 2 ~250mJ / cm 2 with a laser beam An Al 2 O 3 —CeO 2 bilayer thin film structure having CeO 2 irradiated with 1,000 to 100,000 pulses and changing the lattice constant of the CeO 2 layer. 厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体に、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射し、CeO2層の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体のCeO2層側に厚さ100nm〜800nmの超電導薄膜を設けたAl2O3-CeO2-超電導物質三層薄膜構造体。 On the Al 2 O 3 single crystal layer having a thickness of 0.4Mm~1.0Mm, the thin film structure in which a CeO 2 layer with a thickness of 20 nm to 300 nm, the energy density of 1mJ / cm 2 ~250mJ / cm 2 with a laser beam 1,000 to 1,000,000 and pulse irradiation, provided superconducting thin film having a thickness of 100nm~800nm the CeO 2 layer side of the Al 2 O 3 -CeO 2 bilayer thin film structure having a CeO 2 with varying lattice constant of CeO 2 layer Al 2 O 3 -CeO 2 -Superconducting material three-layer thin film structure. CeO2層を設けるAl2O3単結晶層がサファイアR面である請求項1または請求項2に記載したAl2O3-CeO2二層薄膜構造体又はAl2O3-CeO2-超電導物質三層薄膜構造体。 3. The Al 2 O 3 —CeO 2 bilayer thin film structure or Al 2 O 3 —CeO 2 —superconductivity according to claim 1 or 2, wherein the Al 2 O 3 single crystal layer on which the CeO 2 layer is provided is a sapphire R plane. Material three-layer thin film structure. 厚さ0.4mm〜1.0mmのAl2O3単結晶層上に、厚さ20nm〜300nmのCeO2層を設けた薄膜構造体に、エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を1000〜1000000パルス照射し、CeO2層の格子定数を変化させたCeO2を有するAl2O3-CeO2二層薄膜構造体のCeO2層面に、塗布熱分解法、蒸着法、スパッタリング法から選ばれる手法により超電導酸化物層を設けて超電導材料を製造することを特徴とする超電導酸化物材料の製造方法。 On the Al 2 O 3 single crystal layer having a thickness of 0.4Mm~1.0Mm, the thin film structure in which a CeO 2 layer with a thickness of 20 nm to 300 nm, the energy density of 1mJ / cm 2 ~250mJ / cm 2 with a laser beam 1,000 to 1,000,000 and pulse irradiation, the CeO 2 layer surface of the Al 2 O 3 -CeO 2 bilayer thin film structure having a CeO 2 with varying lattice constant of CeO 2 layer, coating thermal decomposition method, vapor deposition method, a sputtering method A method for producing a superconducting oxide material, wherein a superconducting oxide layer is provided by a selected method to produce a superconducting material. エネルギー密度1mJ/cm2〜250mJ/cm2のレーザ光を照射するに際して、Al2O3単結晶層側からレーザ光を照射した二層薄膜構造体を用いることを特徴とする請求項4に記載した超電導性材料の製造方法。
In irradiating the laser beam energy density 1mJ / cm 2 ~250mJ / cm 2 , Al 2 O 3 according to claim 4, characterized by using a two-layer thin film structure is irradiated with laser light from the single crystal layer side Method for manufacturing a superconducting material.
JP2009188585A 2009-08-17 2009-08-17 Two-layer thin film structure, superconducting substance three-layer thin film structure, and manufacturing method thereof Expired - Fee Related JP4917635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188585A JP4917635B2 (en) 2009-08-17 2009-08-17 Two-layer thin film structure, superconducting substance three-layer thin film structure, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188585A JP4917635B2 (en) 2009-08-17 2009-08-17 Two-layer thin film structure, superconducting substance three-layer thin film structure, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011038175A JP2011038175A (en) 2011-02-24
JP4917635B2 true JP4917635B2 (en) 2012-04-18

Family

ID=43766219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188585A Expired - Fee Related JP4917635B2 (en) 2009-08-17 2009-08-17 Two-layer thin film structure, superconducting substance three-layer thin film structure, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4917635B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219109B2 (en) * 2005-08-10 2013-06-26 独立行政法人産業技術総合研究所 Manufacturing method of superconducting material
JP4729766B2 (en) * 2006-08-10 2011-07-20 独立行政法人産業技術総合研究所 Method for producing superconducting oxide material
JP5327932B2 (en) * 2007-02-08 2013-10-30 独立行政法人産業技術総合研究所 Manufacturing method of superconducting coating material

Also Published As

Publication number Publication date
JP2011038175A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
WO2011132731A1 (en) Oxide superconductor and production method for same
JPH04305016A (en) Alligned superconductive film and epitaxial method of growing said film
KR20130008599A (en) Thick oxide film by single coating
JP4917635B2 (en) Two-layer thin film structure, superconducting substance three-layer thin film structure, and manufacturing method thereof
Putri et al. Effect of Different Thickness Crystalline SiC-Buffer Layers on Superconducting Properties and Flux Pinning Mechanism of ${\rm MgB} _ {2} $ Films
US9242433B2 (en) Textured substrate for epitaxial film formation, and method for manufacturing the same
Drozdov et al. Peculiarities in magnetron sputtering of YBCO epitaxial films for applications in superconductor electronics devices
JP2010287475A (en) Mgb2 superconductor and its manufacturing method
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JP4744266B2 (en) Gd—Ba—Cu oxide superconducting elongated body and method for producing the same
JP6155402B2 (en) Superconducting wire and method for manufacturing the same
JP2005290528A (en) High critical face current superconducting oxide thin film on sapphire substrate and its production method
Ma et al. Ion-beam-assisted deposition of biaxially aligned yttria-stabilized zirconia template films on metallic substrates for YBCO-coated conductors
Li et al. Microstructures and superconducting properties of high performance MgB2 thin films deposited from a high-purity, dense Mg–B target
KR20110019533A (en) Method of preparing fe-as based superconducting thin film
JP2011249162A (en) Method for manufacturing superconducting wire rod
Ushida et al. Preparation and growth mechanism of a-axis-oriented YBa2Cu3O7-δ films by laser metal-organic chemical vapor deposition
Schultz et al. Preparation and characterization of pulsed laser deposited HTSC films
JP2005294240A (en) Oriented polycrystalline intermediate thin film, its manufacturing method, oxide superconductive conductor and its manufacturing method
SU1823932A3 (en) Method for manufacturing high-temperature superconductive thin film based on yttrium
JP4095222B2 (en) Superconducting element and manufacturing method thereof
JP2014232696A (en) Oxide superconducting wire
Ushida et al. Preparation of a‐axis oriented Y1Ba2Cu3O7− δ films by laser metalorganic chemical vapor deposition
Celentano et al. Fabrication and properties of epitaxial buffer layers on nonmagnetic textured Ni based alloy substrates
JPH01157406A (en) Production of compound oxide superconducting thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees