JP4917315B2 - Vehicle air resistance reduction device - Google Patents

Vehicle air resistance reduction device Download PDF

Info

Publication number
JP4917315B2
JP4917315B2 JP2006016190A JP2006016190A JP4917315B2 JP 4917315 B2 JP4917315 B2 JP 4917315B2 JP 2006016190 A JP2006016190 A JP 2006016190A JP 2006016190 A JP2006016190 A JP 2006016190A JP 4917315 B2 JP4917315 B2 JP 4917315B2
Authority
JP
Japan
Prior art keywords
roof
trailer
air
deflector
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006016190A
Other languages
Japanese (ja)
Other versions
JP2007196783A (en
Inventor
健太郎 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2006016190A priority Critical patent/JP4917315B2/en
Publication of JP2007196783A publication Critical patent/JP2007196783A/en
Application granted granted Critical
Publication of JP4917315B2 publication Critical patent/JP4917315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

本発明は車両の空気抵抗低減装置に係り、詳しくはトレーラ牽引の有無と荷箱高さを判定して、ルーフディフレクタの最適位置を自動的に調整する機能を備えた車両の空気抵抗低減装置に関する。   The present invention relates to a vehicle air resistance reduction device, and more particularly, to a vehicle air resistance reduction device having a function of automatically adjusting an optimum position of a roof deflector by determining the presence or absence of trailer towing and the height of a cargo box. .

従来、トラックには、キャビンルーフよりも荷箱が高くなっている場合が多く、空気抵抗が増加する。
このため、多くのトラックには、空気抵抗を低減するためにルーフディフレクタ(導風板)と呼ばれる装置がキャビンルーフに装着されている。
しかし乍ら、トラックには、荷箱を積載したトレーラを牽引するトラクタのように、トレーラを牽引した状態だけでなく、トレーラを牽引しないで走行する頻度が多いものもある。
Conventionally, trucks often have a higher packing box than a cabin roof, increasing air resistance.
For this reason, in many trucks, a device called a roof deflector (wind guide plate) is mounted on the cabin roof in order to reduce air resistance.
However, some trucks not only pull the trailer but also frequently travel without towing the trailer, such as a tractor that pulls the trailer loaded with a packing box.

而して、斯様にトレーラを牽引しない場合、ルーフディフレクタを装着したままだと、ルーフディフレクタを装着しない場合に比べて空気抵抗が増大し、また、荷箱の高さには様々なサイズのものがあり、荷箱の高さとルーフディフレクタの高さが合わない場合にも、空気抵抗が増加してしまう。
そこで、斯かる課題を解決する方法として、特許文献1及び特許文献2に開示された空気抵抗低減装置が知られている。
Thus, when the trailer is not pulled in this way, the air resistance increases when the roof deflector is not installed, compared to the case where the roof deflector is not installed, and the height of the packing box has various sizes. Even if there is something and the height of the packing box and the height of the roof deflector do not match, the air resistance will increase.
Therefore, as a method for solving such a problem, an air resistance reduction device disclosed in Patent Literature 1 and Patent Literature 2 is known.

特許文献1及び特許文献2に開示されたこれらの空気抵抗低減装置は、いずれもトレーラの荷箱高さとトレーラ牽引の有無でルーフディフレクタの高さを調整しており、効果的に空気抵抗の低減が図られている。
特開平8−230726号公報 特開2003−191873号公報
These air resistance reduction devices disclosed in Patent Document 1 and Patent Document 2 both adjust the height of the roof deflector by adjusting the height of the trailer's packing box and the trailer towing, and effectively reducing the air resistance. Is planned.
JP-A-8-230726 JP 2003-191873 A

しかし、特許文献1,2の従来例にあっては、トレーラ牽引の有無や荷箱の高さをドライバーが目視で確認,調整しなければならず、荷箱の高さに応じた正確な効果を期待することが難しいという課題が残されていた。
本発明は斯かる実情に鑑み案出されたもので、トレーラ牽引の有無や荷箱の高さを判定してルーフディフレクタの最適位置を自動的に調整可能とすることで、適確な空気抵抗の低減を図った車両の空気抵抗低減装置を提供することを目的とする。
However, in the conventional examples of Patent Documents 1 and 2, the driver must visually check and adjust the presence or absence of trailer towing and the height of the packing box, and an accurate effect according to the height of the packing box. The problem that it was difficult to expect was left.
The present invention has been devised in view of such circumstances, and it is possible to automatically adjust the optimum position of the roof deflector by determining the presence / absence of trailer towing and the height of the packing box. An object of the present invention is to provide a vehicle air resistance reduction device that reduces the above-mentioned problem.

斯かる目的を達成するため、請求項1に係る車両の空気抵抗低減装置は、トレーラとの連結部のカプラに装着され、トレーラ牽引の有無を検出するカプラセンサーと、車両ルーフに前端が回動可能に支持された可動式のルーフディフレクタと、当該ルーフディフレクタを回動させる回動手段と、車両ルーフに装着され、可動式の前記ルーフディフレクタの後端と車両ルーフ間の距離を測定する第一のレーザー距離計と、車両ルーフに装着され、トレーラに積載された荷箱までの距離と荷箱の上部角部までの仰角を測定する第二のレーザー距離計と、前記センサーの検出信号と第一,第二のレーザー距離計の測定信号を入力する制御手段とを備え、前記制御手段は、センサーの検出信号と、入力した両レーザー距離計の測定信号を基に前記回動手段を駆動制御して、トレーラ牽引の有無及び荷箱の高さに応じ、ルーフディフレクタの後端の最適位置を自動調整することを特徴とする。 In order to achieve such an object, a vehicle air resistance reduction device according to claim 1 is mounted on a coupler in a connecting portion with a trailer, a coupler sensor for detecting the presence or absence of trailer pulling, and a front end of the vehicle roof rotating. A movable roof deflector supported in a movable manner, a rotating means for rotating the roof deflector, and a first mounted on the vehicle roof and measuring a distance between the rear end of the movable roof deflector and the vehicle roof. A laser rangefinder, a second laser rangefinder that measures the distance to the cargo box mounted on the trailer and loaded on the trailer and the elevation angle to the upper corner of the cargo box, and the detection signal of the sensor and the first one, and control means for entering the measurement signal of the second laser rangefinders, the control means, the rotation detection signal of the sensor, the measurement signals of both laser rangefinders that enter the group Drives and controls the stage, depending on the presence and the packing box height of trailer towing, characterized by automatically adjusting the optimum position of the rear end of the roof deflector.

そして、請求項2に係る発明は、請求項1に記載の車両の空気抵抗低減装置に於て、前記回動手段は、前端が車両ルーフに回動可能に取り付くルーフディフレクタの後端側と車両ルーフとの間に装着されたエアシリンダと、当該エアシリンダに配管を介して接続されたエアタンクと、当該配管中に装着され、エアを大気へ放出する第一の電磁弁とエアタンクからのエアの流入を制御する第二の電磁弁とからなることを特徴とする。   According to a second aspect of the present invention, in the vehicle air resistance reducing device according to the first aspect, the rotating means includes a rear end side of a roof deflector whose front end is rotatably attached to the vehicle roof, and the vehicle. An air cylinder mounted between the roof, an air tank connected to the air cylinder via a pipe, a first solenoid valve mounted in the pipe and releasing air to the atmosphere, and air from the air tank And a second solenoid valve for controlling inflow.

請求項1に係る発明によれば、トレーラ牽引の有無や荷箱の高さに応じ、ルーフディフレクタの後端の高さ(最適位置)を自動的に調整できるので、トレーラ牽引の有無や荷箱の高さをドライバーが目視で確認,調整しなければならない従来例に比し、トレーラ牽引の有無や荷箱の高さに応じた正確なルーフディフレクタ後端の高さの自動調整が可能となり、この結果、荷箱やルーフディフレクタの空気抵抗をより効果的に低減して燃費の向上が図れる利点を有する。 According to the first aspect of the present invention, the height (optimum position) of the rear end of the roof deflector can be automatically adjusted according to the presence / absence of trailer towing and the height of the packing box. Compared to conventional examples where the driver must visually check and adjust the height of the roof, it is possible to automatically adjust the height of the rear end of the roof deflector according to the presence of trailer towing and the height of the packing box, As a result, there is an advantage that the air resistance of the packing box and the roof deflector can be more effectively reduced to improve fuel efficiency.

そして、請求項2に係る発明によれば、トラクタに標準搭載されるエアタンクを使用するため、コストが嵩むこともない。 In the invention according to claim 2, for use air tank tractor Ru standard with, it is not also increase costs.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は請求項1及び請求項2の一実施形態に係る車両の空気抵抗低減装置を示し、図中、1は荷箱3を積載したトレーラ5を牽引するトラクタ(セミトラクタ)で、トラクタ1には図示しないカプラが装着されており、カプラはその上面を形成するカプラベースでトレーラ5を支持し、カプラベース中央下部に装着したジョー機構でトレーラ5のキングピンと結合して、牽引力や制動力等をトレーラ5側に伝達している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a vehicle air resistance reducing device according to an embodiment of claims 1 and 2. In the figure, reference numeral 1 denotes a tractor (semi-tractor) that pulls a trailer 5 loaded with a cargo box 3. A coupler (not shown) is mounted on the coupler, and the coupler supports the trailer 5 with a coupler base that forms the upper surface of the coupler, and is coupled to the king pin of the trailer 5 by a jaw mechanism mounted at the lower center of the coupler base. Etc. are transmitted to the trailer 5 side.

そして、カプラには、従来のトラクタに標準搭載されているカプラセンサー7が装着されており、図2に示すようにカプラセンサー7の検出信号がECU(制御手段)9のトレーラ牽引判断部11に入力されて、トレーラ牽引の有無がこのトレーラ牽引判断部11で判定されるようになっている。
また、図1に於て、13はトラクタ1のルーフ15に装着された可動式のルーフディフレクタで、ルーフディフレクタ13は前端がヒンジ部材17を介してルーフ15の前部側に回動可能に支持されている。そして、ルーフディフレクタ13の後端側とルーフ15との間に、ルーフディフレクタ13の高さを調整するエアシリンダ19が装着されている。
The coupler is equipped with a coupler sensor 7 which is standardly mounted on a conventional tractor, and a detection signal of the coupler sensor 7 is sent to a trailer traction determination unit 11 of an ECU (control means) 9 as shown in FIG. The trailer tow determination unit 11 determines whether the trailer is towed or not.
In FIG. 1, reference numeral 13 denotes a movable roof deflector mounted on the roof 15 of the tractor 1, and the roof deflector 13 is rotatably supported at the front end of the roof 15 via a hinge member 17. Has been. An air cylinder 19 that adjusts the height of the roof deflector 13 is mounted between the rear end side of the roof deflector 13 and the roof 15.

而して、エアシリンダ19には配管21を介してエアタンク23が接続され、更に、当該配管21には、エアを大気へ放出する第一の電磁弁25と、エアタンク23からのエアの流入を制御する第二の電磁弁27が装着され、エアシリンダ19と配管21,エアタンク23,電磁弁25,27は、トレーラ牽引の有無及び荷箱高さに応じてルーフディフレクタ13を回動させる回動手段Aを構成している。   Thus, an air tank 23 is connected to the air cylinder 19 via a pipe 21, and further, a first electromagnetic valve 25 that discharges air to the atmosphere and an inflow of air from the air tank 23 to the pipe 21. A second electromagnetic valve 27 to be controlled is mounted, and the air cylinder 19 and the pipe 21, the air tank 23, and the electromagnetic valves 25 and 27 rotate to rotate the roof deflector 13 according to the presence or absence of trailer towing and the height of the cargo box. Means A are configured.

尚、エアタンク23は、従来、トレーラ1に標準搭載されているものを使用している。
そして、トレーラ5が牽引されていない場合、図2に示すECU9の電磁弁制御判断部29は、トレーラ牽引判断部11の判定に基づき電磁弁27を閉じ、電磁弁25を開いてエアシリンダ19のエアを大気に解放してエアシリンダ19を縮退させ、ルーフディフレクタ13をルーフ15上まで下降させるようになっている。
As the air tank 23, a conventional one that is standardly mounted on the trailer 1 is used.
When the trailer 5 is not towed, the electromagnetic valve control determination unit 29 of the ECU 9 shown in FIG. 2 closes the electromagnetic valve 27 and opens the electromagnetic valve 25 based on the determination of the trailer tow determination unit 11 to open the air cylinder 19. The air is released into the atmosphere, the air cylinder 19 is degenerated, and the roof deflector 13 is lowered onto the roof 15.

一方、図1に示すようにルーフ15の後部側には、可動式のルーフディフレクタ13の後端とルーフ15間の距離(H1)を測定する第一のレーザー距離計31と、トレーラ5に積載された荷箱3までの距離(X1)と荷箱3の上部角部3aまでの仰角(θ)を測定する第二のレーザー距離計33が装着されており、トレーラ5が牽引されている場合、図2に示すように第一のレーザー距離計31の測定信号はECU9の必要駆動距離演算部35に入力され、第二のレーザー距離計33の測定信号はECU9の荷箱高さ演算部37に入力されている。 On the other hand, as shown in FIG. 1, on the rear side of the roof 15, a first laser rangefinder 31 that measures the distance (H 1) between the rear end of the movable roof deflector 13 and the roof 15, and a trailer 5 are loaded. When the trailer 5 is pulled and the second laser distance meter 33 is installed to measure the distance (X1) to the packed box 3 and the elevation angle (θ) to the upper corner 3a of the packed box 3 As shown in FIG. 2, the measurement signal of the first laser distance meter 31 is input to the necessary drive distance calculation unit 35 of the ECU 9, and the measurement signal of the second laser distance meter 33 is input to the packing box height calculation unit 37 of the ECU 9. Has been entered.

そして、荷箱高さ演算部37は、レーザー距離計33で測定された距離(X1)と仰角(θ)から、荷箱高さ(H2)をH2=X1×tanθの計算式で算出して、この算出値を必要駆動距離演算部35に入力するようになっている。
次いで、必要駆動距離演算部35では、荷箱高さ演算部37で算出された荷箱高さ(H2)と、前記レーザー距離計31で測定されたルーフディフレクタ13の後端とルーフ15間の距離(H1)から、ルーフディフレクタ13の後端の必要駆動距離(H3)をH3=H2−H1の計算式で算出する。
Then, the packing box height calculation unit 37 calculates the packing box height (H2) from the distance (X1) measured by the laser distance meter 33 and the elevation angle (θ) by the calculation formula of H2 = X1 × tan θ. The calculated value is input to the required drive distance calculation unit 35.
Next, in the required drive distance calculation unit 35, the packing box height (H2) calculated by the packing box height calculation unit 37, and the rear end of the roof deflector 13 measured by the laser distance meter 31 and the roof 15 are measured. From the distance (H1), the required driving distance (H3) of the rear end of the roof deflector 13 is calculated by the calculation formula of H3 = H2−H1.

そして、電磁弁制御判断部29は、必要駆動距離(H3)が正(H3>0)の場合、電磁弁25を閉じ、電磁弁27を開いてH3=0となるまでエアタンク23からエアシリンダ19にエアを供給して、ルーフディフレクタ13を上昇させるようになっている。
一方、必要駆動距離(H3)が負(H3<0)の場合、電磁弁制御判断部29は、電磁弁27を閉じ、電磁弁25を開いてH3=0となるまでエアシリンダ19からエアを大気に解放して、ルーフディフレクタ13を下降させるようになっている。
When the required driving distance (H3) is positive (H3> 0), the solenoid valve control determination unit 29 closes the solenoid valve 25, opens the solenoid valve 27, and until the H3 = 0, the air cylinder 23 to the air cylinder 19 Air is supplied to the roof to raise the roof deflector 13.
On the other hand, when the required drive distance (H3) is negative (H3 <0), the solenoid valve control determination unit 29 closes the solenoid valve 27, opens the solenoid valve 25, and draws air from the air cylinder 19 until H3 = 0. The roof deflector 13 is lowered by being released to the atmosphere.

また、必要駆動距離演算部35に於て、H3=H2−H1の計算式で算出されたルーフディフレクタ13の必要駆動距離(H3)がH3=0の場合、ルーフディフレクタ13の高さ調整は不要であるから、電磁弁制御判断部29は電磁弁25,27を作動させないように構成されている。
本実施形態に係る車両の空気抵抗低減装置39はこのように構成されており、以下、図3のフローチャートに基づきその動作を説明する。
Further, when the required driving distance (H3) of the roof deflector 13 calculated by the calculation formula of H3 = H2−H1 in the required driving distance calculation unit 35 is H3 = 0, the height adjustment of the roof deflector 13 is unnecessary. Therefore, the solenoid valve control determination unit 29 is configured not to operate the solenoid valves 25 and 27.
The vehicle air resistance reducing device 39 according to the present embodiment is configured as described above, and the operation thereof will be described below based on the flowchart of FIG.

トラクタ1がキーON操作されると、先ず、ステップS1に於て、カプラセンサー7の検出信号を基に、ECU9のトレーラ牽引判断部11はトレーラ牽引の有無を判定する。
そして、ステップS1でトレーラ5が牽引されていないと判定されると、電磁弁制御判断部29は、電磁弁27を閉じ、電磁弁25を開いてエアシリンダ19のエアを大気に解放して、ルーフディフレクタ13をルーフ15上まで下降させる(ステップS2,S3)。
When the tractor 1 is turned on, first, in step S1, the trailer traction determination unit 11 of the ECU 9 determines the presence or absence of trailer traction based on the detection signal of the coupler sensor 7.
When it is determined in step S1 that the trailer 5 is not pulled, the solenoid valve control determination unit 29 closes the solenoid valve 27, opens the solenoid valve 25, and releases the air in the air cylinder 19 to the atmosphere. The roof deflector 13 is lowered onto the roof 15 (steps S2 and S3).

この結果、トレーラ5を牽引しないトラクタ1の走行時に、ルーフディフレクタ13による空気抵抗が軽減することとなる。
一方、ステップS1でトレーラ5が牽引されていると判定されると、ステップS4に進み、レーザー距離計31でルーフディフレクタ13の後端とルーフ15間の距離(H1)が測定されて、その測定信号が必要駆動距離演算部35に入力されると共に、ステップS5で荷箱3までの距離(X1)と荷箱3の上部角部3aまでの仰角(θ)がレーザー距離計33で測定されて、その測定信号が荷箱高さ演算部37に入力される。
As a result, air resistance by the roof deflector 13 is reduced when the tractor 1 that does not pull the trailer 5 is traveling.
On the other hand, if it is determined in step S1 that the trailer 5 is being pulled, the process proceeds to step S4, where the laser distance meter 31 measures the distance (H1) between the rear end of the roof deflector 13 and the roof 15, and the measurement. A signal is input to the required drive distance calculation unit 35, and the distance (X1) to the cargo box 3 and the elevation angle (θ) to the upper corner 3a of the cargo box 3 are measured by the laser distance meter 33 in step S5. The measurement signal is input to the packing box height calculation unit 37.

そして、ステップS6に於て、荷箱高さ演算部37は、レーザー距離計33で測定された距離(X1)と仰角(θ)から荷箱高さ(H2)を前記計算式で算出して、この算出値を必要駆動距離演算部35に入力する。
すると、ステップS7で必要駆動距離演算部35は、算出された前記荷箱高さ(H2)とレーザー距離計31で測定された距離(H1)から、ルーフディフレクタ13の後端の必要駆動距離(H3)を前記計算式で算出する。
In step S6, the packing box height calculation unit 37 calculates the packing box height (H2) from the distance (X1) measured by the laser distance meter 33 and the elevation angle (θ) using the above formula. The calculated value is input to the required drive distance calculation unit 35.
Then, in step S7, the required drive distance calculation unit 35 calculates the required drive distance (at the rear end of the roof deflector 13) from the calculated height (H2) of the packing box and the distance (H1) measured by the laser distance meter 31. H3) is calculated by the above formula.

そして、必要駆動距離(H3)が正(H3>0)の場合、電磁弁制御判断部29は、電磁弁25を閉じ、電磁弁27を開いてH3=0となるまでエアタンク23からエアシリンダ19にエアを供給してルーフディフレクタ13を上昇させ(ステップS8,S9)、この後、ステップS1に戻ることとなる。
一方、必要駆動距離(H3)が負(H3<0)の場合、電磁弁制御判断部29は、電磁弁27を閉じ、電磁弁25を開いてH3=0となるまでエアシリンダ19からエアを大気に解放してルーフディフレクタ13を下降させ(ステップS10,S11)、この後、ステップS1に戻る。
When the required driving distance (H3) is positive (H3> 0), the solenoid valve control determination unit 29 closes the solenoid valve 25 and opens the solenoid valve 27 until the H3 = 0 until the air cylinder 23 reaches the air cylinder 19. Air is supplied to the roof deflector 13 to raise it (steps S8 and S9), and then the process returns to step S1.
On the other hand, when the required drive distance (H3) is negative (H3 <0), the solenoid valve control determination unit 29 closes the solenoid valve 27, opens the solenoid valve 25, and draws air from the air cylinder 19 until H3 = 0. The roof deflector 13 is lowered by being released to the atmosphere (steps S10 and S11), and then the process returns to step S1.

また、ステップS7でH3=0と判定された場合、ルーフディフレクタ13の高さ調整は不要であるから、電磁弁制御判断部29は両電磁弁25,27を閉じてルーフディフレクタ13を作動させずに(ステップS12,S13)、ステップS1に戻る。
このように本実施形態に係る空気抵抗低減装置39は、トレーラ牽引の有無や荷箱3の高さに応じ、ルーフディフレクタ13の後端の高さ(最適位置)を自動的に調整可能としたので、トレーラ牽引の有無や荷箱の高さをドライバーが目視で確認,調整しなければならない特許文献1,2の従来例に比し、トレーラ牽引の有無や荷箱3の高さに応じた正確なルーフディフレクタ13後端の高さの自動調整が可能となり、この結果、荷箱3やルーフディフレクタ13の空気抵抗をより効果的に低減して燃費の向上が図れる利点を有する。
If it is determined in step S7 that H3 = 0, it is not necessary to adjust the height of the roof deflector 13. Therefore, the solenoid valve control determination unit 29 does not operate the roof deflector 13 by closing both the solenoid valves 25 and 27. (Steps S12 and S13), the process returns to Step S1.
As described above, the air resistance reduction device 39 according to the present embodiment can automatically adjust the height (optimum position) of the rear end of the roof deflector 13 according to the presence or absence of trailer towing and the height of the cargo box 3. Therefore, compared to the conventional examples of Patent Documents 1 and 2 where the driver must visually check and adjust the trailer towing and the height of the packing box, it depends on the presence of trailer towing and the height of the packing box 3 Accurate automatic adjustment of the height of the rear end of the roof deflector 13 is possible. As a result, there is an advantage that the air resistance of the cargo box 3 and the roof deflector 13 can be more effectively reduced and fuel consumption can be improved.

而も、本実施形態に係る空気抵抗低減装置39は、通常のトラクタに標準搭載されるカプラセンサー7やエアタンク23等の既存のものを使用するため、大幅にコストが嵩むこともない。
また、本実施形態によれば、荷箱3の高さを測定することができるため、ナビゲーションシステムと組み合わせることによって、高さ制限のないルートの情報提供、もしくは警告をドライバーに促すことが可能である。
In addition, since the air resistance reduction device 39 according to the present embodiment uses existing ones such as the coupler sensor 7 and the air tank 23 that are standardly mounted on a normal tractor, the cost does not increase significantly.
In addition, according to the present embodiment, the height of the packing box 3 can be measured, and by combining with the navigation system, it is possible to prompt the driver to provide information on a route with no height restriction or to warn the driver. is there.

請求項1及び請求項2の一実施形態に係る車両の空気抵抗低減装置の概略構成図である。It is a schematic block diagram of the air resistance reduction apparatus of the vehicle which concerns on one Embodiment of Claim 1 and Claim 2 . 空気抵抗低減装置の制御ブロック図である。It is a control block diagram of an air resistance reducing device. 空気抵抗低減装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of an air resistance reduction apparatus.

符号の説明Explanation of symbols

1 トラクタ
3 荷箱
5 トレーラ
7 カプラセンサー
9 ECU
11 トレーラ牽引判断部
13 ルーフディフレクタ
15 ルーフ
19 エアシリンダ
21 配管
23 エアタンク
25 第一の電磁弁
27 第二の電磁弁
29 電磁弁制御判断部
31 第一のレーザー距離計
33 第二のレーザー距離計
35 必要駆動距離演算部
37 荷箱高さ演算部
39 空気抵抗低減装置
A 回動手段
1 Tractor 3 Cargo box 5 Trailer 7 Coupler sensor 9 ECU
11 Trailer traction determination unit 13 Roof deflector 15 Roof 19 Air cylinder 21 Pipe 23 Air tank 25 First electromagnetic valve 27 Second electromagnetic valve 29 Electromagnetic valve control determination unit 31 First laser rangefinder 33 Second laser rangefinder 35 Necessary driving distance calculation unit 37 Packing box height calculation unit 39 Air resistance reduction device A Rotating means

Claims (2)

トレーラとの連結部のカプラに装着され、トレーラ牽引の有無を検出するカプラセンサーと、
車両ルーフに前端が回動可能に支持された可動式のルーフディフレクタと、
当該ルーフディフレクタを回動させる回動手段と、
車両ルーフに装着され、可動式の前記ルーフディフレクタの後端と車両ルーフ間の距離を測定する第一のレーザー距離計と、
車両ルーフに装着され、トレーラに積載された荷箱までの距離と荷箱の上部角部までの仰角を測定する第二のレーザー距離計と、
前記センサーの検出信号と第一,第二のレーザー距離計の測定信号を入力する制御手段とを備え、
前記制御手段は、センサーの検出信号と、入力した両レーザー距離計の測定信号を基に前記回動手段を駆動制御して、トレーラ牽引の有無及び荷箱の高さに応じ、ルーフディフレクタの後端の最適位置を自動調整することを特徴とする車両の空気抵抗低減装置。
Coupler sensor that is attached to the coupler of the connection part with the trailer and detects the presence or absence of trailer pulling,
A movable roof deflector whose front end is rotatably supported on the vehicle roof;
Rotating means for rotating the roof deflector;
A first laser rangefinder mounted on the vehicle roof and measuring the distance between the rear end of the movable roof deflector and the vehicle roof;
A second laser distance meter mounted on the vehicle roof and measuring the distance to the cargo box loaded on the trailer and the elevation angle to the upper corner of the cargo box;
And control means for detecting the signal and input the measurement signal of the first, second laser rangefinder of the sensor,
Wherein the control means includes a detection signal of the sensor, said rotating means controls and drives based on the measurement signals of both laser rangefinders that enter, depending on the presence and the packing box height of the trailer towing, roof deflector A device for reducing air resistance of a vehicle, wherein an optimum position of a rear end is automatically adjusted.
前記回動手段は、前端が車両ルーフに回動可能に取り付くルーフディフレクタの後端側と車両ルーフとの間に装着されたエアシリンダと、当該エアシリンダに配管を介して接続されたエアタンクと、当該配管中に装着され、エアを大気へ放出する第一の電磁弁とエアタンクからのエアの流入を制御する第二の電磁弁とからなることを特徴とする請求項1に記載の車両の空気抵抗低減装置。   The rotating means includes an air cylinder mounted between a vehicle roof and a rear end side of a roof deflector whose front end is rotatably attached to the vehicle roof, an air tank connected to the air cylinder via a pipe, 2. The vehicle air according to claim 1, comprising: a first electromagnetic valve that is mounted in the pipe and that discharges air to the atmosphere; and a second electromagnetic valve that controls inflow of air from the air tank. Resistance reduction device.
JP2006016190A 2006-01-25 2006-01-25 Vehicle air resistance reduction device Expired - Fee Related JP4917315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016190A JP4917315B2 (en) 2006-01-25 2006-01-25 Vehicle air resistance reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016190A JP4917315B2 (en) 2006-01-25 2006-01-25 Vehicle air resistance reduction device

Publications (2)

Publication Number Publication Date
JP2007196783A JP2007196783A (en) 2007-08-09
JP4917315B2 true JP4917315B2 (en) 2012-04-18

Family

ID=38451829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016190A Expired - Fee Related JP4917315B2 (en) 2006-01-25 2006-01-25 Vehicle air resistance reduction device

Country Status (1)

Country Link
JP (1) JP4917315B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0806807D0 (en) * 2008-04-15 2008-05-14 Cartwright & Sons Coachbuilder Vehicle fairing
GB2497211A (en) * 2012-12-20 2013-06-05 Daimler Ag Spoiler with adjustment dependant on trailer dimensions
GB2579168B (en) * 2018-10-15 2022-12-21 Aerodyne Global Ltd Height adjustable air deflector
CN112731431A (en) * 2020-12-28 2021-04-30 华晟(青岛)智能装备科技有限公司 Positioning detection device and method for van truck

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102548A (en) * 1976-12-06 1978-07-25 Paccar Inc. Infinitely variable, controllably and/or automatically adjustable air deflector and method
JPS5850078A (en) * 1981-09-21 1983-03-24 Fujitsu Ltd Character recognizing device
JPS58113590A (en) * 1981-12-26 1983-07-06 Toshiba Corp Cryopump
JPS61113178A (en) * 1984-11-07 1986-05-31 Hitachi Maxell Ltd Recording disk

Also Published As

Publication number Publication date
JP2007196783A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
CN102387957B (en) The method for saddle adaptor union mobile device that bending state with towing vehicle and superimposed trailer detects and control system
CN102725168B (en) Driver assistance method for detecting side object
RU2379210C2 (en) Control device, aerodynamic panel system and artic drag reducer
US8258933B2 (en) Parking guidance method for vehicle
JP4917315B2 (en) Vehicle air resistance reduction device
US11332191B2 (en) Trailer sideswipe avoidance system
US7737866B2 (en) Auto-parking device
EP3575192B1 (en) Remote optical wind detection and aerodynamic control system for ground vehicle
US11091212B2 (en) Vehicular aerodynamic device
CN104781121A (en) Acceleration suppression device for vehicle, and acceleration suppression method for vehicle
US20140081522A1 (en) Automatic level control
US9643487B2 (en) Vehicle fuel filler assembly
CN108430859A (en) wind shield device
CN106904165A (en) Method for operating the control unit of motor vehicles in traffic jam environment
TWI597197B (en) Compound Automatic Assisted Driving Decision System and Its Method
US11634071B2 (en) Trailer sideswipe avoidance system
KR20090080769A (en) Method and Apparatus for Securing Parking Space by Using Parking Assistant Function
SE544560C2 (en) Method and system for positioning air deflector using distance measurement
JP4687392B2 (en) Vehicle that performs automatic steering control by judging the accuracy of roadside information
US20240118085A1 (en) Sensor Controlled System, Vehicle and Method
US20240158024A1 (en) Method and system for controlling a cover, and truck-trailer combination
KR20030020617A (en) rear high control system for small size truck
US20240116437A1 (en) Trailer sideswipe avoidance system
KR100774699B1 (en) Interference preventing device of tractor and trailer
JPH092340A (en) Combining device for combination vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees