JP4916761B2 - Dynamic analysis method of rolling bearing under planetary motion - Google Patents

Dynamic analysis method of rolling bearing under planetary motion Download PDF

Info

Publication number
JP4916761B2
JP4916761B2 JP2006128062A JP2006128062A JP4916761B2 JP 4916761 B2 JP4916761 B2 JP 4916761B2 JP 2006128062 A JP2006128062 A JP 2006128062A JP 2006128062 A JP2006128062 A JP 2006128062A JP 4916761 B2 JP4916761 B2 JP 4916761B2
Authority
JP
Japan
Prior art keywords
planetary gear
rolling bearing
dynamic analysis
gear
assumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006128062A
Other languages
Japanese (ja)
Other versions
JP2007298458A (en
Inventor
智也 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006128062A priority Critical patent/JP4916761B2/en
Publication of JP2007298458A publication Critical patent/JP2007298458A/en
Application granted granted Critical
Publication of JP4916761B2 publication Critical patent/JP4916761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • General Details Of Gearings (AREA)

Description

この発明は遊星運動下の遊星歯車を支持する転がり軸受の動力学解析方法に関する。   The present invention relates to a dynamic analysis method for a rolling bearing that supports a planetary gear under planetary motion.

遊星歯車機構は、1個の入力歯車に数個の遊星歯車をかみ合わせ、伝達トルクを一旦分担させ、これらを再び1個の出力歯車に集約させる構造であるため、小形・軽量でありながらも許容伝達トルクは極めて高く、多くの変速機に利用されている(例えば,非特許文献1)。
また、遊星運動する遊星歯車の支持軸受には、低振動・低騒音ならびに高伝達効率化のため転がり軸受が利用されている。しかし遊星運動下の転がり軸受において、保持器破損が問題になる場合がある。
The planetary gear mechanism has a structure in which several planetary gears are meshed with one input gear, the transmission torque is once shared, and these are concentrated again into one output gear. The transmission torque is extremely high and is used in many transmissions (for example, Non-Patent Document 1).
In addition, rolling bearings are used as support bearings for planetary gears that make planetary motions in order to reduce vibration and noise and increase transmission efficiency. However, in rolling bearings under planetary motion, cage breakage may become a problem.

遊星歯車には、二つの太陽歯車(外歯太陽歯車,内歯歯車)からの歯面を介した干渉力、およびキャリアの運動による動的な荷重が作用する。これら歯面での干渉力自体の解析例(例えば、非特許文献2)は在るものの、遊星歯車の支持軸受の運動解析は見受けられない。
和栗明編著,「歯車の設計・製作とその耐久力」,1980年発行,養賢堂,P197〜200 村松茂樹他著,「歯面計測によるかみあい非整数次振動の発生予測」,日本機会学会第1回基礎潤滑部門講演会講演論文集,2001年発行,P63~64 坂口・上野共著,「円筒ころ軸受の保持器挙動解析」,NTNテクニカルレビュー(NTN TECHNICAL REVIEW),No71,2003,8-17
The planetary gear is subjected to an interference force from the two sun gears (external gear sun gear, internal gear) via the tooth surface and a dynamic load due to the movement of the carrier. Although there are analysis examples of the interference force itself on these tooth surfaces (for example, Non-Patent Document 2), no motion analysis of the planetary gear support bearings is found.
Written by Akira Waguri, “Gear Design / Manufacturing and Its Durability”, published in 1980, Yokendo, P197-200 Shigeki Muramatsu et al., “Prediction of meshing non-integer order vibrations by tooth surface measurement”, Proceedings of the 1st Lecture on Basic Lubrication Division of the Japan Opportunity Association, 2001, P63-64 Sakaguchi & Ueno, “Cylinder roller bearing cage behavior analysis”, NTN TECHNICAL REVIEW, No71, 2003, 8-17

遊星歯車の支持軸受における保持器破損問題の解明のためには、数値計算による転がり軸受の動力学解析が有効である。転がり軸受の動力学解析は、例えば市販の汎用機構解析ソフト上でも行なうことができ、実用化されている(例えば、非特許文献3)。これは、ころと保持器の3自由度と外輪の2並進自由度を考慮した転がり軸受の2次元動力学解析モデルを用いるものである。
しかし、前述のように遊星歯車に作用する荷重履歴は複雑であり、遊星歯車機構全体を含んだ転がり軸受の動力学解析モデルの構築は難しい。
In order to clarify the problem of cage breakage in planetary gear support bearings, numerical analysis of rolling bearing dynamics is effective. The dynamic analysis of the rolling bearing can be performed on commercially available general-purpose mechanism analysis software, for example, and has been put into practical use (for example, Non-Patent Document 3). This uses a two-dimensional dynamic analysis model of a rolling bearing that takes into account three degrees of freedom of rollers and cages and two degrees of freedom of translation of the outer ring.
However, as described above, the load history acting on the planetary gear is complicated, and it is difficult to construct a dynamic analysis model of the rolling bearing including the entire planetary gear mechanism.

この発明の目的は、遊星運動下の転がり軸受の動力学解析が比較的簡単に実施可能となり、保持器破損に代表される様々な転がり軸受部品の品質問題の解明に寄与できる遊星運動下の転がり軸受の動力学解析方法を提供することである。   The object of the present invention is to enable dynamic analysis of rolling bearings under planetary motion relatively easily, and to perform rolling under planetary motions that can contribute to elucidating the quality problems of various rolling bearing parts represented by cage breakage. It is to provide a dynamic analysis method for bearings.

この発明の遊星運動下の転がり軸受の動力学解析方法は、遊星歯車に作用する荷重を簡単化した実用的な転がり軸受の動力学解析モデルを提案するものである。
すなわち、この発明の遊星運動下の転がり軸受の動力学解析方法は、外歯太陽歯車および内歯歯車に噛み合う遊星歯車を、キャリアに転がり軸受を介して回転自在に支持した遊星歯車機構における、前記転がり軸受の動力学解析を行う方法において、
前記遊星歯車機構の動力学解析モデルとして、この遊星歯車機構の構成部品の運動の自由度をラジアル平面内のみに限定し、遊星歯車の自転とキャリアの自転の角速度を一定とし、キャリアと外歯太陽歯車の中心位置を内歯歯車の中心に固定としたモデルを用いる。この動力学解析モデルに対して、遊星歯車機構の伝達トルクを遊星歯車の公転半径方向荷重で表現することで、前記転がり軸受に作用する遊星歯車機構特有の荷重を模擬的に与え、かつ前記モデルにおいて、前記転がり軸受に作用する遊星歯車機構に特有の荷重は、以下の(仮定1)〜(仮定7)で表現されるものとすることを特徴とする。
(仮定1)動力学解析対象部品の慣性力ならびに遠心力を考慮する。
(仮定2)前記転がり軸受の転動体、保持器、軸、および遊星歯車の互いの接触力および接線力を考慮する。
(仮定3)キャリアおよび遊星歯車の自転角速度は、一定または、既知の関数等による既知条件として与える。よって、遊星歯車の公転角速度は動力学解析の自由度とする。
(仮定4)外歯太陽歯車、内歯歯車、およびキャリアの中心位置は固定とし、互いに一致する。
(仮定5)遊星歯車と外歯太陽歯車および内歯歯車との歯面接触部のかみ合い隙間は、遊星歯車を支持する転がり軸受のラジアル内部隙間よりも大きいため、このラジアル内部隙間分の遊星歯車の2並進の自由度を与える。
(仮定6)内歯歯車および外歯太陽歯車から遊星歯車への干渉力は、遊星歯車の公転方向の並進力と自転モーメントに帰着できる。さらに、定常運転状態下では、この並進力は伝達トルクで決定される。
(仮定7)転がり軸受の保持器および転動体へは、自転と2並進の3自由度を与える。
The dynamic analysis method for a rolling bearing under planetary motion according to the present invention proposes a practical rolling bearing dynamic analysis model that simplifies the load acting on the planetary gear.
That is, the dynamic analysis method for a rolling bearing under planetary motion according to the present invention is the planetary gear mechanism in which the planetary gear meshing with the external sun gear and the internal gear is rotatably supported by the carrier via the rolling bearing. In a method for performing dynamic analysis of a rolling bearing,
As a dynamic analysis model of the planetary gear mechanism, the degree of freedom of movement of the components of the planetary gear mechanism is limited to a radial plane, the angular speed of the planetary gear rotation and the carrier rotation is constant, and the carrier and external teeth A model in which the center position of the sun gear is fixed to the center of the internal gear is used. For this dynamic analysis model, by expressing the transmission torque of the planetary gear mechanism revolving radial load of the planetary gear, e given a planetary gear mechanism of the specific load applied to the rolling bearing in simulated, and the In the model, the load specific to the planetary gear mechanism acting on the rolling bearing is expressed by the following (Assumption 1) to (Assumption 7) .
(Assumption 1) Consider the inertial force and centrifugal force of the parts subject to dynamic analysis.
(Assumption 2) The mutual contact force and tangential force of the rolling elements, cage, shaft, and planetary gear of the rolling bearing are taken into consideration.
(Assumption 3) The rotational angular velocities of the carrier and the planetary gear are given as constant conditions or known conditions such as a known function. Therefore, the revolution angular velocity of the planetary gear is defined as the degree of freedom in dynamic analysis.
(Assumption 4) The center positions of the external sun gear, the internal gear, and the carrier are fixed and coincide with each other.
(Assumption 5) Since the meshing clearance of the tooth surface contact portion between the planetary gear, the external sun gear, and the internal gear is larger than the radial internal clearance of the rolling bearing that supports the planetary gear, the planetary gear corresponding to the radial internal clearance is provided. Gives two translational degrees of freedom.
(Assumption 6) The interference force from the internal gear and the external sun gear to the planetary gear can be reduced to the translational force and the rotation moment in the revolution direction of the planetary gear. Further, under the steady operation state, this translational force is determined by the transmission torque.
(Assumption 7) Three degrees of freedom of rotation and two translations are given to the cage and rolling elements of the rolling bearing.

この動力学解析方法によると、遊星歯車機構特有の複雑な遊星歯車に作用する荷重を簡単化できるため、ころと保持器の3自由度と外輪の2並進自由度を考慮した転がり軸受の2次元動力学解析モデルを用いることにより、遊星運動下の転がり軸受の動力学解析が簡単に実施可能となる。そのため、保持器破損に代表される様々な転がり軸受部品の品質問題の解明に寄与することができる。
上記(仮定6)により、遊星歯車の公転方向の公称のラジアル荷重を設定することができる。このラジアル荷重は転動体や保持器の動的な挙動を決定することになる。
According to this dynamic analysis method, the load acting on the complex planetary gear unique to the planetary gear mechanism can be simplified. Therefore, the two-dimensional rolling bearing considering the three degrees of freedom of the rollers and the cage and the two degrees of freedom of translation of the outer ring. by using dynamic analysis models, dynamic analysis of the rolling bearing of the lower planetary motion becomes easily feasible. Therefore, Ru can contribute to the elucidation of quality problems of the various rolling bearings components typified by cage damage.
By the above (Assumption 6), the nominal radial load in the revolution direction of the planetary gear can be set. This radial load will determine the dynamic behavior of the rolling elements and cage.

この発明において、前記動力学解析モデルは、遊星歯車の自転とキャリアの自転の角速度を既知の関数とするものであっても良い。すなわち、遊星歯車の自転とキャリアの自転の角速度を一定とする代わりに、既知の関数としても良い。既知の関数とすると、より精度良く転がり軸受の動力学解析が行える。   In the present invention, the dynamic analysis model may be one in which the angular speeds of the planetary gear rotation and the carrier rotation are known functions. That is, a known function may be used instead of making the angular speeds of the planetary gear rotation and the carrier rotation constant. If it is a known function, the dynamic analysis of the rolling bearing can be performed with higher accuracy.

前記転がり軸受は、例えば、キャリアと一体固定の軸の外径面、および遊星歯車の内径面が転動体の転動する軸受軌道面となる保持器付きころであっても良い。   The rolling bearing may be, for example, a roller with a cage in which an outer diameter surface of a shaft fixed integrally with a carrier and an inner diameter surface of a planetary gear serve as a bearing raceway surface on which a rolling element rolls.

この発明の遊星運動下の転がり軸受の動力学解析方法は、遊星歯車機構の動力学解析モデルとして、遊星歯車機構の構成部品の運動の自由度をラジアル平面内のみに限定し、遊星歯車の自転とキャリアの自転の角速度を一定とし、キャリアと外歯太陽歯車の中心位置を内歯歯車の中心に固定としたモデルを用い、この動力学解析モデルに対して、遊星歯車機構の伝達トルクを遊星歯車の公転半径方向荷重で表現することで、前記転がり軸受に作用する遊星歯車機構特有の荷重を模擬する方法であり、前記(仮定1)〜(仮定7)によって前記モデルを表現するため、ころと保持器の3自由度と外輪の2並進自由度を考慮した転がり軸受の2次元動力学解析モデルなどを用いた転がり軸受の動力学解析技術を用いることにより遊星運動下の転がり軸受の動力学解析が比較的簡単に実施可能となり、保持器破損に代表される様々な転がり軸受部品の品質問題の解明に寄与することができる。
The dynamic analysis method for a rolling bearing under planetary motion according to the present invention is a dynamic analysis model for a planetary gear mechanism, in which the degree of freedom of movement of the components of the planetary gear mechanism is limited to a radial plane, and And the rotation speed of the carrier is constant, and the center position of the carrier and external sun gear is fixed at the center of the internal gear. This is a method of simulating the load specific to the planetary gear mechanism acting on the rolling bearing by expressing it by the revolution radial load of the gear , and in order to express the model by the above (Assumption 1) to (Assumption 7) Rolling under planetary motion by using the dynamic analysis technology of the rolling bearing using the two-dimensional dynamic analysis model of the rolling bearing considering the 3 degrees of freedom of the cage and the 2 degrees of freedom of translation of the outer ring. Dynamic analysis of the bearing becomes relatively easy to be implemented, it is possible to contribute to the elucidation of the cage various rolling components quality problems typified breakage.

この発明の一実施形態を図1および図2と共に説明する。図1は、遊星歯車機構の半径方向の概略を示す。この遊星歯車機構は、外歯太陽歯車3および内歯歯車2に複数(例えば3〜5個)の遊星歯車1が噛み合い、各遊星歯車1を、キャリア7と一体の軸4の外周に転がり軸受9を介して回転自在に支持したものである。図1のo−xy座標系は、キャリア7と一体である軸4の中心に固定されている。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the outline of the planetary gear mechanism in the radial direction. In this planetary gear mechanism, a plurality of (for example, 3 to 5) planetary gears 1 are engaged with the externally toothed sun gear 3 and the internal gear 2, and each planetary gear 1 is a rolling bearing on the outer periphery of the shaft 4 integral with the carrier 7. 9 is supported rotatably through 9. The o-xy coordinate system of FIG. 1 is fixed to the center of the shaft 4 that is integral with the carrier 7.

転がり軸受9は、複数個の転動体5をリング状の保持器6で保持した保持器付きころであり、軸4の外径面および遊星歯車1の内径面が、各転動体5の転接する軌道面となる。保持器6は円周方向の複数箇所にポケット6aを有し、各ポケット6a内に転動体5を保持する。転動体5は、針状ころ等のころからなる。   The rolling bearing 9 is a roller with a cage in which a plurality of rolling elements 5 are held by a ring-shaped cage 6, and the outer diameter surface of the shaft 4 and the inner diameter surface of the planetary gear 1 are in rolling contact with each rolling element 5. It becomes a raceway surface. The cage 6 has pockets 6a at a plurality of locations in the circumferential direction, and holds the rolling elements 5 in the pockets 6a. The rolling element 5 includes rollers such as needle rollers.

つぎに、上記遊星歯車機構に組み込まれた転がり軸受9の動力学解析方法を説明する。遊星歯車1の支持軸受である転がり軸受9内の保持器6への干渉力を解明するには、動的挙動を模擬可能な転がり軸受9の動力学解析が必要となる。
この実施形態では、実用的な動力学解析モデルの範疇とするため、図1の遊星歯車機構の動力学解析モデルとして、遊星歯車機構の各構成部品の自由度につき、ラジアル面内の自由度のみを対象としてモデルを用いる。また、このモデルにおいて、転がり軸受9に作用する遊星歯車機構に特有の荷重は、以下の仮定で表現されるものとする。
Next, a dynamic analysis method for the rolling bearing 9 incorporated in the planetary gear mechanism will be described. In order to elucidate the interference force with the cage 6 in the rolling bearing 9 which is a support bearing of the planetary gear 1, dynamic analysis of the rolling bearing 9 capable of simulating dynamic behavior is required.
In this embodiment, in order to make it a category of a practical dynamic analysis model, as the dynamic analysis model of the planetary gear mechanism in FIG. 1, only the degrees of freedom in the radial plane with respect to the degrees of freedom of each component of the planetary gear mechanism. A model is used for. In this model, the load peculiar to the planetary gear mechanism acting on the rolling bearing 9 is expressed by the following assumptions.

(仮定1)動力学解析対象部品の慣性力ならびに遠心力を考慮する。
(仮定2)転動体5、保持器6、軸4、および遊星歯車1の互いの接触力および接線力を考慮する。
(仮定3)キャリア7および遊星歯車1の自転角速度は、一定または、既知の関数等による既知条件として与える。よって、遊星歯車1の公転角速度は動力学解析の自由度とする。
(仮定4)外歯太陽歯車3、内歯歯車2、およびキャリア7の中心位置は固定とし、図1のOにて、互いに一致する。
(仮定5)遊星歯車1と外歯太陽歯車3および内歯歯車2との歯面接触部のかみ合い隙間は、遊星歯車1を支持する転がり軸受9のラジアル内部隙間よりも大きいため、このラジアル内部隙間分の遊星歯車1の2並進の自由度(図1のxとy方向)の自由度を与える。
(仮定6)内歯歯車2および外歯太陽歯車3から遊星歯車1への干渉力は、遊星歯車1の公転方向(図1のx方向)の並進力Ft と自転モーメントに帰着できる。さらに、定常運転状態下では、この並進力は伝達トルクMt で決定される.
(仮定7)転がり軸受9の保持器6および転動体5へは、自転と2並進の3自由度を与える。
(Assumption 1) Consider the inertial force and centrifugal force of the parts subject to dynamic analysis.
(Assumption 2) The mutual contact force and tangential force of the rolling element 5, the cage 6, the shaft 4, and the planetary gear 1 are considered.
(Assumption 3) The rotational angular velocities of the carrier 7 and the planetary gear 1 are given as constant or known conditions such as a known function. Therefore, the revolution angular velocity of the planetary gear 1 is set as the degree of freedom of dynamic analysis.
(Assumption 4) The center positions of the external gear sun gear 3, the internal gear 2 and the carrier 7 are fixed and coincide with each other at O in FIG.
(Assumption 5) Since the meshing clearance of the tooth surface contact portion between the planetary gear 1 and the external sun gear 3 and the internal gear 2 is larger than the radial internal clearance of the rolling bearing 9 that supports the planetary gear 1, Two degrees of freedom of translation of the planetary gear 1 for the gap (directions x and y in FIG. 1) are given.
(Assumption 6) The interference force from the internal gear 2 and the external sun gear 3 to the planetary gear 1 can be reduced to the translational force Ft and the rotation moment of the planetary gear 1 in the revolution direction (x direction in FIG. 1). Furthermore, this translational force is determined by the transmission torque Mt under steady operating conditions.
(Assumption 7) The cage 6 and the rolling element 5 of the rolling bearing 9 are given three degrees of freedom of rotation and two translations.

上記の仮定により、各運動解析部品の運動方程式は、式(1)から式(5)となる。なお、慣性系での定式化のため、見かけの力である遠心力は現れてこない。   Based on the above assumptions, the equation of motion of each motion analysis component is expressed by equations (1) to (5). In addition, due to the formulation in the inertial system, the centrifugal force that is an apparent force does not appear.

Figure 0004916761
Figure 0004916761

ただし各記号は以下の通りである。
F:干渉力、I:慣性モーメント、i :転動体番号,m:質量,M:モーメント、Fa :キャリアから転動体への干渉力、r:位置ベクトル,θ:角変位。
下付き添え字については、a :キャリア、ab:キャリアから転動体への成分、ac:キャリアから保持器への成分、b :転動体、c :保持器、cb:保持器から転動体への成分、 p:遊星歯車、pb:遊星歯車から転動体への成分、 pc :遊星歯車から保持器への成分、t :外歯太陽歯車および内歯歯車から遊星歯車への干渉力の合力成分で定常状態下の伝達トルクで決定される成分である。
また、肉太文字はベクトルであることを示す。
However, each symbol is as follows.
F: interference force, I: moment of inertia, i: rolling element number, m: mass, M: moment, Fa: interference force from carrier to rolling element, r: position vector, θ: angular displacement.
For subscripts, a: carrier, ab: component from carrier to rolling element, ac: component from carrier to cage, b: rolling element, c: cage, cb: cage to rolling element Component, p: planetary gear, pb: component from planetary gear to rolling element, pc: component from planetary gear to cage, t: resultant component of interference force from external sun gear and internal gear to planetary gear It is a component determined by the transmission torque under steady state.
Further, the bold character indicates a vector.

上記仮定6により、遊星歯車1の公転(図1のx)方向の公称のラジアル荷重を設定することができる。なお,このラジアル荷重は転動体5や保持器6の動的な挙動を決定することになる。   With the assumption 6, the nominal radial load in the revolution (x in FIG. 1) direction of the planetary gear 1 can be set. This radial load determines the dynamic behavior of the rolling elements 5 and the cage 6.

上記運動方程式(1)〜(5)において、式(5)のFtはキャリア7に伝達される回転トルクにより決定される。また遊星歯車の自転速度およびキャリアの自転速度が与えられているため、これらの式の各部品間の干渉力やモーメント力ならびに各部品に作用する遠心力は、非特許文献3と同じく運動方程式を数値積分することで全て求められる。   In the above equations of motion (1) to (5), Ft in equation (5) is determined by the rotational torque transmitted to the carrier 7. In addition, since the rotation speed of the planetary gear and the rotation speed of the carrier are given, the interference force and moment force between the components of these equations and the centrifugal force acting on each component are expressed by the equation of motion as in Non-Patent Document 3. All are obtained by numerical integration.

なお、上記の歯面を介して遊星歯車1に作用する干渉力は、歯の噛み合いにより大きさが向きが変化するため、歯車の自転角による関数で与えると取り扱いが簡便でよい。さらに簡単化するには時間に因らず一定値としてもよい。
通常、遊星歯車機構には複数の遊星歯車が存在するが、全てが等価と仮定して、その内の一つを重力を無視して解析してもよい。特に遊星歯車の公転速度が高く、この遠心加速度が重力加速度よりも大きい場合は、妥当な仮定である。
Since the magnitude of the interference force acting on the planetary gear 1 via the tooth surface changes depending on the meshing of the teeth, it is easy to handle if given as a function based on the rotation angle of the gear. For further simplification, a constant value may be used regardless of time.
Usually, there are a plurality of planetary gears in the planetary gear mechanism, but assuming that all are equivalent, one of them may be analyzed ignoring gravity. This is a reasonable assumption especially when the planetary gear has a high revolution speed and the centrifugal acceleration is greater than the gravitational acceleration.

図3は、遊星歯車が2セット組み込まれた反転機構を有する遊星変速機となる遊星歯車機構を示す。このような遊星歯車機構を解析する場合、解析対象を遊星歯車1とすれば、これに作用する外歯歯車3からの干渉力ともう一方の遊星歯車8からの干渉力の合力ベクトルの向きへの力を遊星歯車1へのラジアル荷重として考慮する。これにより、図1の遊星歯車機構の場合と同様に解析可能である。この場合でも、ラジアル荷重によるキャリア7へのモーメントの大きさは、伝達トルクの大きさと釣り合うように設定すればよい。   FIG. 3 shows a planetary gear mechanism serving as a planetary transmission having a reversing mechanism in which two sets of planetary gears are incorporated. When analyzing such a planetary gear mechanism, if the object to be analyzed is the planetary gear 1, the direction of the resultant vector of the interference force from the external gear 3 acting on the planetary gear 1 and the interference force from the other planetary gear 8 will be described. Is considered as a radial load on the planetary gear 1. Thereby, analysis is possible in the same manner as in the planetary gear mechanism of FIG. Even in this case, the magnitude of the moment to the carrier 7 due to the radial load may be set so as to balance the magnitude of the transmission torque.

この発明の一実施形態における解析対象となる遊星歯車機構の部分正面図である。It is a fragmentary front view of the planetary gear mechanism used as the analysis object in one embodiment of this invention. 同遊星歯車機構における遊星歯車の支持用の転がり軸受の一例を示す部分断面図である。It is a fragmentary sectional view showing an example of the rolling bearing for supporting the planetary gear in the planetary gear mechanism. この発明の他の実施形態における解析対象となる反転機構付きの遊星歯車機構の部分正面図である。It is a partial front view of the planetary gear mechanism with the inversion mechanism used as the analysis object in other embodiment of this invention.

符号の説明Explanation of symbols

1…遊星歯車
2…内歯歯車
3…外歯太陽歯車
4…遊星歯車の軸
5…転動体
6…保持器
7…キャリア
8…反転用の遊星歯車
DESCRIPTION OF SYMBOLS 1 ... Planetary gear 2 ... Internal gear 3 ... External-tooth sun gear 4 ... Planetary gear shaft 5 ... Rolling element 6 ... Cage 7 ... Carrier 8 ... Planet gear for reversal

Claims (3)

外歯太陽歯車および内歯歯車に噛み合う遊星歯車を、キャリアに転がり軸受を介して回転自在に支持した遊星歯車機構における、前記転がり軸受の動力学解析を行う方法において、
前記遊星歯車機構の動力学解析モデルとして、この遊星歯車機構の構成部品の運動の自由度をラジアル平面内のみに限定し、遊星歯車の自転とキャリアの自転の角速度を一定とし、キャリアと外歯太陽歯車の中心位置を内歯歯車の中心に固定としたモデルを用い、この動力学解析モデルに対して、遊星歯車機構の伝達トルクを遊星歯車の公転半径方向荷重で表現することで、前記転がり軸受に作用する遊星歯車機構特有の荷重を模擬的に与え、かつ前記モデルにおいて、前記転がり軸受に作用する遊星歯車機構に特有の荷重は、以下の(仮定1)〜(仮定7)で表現されるものとすることを特徴とする遊星運動下の転がり軸受の動力学解析方法。
(仮定1)動力学解析対象部品の慣性力ならびに遠心力を考慮する。
(仮定2)前記転がり軸受の転動体、保持器、軸、および遊星歯車の互いの接触力および接線力を考慮する。
(仮定3)キャリアおよび遊星歯車の自転角速度は、一定または、既知の関数等による既知条件として与える。よって、遊星歯車の公転角速度は動力学解析の自由度とする。
(仮定4)外歯太陽歯車、内歯歯車、およびキャリアの中心位置は固定とし、互いに一致する。
(仮定5)遊星歯車と外歯太陽歯車および内歯歯車との歯面接触部のかみ合い隙間は、遊星歯車を支持する転がり軸受のラジアル内部隙間よりも大きいため、このラジアル内部隙間分の遊星歯車の2並進の自由度を与える。
(仮定6)内歯歯車および外歯太陽歯車から遊星歯車への干渉力は、遊星歯車の公転方向の並進力と自転モーメントに帰着できる。さらに、定常運転状態下では、この並進力は伝達トルクで決定される。
(仮定7)転がり軸受の保持器および転動体へは、自転と2並進の3自由度を与える。
In the planetary gear mechanism in which the planetary gear meshing with the external sun gear and the internal gear is rotatably supported on the carrier via the rolling bearing, in the method of performing dynamic analysis of the rolling bearing,
As a dynamic analysis model of the planetary gear mechanism, the degree of freedom of movement of the components of the planetary gear mechanism is limited to a radial plane, the angular speed of the planetary gear rotation and the carrier rotation is constant, and the carrier and external teeth Using a model in which the center position of the sun gear is fixed to the center of the internal gear, the transmission torque of the planetary gear mechanism is expressed by the radial radial load of the planetary gear for this dynamic analysis model. for example given a planetary gear mechanism of the specific load applied to the bearings simulated, and in the model, it loads specific to the planetary gear mechanism which acts on the rolling bearing, expressed by the following (assuming 1) to (assuming 7) dynamic analysis how the rolling bearing under planetary motion, characterized in that shall be.
(Assumption 1) Consider the inertial force and centrifugal force of the parts subject to dynamic analysis.
(Assumption 2) The mutual contact force and tangential force of the rolling elements, cage, shaft, and planetary gear of the rolling bearing are taken into consideration.
(Assumption 3) The rotational angular velocities of the carrier and the planetary gear are given as constant conditions or known conditions such as a known function. Therefore, the revolution angular velocity of the planetary gear is defined as the degree of freedom in dynamic analysis.
(Assumption 4) The center positions of the external sun gear, the internal gear, and the carrier are fixed and coincide with each other.
(Assumption 5) Since the meshing clearance of the tooth surface contact portion between the planetary gear, the external sun gear, and the internal gear is larger than the radial internal clearance of the rolling bearing that supports the planetary gear, the planetary gear corresponding to the radial internal clearance is provided. Gives two translational degrees of freedom.
(Assumption 6) The interference force from the internal gear and the external sun gear to the planetary gear can be reduced to the translational force and the rotation moment in the revolution direction of the planetary gear. Further, under the steady operation state, this translational force is determined by the transmission torque.
(Assumption 7) Three degrees of freedom of rotation and two translations are given to the cage and rolling elements of the rolling bearing.
請求項1において、前記動力学解析モデルは、遊星歯車の自転とキャリアの自転の角速度を既知の関数とする遊星運動下の転がり軸受の動力学解析方法。   2. The dynamic analysis method for a rolling bearing under planetary motion according to claim 1, wherein the dynamic analysis model is a planetary gear rotation and a carrier rotation angular velocity having a known function. 請求項1または請求項2において、前記転がり軸受は、キャリアと一体固定の軸の外径面、および遊星歯車の内径面が転動体の転動する軸受軌道面となる保持器付きころである遊星運動下の転がり軸受の動力学解析方法。   3. The roller bearing according to claim 1, wherein the rolling bearing is a roller with a cage in which an outer diameter surface of a shaft fixed integrally with a carrier and an inner diameter surface of a planetary gear serve as a bearing raceway surface on which a rolling element rolls. Dynamic analysis method for rolling bearings in motion.
JP2006128062A 2006-05-02 2006-05-02 Dynamic analysis method of rolling bearing under planetary motion Active JP4916761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006128062A JP4916761B2 (en) 2006-05-02 2006-05-02 Dynamic analysis method of rolling bearing under planetary motion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006128062A JP4916761B2 (en) 2006-05-02 2006-05-02 Dynamic analysis method of rolling bearing under planetary motion

Publications (2)

Publication Number Publication Date
JP2007298458A JP2007298458A (en) 2007-11-15
JP4916761B2 true JP4916761B2 (en) 2012-04-18

Family

ID=38768063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128062A Active JP4916761B2 (en) 2006-05-02 2006-05-02 Dynamic analysis method of rolling bearing under planetary motion

Country Status (1)

Country Link
JP (1) JP4916761B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466451B2 (en) * 2009-07-31 2014-04-09 株式会社豊田中央研究所 Numerical analysis device, numerical analysis method, program, and test method
JP6196093B2 (en) * 2012-12-25 2017-09-13 Ntn株式会社 Vibration analysis method for bearing device, vibration analysis device for bearing device, and state monitoring device for rolling bearing
JP6316552B2 (en) * 2013-08-01 2018-04-25 Ntn株式会社 Dynamic analysis method and analysis apparatus for rolling bearing
DE102018205491A1 (en) * 2018-04-11 2019-10-17 Zf Friedrichshafen Ag Condition monitoring for sliding bearings by means of structure-borne noise
CN109376439B (en) * 2018-10-30 2023-06-27 中车戚墅堰机车车辆工艺研究所有限公司 RV reducer acting force analysis method and device
CN113076614B (en) * 2021-04-16 2024-02-27 河南科技大学 Method for calculating service life of needle bearing retainer by combining bearing dynamics and FEM
CN113609609A (en) * 2021-07-23 2021-11-05 南京航空航天大学 Method for analyzing dynamic characteristics of multi-stage planetary gear structure
CN115470584B (en) * 2022-09-14 2024-04-16 重庆电子工程职业学院 Dynamic modeling method applied to planetary gear and rolling bearing coupling system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3092453B2 (en) * 1994-07-27 2000-09-25 宇部興産株式会社 Diagnosis method of planetary gear mechanism
JP2000171238A (en) * 1998-12-08 2000-06-23 Harmonic Drive Syst Ind Co Ltd Method for estimating performance of planetary gears
JP4723202B2 (en) * 2004-03-31 2011-07-13 本田技研工業株式会社 Displacement analysis method and displacement analysis system for rolling bearing

Also Published As

Publication number Publication date
JP2007298458A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP4916761B2 (en) Dynamic analysis method of rolling bearing under planetary motion
JP5263860B2 (en) High reduction compound planetary gear mechanism
JP5771157B2 (en) Series of eccentric oscillating speed reducers
JP5816584B2 (en) Power transmission device
JP5473814B2 (en) Dynamic stress analysis method and analysis system for bearing cage
KR20190103945A (en) Eccentric oscillation type speed reducer
WO2018099392A1 (en) Planetary speed reducer with small tooth difference, in-vehicle display, and vehicle
JP5111048B2 (en) Cage stress analysis method and stress analysis system
JP6646758B2 (en) Pin tooth cycloid reducer and industrial robot
JP2005180636A (en) Bearing for planetary gear
JP2008025687A (en) Bearing for wave gear device
JP2020067086A (en) Flexible meshing type gear device and manufacturing method therefor
JPH11210843A (en) Epicycle reduction gear
JP2017154241A (en) Joint driving structure of robot
JP2016205421A (en) Reduction gear and gear used therein
JP2016098907A (en) Eccentric oscillation type gear device
Jomartov et al. Modeling dynamics of planetary gears of crank press on Simulationx
JP2020029914A (en) Hypocycloid speed reducer
JP6890563B2 (en) Eccentric swing type speed reducer
JP2009115300A (en) Needle roller bearing
JP5385559B2 (en) Gear transmission with ring gear
KR20170015193A (en) Eccentric oscillation-type gear device and controlling method thereof
JP2005201308A (en) Eccentric oscillation type planetary gear device
JPWO2020004005A1 (en) Decelerator
JP2015137698A (en) Planetary roller type friction transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250