JP4916203B2 - Purification method of gallium - Google Patents

Purification method of gallium Download PDF

Info

Publication number
JP4916203B2
JP4916203B2 JP2006096726A JP2006096726A JP4916203B2 JP 4916203 B2 JP4916203 B2 JP 4916203B2 JP 2006096726 A JP2006096726 A JP 2006096726A JP 2006096726 A JP2006096726 A JP 2006096726A JP 4916203 B2 JP4916203 B2 JP 4916203B2
Authority
JP
Japan
Prior art keywords
gallium
temperature
water
container
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006096726A
Other languages
Japanese (ja)
Other versions
JP2007270242A (en
Inventor
克行 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2006096726A priority Critical patent/JP4916203B2/en
Publication of JP2007270242A publication Critical patent/JP2007270242A/en
Application granted granted Critical
Publication of JP4916203B2 publication Critical patent/JP4916203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ガリウムの精製方法に関し、特に、不純物として鉄、ニッケル、カリウム、カルシウム、ケイ素などの金属元素を含有するガリウムの精製方法に関する。   The present invention relates to a method for purifying gallium, and more particularly to a method for purifying gallium containing a metal element such as iron, nickel, potassium, calcium, or silicon as an impurity.

ガリウム(Ga)は、GaAsやGaPなどの化合物半導体の原料として使用されている金属元素であり、このような化合物半導体の原料として使用するためには、Gaの純度を99.9999%(6N)以上にする必要がある。Gaは、単独の鉱石としては存在しないため、亜鉛製錬やアルミニウム製錬などの副産物として回収したり、Gaを含有するスクラップを処理して回収している。   Gallium (Ga) is a metal element used as a raw material for compound semiconductors such as GaAs and GaP. In order to use it as a raw material for such compound semiconductors, the purity of Ga is 99.9999% (6N). It is necessary to do more. Since Ga does not exist as a single ore, it is recovered as a by-product such as zinc smelting and aluminum smelting, or scraps containing Ga are recovered.

このようにして回収したGaを精製して純度を高める方法として、Gaを酸洗浄した後、金属酸化物の成型体または粉末と接触させながら加熱溶融し、その後、金属酸化物の成型体または粉末を分離することにより、高純度のGaを得る方法が提案されている(例えば、特許文献1参照)。また、Ga金属にpH1〜3の鉱酸またはその混合液を加えて攪拌して不純物を除去することにより、高純度のGaを得る方法も提案されている(例えば、特許文献2参照)。さらに、電解採取により高純度金属を得る方法も提案されている(例えば、特許文献3参照)。   As a method for purifying the recovered Ga to improve purity, Ga is acid-washed, heated and melted in contact with the metal oxide molded body or powder, and then the metal oxide molded body or powder. There has been proposed a method for obtaining high-purity Ga by separating (see, for example, Patent Document 1). In addition, a method for obtaining high-purity Ga by adding a mineral acid having a pH of 1 to 3 or a mixed solution thereof to Ga metal and stirring to remove impurities (see, for example, Patent Document 2) has also been proposed. Furthermore, a method for obtaining a high-purity metal by electrolytic collection has also been proposed (see, for example, Patent Document 3).

特開平11−269569号公報(段落番号0016)JP-A-11-269469 (paragraph number 0016) 特開昭63−183138号公報(第2頁)JP 63-183138 A (2nd page) 特開2002−285371号公報(段落番号0005)JP 2002-285371 A (paragraph number 0005)

しかし、Gaが不純物として鉄(Fe)、ニッケル(Ni)、カリウム(K)、カルシウム(Ca)、ケイ素(Si)などの金属元素を含有する場合には、特許文献1および特許文献2に提案されたような酸洗浄による方法では、上記のようなGaに難溶性の金属を除去することが困難である。また、特許文献3に提案されたような電解精製による方法では、6N以上の高純度のGaを得ることが困難であり、特にGaが不純物としてFeやNiを含有する場合には、6N以上の高純度のGaを得ることが困難である。さらに、結晶精製法によってGaを精製する場合には、精製前のGaが6N以上の高純度のGaでなければならず、特に、Ga金属に難溶なFe、Ni、K、Ca、SiなどをGaの凝固精製法によって除去するのは困難である。   However, when Ga contains metal elements such as iron (Fe), nickel (Ni), potassium (K), calcium (Ca), silicon (Si) as impurities, it is proposed in Patent Document 1 and Patent Document 2. In the method using acid cleaning as described above, it is difficult to remove a metal that is hardly soluble in Ga as described above. In addition, it is difficult to obtain high purity Ga of 6N or more by the method by electrolytic purification as proposed in Patent Document 3, and particularly when Ga contains Fe or Ni as an impurity, it is 6N or more. It is difficult to obtain high purity Ga. Furthermore, when purifying Ga by a crystal purification method, the Ga before purification must be high-purity Ga of 6N or more, and particularly Fe, Ni, K, Ca, Si, etc., which are hardly soluble in Ga metal. Is difficult to remove by the coagulation purification method of Ga.

また、Gaは、電子デバイスや発光素子などの半導体材料として使用されているので、不純物の含有量が非常に少ない6N以上の高純度のGaを得ることが必要になる。   In addition, since Ga is used as a semiconductor material for electronic devices and light-emitting elements, it is necessary to obtain high-purity Ga of 6N or more with a very low impurity content.

したがって、本発明は、このような従来の問題点に鑑み、不純物として鉄、ニッケル、カリウム、カルシウム、ケイ素などの金属元素を含有するガリウムを精製して、これらの不純物の含有量が非常に少ないガリウムを得ることができる、簡単且つ安価なガリウムの精製方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention purifies gallium containing metal elements such as iron, nickel, potassium, calcium, and silicon as impurities, and the content of these impurities is very low. An object of the present invention is to provide a simple and inexpensive method for purifying gallium from which gallium can be obtained.

本発明者らは、上記課題を解決するために鋭意研究した結果、不純物として鉄、ニッケル、カリウム、カルシウムおよびケイ素からなる群から選ばれる少なくとも一種の金属を含有するガリウムと水とを容器に入れ、そのガリウムを溶融させる温度に維持するとともに、そのガリウムと水との界面をそのガリウムが凝固する温度に維持することによって、上記の不純物としての金属とガリウムの化合物または上記の不純物としての金属をガリウムと水との界面に析出させることができることを見出し、本発明を完成するに至った。   As a result of earnest research to solve the above problems, the present inventors put gallium and water containing at least one metal selected from the group consisting of iron, nickel, potassium, calcium and silicon as impurities into a container. In addition to maintaining the temperature at which the gallium is melted, and maintaining the interface between the gallium and water at a temperature at which the gallium solidifies, the metal as the impurity and the compound of gallium or the metal as the impurity are The inventors have found that it can be deposited at the interface between gallium and water, and have completed the present invention.

すなわち、本発明によるガリウムの精製方法は、不純物として鉄、ニッケル、カリウム、カルシウムおよびケイ素からなる群から選ばれる少なくとも一種の金属を含有するガリウムと水とを容器に入れ、そのガリウムを溶融させる温度に維持するとともに、そのガリウムと水との界面の少なくとも一部をそのガリウムが凝固する温度に維持することによって、そのガリウムと水との界面の少なくとも一部に析出物を析出させた後、水および析出物を分離することを特徴とする。このガリウムの精製方法において、容器内のガリウムを攪拌するのが好ましい。また、ガリウムを溶融させる温度が、ガリウムの融点以上且つ31℃(304.15K)以下の温度であるのが好ましく、ガリウムが凝固する温度が、29℃(302.15K)以上且つガリウムの融点未満の温度であるのが好ましい。また、本発明によるガリウム金属は、純度が99.9999%以上であり、不純物としての鉄、カリウム、カルシウムおよびケイ素の含有量がそれぞれ0.05ppm以下であり、ニッケルの含有量が0.1ppm以下であることを特徴とする。   That is, the method for purifying gallium according to the present invention is a method in which gallium containing at least one metal selected from the group consisting of iron, nickel, potassium, calcium and silicon as impurities and water are placed in a container, and the gallium is melted. And maintaining at least part of the interface between the gallium and water at a temperature at which the gallium solidifies, thereby precipitating a precipitate on at least part of the interface between the gallium and water. And separating precipitates. In this gallium purification method, the gallium in the container is preferably stirred. In addition, the temperature at which gallium is melted is preferably not lower than the melting point of gallium and not higher than 31 ° C. (304.15 K), and the temperature at which gallium solidifies is not lower than 29 ° C. (302.15 K) and lower than the melting point of gallium. Preferably, the temperature is Further, the gallium metal according to the present invention has a purity of 99.9999% or more, the contents of iron, potassium, calcium and silicon as impurities are each 0.05 ppm or less, and the content of nickel is 0.1 ppm or less. It is characterized by being.

本発明によれば、不純物として鉄、ニッケル、カリウム、カルシウム、ケイ素などの金属元素を含有するガリウムを精製して、これらの不純物の含有量が非常に少ないガリウムを得ることができる、簡単且つ安価なガリウムの精製方法を提供することができる。   According to the present invention, gallium containing metal elements such as iron, nickel, potassium, calcium, and silicon as impurities can be purified to obtain gallium with a very low content of these impurities, simple and inexpensive. A method for purifying gallium can be provided.

本発明によるガリウムの精製方法の実施の形態では、図1に示すように、温水を流して内部の温度を調整する温水ジャケット12を周囲に配置した容器10を、攪拌用のスターラー14の上に配置し、容器10内にガリウム16と純水18を入れる。容器10内に入れる純水18の量は、水面の高さが溶融したガリウム16の液面の上方100mm以内の高さになる量であるのが好ましく、精製対象となるガリウム16と純水18の界面における反応を促進させるためには、水面の高さが溶融したガリウム16の液面の上方50mm以内の高さになる量であるのがさらに好ましい。なお、スターラー14は必須ではないが、反応を早めるために使用するのが好ましい。このスターラー14の回転数は、ガリウム16の表面に凹凸が形成されると純水18の層の厚さが均一でなくなって温度制御が困難になるので、ガリウム16の表面に凹凸が形成されない程度の回転数であるのが好ましい。   In the embodiment of the method for purifying gallium according to the present invention, as shown in FIG. 1, a container 10 in which a hot water jacket 12 for adjusting the internal temperature by flowing warm water is arranged is placed on a stirring stirrer 14. The gallium 16 and the pure water 18 are put in the container 10. The amount of pure water 18 to be placed in the container 10 is preferably such that the height of the water surface is within 100 mm above the molten gallium 16 liquid surface, and the gallium 16 and pure water 18 to be purified. In order to promote the reaction at the interface, it is more preferable that the height of the water surface is an amount within 50 mm above the molten gallium 16 liquid surface. The stirrer 14 is not essential, but is preferably used to accelerate the reaction. The rotational speed of the stirrer 14 is such that when unevenness is formed on the surface of gallium 16, the thickness of the layer of pure water 18 is not uniform and temperature control becomes difficult, so that unevenness is not formed on the surface of gallium 16. It is preferable that the number of rotations is.

容器10内のガリウム16を溶融させる温度(29.8〜31℃)に維持すると、ガリウム16内のFe、Ni、K、Ca、Siなどの不純物が比重差により浮上する。このように容器10内のガリウム16の温度を29.8〜31℃に維持すると、容器10内の純水18の温度は29〜30℃になり(この温度は純水18の層の厚さによって異なるので、この範囲の温度になるように純水18の層の厚さを調整するのが好ましい)、ガリウム16と純水18の界面に温度が低い部分が生じ、この界面の温度はガリウム16と純水18の反応物が凝固する温度になる。そのため、浮上した不純物が、界面で凝固したガリウムに閉じ込められて、溶融したガリウム内に戻るのを抑制することができる。すなわち、溶融したガリウムから温度が低い界面の部分に不純物の金属またはその金属とガリウムの化合物を含むスポンジ状の析出物が生成される。その後、水を除去し、スポンジ状の析出物を除去することにより、不純物の金属を除去することができる。   When the temperature at which the gallium 16 in the container 10 is melted (29.8 to 31 ° C.) is maintained, impurities such as Fe, Ni, K, Ca, and Si in the gallium 16 float due to the difference in specific gravity. Thus, if the temperature of gallium 16 in the container 10 is maintained at 29.8 to 31 ° C., the temperature of the pure water 18 in the container 10 becomes 29 to 30 ° C. (this temperature is the thickness of the layer of the pure water 18). Therefore, it is preferable to adjust the thickness of the layer of pure water 18 so that the temperature is within this range.) A low temperature portion is generated at the interface between gallium 16 and pure water 18, and the temperature at this interface is gallium. 16 and a temperature at which the reaction product of pure water 18 solidifies. Therefore, it is possible to suppress the floating impurities from being trapped in the gallium solidified at the interface and returning to the molten gallium. That is, a spongy precipitate containing an impurity metal or a compound of the metal and gallium is generated from the molten gallium at the interface at a low temperature. After that, the metal as an impurity can be removed by removing water and removing sponge-like precipitates.

本実施の形態のガリウムの精製方法では、容器内のガリウムを溶融させる温度に維持して、溶融したガリウム上に厚さ100mm以下の水の層を作る。このように溶融したガリウム上の水の層を所定の厚さにすれば、水の揮発により水の温度が降下して、その熱が伝熱して、ガリウムと水の界面の温度がガリウムが析出する温度(29℃〜30℃)になる。また、水の層の厚さを50mm以下にすると、界面における析出を促進することができる。なお、ガリウムと水の界面には、ガリウム金属の他に、スポンジ状のガリウムと水の化合物が析出し、この化合物に、浮上した不純物としての元素およびその元素の化合物が閉じ込められる。   In the gallium purification method of the present embodiment, a water layer having a thickness of 100 mm or less is formed on the molten gallium while maintaining the temperature at which the gallium in the container is melted. If the water layer on the molten gallium has a predetermined thickness, the temperature of the water drops due to the volatilization of the water, the heat is transferred, and the temperature at the interface between the gallium and water is precipitated. Temperature (29 ° C. to 30 ° C.). Moreover, when the thickness of the water layer is 50 mm or less, precipitation at the interface can be promoted. Note that, in addition to gallium metal, a sponge-like gallium-water compound precipitates at the interface between gallium and water, and the element as a floating impurity and the compound of the element are confined in this compound.

なお、容器内に入れる水として、蒸留水やイオン交換水を使用してもよいが、高純度のガリウムを得るためには、他の不純物の混入を防止することができる純水を使用するのが好ましい。また、攪拌速度は、溶融したガリウムの表面が平坦状態を維持する速度以下であるのが好ましい。攪拌速度が速くなって中心部に凹みが生じると、水の層の厚さが変化するので、界面の温度制御が困難になる。   Distilled water or ion-exchanged water may be used as water to be put in the container, but in order to obtain high-purity gallium, pure water that can prevent mixing of other impurities is used. Is preferred. Moreover, it is preferable that the stirring speed is below the speed at which the surface of the molten gallium maintains a flat state. When the stirring speed is increased and a dent is formed in the center, the thickness of the water layer changes, and it becomes difficult to control the temperature of the interface.

以下、本発明によるガリウムの精製方法の実施例について詳細に説明する。   Hereinafter, examples of the method for purifying gallium according to the present invention will be described in detail.

まず、表1に示すようにFe、Ni、Si、K、Caをそれぞれ0.2ppm以上含有する4NのGa(処理前Ga)を用意した。このGaと純水を図1に示すような容器10内に入れ、容器10内のGaの温度を29.8〜31℃に維持し、スターラー14によってGaを攪拌速度150rpmで攪拌して反応させた。この反応後、容器10から純水を除去するとともに、スポンジ状の析出物を除去し、容器10内のGaを回収した。その後、回収したGaの結晶精製を行ったところ、表1に示すように、この精製後のGa(処理後Ga)中のFe、Si、K、Caの含有量はいずれも0.05ppm以下であり、Niの含有量は0.1ppmまで減少していた。なお、スポンジ状の析出物中のFe、Ni、Si、K、Caは表1に示すとおりである。   First, as shown in Table 1, 4N Ga (pre-treatment Ga) containing 0.2 ppm or more of Fe, Ni, Si, K, and Ca was prepared. The Ga and pure water are put in a container 10 as shown in FIG. 1, the temperature of Ga in the container 10 is maintained at 29.8 to 31 ° C., and the stirrer 14 stirs the Ga at a stirring speed of 150 rpm to react. It was. After this reaction, pure water was removed from the container 10, sponge-like precipitates were removed, and Ga in the container 10 was recovered. Then, when the crystal | crystallization refinement | purification of collect | recovered Ga was performed, as shown in Table 1, all of content of Fe, Si, K, and Ca in this refined Ga (after-treatment Ga) are 0.05 ppm or less. Yes, the Ni content was reduced to 0.1 ppm. The Fe, Ni, Si, K, and Ca in the sponge-like precipitate are as shown in Table 1.

Figure 0004916203
Figure 0004916203

比較例として、実施例と同様のGa(処理前Ga)についてそのまま結晶精製を行ったところ、表2に示すように、この精製後のGa(処理後Ga)中のFe、Ni、K、Caの含有量はいずれも0.1ppm以上、Siの含有量は0.08ppmであり、実施例と比較して非常に多く残存していた。   As a comparative example, when the same crystal purification was performed on the same Ga (untreated Ga) as in the example, as shown in Table 2, Fe, Ni, K, and Ca in the purified Ga (treated Ga) were obtained. The content of each was 0.1 ppm or more, and the content of Si was 0.08 ppm.

Figure 0004916203
Figure 0004916203

本発明によるガリウムの精製方法の実施の形態に使用する装置を模式的に示す図である。It is a figure which shows typically the apparatus used for embodiment of the refinement | purification method of the gallium by this invention.

符号の説明Explanation of symbols

10 容器
12 温水ジャケット
14 スターラー
16 ガリウム
18 純水
10 containers 12 warm water jacket 14 stirrer 16 gallium 18 pure water

Claims (4)

不純物として鉄、ニッケル、カリウム、カルシウムおよびケイ素からなる群から選ばれる少なくとも一種の金属を含有するガリウムと水とを容器に入れ、前記ガリウムを溶融させる温度に維持するとともに、前記ガリウムと水との界面の少なくとも一部を前記ガリウムが凝固する温度に維持することによって、前記界面の少なくとも一部に析出物を析出させた後、水および前記析出物を分離することを特徴とする、ガリウムの精製方法。 Put gallium and water containing at least one metal selected from the group consisting of iron, nickel, potassium, calcium and silicon as impurities into a container and maintain the temperature at which the gallium is melted. Purifying gallium, wherein the precipitate is deposited on at least a part of the interface by maintaining at least a part of the interface at a temperature at which the gallium solidifies, and then the water and the precipitate are separated. Method. 前記容器内のガリウムを攪拌することを特徴とする、請求項1に記載のガリウムの精製方法。 2. The method for purifying gallium according to claim 1, wherein the gallium in the container is stirred. 前記ガリウムを溶融させる温度が、ガリウムの融点以上且つ31℃以下の温度であることを特徴とする、請求項1または2に記載のガリウムの精製方法。 The method for purifying gallium according to claim 1 or 2, wherein a temperature at which the gallium is melted is a temperature not lower than the melting point of gallium and not higher than 31 ° C. 前記ガリウムが凝固する温度が、29℃以上且つガリウムの融点未満の温度であることを特徴とする、請求項3に記載のガリウムの精製方法。
The method for purifying gallium according to claim 3, wherein the temperature at which the gallium solidifies is a temperature of 29 ° C or higher and lower than the melting point of gallium.
JP2006096726A 2006-03-31 2006-03-31 Purification method of gallium Active JP4916203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096726A JP4916203B2 (en) 2006-03-31 2006-03-31 Purification method of gallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096726A JP4916203B2 (en) 2006-03-31 2006-03-31 Purification method of gallium

Publications (2)

Publication Number Publication Date
JP2007270242A JP2007270242A (en) 2007-10-18
JP4916203B2 true JP4916203B2 (en) 2012-04-11

Family

ID=38673342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096726A Active JP4916203B2 (en) 2006-03-31 2006-03-31 Purification method of gallium

Country Status (1)

Country Link
JP (1) JP4916203B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618735A (en) * 2012-04-23 2012-08-01 南京金美镓业有限公司 Method for removing impurity bismuth in metal gallium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455627A (en) * 2022-02-18 2022-05-10 广东先导微电子科技有限公司 Method for recovering gallium from gallium packaging container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425922A (en) * 1987-07-20 1989-01-27 Mitsubishi Metal Corp Method for reducing gallium chloride
FR2633640B1 (en) * 1988-07-01 1991-04-19 Pechiney Aluminium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618735A (en) * 2012-04-23 2012-08-01 南京金美镓业有限公司 Method for removing impurity bismuth in metal gallium
CN102618735B (en) * 2012-04-23 2013-05-08 南京金美镓业有限公司 Method for removing impurity bismuth in metal gallium

Also Published As

Publication number Publication date
JP2007270242A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5160554B2 (en) High purity ytterbium, sputtering target comprising high purity ytterbium, thin film containing high purity ytterbium, and method for producing high purity ytterbium
CN101514396A (en) Method for separating tin and stibium from tin-lead anode slime
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
CN101823701A (en) Production technology of sodium sulfide with high purity white crystals
JP5547094B2 (en) Manufacturing method of high purity erbium sputtering target
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
JP4916203B2 (en) Purification method of gallium
JP4874879B2 (en) Erbium sputtering target and manufacturing method thereof
EA009888B1 (en) Method of production of pure silicon
WO2014004441A1 (en) Flux composition useful in directional solidification for purifying silicon
JP2010196140A (en) Method for recovering bismuth
US9676632B2 (en) Method for purifying silicon
US20190084835A1 (en) Method of purifying aluminum and use of purified aluminum to purify silicon
JP5711073B2 (en) Method for purifying indium or indium alloy
JP2007270308A (en) Antimony and method for refining the same
JP5133547B2 (en) Purification method of gallium
JP2007270237A (en) Method for refining gallium
JPS58146490A (en) Removing method of antimony in acidic solution of sulfuric acid
JP4119960B2 (en) Purification method of gallium solution
JP6493679B2 (en) Copper powder recovery method
JP2019173134A (en) MANUFACTURING METHOD OF Sn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250