JP4915741B2 - Test substance measurement method - Google Patents

Test substance measurement method Download PDF

Info

Publication number
JP4915741B2
JP4915741B2 JP2007199309A JP2007199309A JP4915741B2 JP 4915741 B2 JP4915741 B2 JP 4915741B2 JP 2007199309 A JP2007199309 A JP 2007199309A JP 2007199309 A JP2007199309 A JP 2007199309A JP 4915741 B2 JP4915741 B2 JP 4915741B2
Authority
JP
Japan
Prior art keywords
metal
working electrode
electrode
fine particles
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007199309A
Other languages
Japanese (ja)
Other versions
JP2009036560A (en
Inventor
公太郎 井手上
みゆき 近江
禅 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP2007199309A priority Critical patent/JP4915741B2/en
Publication of JP2009036560A publication Critical patent/JP2009036560A/en
Application granted granted Critical
Publication of JP4915741B2 publication Critical patent/JP4915741B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、金属微粒子を標識物質として用いる被検物質の測定方法に関する。   The present invention relates to a method for measuring a test substance using metal fine particles as a labeling substance.

試験溶液中の微量物質を簡便且つ高感度に測定する方法の1つとして、抗原抗体反応を利用した免疫測定法が知られている。代表的な免疫測定法であるELISA法においては、酵素で標識した抗体を用い、酵素反応に由来する発色や発光等の信号を得ることによって被検物質の定性や定量を行っている。しかしながら、ELISAでは発色や発光等の信号検出時に光学系を必要とするため、大型の測定器が必要となるといった不都合がある。また、正確な定量を行う場合には、発色等の測定結果を電気的な信号に変換するといった複雑な処理が必要となることがある。   An immunoassay method using an antigen-antibody reaction is known as one method for measuring trace substances in a test solution easily and with high sensitivity. In an ELISA method, which is a typical immunoassay method, an antibody labeled with an enzyme is used to obtain a signal such as color development or luminescence derived from an enzyme reaction, thereby qualitatively or quantitatively determining a test substance. However, ELISA requires an optical system when detecting signals such as color development and light emission, and thus has a disadvantage of requiring a large measuring instrument. In addition, when performing accurate quantification, complicated processing such as conversion of measurement results such as color development into electrical signals may be required.

そこで、発色標識や蛍光標識のような汎用の標識物質を用いた免疫測定法等において、検出に際して電気化学的測定法を利用することが提案されている。電気化学的測定に用いる装置は、ELISA等に用いられる機器に比べて小型化が可能であることから、測定機器の小型化と検出感度の向上との両立が期待される。例えば特許文献1においては、金属微粒子を化学的処理によって溶解した後、電気化学的測定を行い、得られた金属微粒子の酸化に伴うピーク電流に基づいて被検物質の分析を行っている。
特表2004−512496号公報
Thus, it has been proposed to use an electrochemical measurement method for detection in immunoassay methods using general-purpose labeling substances such as chromogenic labels and fluorescent labels. Since the apparatus used for electrochemical measurement can be reduced in size as compared with the apparatus used for ELISA or the like, it is expected that the measurement apparatus can be downsized and the detection sensitivity can be improved. For example, in Patent Document 1, after the metal fine particles are dissolved by chemical treatment, electrochemical measurement is performed, and the test substance is analyzed based on the peak current associated with the oxidation of the obtained metal fine particles.
Japanese translation of PCT publication No. 2004-512696

しかしながら、特許文献1においては、化学的処理により金属微粒子を完全に溶解する工程が電気化学的測定に先立って必要となるため、測定操作が煩雑になるといった不都合がある。   However, in patent document 1, since the process which melt | dissolves metal microparticles | fine-particles completely by chemical treatment is required prior to electrochemical measurement, there exists a problem that measurement operation becomes complicated.

一方、図10に示すように、電気化学的に金属微粒子を酸化した後、還元電流値を指標として被検物質を測定する方法も存在する。この方法では、先ず、作用極101の表面に固定した一次抗体102と金コロイド粒子のような金属微粒子105で標識した二次抗体104とで被検物質103をサンドイッチし、被検物質103の濃度に応じた標識金属微粒子105を少なくとも作用極101の表面に局在化させる(図10(a))。次に、作用極1の表面近傍に局在化させた金属微粒子105を測定溶液中で電気化学的に酸化して溶出させる(図10(b))。最後に、金属微粒子105から金属イオンや錯イオン等として溶出した溶出物を電気化学的に還元する際に生じる電流値を測定する(図10(c))。   On the other hand, as shown in FIG. 10, there is a method of measuring a test substance using a reduction current value as an index after electrochemically oxidizing metal fine particles. In this method, first, a test substance 103 is sandwiched between a primary antibody 102 immobilized on the surface of the working electrode 101 and a secondary antibody 104 labeled with metal fine particles 105 such as gold colloid particles, and the concentration of the test substance 103 is determined. The labeled metal fine particles 105 according to the above are localized at least on the surface of the working electrode 101 (FIG. 10A). Next, the metal fine particles 105 localized near the surface of the working electrode 1 are electrochemically oxidized and eluted in the measurement solution (FIG. 10B). Finally, the current value generated when the eluate eluted from the metal fine particles 105 as metal ions, complex ions, etc. is electrochemically reduced is measured (FIG. 10C).

この方法においては、生物学的相互作用を利用して作用極101の表面に金属微粒子105を局在化した状態で電気化学的酸化を行うので、被検物質との反応に関与した金属微粒子の全てを作用極表面との電子授受に関与させることができ、結果として被検物質の高感度な測定が実現される。また、作用極101表面に局在化させた金属微粒子105を直接酸化し、その酸化電流を測定すると、金属微粒子105と作用極101との距離に起因して金属(ここでは金)の酸化に必要な条件がばらついているため、測定したグラフに酸化ピークが現れない。これに対して、金属微粒子105の酸化溶出を行うことにより電極近傍に金錯体が生成され、それらは金の還元に必要な条件がほぼ一定であるため、測定したグラフに還元ピークが現れ、正確な測定が可能となる。さらに、作用極の電位制御により標識金属微粒子を溶出させるため、例えば化学的処理により酸化する場合等に比較して、測定操作の煩雑化が抑えられる。   In this method, since electrochemical oxidation is performed in a state where the metal fine particles 105 are localized on the surface of the working electrode 101 using biological interaction, the metal fine particles involved in the reaction with the test substance All can be involved in the exchange of electrons with the working electrode surface, and as a result, highly sensitive measurement of the test substance is realized. Further, when the metal fine particles 105 localized on the surface of the working electrode 101 are directly oxidized and the oxidation current is measured, the metal (here, gold) is oxidized due to the distance between the metal fine particles 105 and the working electrode 101. Since the necessary conditions vary, no oxidation peak appears in the measured graph. On the other hand, the metal complex 105 is oxidized and eluted to generate gold complexes in the vicinity of the electrodes, and since the conditions necessary for the reduction of gold are almost constant, a reduction peak appears in the measured graph, Measurement is possible. Furthermore, since the labeled metal fine particles are eluted by controlling the potential of the working electrode, for example, complication of the measurement operation can be suppressed as compared with the case of oxidizing by chemical treatment.

ところで、図10に示す方法では、還元電流又は酸化電流を測定する前に金属微粒子を充分に酸化して溶出させることが必要である。しかしながら、この酸化工程において時間経過に伴って溶出物が拡散してしまい、感度の低下を招くことが本発明者らの検討により明らかとなった。   Incidentally, in the method shown in FIG. 10, it is necessary to sufficiently oxidize and elute the metal fine particles before measuring the reduction current or oxidation current. However, the present inventors have clarified that the eluate diffuses over time in this oxidation step, leading to a reduction in sensitivity.

本発明はこのような従来の実情に鑑みて提案されたものであり、測定操作を煩雑とすることなく、高感度且つ正確な測定を行うことが可能な被検物質の測定方法を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and provides a measurement method of a test substance capable of performing highly sensitive and accurate measurement without complicating the measurement operation. With the goal.

前述の目的を達成するために、本発明に係る被検物質の測定方法は、金属微粒子を標識物質として用いるとともに、電気化学測定法を利用する被検物質の測定方法であって、生物学的相互作用を利用して前記金属微粒子を少なくとも作用極表面に局在化させる工程と、前記電極の表面に局在化させた前記金属微粒子を電気化学的に酸化して溶出させる工程とを有し、少なくとも前記金属微粒子酸化工程において前記作用極からの前記溶出物の拡散を抑えることを特徴とする。   In order to achieve the above-described object, a test substance measurement method according to the present invention uses a metal fine particle as a labeling substance, and uses a electrochemical measurement method to measure a test substance. Using the interaction to localize the metal fine particles at least on the surface of the working electrode, and electrochemically oxidizing and eluting the metal fine particles localized on the surface of the electrode. The diffusion of the eluate from the working electrode is suppressed at least in the metal fine particle oxidation step.

前述の測定方法においては、金属微粒子の酸化溶出を行うことにより電極近傍に金属イオンや錯イオンが生成され、それらは酸化溶出する前の状態と比して、反応に必要な条件がほぼ一定としているため、それらを還元析出反応させることにより、その還元反応を測定したグラフに金属微粒子量に対応したピークが現れ、正確な測定が可能となる。さらに、作用極の電位制御により金属微粒子を溶出させるため、例えば化学的処理により酸化する場合等に比較して、測定操作の煩雑化が抑えられる。そして、少なくとも作用極の表面に局在化された金属微粒子を電気化学的に酸化する際、金属微粒子から生成したイオン等の溶出物の作用極等の表面からの拡散を防ぐことにより、作用極表面における溶出物濃度が高濃度で保たれるので、高感度測定が実現される。   In the above measurement method, metal ions and complex ions are generated in the vicinity of the electrode by oxidative elution of fine metal particles, and the conditions necessary for the reaction are almost constant compared to the state before oxidative elution. Therefore, by causing them to undergo a reduction precipitation reaction, a peak corresponding to the amount of metal fine particles appears in the graph in which the reduction reaction is measured, and accurate measurement is possible. Furthermore, since the metal fine particles are eluted by controlling the potential of the working electrode, for example, complication of the measurement operation can be suppressed as compared with the case of oxidizing by chemical treatment. Then, when electrochemically oxidizing at least the metal fine particles localized on the surface of the working electrode, the working electrode is prevented from diffusing from the surface of the working electrode etc. of the eluate such as ions generated from the metal fine particles. Since the eluate concentration on the surface is kept at a high concentration, a highly sensitive measurement is realized.

本発明によれば、例えばELISAの検出工程において用いられるような大型の測定機器を必要とすることなく、簡便な操作にて試験溶液中の被検物質の高感度且つ正確な測定を実現することができる。また、金属微粒子の電気化学的酸化に際して金属イオンや錯イオン等として溶出した溶出物の拡散を抑制するので、さらなる高感度測定が可能となる。   According to the present invention, high-sensitivity and accurate measurement of a test substance in a test solution can be realized by a simple operation without requiring a large-sized measuring instrument used in, for example, an ELISA detection process. Can do. In addition, since the diffusion of the eluate eluted as metal ions or complex ions during the electrochemical oxidation of the metal fine particles is suppressed, further highly sensitive measurement is possible.

以下、本発明を適用した被検物質の測定方法について、図面を参照しながら詳細に説明する。   Hereinafter, a method for measuring a test substance to which the present invention is applied will be described in detail with reference to the drawings.

<第1の実施形態>
第1の実施形態では金属イオンや錯イオン等の溶出物の拡散を抑制するために平坦な表面を有する対向部材を用いる場合について、図1を参照しながら説明する。
<First Embodiment>
In the first embodiment, a case where an opposing member having a flat surface is used with reference to FIG. 1 will be described in order to suppress diffusion of eluents such as metal ions and complex ions.

先ず、作用極、対極及び参照極が同一面上に形成されたプレナー型電気化学デバイスを用意する。平面形状が略円形状を呈する作用極1の表面に、被検物質(抗原)3を認識する一次抗体2を固定する。電極表面は非特異吸着を防ぐためにブロッキングする。また、被検物質3上の異なる部位を認識する二次抗体4を用意し、これに金属微粒子5として例えば金コロイド粒子を標識することにより標識抗体を用意しておく。   First, a planar electrochemical device in which a working electrode, a counter electrode, and a reference electrode are formed on the same surface is prepared. A primary antibody 2 that recognizes a test substance (antigen) 3 is fixed on the surface of the working electrode 1 having a substantially circular planar shape. The electrode surface is blocked to prevent nonspecific adsorption. Further, a secondary antibody 4 that recognizes different sites on the test substance 3 is prepared, and a labeled antibody is prepared by labeling, for example, gold colloidal particles as the metal fine particles 5.

次に、前記標識抗体及び未知量の被検物質3を含む溶液を作用極1の表面に供給し、一次抗体2と接触させ、作用極1上で抗原抗体反応を行う。標識抗体が被検物質3を介して一次抗体2に結合することにより、被検物質3の濃度に対応した量の金属微粒子5が作用極1の表面に局在化された状態となる(図1(a))。その後、作用極1の表面を必要に応じて洗浄する。   Next, a solution containing the labeled antibody and an unknown amount of the test substance 3 is supplied to the surface of the working electrode 1, brought into contact with the primary antibody 2, and an antigen-antibody reaction is performed on the working electrode 1. When the labeled antibody binds to the primary antibody 2 through the test substance 3, an amount of the metal fine particles 5 corresponding to the concentration of the test substance 3 is localized on the surface of the working electrode 1 (FIG. 1 (a)). Thereafter, the surface of the working electrode 1 is washed as necessary.

被検物質3としては、生体物質、合成物質等のあらゆる物質を選択することができる。本実施形態においては標識物質である金属微粒子5を作用極1の表面に局在化させるために抗原抗体反応を利用したが、生物学的相互作用を利用したものであれば、抗原抗体反応に限定されない。例えば、核酸−核酸、核酸−核酸結合タンパク質、レクチン−糖鎖、又はレセプター−リガンドの特異的結合を利用してもよい。   Any substance such as a biological substance or a synthetic substance can be selected as the test substance 3. In the present embodiment, the antigen-antibody reaction is used to localize the metal fine particles 5 as the labeling substance on the surface of the working electrode 1. However, if the biological interaction is used, the antigen-antibody reaction can be performed. It is not limited. For example, specific binding of nucleic acid-nucleic acid, nucleic acid-nucleic acid binding protein, lectin-sugar chain, or receptor-ligand may be used.

標識物質である金属微粒子5としては金コロイド粒子の他、標識物質として利用される金属微粒子を任意に用いることができる。例えば金、白金、銀、銅、ロジウム、パラジウム等の微粒子やそれらのコロイド粒子、量子ドット等を用いることができる。なかでも粒径10nm〜60nmの金コロイド粒子、特に粒径40nm程度の金コロイド粒子を用いることが好ましい。   As the metal fine particles 5 as the labeling substance, metal fine particles used as the labeling substance can be arbitrarily used in addition to the colloidal gold particles. For example, fine particles such as gold, platinum, silver, copper, rhodium, and palladium, colloidal particles thereof, quantum dots, and the like can be used. Among them, it is preferable to use gold colloid particles having a particle diameter of 10 nm to 60 nm, particularly gold colloid particles having a particle diameter of about 40 nm.

次に、作用極1、対極及び参照極と、電気化学的測定用の測定溶液とを接触させ、作用極1の表面に局在化させた金属微粒子5を電気化学的に酸化し、金属イオンや錯イオン等として溶出させる(図1(b))。金属微粒子5として金コロイド粒子を用い、且つ、測定溶液として塩酸水溶液を用いた場合、電気化学的に酸化されることにより金コロイド粒子はAuCl 等として溶出する。この際、平坦な表面を有する対向部材6を用意し、対向部材6で作用極1の表面を覆うように対向部材6の平坦面を作用極1の表面に近接させることにより、作用極1の表面における測定溶液の厚みを薄くする。 Next, the working electrode 1, the counter electrode and the reference electrode are brought into contact with a measurement solution for electrochemical measurement, and the metal fine particles 5 localized on the surface of the working electrode 1 are electrochemically oxidized to form metal ions. And eluted as complex ions (FIG. 1B). When gold colloidal particles are used as the metal fine particles 5 and an aqueous hydrochloric acid solution is used as the measurement solution, the gold colloidal particles are eluted as AuCl 4 or the like by being electrochemically oxidized. At this time, a counter member 6 having a flat surface is prepared, and the flat surface of the counter member 6 is brought close to the surface of the working electrode 1 so as to cover the surface of the working electrode 1 with the counter member 6. Reduce the thickness of the measurement solution on the surface.

金属微粒子5を電気化学的に酸化し溶出させた後、対向部材6を作用極1の表面に近接させた状態を維持したまま、AuCl 等の金属イオンや錯イオンとして溶出した溶出物を電気化学的に還元する際に生じる還元電流を作用極1で測定し、測定結果に基づいて、被検物質の有無又は濃度を測定する(図1(c))。具体的には、例えば、作用極1の電位を負方向に変化させていき、電位変化に伴う電流変化を測定する。電極電位を負方向に変化させていくと、金属イオンや錯イオン等の溶出物が還元される際に還元電流が流れるので、これを測定する。作用極1の表面に局在化された金属微粒子5が多いほど還元電流強度も大きくなることから、これに基づいて被検物質3の定量又は検出が実現される。例えば、還元電流値と既知濃度の被検物質と関係を予め求めておき、測定された還元電流値と比較することにより、被検物質3の濃度を求めることができる。また、得られる還元電流値から被検物質3の有無を知ることができる。 After the metal fine particles 5 are electrochemically oxidized and eluted, the eluate eluted as metal ions or complex ions such as AuCl 4 while keeping the facing member 6 close to the surface of the working electrode 1. A reduction current generated during electrochemical reduction is measured at the working electrode 1, and the presence or concentration of the test substance is measured based on the measurement result (FIG. 1 (c)). Specifically, for example, the potential of the working electrode 1 is changed in the negative direction, and the current change accompanying the potential change is measured. When the electrode potential is changed in the negative direction, a reduction current flows when an eluate such as a metal ion or a complex ion is reduced, and this is measured. Since the reduction current intensity increases as the number of fine metal particles 5 localized on the surface of the working electrode 1 increases, the determination or detection of the test substance 3 is realized based on this. For example, the concentration of the test substance 3 can be obtained by previously obtaining the relationship between the reduction current value and the test substance having a known concentration and comparing it with the measured reduction current value. Moreover, the presence or absence of the test substance 3 can be known from the obtained reduction current value.

酸化した金属を電気化学的に還元する際に生じる電流を測定する方法としては、例えば、微分パルスボルタンメトリー、サイクリックボルタンメトリー等のボルタンメトリー、アンペロメトリー、クロノメトリー等が挙げられる。   Examples of the method for measuring the current generated when the oxidized metal is electrochemically reduced include voltammetry such as differential pulse voltammetry and cyclic voltammetry, amperometry, chronometry and the like.

対向部材6としては、作用極1と対向する領域が平坦面とされ、作用極1の表面に測定溶液の薄い層を形成可能であれば、任意の形状のものを用いることができる。イオンの拡散防止によるさらなる高感度化を図るためには、平坦面の算術平均粗さRaは20μm以下が好ましい。この条件を満たす部材としては、ガラス基板、プラスチック基板等が挙げられる。   As the counter member 6, any shape can be used as long as the region facing the working electrode 1 is a flat surface and a thin layer of the measurement solution can be formed on the surface of the working electrode 1. In order to further increase the sensitivity by preventing ion diffusion, the arithmetic average roughness Ra of the flat surface is preferably 20 μm or less. Examples of members that satisfy this condition include glass substrates and plastic substrates.

作用極1と対向部材6との間隔は、50μm以下とすることが好ましい。50μm以下とすることにより、作用極1と対向部材6との間に形成される測定溶液層の厚みが薄くなり、作用極1の表面付近に金属微粒子5からの溶出物を高濃度に存在させられるため、さらなる高感度化を図ることができる。   The distance between the working electrode 1 and the facing member 6 is preferably 50 μm or less. By setting the thickness to 50 μm or less, the thickness of the measurement solution layer formed between the working electrode 1 and the counter member 6 is reduced, and the effluent from the metal fine particles 5 is present at a high concentration near the surface of the working electrode 1. Therefore, further higher sensitivity can be achieved.

測定溶液としては、金属微粒子5を容易に電気化学的に酸化させることができることから、酸性溶液を用いることが好ましい。酸性溶液としては、金属微粒子5の種類等に応じて適宜選択すればよいが、例えば塩酸、硝酸、酢酸、リン酸、クエン酸、硫酸等を含む水溶液を用いることができる。金属微粒子5の電気化学的酸化のし易さを考慮すると、0.05規定〜2規定の塩酸水溶液、特に0.1規定〜0.5規定の塩酸水溶液を用いることが好ましい。   As the measurement solution, it is preferable to use an acidic solution because the metal fine particles 5 can be easily oxidized electrochemically. The acidic solution may be appropriately selected according to the type of the metal fine particles 5 and the like, and for example, an aqueous solution containing hydrochloric acid, nitric acid, acetic acid, phosphoric acid, citric acid, sulfuric acid and the like can be used. Considering the ease of electrochemical oxidation of the metal fine particles 5, it is preferable to use 0.05N to 2N hydrochloric acid aqueous solution, particularly 0.1N to 0.5N hydrochloric acid aqueous solution.

また、測定溶液としては、酸性溶液の他、塩素イオン等のハロゲンイオンを含む中性溶液を用いることも可能である。塩素イオン等のハロゲンイオンを含む中性溶液を用いることにより、酸性溶液を用いる場合に比べて、後述の測定工程において大きな電流変化量が得られ、結果として、より高感度な測定が達成される。また、酸性溶液を用いる場合、例えば低電位側における還元ピークの裾が上昇する等のようにピーク形状が非対称となったり、例えば0.1V付近においてノイズが発生することがある。これに対して、塩素イオン等のハロゲンイオンを含む中性溶液を用いることで、還元ピークの裾が平坦となるとともに、前記ノイズ発生が抑えられるので、還元ピーク強度検出が簡便となる。さらに、酸性溶液やアルカリ溶液のような取扱いの難しい溶液の使用を回避することができ、測定操作を安全且つ簡便に実施することができる。塩素を含む中性溶液としては、例えばKCl、NaCl、LiCl等を用いたときに前記の効果を得られるが、特にKClを用いたときに効果が大きい。   In addition to the acidic solution, a neutral solution containing halogen ions such as chlorine ions can be used as the measurement solution. By using a neutral solution containing halogen ions such as chlorine ions, a larger amount of current change can be obtained in the measurement process described later than in the case of using an acidic solution, and as a result, a more sensitive measurement is achieved. . When an acidic solution is used, the peak shape may become asymmetrical, for example, the bottom of the reduction peak on the low potential side may increase, or noise may occur near 0.1 V, for example. On the other hand, by using a neutral solution containing halogen ions such as chlorine ions, the base of the reduction peak is flattened and the generation of the noise can be suppressed, so that the reduction peak intensity can be easily detected. Furthermore, it is possible to avoid the use of solutions that are difficult to handle, such as acidic solutions and alkaline solutions, and the measurement operation can be carried out safely and simply. As the neutral solution containing chlorine, for example, the above-mentioned effect can be obtained when KCl, NaCl, LiCl or the like is used, but the effect is particularly great when KCl is used.

金属微粒子5を電気化学的に酸化させるためには、作用極1を、例えば、銀塩化銀参照電極に対して+1〜+2Vとすることが好ましい。作用極1の電位を前記範囲内にすることにより、作用極1の表面に局在化された金属微粒子5を完全に酸化溶出させることができ、被検物質3の検出感度を確実に向上させることができる。作用極1の電位を前記範囲未満とした場合、測定時に還元電流のピークが現れないおそれがあり、逆に前記範囲を超えた場合、金属微粒子5から溶出した金属イオンや錯イオン等の溶出物の泳動による拡散が起こり、作用極1近傍における前記溶出物の濃度が低下してしまい、これにより還元電流のピークが小さくなるおそれがある。より好ましい範囲は、+1.2V〜+1.6Vである。   In order to oxidize the metal fine particles 5 electrochemically, the working electrode 1 is preferably set to +1 to +2 V with respect to, for example, a silver-silver chloride reference electrode. By setting the potential of the working electrode 1 within the above range, the metal fine particles 5 localized on the surface of the working electrode 1 can be completely oxidized and eluted, and the detection sensitivity of the test substance 3 is reliably improved. be able to. If the potential of the working electrode 1 is less than the above range, there may be no reduction current peak at the time of measurement. As a result of diffusion, the concentration of the eluate in the vicinity of the working electrode 1 is lowered, which may reduce the peak of the reduction current. A more preferable range is + 1.2V to + 1.6V.

金属微粒子5を電気化学的に酸化して溶出させるには、作用極1の電位を金属微粒子5が酸化して溶出する電位に所定時間保持することが挙げられる。前記操作は、金属微粒子5を充分に酸化させられるため好ましい方法である。また、前記操作の他、作用極1の電位を時間経過に伴い変化させてもよい。この場合には、金属微粒子5が酸化、溶出する電位の範囲内(例えば銀塩化銀参照電極に対して+1V〜+2V)において作用極の電位を変化させることが好ましい。さらに、金属微粒子5が電気化学的に酸化、溶出する電位を作用極1に複数回印加してもよい。   In order to oxidize and elute the metal fine particles 5 electrochemically, the potential of the working electrode 1 is maintained at a potential at which the metal fine particles 5 are oxidized and eluted for a predetermined time. The above operation is a preferable method because the metal fine particles 5 can be sufficiently oxidized. In addition to the above operation, the potential of the working electrode 1 may be changed over time. In this case, it is preferable to change the potential of the working electrode within the range of the potential at which the metal fine particles 5 are oxidized and eluted (for example, +1 V to +2 V with respect to the silver-silver chloride reference electrode). Furthermore, a potential at which the metal fine particles 5 are electrochemically oxidized and eluted may be applied to the working electrode 1 a plurality of times.

例えば、金属微粒子5として粒径10nm〜60nmの金コロイド粒子を使用する場合、金コロイド粒子を電気化学的に酸化させるに際して、0.1規定〜0.5規定の塩酸溶液中で、銀塩化銀参照電極に対する前記作用極の電位を+1.2V〜+1.6Vとすることが好ましい。   For example, when gold colloidal particles having a particle diameter of 10 nm to 60 nm are used as the metal fine particles 5, when the gold colloidal particles are electrochemically oxidized, silver chloride is used in 0.1 N to 0.5 N hydrochloric acid solution. The potential of the working electrode with respect to the reference electrode is preferably set to + 1.2V to + 1.6V.

金属微粒子5を十分に酸化させるに際しては、金属微粒子5の量に応じて最適な電荷量を与えるように注意する必要がある。電荷量は電流を積分した値であるため、作用極1に印加する電位が比較的低い電位であれば、金属微粒子を十分に酸化させるためには当該電位を長時間印加する必要がある。一方、作用極1に印加する電位が比較的高い電位であれば、金属微粒子5を十分に酸化させるために必要な時間は短時間でよい。   When the metal fine particles 5 are sufficiently oxidized, care must be taken to give an optimum charge amount according to the amount of the metal fine particles 5. Since the amount of charge is a value obtained by integrating the current, if the potential applied to the working electrode 1 is a relatively low potential, it is necessary to apply the potential for a long time in order to sufficiently oxidize the metal fine particles. On the other hand, if the potential applied to the working electrode 1 is a relatively high potential, the time required for sufficiently oxidizing the metal fine particles 5 may be short.

金属微粒子5が電気化学的に酸化する電位に作用極1の電位を保持する時間を1秒以上とすることで、金属微粒子を十分に酸化させることができ、検出感度を確実に向上させることができる。一方、印加時間を100秒以上としても得られる電流値は殆ど変わらない。したがって、1秒以上100秒以下が好ましい。前記電位の保持時間のさらに好ましい範囲は、40秒以上100秒以下である。   By maintaining the potential of the working electrode 1 at the potential at which the metal fine particles 5 are electrochemically oxidized for 1 second or longer, the metal fine particles can be sufficiently oxidized, and the detection sensitivity can be improved reliably. it can. On the other hand, even if the application time is set to 100 seconds or more, the obtained current value hardly changes. Therefore, 1 second or more and 100 seconds or less is preferable. A more preferable range of the holding time of the potential is 40 seconds or more and 100 seconds or less.

本実施形態においては、金属微粒子5の電気化学的な酸化と還元電流の測定に際して、作用極1の表面に対向部材6を近接するように配置することで、測定溶液の厚みが薄くなるので、金属イオンや錯イオン等の溶出物の拡散によるロスが抑えられる。その結果、対向部材6を用いない場合に比較して、高感度な測定が可能となる。また、標識金属微粒子を一旦酸化して溶出させることにより金属イオンの還元に必要な条件がほぼ同一となるので、それらを還元析出反応させることにより、その還元反応を測定したグラフに金属微粒子量に対応したピークが現れ、正確な測定が可能となる。さらには、本実施形態のように還元電流を測定することにより、酸化電流を測定する場合に比べて夾雑物等に由来するノイズの影響を抑えることができる。   In the present embodiment, when measuring the electrochemical oxidation and reduction current of the metal microparticles 5, the thickness of the measurement solution is reduced by disposing the opposing member 6 close to the surface of the working electrode 1. Loss due to diffusion of eluents such as metal ions and complex ions can be suppressed. As a result, it is possible to perform highly sensitive measurement compared to the case where the facing member 6 is not used. In addition, once the labeled metal fine particles are oxidized and eluted, the conditions necessary for the reduction of the metal ions become almost the same. Therefore, by reducing and precipitating them, the amount of fine metal particles is shown in the graph showing the reduction reaction. Corresponding peaks appear and accurate measurement is possible. Furthermore, by measuring the reduction current as in the present embodiment, it is possible to suppress the influence of noise derived from impurities and the like compared to the case of measuring the oxidation current.

<第2の実施形態>
第2の実施形態では金属イオンや錯イオン等の溶出物の拡散を防ぐために対向電極を作用極の表面に近接させるとともに、対向電極で還元電流を測定する場合について、図2を参照しながら説明する。なお、以下においては、先の説明と重複する説明は省略する。
<Second Embodiment>
In the second embodiment, the case where the counter electrode is brought close to the surface of the working electrode in order to prevent diffusion of eluents such as metal ions and complex ions and the reduction current is measured with the counter electrode will be described with reference to FIG. To do. In the following, the description overlapping with the previous description is omitted.

先ず、一次抗体2が固定された作用極1を有するプレナー型電気化学デバイスを用意し、金属微粒子5で標識した二次抗体4及び未知量の被検物質3を含む溶液を作用極1の表面に供給し作用極1上で抗原抗体反応を行う(図2(a))。ここまでは第1の実施形態と同じである。   First, a planar electrochemical device having a working electrode 1 on which a primary antibody 2 is immobilized is prepared, and a solution containing a secondary antibody 4 labeled with metal fine particles 5 and an unknown amount of a test substance 3 is applied to the surface of the working electrode 1. And the antigen-antibody reaction is carried out on the working electrode 1 (FIG. 2 (a)). The steps so far are the same as those in the first embodiment.

次に、作用極1、対極及び参照極と、電気化学的測定用の溶液とを接触させ、作用極1の表面近傍に局在化させた金属微粒子5を電気化学的に酸化し、AuCl 等の金属イオンや錯イオンとして溶出させる。本実施形態では、このとき、対極及び参照極とは異なる対向電極7を用意し、この対向電極7で作用極1の表面を覆うように対向電極7を作用極1の表面に近接、対向させ、金属微粒子5から溶出した金属イオンや錯イオン等の溶出物を電気化学的に還元して対向電極7の表面に金属8として析出させる(図2(b))。 Next, the working electrode 1, the counter electrode, and the reference electrode are brought into contact with an electrochemical measurement solution, and the metal fine particles 5 localized near the surface of the working electrode 1 are electrochemically oxidized to form AuCl 4. - eluting metal ions or complex ions, and the like. In this embodiment, at this time, a counter electrode 7 different from the counter electrode and the reference electrode is prepared, and the counter electrode 7 is brought close to and opposed to the surface of the working electrode 1 so as to cover the surface of the working electrode 1 with this counter electrode 7. The eluate such as metal ions and complex ions eluted from the metal fine particles 5 is electrochemically reduced and deposited as metal 8 on the surface of the counter electrode 7 (FIG. 2B).

対向電極7は、金属微粒子5から溶出した金属イオンや錯イオン等の溶出物を一時的に回収するための電極であり、作用極1との対向面が平坦であることが好ましい。その平面形状は、その表面に金属を析出させることができれば特に限定されないが、作用極1と略同一であることが好ましい。また、対向電極7は、平面視で作用極1と重なるように配置することが好ましい。   The counter electrode 7 is an electrode for temporarily collecting eluents such as metal ions and complex ions eluted from the metal fine particles 5, and the surface facing the working electrode 1 is preferably flat. The planar shape is not particularly limited as long as a metal can be deposited on the surface, but is preferably substantially the same as the working electrode 1. The counter electrode 7 is preferably arranged so as to overlap the working electrode 1 in plan view.

対向電極7上に金属8を析出させるためには、対向電極7に金属微粒子5を構成する金属が析出可能な電位を印加すればよい。例えば、金属微粒子5として金コロイド粒子を用いた場合、対向電極7を銀塩化銀参照電極に対して0V〜−1Vとすることが好ましい。なお、金属微粒子5を電気化学的に酸化して溶出させるには、第1の実施形態と同様に、銀塩化銀参照電極に対して+1V〜+2Vを作用極1に印加することが好ましい。   In order to deposit the metal 8 on the counter electrode 7, a potential capable of depositing the metal constituting the metal fine particles 5 may be applied to the counter electrode 7. For example, when gold colloidal particles are used as the metal fine particles 5, the counter electrode 7 is preferably set to 0 V to −1 V with respect to the silver / silver chloride reference electrode. In order to oxidize and elute the metal fine particles 5 electrochemically, it is preferable to apply +1 V to +2 V to the working electrode 1 with respect to the silver-silver chloride reference electrode as in the first embodiment.

作用極1の表面に局在化させた金属微粒子5を電気化学的に溶出させるタイミングと、対向電極7の表面に金属8を析出させるタイミングとは、同時でも異なっていてもよいが、先ず、対向電極7の電位を金属微粒子5を構成する金属が析出する電位に設定し、その後、作用極1の電位を金属微粒子5が溶出する電位に設定することが好ましい。このようなタイミングとすることにより、対向電極7表面への析出をより確実なものとすることができる。   The timing for electrochemically eluting the metal fine particles 5 localized on the surface of the working electrode 1 and the timing for depositing the metal 8 on the surface of the counter electrode 7 may be different at the same time. It is preferable to set the potential of the counter electrode 7 to a potential at which the metal constituting the metal fine particles 5 is deposited, and then set the potential of the working electrode 1 to a potential at which the metal fine particles 5 are eluted. By setting it as such timing, precipitation on the surface of the counter electrode 7 can be made more reliable.

作用極1と対向電極7との間隔、すなわち測定溶液の層の厚みは、50μm以下とすることが好ましい。50μm以下とすることにより、金属微粒子5から溶出した金属イオンや錯イオン等の溶出物を対向電極でより効率的に回収できる。   The distance between the working electrode 1 and the counter electrode 7, that is, the thickness of the measurement solution layer, is preferably 50 μm or less. By setting the thickness to 50 μm or less, it is possible to more efficiently collect eluents such as metal ions and complex ions eluted from the metal fine particles 5 with the counter electrode.

作用極1の表面に局在化させた金属微粒子5の溶出と対向電極7の表面への金属の析出とを行った後、対向電極7を作用極1の表面に近接させた状態を維持したまま、対向電極7表面に析出させた金属8を電気化学的に溶出させる(図2(c))。対向電極7の表面の金属8を電気化学的に再溶出させるためには、対向電極7に金属8が溶出する電位を印加すればよい、対向電極7の表面から金属8を溶出させる際には、例えば金属微粒子5として金コロイド粒子を用いた場合、対向電極7の電位を銀塩化銀参照電極に対して+1V〜+2Vとすることが好ましい。また、対向電極7を金属8が溶出する電位に設定する時間は、0.1秒〜10秒とすることが好ましい。なお、対向電極7の表面に析出させた金属8を金属イオンや錯イオン等として溶出させる際、金属イオンや錯イオン等の溶出物が拡散する懸念があるものの、例えば金属微粒子5を完全に溶出させる場合に比較して溶出に要する時間が短縮されるので、溶出の際の拡散によるロスは小さくて済む。したがって、検出感度の低下は殆ど問題とならない。   After elution of the metal fine particles 5 localized on the surface of the working electrode 1 and deposition of metal on the surface of the counter electrode 7, the state in which the counter electrode 7 was brought close to the surface of the working electrode 1 was maintained. The metal 8 deposited on the surface of the counter electrode 7 is electrochemically eluted (FIG. 2C). In order to elute the metal 8 on the surface of the counter electrode 7 electrochemically, a potential at which the metal 8 elutes may be applied to the counter electrode 7. When the metal 8 is eluted from the surface of the counter electrode 7, For example, when gold colloidal particles are used as the metal fine particles 5, the potential of the counter electrode 7 is preferably +1 V to +2 V with respect to the silver-silver chloride reference electrode. The time for setting the counter electrode 7 to a potential at which the metal 8 is eluted is preferably 0.1 seconds to 10 seconds. In addition, when the metal 8 deposited on the surface of the counter electrode 7 is eluted as metal ions or complex ions, there is a concern that the eluate such as metal ions or complex ions may be diffused. Since the time required for elution is shortened as compared with the case where the elution is performed, the loss due to diffusion during elution is small. Therefore, a decrease in detection sensitivity hardly causes a problem.

対向電極7の表面の金属8を溶出させた後に、溶出した金属イオンや錯イオン等の溶出物を電気化学的に還元する際に生じる還元電流値を対向電極7で測定し、これに基づいて被検物質の有無又は濃度を測定する(図2(d))。対向電極7での還元電流の測定は、対向電極7の表面の金属8を溶出させた直後に行うことが好ましい。   After the metal 8 on the surface of the counter electrode 7 is eluted, a reduction current value generated when electrochemically reducing the eluted metal ions, complex ions, and the like is measured by the counter electrode 7, and based on this. The presence or absence or concentration of the test substance is measured (FIG. 2 (d)). The measurement of the reduction current at the counter electrode 7 is preferably performed immediately after the metal 8 on the surface of the counter electrode 7 is eluted.

本実施形態においては金属微粒子5から溶出した金属イオンや金属錯イオン等の溶出物を対向電極7に析出させて回収するので、溶出物の拡散が妨げられ、作用極1の表面における金属イオンや金属錯イオン等の溶出物濃度が高濃度のまま保たれる。その結果、対向電極7を用いない場合に比較して、高感度な測定が可能となる。また、清浄で活性化された状態の対向電極7で測定することにより、抗体等を固定したり抗原抗体反応を行った作用極1での測定に比較して、高感度な測定が可能となる。また、標識金属微粒子を一旦酸化して溶出させることにより生成される金属イオンや金属錯イオンの還元に必要な条件がほぼ同一となるので、それらを還元析出反応させることにより、その還元反応を測定したグラフに金属微粒子量に対応したピークが現れ、正確な測定が可能となる。さらに、本実施形態のように還元電流を測定することにより、酸化電流を測定する場合に比べて夾雑物等に由来するノイズの影響を抑えることができる。   In the present embodiment, the eluate such as metal ions or metal complex ions eluted from the metal fine particles 5 is deposited on the counter electrode 7 and collected, so that the diffusion of the eluate is hindered, and the metal ions on the surface of the working electrode 1 The concentration of eluents such as metal complex ions is kept high. As a result, it is possible to perform highly sensitive measurement compared to the case where the counter electrode 7 is not used. Further, by measuring with the counter electrode 7 in a clean and activated state, measurement with higher sensitivity is possible as compared with measurement with the working electrode 1 in which an antibody or the like is immobilized or an antigen-antibody reaction is performed. . In addition, the conditions necessary for the reduction of metal ions and metal complex ions generated by once oxidizing and eluting the labeled metal fine particles are almost the same. Therefore, the reduction reaction is measured by reducing and precipitating them. The peak corresponding to the amount of fine metal particles appears in the graph, and accurate measurement is possible. Furthermore, by measuring the reduction current as in the present embodiment, it is possible to suppress the influence of noise derived from impurities and the like compared to the case of measuring the oxidation current.

<第3の実施形態>
第1の実施形態〜第2の実施形態においては、最後の電気化学的測定工程において還元電流を測定しているが、任意の電極上に析出させた金属を酸化し、その酸化電流を測定してもよい。本実施形態では、対向電極上に析出させた金属を電気化学的に酸化し、その酸化電流を対向電極で測定する場合について図3を参照しながら説明する。
<Third Embodiment>
In the first to second embodiments, the reduction current is measured in the last electrochemical measurement step, but the metal deposited on any electrode is oxidized and the oxidation current is measured. May be. In this embodiment, the case where the metal deposited on the counter electrode is oxidized electrochemically and the oxidation current is measured by the counter electrode will be described with reference to FIG.

先ず、一次抗体2が固定された作用極1を有するプレナー型電気化学デバイスを用意し、金属微粒子5で標識した二次抗体4及び未知量の被検物質3を含む溶液を作用極1の表面に供給し作用極1上で抗原抗体反応を行う(図3(a))。   First, a planar electrochemical device having a working electrode 1 on which a primary antibody 2 is immobilized is prepared, and a solution containing a secondary antibody 4 labeled with metal fine particles 5 and an unknown amount of a test substance 3 is applied to the surface of the working electrode 1. And an antigen-antibody reaction is carried out on the working electrode 1 (FIG. 3A).

次に、作用極1、対極及び参照極と、電気化学的測定用の溶液とを接触させ、作用極1の表面近傍に局在化させた金属微粒子5を電気化学的に酸化し、AuCl 等の金属イオンや錯イオンとして溶出させる。本実施形態では、このとき対向電極7で作用極1の表面を覆うように対向電極7を作用極1の表面に近接、対向させ、金属微粒子5から溶出した金属イオンや錯イオン等の溶出物を電気化学的に還元して対向電極7の表面に金属8として析出させる(図3(b))。ここまでの工程は前述の第2の実施形態と同じである。 Next, the working electrode 1, the counter electrode, and the reference electrode are brought into contact with an electrochemical measurement solution, and the metal fine particles 5 localized near the surface of the working electrode 1 are electrochemically oxidized to form AuCl 4. - eluting metal ions or complex ions, and the like. In the present embodiment, at this time, the counter electrode 7 is brought close to and opposed to the surface of the working electrode 1 so that the surface of the working electrode 1 is covered with the counter electrode 7, and eluents such as metal ions and complex ions eluted from the metal fine particles 5 Is electrochemically reduced and deposited as metal 8 on the surface of the counter electrode 7 (FIG. 3B). The steps up to here are the same as those in the second embodiment.

次に、対向電極7上に析出した金属8を電気化学的に酸化し、その酸化電流を測定し、これに基づいて被検物質の有無又は濃度を測定する(図3(c))。酸化電流の測定は対向電極7で行う。酸化電流を測定する方法としては、例えば、微分パルスボルタンメトリー、サイクリックボルタンメトリー等のボルタンメトリー、アンペロメトリー、クロノメトリー等が挙げられる。   Next, the metal 8 deposited on the counter electrode 7 is electrochemically oxidized, its oxidation current is measured, and based on this, the presence or absence or concentration of the test substance is measured (FIG. 3C). The oxidation current is measured with the counter electrode 7. Examples of the method for measuring the oxidation current include voltammetry such as differential pulse voltammetry and cyclic voltammetry, amperometry, chronometry and the like.

本実施形態においては金属微粒子5から溶出した金属イオンや錯イオン等の溶出物を対向電極7に析出させて回収するので、溶出物の拡散が妨げられる。その結果、対向電極7を用いない場合に比較して、高感度な測定が可能となる。また、清浄で活性化された状態の対向電極7で測定することにより、抗体等を固定したり抗原抗体反応を行った作用極1での測定に比較して、高感度な測定が可能となる。また、標識金属微粒子を一旦酸化して溶出させることにより生成される金属イオンや金属錯イオンの還元に必要な条件がほぼ同一となるので、それらを還元析出反応させることにより、その還元反応を測定したグラフに金属微粒子量に対応したピークが現れ、正確な測定が可能となる。さらに、本実施形態のように酸化電流を測定することにより、還元電流を測定する第1の実施形態〜第2の実施形態に比して、酸化溶出による拡散がなく、原理的には高感度になると考えられる。   In the present embodiment, the eluate such as metal ions and complex ions eluted from the metal fine particles 5 is deposited on the counter electrode 7 and collected, so that the diffusion of the eluate is hindered. As a result, it is possible to perform highly sensitive measurement compared to the case where the counter electrode 7 is not used. Further, by measuring with the counter electrode 7 in a clean and activated state, measurement with higher sensitivity is possible as compared with measurement with the working electrode 1 in which an antibody or the like is immobilized or an antigen-antibody reaction is performed. . In addition, the conditions necessary for the reduction of metal ions and metal complex ions generated by once oxidizing and eluting the labeled metal fine particles are almost the same. Therefore, the reduction reaction is measured by reducing and precipitating them. The peak corresponding to the amount of fine metal particles appears in the graph, and accurate measurement is possible. Furthermore, by measuring the oxidation current as in the present embodiment, there is no diffusion due to oxidation elution compared to the first to second embodiments in which the reduction current is measured, and in principle, high sensitivity. It is thought that it becomes.

<第4の実施形態>
本実施形態においては、作用極1として図4に示すような一対の微小櫛歯電極1a、1bを用いて金属イオンや錯イオン等の溶出物の拡散を抑制する方法について説明する。
<Fourth Embodiment>
In the present embodiment, a method for suppressing the diffusion of eluents such as metal ions and complex ions using a pair of minute comb electrodes 1a and 1b as shown in FIG.

先ず、一対の櫛歯電極1a、1bが絶縁基板9上に形成されたプレナー型デバイスを用意し、少なくとも櫛歯電極1a、1bの表面に、被検物質3を認識する一次抗体2を固定する。このとき、微小な櫛歯電極1a、1bの表面のみに一次抗体2を固定するのは困難であるため、対極(図示は省略する)や櫛歯電極1a、1bの形成されていない絶縁基板9の表面に一次抗体2が固定されても構わない。   First, a planar device in which a pair of comb electrodes 1a and 1b are formed on an insulating substrate 9 is prepared, and a primary antibody 2 that recognizes the test substance 3 is fixed to at least the surfaces of the comb electrodes 1a and 1b. . At this time, since it is difficult to fix the primary antibody 2 only to the surfaces of the minute comb-tooth electrodes 1a and 1b, the insulating substrate 9 on which the counter electrode (not shown) and the comb-tooth electrodes 1a and 1b are not formed. The primary antibody 2 may be immobilized on the surface.

次に、金属微粒子5で標識した二次抗体4及び未知量の被検物質3を含む溶液を、デバイスの櫛歯電極1a、1bの形成面に供給し、抗原抗体反応を行う。これにより、被検物質3の濃度に対応した量の金属微粒子5が作用極1の表面に局在化された状態となる(図5(a))。ここまでの工程は、作用極1の形状が異なることを除き前述の第2の実施形態と同様である。   Next, a solution containing the secondary antibody 4 labeled with the metal fine particles 5 and an unknown amount of the test substance 3 is supplied to the surface on which the comb electrodes 1a and 1b of the device are formed, and an antigen-antibody reaction is performed. Thereby, the amount of the metal fine particles 5 corresponding to the concentration of the test substance 3 is localized on the surface of the working electrode 1 (FIG. 5A). The steps up to here are the same as those in the second embodiment except that the shape of the working electrode 1 is different.

次に、櫛歯電極1a、1b、対極及び参照極と、電気化学的測定用の測定溶液とを接触させる。その後、櫛歯電極1a、1bのうち一方の櫛歯電極1aに金属微粒子5を構成する金属が溶出する電位を印加し、表面に局在化させた金属微粒子5を電気化学的に酸化して金属イオンや錯イオン等として溶出させる。それと同時に、他方の櫛歯電極1bに金属微粒子5を構成する金属が析出する電位を印加し、一方の櫛歯電極1a側から生成した金属イオンや錯イオン等の溶出物を還元して櫛歯電極1b表面に金属8として析出させる(図5(b))。   Next, the comb electrodes 1a and 1b, the counter electrode and the reference electrode are brought into contact with a measurement solution for electrochemical measurement. Thereafter, a potential at which the metal constituting the metal fine particles 5 is eluted is applied to one of the comb electrodes 1a and 1b to electrochemically oxidize the metal fine particles 5 localized on the surface. Eluted as metal ions or complex ions. At the same time, a potential at which the metal constituting the metal fine particles 5 precipitates is applied to the other comb-teeth electrode 1b, and the eluents such as metal ions and complex ions generated from the one comb-teeth electrode 1a side are reduced to form comb teeth. The metal 8 is deposited on the surface of the electrode 1b (FIG. 5B).

次に、各櫛歯電極1a、1bに、先の工程とは反対の電位を印加する。すなわち、他方の櫛歯電極1bに金属微粒子5を構成する金属及び析出した金属8が溶出する電位を印加し、これらを電気化学的に酸化して金属イオンや錯イオン等として溶出させる。それと同時に、一方の櫛歯電極1aに金属微粒子5を構成する金属が析出する電位を印加し、金属イオンや錯イオン等の溶出物を還元して櫛歯電極1a表面に析出させる(図5(c))。   Next, a potential opposite to the previous step is applied to each of the comb electrodes 1a and 1b. That is, a potential at which the metal constituting the metal fine particles 5 and the deposited metal 8 are eluted is applied to the other comb-tooth electrode 1b, and these are electrochemically oxidized and eluted as metal ions, complex ions, and the like. At the same time, a potential at which the metal constituting the metal fine particles 5 precipitates is applied to one of the comb electrodes 1a, and the eluate such as metal ions or complex ions is reduced and deposited on the surface of the comb electrodes 1a (FIG. 5 ( c)).

次に、一方の櫛歯電極1a上に析出した金属8を電気化学的に酸化し、その酸化電流を櫛歯電極1aで測定する(図5(d))。或いは、一方の櫛歯電極1aの表面の金属8を電気化学的に溶出させ、その後、溶出した金属イオンや錯イオン等の溶出物を電気化学的に還元し、その還元電流を他方の櫛歯電極1bで測定してもよい。   Next, the metal 8 deposited on one comb electrode 1a is electrochemically oxidized, and the oxidation current is measured by the comb electrode 1a (FIG. 5D). Alternatively, the metal 8 on the surface of one comb electrode 1a is electrochemically eluted, and then the eluted metal ions and complex ions are electrochemically reduced, and the reduction current is reduced to the other comb tooth. You may measure with the electrode 1b.

本実施形態においては櫛歯電極1a、1bを用いて前述の操作を行うことにより、櫛歯電極1a、1b間の微小な領域間で金属イオンや錯イオン等の溶出物が交換されるので、金属イオンや錯イオン等の溶出物の拡散が妨げられ、高感度な測定が可能となる。また、標識金属微粒子を一旦酸化して溶出させることにより生成される金属イオンや金属錯イオンの還元に必要な条件がほぼ同一となるので、それらを還元析出反応させることにより、その還元反応を測定したグラフに金属微粒子量に対応したピークが現れ、正確な測定が可能となる。   In the present embodiment, by performing the above-described operation using the comb electrodes 1a and 1b, eluents such as metal ions and complex ions are exchanged between minute regions between the comb electrodes 1a and 1b. Diffusion of eluents such as metal ions and complex ions is hindered, and highly sensitive measurement is possible. In addition, the conditions necessary for the reduction of metal ions and metal complex ions generated by once oxidizing and eluting the labeled metal fine particles are almost the same. Therefore, the reduction reaction is measured by reducing and precipitating them. The peak corresponding to the amount of fine metal particles appears in the graph, and accurate measurement is possible.

なお、前述の第1〜第4の実施形態では、電極表面からの金属イオンや錯イオン等の溶出物の拡散を抑える手段として、対向部材、対向電極又は微小櫛歯電極を例示したが、本発明はこれらに限定されることなく、電極表面からの金属イオンや錯イオン等の溶出物の拡散を抑制可能な手段を任意に採用することができる。   In the first to fourth embodiments described above, the counter member, the counter electrode, or the micro comb-teeth electrode is exemplified as a means for suppressing the diffusion of eluents such as metal ions and complex ions from the electrode surface. The invention is not limited to these, and any means capable of suppressing diffusion of eluents such as metal ions and complex ions from the electrode surface can be arbitrarily adopted.

以下、本発明の測定方法について、実験結果を参照しながら説明する。   Hereinafter, the measurement method of the present invention will be described with reference to experimental results.

実験1
先ず、図6(a)に示すようなプレナー型の印刷電極デバイスを用意した。この印刷電極デバイスは、短冊状の基板11の一端の表面に、カーボンからなる作用極12、カーボンからなる対極(図示は省略する。)及びAg/AgClからなる参照電極13が形成されて構成される。基板11上及び参照電極13と端子(図示は省略する。)とを接続する配線14上にはレジストからなる絶縁皮膜15が形成されており、基板面からの絶縁皮膜15の高さAは32μmとされている。絶縁皮膜15の端部と基板11の参照電極13が形成された側の端部との距離Bは3800μmである。以下の実施例1〜実施例3及び比較例1の操作に先だって、この印刷電極デバイスの参照電極13の表面に、電気化学的に金(Au)を析出させることにより、生物学的相互作用を利用して金の微粒子が作用極12の表面に局在化された状態を疑似的に作り出した。
Experiment 1
First, a planar type printed electrode device as shown in FIG. 6A was prepared. This printed electrode device is configured by forming a working electrode 12 made of carbon, a counter electrode made of carbon (not shown) and a reference electrode 13 made of Ag / AgCl on the surface of one end of a strip-shaped substrate 11. The An insulating film 15 made of a resist is formed on the substrate 11 and on the wiring 14 that connects the reference electrode 13 and a terminal (not shown), and the height A of the insulating film 15 from the substrate surface is 32 μm. It is said that. The distance B between the end of the insulating film 15 and the end of the substrate 11 on the side where the reference electrode 13 is formed is 3800 μm. Prior to the operations of Examples 1 to 3 and Comparative Example 1 below, the biological interaction is achieved by electrochemically depositing gold (Au) on the surface of the reference electrode 13 of the printed electrode device. By utilizing this, a state in which the gold fine particles are localized on the surface of the working electrode 12 was simulated.

<実施例1>
実施例1においては、対向部材16としてのカバーガラスを作用極12の表面に近接させた状態で、金の電気化学的な酸化と還元電流の測定を行った。すなわち、先ず、前記印刷電極デバイスの作用極12の表面に測定溶液として0.1規定塩酸水溶液を滴下し、作用極12の表面に測定溶液の液滴を形成した。次に、一部が絶縁皮膜15に乗り上げるように対向部材16としてカバーガラスを載せることにより、測定溶液の厚みを薄くした(図6(b))。次に、作用極12の電位を+1.2Vに40秒間保持し、作用極12表面の金を電気化学的に酸化し、溶出させた。
<Example 1>
In Example 1, the electrochemical oxidation and reduction current of gold were measured in a state where the cover glass as the facing member 16 was brought close to the surface of the working electrode 12. That is, first, a 0.1 N hydrochloric acid aqueous solution was dropped as a measurement solution on the surface of the working electrode 12 of the printed electrode device, and droplets of the measurement solution were formed on the surface of the working electrode 12. Next, the thickness of the measurement solution was reduced by placing a cover glass as the facing member 16 so that a part of the film covered the insulating film 15 (FIG. 6B). Next, the potential of the working electrode 12 was kept at +1.2 V for 40 seconds, and gold on the surface of the working electrode 12 was electrochemically oxidized and eluted.

次に、サイクリックボルタンメトリーにより電位変化に対する電流変化を測定した。サイクリックボルタンメトリーにおいては電位の走査範囲を−0.3V〜1.2とした。また、微分パルスボルタンメトリーにより、作用極12の電位を0.8Vから−0.1Vへ変化させていき、電位変化に対する電流変化を測定した。微分パルスボルタンメトリーの条件は電位増加0.004V、パルス振幅0.05V、パルス幅0.05S、パルス期間0.2Sとした。サイクリックボルタンメトリーの結果を図7に、微分パルスボルタンメトリーの結果を図8に示す。   Next, the current change with respect to the potential change was measured by cyclic voltammetry. In cyclic voltammetry, the potential scan range was -0.3 V to 1.2. Further, the potential of the working electrode 12 was changed from 0.8 V to −0.1 V by differential pulse voltammetry, and the current change with respect to the potential change was measured. The conditions for differential pulse voltammetry were an electric potential increase of 0.004 V, a pulse amplitude of 0.05 V, a pulse width of 0.05 S, and a pulse period of 0.2 S. The result of cyclic voltammetry is shown in FIG. 7, and the result of differential pulse voltammetry is shown in FIG.

<実施例2>
実施例2においては、対向部材16としてのカバーガラスと作用極12との間隔を実施例1より広げた状態で、金の電気化学的な酸化と還元電流の測定を行った。すなわち、先ず、比較例1及び実施例1で用いた印刷電極デバイスの、基板11の参照電極13が形成された側の端部付近に、対向部材16と作用極12との間隔を広げるための凸部17をシール材により形成した。凸部17の高さCは40μmである。凸部17を備える印刷電極デバイスの作用極12の表面に測定溶液として0.1規定塩酸水溶液を滴下し、作用極12の表面に測定溶液の液滴を形成した。次に凸部17と絶縁皮膜15の上に対向部材16を載せることにより、測定溶液の厚みを薄くした(図6(c))。その後は、前述の実施例1と同様にして電気化学的な酸化と還元電流の測定を行った。サイクリックボルタンメトリーの結果を図7に、微分パルスボルタンメトリーの結果を図8に示す。
<Example 2>
In Example 2, measurement of electrochemical oxidation and reduction current of gold was performed in a state where the distance between the cover glass as the facing member 16 and the working electrode 12 was wider than that in Example 1. That is, first, in order to widen the gap between the counter member 16 and the working electrode 12 in the vicinity of the end of the printed electrode device used in Comparative Example 1 and Example 1 on the side where the reference electrode 13 of the substrate 11 is formed. The convex part 17 was formed with the sealing material. The height C of the convex part 17 is 40 μm. A 0.1 N hydrochloric acid aqueous solution was dropped as a measurement solution on the surface of the working electrode 12 of the printed electrode device having the convex portions 17, and droplets of the measurement solution were formed on the surface of the working electrode 12. Next, the thickness of the measurement solution was reduced by placing the facing member 16 on the convex portion 17 and the insulating film 15 (FIG. 6C). Thereafter, electrochemical oxidation and reduction current were measured in the same manner as in Example 1 described above. The result of cyclic voltammetry is shown in FIG. 7, and the result of differential pulse voltammetry is shown in FIG.

<実施例3>
実施例3においては、対向部材16としてカバーガラスに代えてガラスエポキシ基板を用い、実施例1と同様にして金の電気化学的な酸化と還元電流の測定を行った。微分パルスボルタンメトリーの結果を図8に示す。
<Example 3>
In Example 3, a glass epoxy substrate was used instead of the cover glass as the facing member 16, and the electrochemical oxidation and reduction current of gold were measured in the same manner as in Example 1. The result of differential pulse voltammetry is shown in FIG.

<比較例1>
比較例1においては、対向部材を用いることなく、金の電気化学的な酸化と還元電流の測定を行った。すなわち、先ず、前記印刷電極デバイスの作用極12の表面に測定溶液として0.1規定塩酸水溶液を滴下し、作用極12の表面に測定溶液の液滴を形成した。次に、液滴の状態の測定溶液について、前述の実施例1と同様にして電気化学的な酸化と還元電流の測定を行った。サイクリックボルタンメトリーの結果を図7に、微分パルスボルタンメトリーの結果を図8に示す。
<Comparative Example 1>
In Comparative Example 1, the electrochemical oxidation of gold and the reduction current were measured without using a counter member. That is, first, a 0.1 N hydrochloric acid aqueous solution was dropped as a measurement solution on the surface of the working electrode 12 of the printed electrode device, and droplets of the measurement solution were formed on the surface of the working electrode 12. Next, the electrochemical oxidation and reduction currents of the measurement solution in the droplet state were measured in the same manner as in Example 1 described above. The result of cyclic voltammetry is shown in FIG. 7, and the result of differential pulse voltammetry is shown in FIG.

以上、図7及び図8の結果より、対向部材16としてのカバーガラスを作用極12の表面に近接させた状態で測定した実施例1及び実施例2では、測定溶液を液滴の状態で測定した比較例1に比べて大きな金の還元に伴うピーク電流が得られた。特に、作用極12と対向部材16との間隔を狭くした実施例1では、実施例2に比べてより一層大きな還元ピーク電流が得られた。このことより、作用極の表面に対向部材を近接させることで高感度検出が可能となることがわかる。また、ガラスエポキシ基板を対向部材として用いたとき(実施例3)の還元ピーク電流はカバーガラスを用いたとき(実施例1)に比べて小さいものであったことから、対向部材として作用極と対向する部分の表面の平坦性の高いものを用いることが好ましいとわかった。   As described above, in Example 1 and Example 2 where the cover glass as the facing member 16 was measured in the state of being close to the surface of the working electrode 12, the measurement solution was measured in the form of droplets based on the results of FIGS. As compared with Comparative Example 1, the peak current associated with the reduction of gold was obtained. In particular, in Example 1 in which the distance between the working electrode 12 and the facing member 16 was narrowed, a larger reduction peak current was obtained than in Example 2. From this, it can be seen that high-sensitivity detection is possible by bringing the opposing member close to the surface of the working electrode. Further, since the reduction peak current when the glass epoxy substrate was used as the counter member (Example 3) was smaller than that when the cover glass was used (Example 1), the working electrode was used as the counter member. It turned out that it is preferable to use the thing of the flatness of the surface of the part which opposes.

実験2
本実験では、抗原抗体反応により作用極に局在させていた金コロイド粒子を電気化学的に溶出・析出によって対向電極に移動させ、且つ、それぞれの電極で酸化・還元により金の量を測定した。
Experiment 2
In this experiment, colloidal gold particles that had been localized at the working electrode due to the antigen-antibody reaction were moved electrochemically to the counter electrode by elution and precipitation, and the amount of gold was measured by oxidation and reduction at each electrode. .

<実施例4>
サンドイッチ型免疫測定法のモデル抗原としてhCGを選び、その電気化学的検出を試みた。標識物質として金コロイド粒子を用いた。実験1と同じプレナー型の印刷電極デバイスの作用極の表面に一次抗体(抗α−サブユニット抗体)を固定した。次に、前記抗原を含む緩衝液を作用極上に供給して抗原を捕捉し、その抗原に金コロイド粒子で標識した二次抗体を結合させた。
<Example 4>
HCG was selected as a model antigen for the sandwich immunoassay and its electrochemical detection was attempted. Colloidal gold particles were used as the labeling substance. A primary antibody (anti-α-subunit antibody) was immobilized on the surface of the working electrode of the same planar type printed electrode device as in Experiment 1. Next, a buffer solution containing the antigen was supplied onto the working electrode to capture the antigen, and a secondary antibody labeled with colloidal gold particles was bound to the antigen.

次に、作用極を含む印刷電極デバイスの表面に飽和KCl溶液を滴下した後、対向電極を作用極に近接対向するように設置した。その状態で、作用極に+1.5V、対向電極に−1Vをそれぞれ120秒間印加した。対向電極は、作用電極と同材料のカーボンペーストにより作製したものであり、作用電極とは独立して電位操作が可能で、作用電極と同じ電極面積を有したものである。作用極と対向電極との間隔は約20μmとであった。それぞれの電極の表面粗さは5μm程度である。   Next, a saturated KCl solution was dropped on the surface of the printed electrode device including the working electrode, and then the counter electrode was installed so as to face the working electrode in proximity. In this state, +1.5 V was applied to the working electrode and -1 V was applied to the counter electrode for 120 seconds. The counter electrode is made of a carbon paste made of the same material as that of the working electrode, and can be operated with a potential independently of the working electrode and has the same electrode area as that of the working electrode. The distance between the working electrode and the counter electrode was about 20 μm. The surface roughness of each electrode is about 5 μm.

次に、電極を純水で洗浄後、Nガンで乾燥させ、対向電極表面に0.1規定HClを滴下した。析出した金の溶出のために対向電極に+1.2Vを5秒間印加した。その後、対向電極側にて、微分パルスボルタンメトリー(DPV)により電位変化に対する電流変化を測定した。結果を図9に示す。 Next, the electrode was washed with pure water, dried with an N 2 gun, and 0.1 N HCl was dropped onto the surface of the counter electrode. In order to elute the deposited gold, +1.2 V was applied to the counter electrode for 5 seconds. Thereafter, the current change with respect to the potential change was measured by differential pulse voltammetry (DPV) on the counter electrode side. The results are shown in FIG.

<比較例2>
比較例では、先ず、実施例4と同様に抗原抗体反応を行い、作用極を含む印刷電極デバイスの表面に0.1規定HClを滴下した。その後、対向電極を設置することなく、前処理として作用極に1.2Vを40秒間印加した。その後、作用極で、微分パルスボルタンメトリー(DPV)により電位変化に対する電流変化を測定した。結果を図9に示す。
<Comparative example 2>
In the comparative example, first, an antigen-antibody reaction was performed in the same manner as in Example 4, and 0.1 N HCl was dropped onto the surface of the printed electrode device including the working electrode. Thereafter, 1.2 V was applied to the working electrode for 40 seconds as a pretreatment without installing a counter electrode. Thereafter, the current change with respect to the potential change was measured by differential pulse voltammetry (DPV) at the working electrode. The results are shown in FIG.

図9の結果より、対向電極を用いた実施例4では対向電極を用いない比較例2に比べて3倍ほど大きな還元電流値が得られていることから、本発明の方法が有効であることがわかる。これは、実施例4では、金属微粒子を酸化する場合(比較例2)に比べて酸化還元した金が電極表面に析出しているため酸化の時間が5秒と短くてよく、その分拡散によるロスが少なかったためと推測される。また、DPV測定に用いた電極(対向電極)表面が抗原抗体反応によって汚染されることなく活性の高い状態であったためと推測される。なお、図9中には、前処理として対向電極に1.2Vを40秒間印加し、その後、作用極側にて微分パルスボルタンメトリー(DPV)を測定した結果が併記されている(参考例)。作用極側での測定で還元電流ピークが観察されなかったことから、前処理により対向電極側に金属が移ったことがわかる。   From the result of FIG. 9, in Example 4 using the counter electrode, a reduction current value about three times larger than that in Comparative Example 2 without using the counter electrode is obtained, and therefore the method of the present invention is effective. I understand. In Example 4, compared with the case where metal fine particles are oxidized (Comparative Example 2), the oxidized and reduced gold is deposited on the electrode surface, so that the oxidation time may be as short as 5 seconds, which is due to diffusion. It is estimated that there was little loss. It is also presumed that the surface of the electrode (counter electrode) used for DPV measurement was in a highly active state without being contaminated by the antigen-antibody reaction. FIG. 9 also shows the results of applying 1.2 V to the counter electrode for 40 seconds as a pretreatment, and then measuring differential pulse voltammetry (DPV) on the working electrode side (reference example). Since no reduction current peak was observed in the measurement on the working electrode side, it can be seen that the metal was transferred to the counter electrode side by the pretreatment.

(a)〜(c)は、本発明を適用した測定方法の第1の実施形態を説明するための模式図である。(A)-(c) is a schematic diagram for demonstrating 1st Embodiment of the measuring method to which this invention is applied. (a)〜(d)は、本発明を適用した測定方法の第2の実施形態を説明するための模式図である。(A)-(d) is a schematic diagram for demonstrating 2nd Embodiment of the measuring method to which this invention is applied. (a)〜(c)は、本発明を適用した測定方法の第3の実施形態を説明するための模式図である。(A)-(c) is a schematic diagram for demonstrating 3rd Embodiment of the measuring method to which this invention is applied. 第4の実施形態で用いられる櫛歯電極の要部概略平面図である。It is a principal part schematic plan view of the comb-tooth electrode used in 4th Embodiment. (a)〜(d)は、本発明を適用した測定方法の第4の実施形態を説明するための模式図である。(A)-(d) is a schematic diagram for demonstrating 4th Embodiment of the measuring method to which this invention is applied. 実験1で用いた印刷電極デバイスと対向部材との位置関係を説明するための断面図である。It is sectional drawing for demonstrating the positional relationship of the printed electrode device used in Experiment 1, and a counter member. 実験1のサイクリックボルタンメトリーの結果を示す特性図である。FIG. 6 is a characteristic diagram showing the results of cyclic voltammetry in Experiment 1. 実験1の微分パルスボルタンメトリーの結果を示す特性図である。FIG. 6 is a characteristic diagram showing the results of differential pulse voltammetry in Experiment 1. 実験2の微分パルスボルタンメトリーの結果を示す特性図である。It is a characteristic view which shows the result of the differential pulse voltammetry of Experiment 2. (a)〜(c)は、従来の測定方法を説明するための模式図である。(A)-(c) is a schematic diagram for demonstrating the conventional measuring method.

符号の説明Explanation of symbols

1 作用極、2 一次抗体、3 被検物質(抗原)、4 二次抗体、5 金属微粒子、6 対向部材、7 対向電極   1 working electrode, 2 primary antibody, 3 test substance (antigen), 4 secondary antibody, 5 metal fine particle, 6 facing member, 7 facing electrode

Claims (11)

金属微粒子を標識物質として用いるとともに、電気化学測定法を利用する被検物質の測定方法であって、
生物学的相互作用を利用して前記金属微粒子を少なくとも作用極表面に局在化させる工程と、
前記作用極の表面に局在化させた前記金属微粒子を電気化学的に酸化して溶出させる工程とを有し、
少なくとも前記金属微粒子を酸化する工程において前記作用極からの前記溶出物の拡散を抑えることを特徴とする被検物質の測定方法。
A method for measuring a test substance using an electrochemical measurement method while using metal fine particles as a labeling substance,
Utilizing the biological interaction to localize the metal microparticles at least on the surface of the working electrode;
And electrochemically oxidizing and eluting the metal fine particles localized on the surface of the working electrode,
A method for measuring a test substance, comprising suppressing diffusion of the eluate from the working electrode at least in the step of oxidizing the metal fine particles.
金属微粒子を標識物質として用いる被検物質の測定方法であって、
生物学的相互作用を利用して前記金属微粒子を少なくとも作用極表面に局在化させる工程と、
前記作用極の表面に局在化させた前記金属微粒子を電気化学的に酸化して溶出させる工程と、
電気化学的な酸化による溶出物を電気化学的に還元する際の電流値を前記作用極で測定する工程とを有し、
前記金属微粒子を酸化する工程及び前記還元電流値を測定する工程において前記作用極の表面に平坦な表面を有する対向部材を近接させることを特徴とす被検物質の測定方法。
A method for measuring a test substance using metal fine particles as a labeling substance,
Utilizing the biological interaction to localize the metal microparticles at least on the surface of the working electrode;
A step of electrochemically oxidizing and eluting the metal fine particles localized on the surface of the working electrode;
Measuring the current value at the time of electrochemically reducing the effluent by electrochemical oxidation at the working electrode,
Method of measuring the analyte you characterized thereby close the opposing member having a flat surface on the surface of the working electrode in the step of measuring the process and the reduction current for oxidizing the metal particles.
前記作用極と前記対向部材との間隔を50μm以下とすることを特徴とする請求項2記載の被検物質の測定方法。   The method for measuring a test substance according to claim 2, wherein a distance between the working electrode and the facing member is 50 μm or less. 前記対向部材の前記作用極と対向する表面の算術平均粗さRaが20μm以下であることを特徴とする請求項2記載の被検物質の測定方法。   The method for measuring a test substance according to claim 2, wherein an arithmetic average roughness Ra of a surface of the facing member facing the working electrode is 20 μm or less. 金属微粒子を標識物質として用いる被検物質の測定方法であって、
生物学的相互作用を利用して前記金属微粒子を少なくとも作用極表面に局在化させる工程と、
前記作用極とは異なる対向電極を前記作用極の表面に近接させた状態で、前記作用極の表面に局在化させた前記金属微粒子を電気化学的に酸化して溶出させるとともに、前記対向電極の表面に前記金属微粒子を構成する金属を電気化学的に析出させる工程と、
前記対向電極に析出した金属を電気化学的に酸化して溶出させる工程と、
析出金属を酸化する工程後の電気化学的な酸化による溶出物を電気化学的に還元する際の電流値を前記対向電極で測定する工程とを有することを特徴とす被検物質の測定方法。
A method for measuring a test substance using metal fine particles as a labeling substance,
Utilizing the biological interaction to localize the metal microparticles at least on the surface of the working electrode;
In a state where a counter electrode different from the working electrode is brought close to the surface of the working electrode, the metal fine particles localized on the surface of the working electrode are electrochemically oxidized and eluted, and the counter electrode Electrochemically depositing the metal constituting the metal fine particles on the surface of
A step of electrochemically oxidizing and eluting the metal deposited on the counter electrode;
Method of measuring the analyte you, characterized in that the current value when electrochemically reduced the eluate precipitated metal by electrochemical oxidation after step of oxidizing a step of measuring with said counter electrode .
金属微粒子を標識物質として用いる被検物質の測定方法であって、
生物学的相互作用を利用して前記金属微粒子を少なくとも作用極表面に局在化させる工程と、
前記作用極とは異なる対向電極を前記作用極の表面に近接させた状態で、前記作用極の表面に局在化させた前記金属微粒子を電気化学的に酸化して溶出させるとともに、前記対向電極の表面に前記金属微粒子を構成する金属を電気化学的に析出させる工程と、
前記対向電極に析出した金属を電気化学的に酸化する際の電流値を前記対向電極で測定する工程とを有することを特徴とす被検物質の測定方法。
A method for measuring a test substance using metal fine particles as a labeling substance,
Utilizing the biological interaction to localize the metal microparticles at least on the surface of the working electrode;
In a state where a counter electrode different from the working electrode is brought close to the surface of the working electrode, the metal fine particles localized on the surface of the working electrode are electrochemically oxidized and eluted, and the counter electrode Electrochemically depositing the metal constituting the metal fine particles on the surface of
Method of measuring the analyte you; and a step of measuring the current value at the time of electrochemically oxidizing the metal deposited on the counter electrode in the counter electrode.
前記作用極と前記対向電極との間隔を50μm以下とすることを特徴とする請求項5または6記載の被検物質の測定方法。   The method for measuring a test substance according to claim 5 or 6, wherein an interval between the working electrode and the counter electrode is 50 µm or less. 前記対向電極の平面形状が前記作用極と略同一であることを特徴とする請求項5または6記載の被検物質の測定方法。   The method for measuring a test substance according to claim 5 or 6, wherein a planar shape of the counter electrode is substantially the same as that of the working electrode. 金属微粒子を標識物質として用いるとともに、一対の櫛型電極により形成された作用極を用いた電気化学測定法を利用する被検物質の測定方法であって、
生物学的相互作用を利用して前記金属微粒子を少なくとも前記櫛型電極表面に局在化させる工程と、
一方の櫛型電極の表面に局在化させた前記金属微粒子を電気化学的に酸化して溶出させるとともに、
他方の櫛型電極の表面に前記金属微粒子を構成する金属を電気化学的に析出させる第1の金属微粒子酸化/還元工程と、
他方の櫛型電極の表面に局在化した金属微粒子及び析出した金属を電気化学的に酸化して溶出させるとともに、一方の櫛型電極の表面に金属を析出させる第2の金属微粒子酸化/還元工程とを有することを特徴とす被検物質の測定方法。
A method for measuring a test substance using an electrochemical measurement method using a metal fine particle as a labeling substance and a working electrode formed by a pair of comb electrodes,
Utilizing the biological interaction to localize the metal microparticles at least on the comb electrode surface;
The metal fine particles localized on the surface of one of the comb electrodes are electrochemically oxidized and eluted,
A first metal fine particle oxidation / reduction step for electrochemically depositing the metal constituting the metal fine particles on the surface of the other comb-shaped electrode;
Second metal fine particle oxidation / reduction that electrochemically oxidizes and elutes the metal fine particles localized on the surface of the other comb electrode and the deposited metal, and deposits metal on the surface of the one comb electrode method of measuring the analyte you; and a step.
前記第2の金属微粒子酸化/還元工程の後、前記一方の櫛型電極に析出した金属を電気化学的に酸化する際の電流値を測定することを特徴とする請求項9記載の被検物質の測定方法。   10. The test substance according to claim 9, wherein a current value when electrochemically oxidizing the metal deposited on the one comb-shaped electrode after the second metal fine particle oxidation / reduction step is measured. Measuring method. 前記第2の金属微粒子酸化/還元工程の後、前記一方の櫛型電極に析出した金属を電気化学的に酸化して溶出させるとともに前記他方の櫛型電極で溶出物を還元する際の電流値を測定することを特徴とする請求項9記載の被検物質の測定方法。   After the second metal fine particle oxidation / reduction step, a current value when the metal deposited on the one comb electrode is electrochemically oxidized and eluted, and the effluent is reduced by the other comb electrode. The method for measuring a test substance according to claim 9, wherein:
JP2007199309A 2007-07-31 2007-07-31 Test substance measurement method Expired - Fee Related JP4915741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007199309A JP4915741B2 (en) 2007-07-31 2007-07-31 Test substance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199309A JP4915741B2 (en) 2007-07-31 2007-07-31 Test substance measurement method

Publications (2)

Publication Number Publication Date
JP2009036560A JP2009036560A (en) 2009-02-19
JP4915741B2 true JP4915741B2 (en) 2012-04-11

Family

ID=40438620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199309A Expired - Fee Related JP4915741B2 (en) 2007-07-31 2007-07-31 Test substance measurement method

Country Status (1)

Country Link
JP (1) JP4915741B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248394B2 (en) * 2009-03-30 2013-07-31 シャープ株式会社 Method of immobilizing analyte substance and microanalyzer
JP5762225B2 (en) * 2011-09-08 2015-08-12 新留 康郎 Analysis method using silver shell gold nanorods
JP6664737B2 (en) * 2015-01-21 2020-03-13 シスメックス株式会社 Metal ion detection method, analyte detection method, electrode substrate and detection kit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1283447C (en) * 1986-06-20 1991-04-23 John W. Parce Zero volume electrochemical cell
JP3289059B2 (en) * 1992-05-11 2002-06-04 日本電信電話株式会社 Electrochemical detection method and detection device
FR2810739B1 (en) * 2000-06-26 2007-01-26 Centre Nat Rech Scient ELECTROCHEMICAL IMMUNODOSIS USING COLLOIDAL METAL MARKERS
US20090159458A1 (en) * 2006-04-07 2009-06-25 Bio Device Technology Ltd. Method for Determination of Test Substance

Also Published As

Publication number Publication date
JP2009036560A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5187759B2 (en) Test substance measurement method
JP6030618B2 (en) Sample detection
US8617907B2 (en) Determining the presence or amount of a metal-labelled species
Suzuki et al. An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode
Juskova et al. Fabrication and characterization of solid mercury amalgam electrodes for protein analysis
Iwasaki et al. Electrochemical measurements with interdigitated array microelectrodes
US6063259A (en) Microfabricated thick-film electrochemical sensor for nucleic acid determination
JP4915740B2 (en) Silver ion measurement method and test substance measurement method
US20180011054A1 (en) Metal ion detection method, test substance detection method
KR102101941B1 (en) Manufacturing method of biosensor device
Jin et al. Glucose sensing based on interdigitated array microelectrode
US5830343A (en) Electrochemical analysis process
Kerr et al. A comparison of commercially available screen-printed electrodes for electrogenerated chemiluminescence applications
JP4915741B2 (en) Test substance measurement method
Matsuura et al. Rapid and highly-sensitive determination of acetylcholinesterase activity based on the potential-dependent adsorption of thiocholine on silver electrodes
JP4753945B2 (en) Methods for analyzing the presence or amount of silver-labeled species
US20160281147A1 (en) Ultrasensitive diagnostic device using electrocatalytic fluid displacement (efd) for visual readout
Szymanski et al. Electrochemical dissolution of silver nanoparticles and its application in metalloimmunoassay
Matylitskaya et al. Electrochemical characterization of nanogap interdigitated electrode arrays for lab-on-a-chip applications
JP2006250560A (en) Electrochemical measuring electrode, electrochemical measuring instrument, and electrochemical measuring method
EP2633061B1 (en) Method for electrical detection of biomolecules by metal dissolution and assay kit therefor
Wang et al. Microsensor Chip Integrated with Gold Nanoparticles‐Modified Ultramicroelectrode Array for Improved Electroanalytical Measurement of Copper Ions
US20150168333A1 (en) Electrochemical affinity sensing chips integrated with fluidic stirring and operation method thereof
Zhu et al. Electrochemical determination of reversible redox species at interdigitated array micro/nanoelectrodes using charge injection method
JP3641101B2 (en) Electrochemical flow-through cell and analytical method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees