JP4915598B2 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP4915598B2
JP4915598B2 JP2008263750A JP2008263750A JP4915598B2 JP 4915598 B2 JP4915598 B2 JP 4915598B2 JP 2008263750 A JP2008263750 A JP 2008263750A JP 2008263750 A JP2008263750 A JP 2008263750A JP 4915598 B2 JP4915598 B2 JP 4915598B2
Authority
JP
Japan
Prior art keywords
transparent substrate
semiconductor layer
light
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008263750A
Other languages
Japanese (ja)
Other versions
JP2009010427A (en
Inventor
和幸 山江
健一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008263750A priority Critical patent/JP4915598B2/en
Publication of JP2009010427A publication Critical patent/JP2009010427A/en
Application granted granted Critical
Publication of JP4915598B2 publication Critical patent/JP4915598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発光素子の製造方法に関する。   The present invention relates to a method for manufacturing a light emitting device.

従来の発光素子の製造方法として、透明基板にダイシング溝を形成し、その上に半導体層を成長させて、レーザ光の照射時に、透明基板の分離を容易にする技術がある(特許文献1参照)。   As a conventional method for manufacturing a light emitting device, there is a technique in which a dicing groove is formed in a transparent substrate, and a semiconductor layer is grown on the transparent substrate to facilitate separation of the transparent substrate at the time of laser light irradiation (see Patent Document 1). ).

この技術では、半導体層に微細凹凸構造が形成されないので、光の取り出し効率の向上が望めない。   In this technique, since the fine uneven structure is not formed in the semiconductor layer, improvement in light extraction efficiency cannot be expected.

そこで、透明基板にレーザ光を照射して、半導体層から分離するとともに、この半導体層の分離面を擦ることで、スクラッチ痕による凹凸形状を形成する技術がある(特許文献2参照)。   Therefore, there is a technique in which a transparent substrate is irradiated with laser light to be separated from the semiconductor layer, and the separation surface of the semiconductor layer is rubbed to form an uneven shape due to scratch marks (see Patent Document 2).

この技術では、半導体層に対する凹凸形状の形成と透明基板の分離とが行えるので、光の取り出し効率を向上させることができる。
特開2000−101139号公報 特開2003−218394号公報
According to this technique, it is possible to form a concavo-convex shape with respect to the semiconductor layer and to separate the transparent substrate, so that it is possible to improve the light extraction efficiency.
JP 2000-101139 A JP 2003-218394 A

しかしながら、上述の特許文献2の技術では、半導体層に対する凹凸形状がランダムなものとなり再現性が得られにくいので、予めシミュレーション等のデバイス設計で得られる最適形状の光学設計を実現することが困難であった。   However, in the technique of the above-mentioned patent document 2, since the uneven shape with respect to the semiconductor layer is random and it is difficult to obtain reproducibility, it is difficult to realize an optical design with an optimum shape obtained in advance by device design such as simulation. there were.

本発明は、前記問題を解消するためになされたもので、デバイス設計性を向上させた発光素子の製造方法を提供することを課題とするものである。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for manufacturing a light emitting element with improved device designability.

前記課題を解決するために、本発明は、透明基板の一面に半導体層を形成する第1工程と、前記透明基板の他面側から所定の光を照射して、前記透明基板と前記半導体層とを分離する第2工程とを備え、前記第2工程は、所定の光として、紫外領域の1fs〜1000fsの極短パルスのレーザ光を用いて、前記半導体層と前記透明基板との界面をアブレーション加工して、前記透明基板と前記半導体層とを分離するものであり、前記レーザ光は、少なくとも2種類以上の異なる波長のレーザ光であり、これらのレーザ光の強度分布で、前記半導体層の前記透明基板の一面との界面に微細凹凸構造を形成することを特徴とする発光素子の製造方法を提供するものである。 In order to solve the above-described problems, the present invention provides a first step of forming a semiconductor layer on one surface of a transparent substrate, irradiating predetermined light from the other surface side of the transparent substrate, and the transparent substrate and the semiconductor layer. The second step separates the interface between the semiconductor layer and the transparent substrate using laser light of an ultrashort pulse of 1 fs to 1000 fs in the ultraviolet region as the predetermined light. The transparent substrate and the semiconductor layer are separated by ablation processing , and the laser beam is at least two kinds of laser beams having different wavelengths, and the semiconductor layer has an intensity distribution of these laser beams. The present invention provides a method for manufacturing a light-emitting element, wherein a fine concavo-convex structure is formed at an interface with one surface of the transparent substrate .

前記発光素子の製造方法において、請求項2のように、前記レーザ光の強度分布を制御する手段として、前記透明基板の他面に、組成比が可変であるパターニング材料をエピタキシャル成長させ、このパターニング材料によりレーザ光の透過率を制御することができる。 In the method for manufacturing the light emitting element, as described in claim 2 , as a means for controlling the intensity distribution of the laser light, a patterning material having a variable composition ratio is epitaxially grown on the other surface of the transparent substrate, and the patterning material is grown. Thus, the transmittance of the laser beam can be controlled.

本発明によれば、極短パルスのレーザ光によるアブレーション加工によって、透明基板を半導体層から容易に分離することができるから、発光素子の放熱性が向上するとともに、発光素子を小型化でき、デバイス設計性も向上するようになる。また、極短パルスのレーザ光であるので、加工時の熱発生を抑制することができ、クラック発生の防止、加工精度の向上等によって、歩留まりを向上することができる。 According to the present invention, since the transparent substrate can be easily separated from the semiconductor layer by ablation processing with an ultrashort pulse laser beam, the heat dissipation of the light emitting element is improved and the light emitting element can be downsized. Design is also improved. In addition, since the laser light has an extremely short pulse, heat generation during processing can be suppressed, and yield can be improved by preventing generation of cracks and improving processing accuracy.

また、異なる波長のレーザ光の強度分布によって、半導体層の透明基板の一面との界面に予めデバイス設計にて決めた微細凹凸構造を精度良く形成できるから、光の取り出し効率が向上するようになる。 In addition, the light distribution efficiency is improved because the fine uneven structure predetermined by the device design can be accurately formed at the interface between the semiconductor layer and the transparent substrate by the intensity distribution of the laser beams having different wavelengths. .

また、1回の光照射のみで、半導体層に対する微細凹凸構造の精度良い形成と透明基板の分離とが同時に行えるから、製造時間や製造コストを大幅に削減することが可能になる。In addition, since the fine uneven structure on the semiconductor layer can be accurately formed and the transparent substrate can be simultaneously separated by only one light irradiation, the manufacturing time and the manufacturing cost can be greatly reduced.

請求項2によれば、異なる波長のレーザ光とパターニング材料による異なる透過率のレーザ光との併用で、分解物層の厚みにも空間的分布を待たせることが可能となる。したがって、塩酸等によって分解物層を除去すると、半導体層の透明基板の一面との界面に、請求項2の場合よりも高アスペクト比の予めデバイス設計にて決めた微細凹凸構造を精度良く形成できるようになる。 According to the second aspect of the present invention, it is possible to wait for the spatial distribution in the thickness of the decomposition product layer by using the laser light having different wavelengths and the laser light having different transmittances by the patterning material. Therefore, when the decomposition product layer is removed with hydrochloric acid or the like, a fine concavo-convex structure determined in advance by device design having a higher aspect ratio than in the case of claim 2 can be accurately formed at the interface between the semiconductor layer and one surface of the transparent substrate. It becomes like this.

以下、本発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は実施形態の発光素子1の製造方法である。 FIG. 1 shows a method for manufacturing the light emitting device 1 of the embodiment.

図1(a)の第1工程では、透明基板〔例えば、サファイア(Al)基板〕2の一面(図では下面)に、半導体層〔例えば、窒化ガリウム(GaN)層…N型GaN+P型GaN〕3を形成する。かかる発光素子1の構造自体は公知である。 In the first step of FIG. 1A, a semiconductor layer (for example, a gallium nitride (GaN) layer... N-type GaN + P) is formed on one surface (lower surface in the figure) of a transparent substrate [for example, sapphire (Al 2 O 3 ) substrate] 2. Type GaN] 3. The structure of the light emitting element 1 itself is known.

1では、製造工程で用いる発光素子1は、簡略のため1つの発光素子1のチップを用いた例を示しているが、ウエハ上に複数個の発光素子のチップを設けたものを使用しても良い。 In Figure 1, use a light-emitting element 1 used in the production process, an example of using one light-emitting element 1 of the chip for convenience, but provided with a tip of the plurality of light emitting devices on the wafer You may do it.

図1(b)の第2工程では、前記透明基板2の他面側から所定の光Lを照射して、前記透明基板2と前記半導体層3とを分離する。なお、図1(b)では、前記透明基板2を分離する途中の傾けた状態で描いているが、所定の光Lを照射する際は、透明基板2は水平状態である。   In the second step of FIG. 1B, the transparent substrate 2 and the semiconductor layer 3 are separated by irradiating a predetermined light L from the other surface side of the transparent substrate 2. In FIG. 1B, the transparent substrate 2 is drawn in an inclined state while being separated, but when the predetermined light L is irradiated, the transparent substrate 2 is in a horizontal state.

ここで、所定の光Lとは、透明基板2を透過して、半導体層3で吸収されるような光であり、この所定の光Lによって半導体層3の透明基板2との界面をアブレーション加工することで、半導体層3から透明基板2が分離(剥離)されるようになる。この透明基板2を分離した後の半導体層3の界面に残る分解物(ガリウム)層は、塩酸や燐酸等によって除去することが可能である。   Here, the predetermined light L is light that passes through the transparent substrate 2 and is absorbed by the semiconductor layer 3, and the interface between the semiconductor layer 3 and the transparent substrate 2 is ablated by the predetermined light L. As a result, the transparent substrate 2 is separated (separated) from the semiconductor layer 3. The decomposition product (gallium) layer remaining at the interface of the semiconductor layer 3 after separating the transparent substrate 2 can be removed by hydrochloric acid, phosphoric acid, or the like.

ところで、透明基板2を分離する際に、透明基板2と半導体層3との界面において、半導体(窒化ガリウム)層3が分解されて生成する分解物(ガリウム)層の厚みは、照射される光の強度に大きく依存する。   By the way, when the transparent substrate 2 is separated, the thickness of the decomposition product (gallium) layer generated by the decomposition of the semiconductor (gallium nitride) layer 3 at the interface between the transparent substrate 2 and the semiconductor layer 3 is the light to be irradiated. It depends greatly on the strength of.

したがって、光照射強度に空間的分布〔図1(b)の強照射領域aと弱照射領域b〕を持たせることで、分解物(ガリウム)層の厚みにも空間的分布〔図1(b)の凹部cと凸部d〕を待たせることが可能となる。したがって、塩酸等によって分解物(ガリウム)層を除去すると、図1(c)のように、半導体層3の透明基板2の一面との界面に微細凹凸構造3aを形成することが可能となる。なお、微細凹凸構造3aは、例えば、発光素子1から光取り出し効率が最適となるように、シミュレーション等のデバイス設計を用いて予めその形状が決められている。 Therefore, by providing the light irradiation intensity with a spatial distribution (the strong irradiation region a and the weak irradiation region b in FIG. 1B), the thickness of the decomposition product (gallium) layer is also spatially distributed [FIG. ) In the concave portion c and the convex portion d] . Therefore, when the decomposition product (gallium) layer is removed with hydrochloric acid or the like, the fine uneven structure 3a can be formed at the interface between the semiconductor layer 3 and one surface of the transparent substrate 2 as shown in FIG. The shape of the fine concavo-convex structure 3a is determined in advance using device design such as simulation so that the light extraction efficiency from the light emitting element 1 is optimized.

(a)の第2工程では、前記透明基板2の他面側から所定の光Lを照射して、前記透明基板2と前記半導体層3とを分離する。 Figure In the second step of the 2 (a), by irradiating a predetermined light L from the other surface side of the transparent substrate 2, to separate the transparent substrate 2 and the semiconductor layer 3.

ここで、前記所定の光Lとは、紫外領域の1fs〜1000fsの極短パルスのレーザ光であり、このレーザ光によって半導体層3の透明基板2との界面をアブレーション加工することで、半導体層3から透明基板2が分離(剥離)されるようになる。 In this case, the predetermined light L, a laser beam of ultra-short pulses of 1fs~1000fs in the ultraviolet region, by ablation of the interface between the transparent substrate 2 of the semiconductor layer 3 by the laser beam, the semiconductor layer The transparent substrate 2 is separated (peeled) from 3.

極短パルスのレーザ光を発生する紫外光源としては、フェトム秒THG−Ti−Sapphireレーザ、フェトム秒パルス励起したフェトム秒XeClエキシマレーザ、KrFエキシマレーザ、ArFエキシマレーザ、Fエキシマレーザ、THG−YAGレーザ、FHG−YAGレーザなどが挙げられるが、これに限定されるものではない。 Ultraviolet light sources that generate ultrashort pulse laser light include femtosecond THG-Ti-Sapphire laser, femtosecond XeCl excimer laser excited by femtosecond pulse, KrF excimer laser, ArF excimer laser, F 2 excimer laser, THG-YAG A laser, an FHG-YAG laser, etc. are mentioned, However, It is not limited to this.

なお、各英字の略称は、通常使われているものであるが、THGはThird Harmonic Generation(3倍高調波)、Ti−Sapphireはチタンサファイア、XeClは塩化キセノン、KrFはフッ化クリプトン、ArFはフッ化アルゴン、YAGはYttrium Aluminium Garnet(イットリウム アルミニウム ガーネット)、FHGはFourth Harmonic Generation(4倍高調波)をそれぞれ意味するものである。   In addition, although the abbreviation of each alphabetic character is normally used, THG is Third Harmonic Generation (third harmonic), Ti-Sapphire is titanium sapphire, XeCl is xenon chloride, KrF is krypton fluoride, and ArF is Argon fluoride and YAG mean Yttrium Aluminum Garnet (yttrium aluminum garnet), and FHG means Fourth Harmonic Generation (fourth harmonic), respectively.

透明基板2としては、サファイアが用いられている場合、サファイアは赤外線から波長140nm程度までの光に対して透明であるので、この範囲のレーザ光であれば、サファイア製の透明基板2を分離することが可能である。   When sapphire is used as the transparent substrate 2, sapphire is transparent to light from infrared rays to wavelengths of about 140 nm, so that the sapphire transparent substrate 2 is separated if the laser light is in this range. It is possible.

サファイア製の透明基板2に、窒化ガリウム製の半導体層3が積層形成されている場合、加工条件としては、透明基板2と半導体層3の温度を30〜100℃に制御し、加工面でのレーザエネルギー密度が0.1〜1J/cm程度であることが適切である。レーザ照射方法としては、集光ビームを走査する方法や均一なビーム強度を持つ大口径のレーザを照射することが挙げられる。 When the semiconductor layer 3 made of gallium nitride is laminated on the transparent substrate 2 made of sapphire, the processing conditions are such that the temperature of the transparent substrate 2 and the semiconductor layer 3 is controlled to 30 to 100 ° C. The laser energy density is suitably about 0.1 to 1 J / cm 2 . Examples of the laser irradiation method include a method of scanning a focused beam and irradiation of a large-diameter laser having a uniform beam intensity.

前記実施形態の発光素子1の製造方法では、極短パルスのレーザ光L3によるアブレーション加工によって、透明基板2を半導体層3から容易に分離することができるから、発光素子1の放熱性が向上するとともに、発光素子1を小型化でき、デバイス設計性も向上するようになる。 In the method for manufacturing the light-emitting element 1 according to the above embodiment , the transparent substrate 2 can be easily separated from the semiconductor layer 3 by ablation processing with an ultrashort pulse laser beam L3, so that the heat dissipation of the light-emitting element 1 is improved. At the same time, the light emitting element 1 can be reduced in size, and the device design is improved.

また、極短パルスのレーザ光であるので、加工時の熱発生を抑制することができ、クラック発生の防止、加工精度の向上等によって、歩留まりを向上することができる。   In addition, since the laser light has an extremely short pulse, heat generation during processing can be suppressed, and yield can be improved by preventing generation of cracks and improving processing accuracy.

前記実施形態の発光素子1の製造方法において、図(b)の第1変形例のように、少なくとも2種類以上の異なる波長のレーザ光L3を用いると、これらのレーザ光L3の強度分布で、半導体層3の透明基板2の一面との界面に予めデバイス設計にて決めた微細凹凸構造3aを精度良く形成することができる。 In the method of manufacturing the light emitting device 1 of the embodiment, as in the first modification of FIG. 2 (b), the use of laser light L3 of at least two or more different wavelengths, an intensity distribution of these laser beam L3 The fine concavo-convex structure 3a determined in advance by device design can be accurately formed at the interface between the semiconductor layer 3 and one surface of the transparent substrate 2.

一般的に、レーザ光は波長が短いほど光照射強度が小さく、吸収率が大きく、生成する半導体層3の厚さが小さくなる。   In general, the shorter the wavelength of laser light, the lower the light irradiation intensity, the higher the absorptance, and the smaller the thickness of the generated semiconductor layer 3.

そこで、レーザ光L3として、波長の異なるFHG−YAGレーザ(λ=266nm)とTHG−YAGレーザ(λ=355nm)とを用いて、光照射強度に空間的分布(強照射領域aと弱照射領域b)を持たせることで、分解物(ガリウム)層の厚みにも空間的分布(凹部cと凸部d)を待たせることが可能となる。したがって、塩酸等によって分解物(ガリウム)層を除去すると、半導体層3の透明基板2の一面との界面に予めデバイス設計にて決めた微細凹凸構造3a〔図1(c)を参照〕を精度良く形成できるようになる。 Therefore, as the laser light L3, an FHG-YAG laser (λ = 266 nm) and a THG-YAG laser (λ = 355 nm) having different wavelengths are used, and a spatial distribution (strong irradiation region a and weak irradiation region) is applied to the light irradiation intensity. By providing b), it is possible to wait for the spatial distribution (concave part c and convex part d) in the thickness of the decomposition product (gallium) layer . Therefore, when the decomposition product (gallium) layer is removed with hydrochloric acid or the like, the fine uneven structure 3a [see FIG. 1 (c)] determined in advance by device design at the interface between the semiconductor layer 3 and one surface of the transparent substrate 2 is accurate. It can be formed well.

第1変形例の発光素子1の製造方法では、異なる波長のレーザ光の強度分布によって、半導体層3の透明基板2の一面との界面に予めデバイス設計にて決めた微細凹凸構造3aを精度良く形成できるから、光の取り出し効率が向上するようになる。 In the manufacturing method of the light emitting element 1 of the first modification, the fine concavo-convex structure 3a determined in advance by device design at the interface between the semiconductor layer 3 and one surface of the transparent substrate 2 is accurately obtained by the intensity distribution of laser light having different wavelengths. Since it can be formed, the light extraction efficiency is improved.

また、1回の光照射のみで、半導体層3に対する微細凹凸構造3aの精度良い形成と透明基板2の分離とが同時に行えるから、製造時間や製造コストを大幅に削減することが可能になる。   Moreover, since the fine concavo-convex structure 3a can be accurately formed on the semiconductor layer 3 and the transparent substrate 2 can be separated simultaneously with only one light irradiation, the manufacturing time and the manufacturing cost can be greatly reduced.

さらに、FHG−YAGレーザは、THG−YAGレーザよりも出力が小さいため、この2種類のレーザを選択することで、微細凹凸構造3aのアスペクト比が得やすくなる。なお、この他に、XeClエキシマレーザ、KrFエキシマレーザ、ArFエキシマレーザ、Fエキシマレーザ等を適宜に組み合わせることもできる。 Furthermore, since the output of the FHG-YAG laser is smaller than that of the THG-YAG laser, the aspect ratio of the fine concavo-convex structure 3a can be easily obtained by selecting these two types of lasers. In addition, a XeCl excimer laser, a KrF excimer laser, an ArF excimer laser, an F 2 excimer laser, or the like can be appropriately combined.

(c)の第2変形例は、図(b)の第1変形例と同様に、少なくとも2種類以上の異なる波長のレーザ光L3を用いる。これに加えて、レーザ光L3の強度分布を制御する手段として、透明基板2の他面に、組成比が可変であるパターニング材料7をエピタキシャル成長させ、このパターニング材料7によりレーザ光L3の透過率を制御することができる。 The second modification of FIG. 2 (c), similarly to the first modification of FIG. 2 (b), the Ru using a laser beam L3 at least two or more different wavelengths. In addition, as a means for controlling the intensity distribution of the laser beam L3, a patterning material 7 having a variable composition ratio is epitaxially grown on the other surface of the transparent substrate 2, and the transmittance of the laser beam L3 is increased by the patterning material 7. Can be controlled.

具体的には、パターニング材料7として、例えば窒化アルミニウムガリウム(AlGa1−xN)をエピタキシャル成長させた後、フォトリソグラフィ等を利用してパターニングする。 Specifically, for example, aluminum gallium nitride (Al x Ga 1-x N) is epitaxially grown as the patterning material 7 and then patterned using photolithography or the like.

パターニング材料7としては、3元系の窒化アルミニウムガリウム(Al  As the patterning material 7, ternary aluminum gallium nitride (Al x GaGa 1−x1-x N)の他に、硫化カドミウム亜鉛(ZnN) and cadmium zinc sulfide (Zn) x CdCd 1−x1-x S)、窒化アルミニウムホウ素(AlS), aluminum boron nitride (Al x B 1−x1-x N)、窒化インジウムホウ素(InN), indium boron nitride (In x B 1−x1-x N)、窒化ガリウムホウ素(GaN), gallium boron nitride (Ga) x B 1−x1-x N)、窒化インジウムアルミニウム(InN), indium aluminum nitride (In x AlAl 1−x1-x N)が可能である。N) is possible.

また、4元系の窒化アルミニウムインジウムガリウム(AlInGaN)、窒化アルミニウムインジウムホウ素(AlInBN)、窒化インジウムガリウムホウ素(InGaBN)、窒化アルミニウムガリウムホウ素(AlGaBN)が可能である。  Further, quaternary aluminum indium gallium nitride (AlInGaN), aluminum indium boron nitride (AlInBN), indium gallium boron nitride (InGaBN), and aluminum gallium boron nitride (AlGaBN) are possible.

レーザ光L3として、波長の異なるKrFエキシマレーザ光(λ=248nm)とXeClエキシマレーザ(λ=308nm)とを用いて、光照射強度に空間的分布(強照射領域aと弱照射領域b)を持たせることができる。なお、レーザ光L3としては、FHG−YAGレーザ、THG−YAGレーザ、ArFエキシマレーザ、Fエキシマレーザ等を適宜に組み合わせることもできる。 As the laser beam L3, a KrF excimer laser beam (λ = 248 nm) and a XeCl excimer laser (λ = 308 nm) having different wavelengths are used, and a spatial distribution (strong irradiation region a and weak irradiation region b) is applied to the light irradiation intensity. You can have it. As the laser light L3, an FHG-YAG laser, a THG-YAG laser, an ArF excimer laser, an F 2 excimer laser, or the like can be appropriately combined.

また、パターニング材料7の窒化アルミニウムガリウムの組成比xをλ>248nmとなるように変化させれば、窒化アルミニウムガリウムを透過するレーザ光は減衰して、光照射強度に空間的分布(強照射領域aと弱照射領域b)を持たせることができる。   If the composition ratio x of the aluminum gallium nitride of the patterning material 7 is changed so that λ> 248 nm, the laser light transmitted through the aluminum gallium nitride is attenuated, and the spatial distribution (strong irradiation region) of the light irradiation intensity is attenuated. a and a weakly irradiated region b) can be provided.

第2変形例の発光素子1の製造方法では、異なる波長のレーザ光L3とパターニング材料7による異なる透過率のレーザ光L2との併用で、分解物(ガリウム)層の厚みにも空間的分布〔図2(b)の凹部cと凸部d〕を待たせることが可能となる。したがって、塩酸等によって分解物(ガリウム)層を除去すると、半導体層3の透明基板2の一面との界面に、第1変形例よりも高アスペクト比の予めデバイス設計にて決めた微細凹凸構造3a〔図1(c)を参照〕を精度良く形成できるようになる。 In the method for manufacturing the light emitting device 1 of the second modification, the laser light L3 having different wavelengths and the laser light L2 having different transmittances by the patterning material 7 are used in combination, and the spatial distribution of the thickness of the decomposition product (gallium) layer [ It is possible to wait for the concave portion c and the convex portion d] in FIG . Therefore, when the decomposition product (gallium) layer is removed by hydrochloric acid or the like, the fine concavo-convex structure 3a determined in advance in the device design having a higher aspect ratio than the first modification is formed at the interface between the semiconductor layer 3 and one surface of the transparent substrate 2. [See FIG. 1C] can be formed with high accuracy.

なお、上述した実施形態と第1変形例との組み合わせ、実施形態と第1変形例と第2変形例との組み合わせの他に、実施形態と第2変形例との組み合わせも可能である。 Incidentally, the combination of the implementation embodiment and the first modified example described above, in addition to the combination of the implementation embodiment and the first modification and the second modification, the combination of the implementation forms the second modification also It is.

本発明に係る発光素子の製造工程の基本原理図である。It is a basic principle figure of the manufacturing process of the light emitting element which concerns on this invention. (a)は、本発明に係る発光素子の製造工程図、(b)(c)はそれぞれ変形例の製造工程図である。(A) is a manufacturing-process figure of the light emitting element which concerns on this invention, (b) (c) is a manufacturing-process figure of a modification, respectively.

符号の説明Explanation of symbols

1 発光素子
2 透明基板
3 半導体層
3a 微細凹凸構造
7 パターニング材料
L 所定の光
L2 異なる透過率の光
L3 異なる波長のレーザ光
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Transparent substrate 3 Semiconductor layer 3a Fine uneven structure 7 Patterning material L Predetermined light L2 Light of different transmittance L3 Laser light of different wavelength

Claims (2)

透明基板の一面に半導体層を形成する第1工程と、
前記透明基板の他面側から所定の光を照射して、前記透明基板と前記半導体層とを分離する第2工程とを備え、
前記第2工程は、所定の光として、紫外領域の1fs〜1000fsの極短パルスのレーザ光を用いて、前記半導体層と前記透明基板との界面をアブレーション加工して、前記透明基板と前記半導体層とを分離するものであり、
前記レーザ光は、少なくとも2種類以上の異なる波長のレーザ光であり、これらのレーザ光の強度分布で、前記半導体層の前記透明基板の一面との界面に微細凹凸構造を形成することを特徴とする発光素子の製造方法。
A first step of forming a semiconductor layer on one surface of the transparent substrate;
A second step of separating the transparent substrate and the semiconductor layer by irradiating predetermined light from the other surface side of the transparent substrate;
In the second step, as the predetermined light, an ultrashort pulse laser beam of 1 fs to 1000 fs in the ultraviolet region is used to ablate the interface between the semiconductor layer and the transparent substrate, and the transparent substrate and the semiconductor Separating the layers ,
The laser beam is a laser beam having at least two types of different wavelengths, and a fine concavo-convex structure is formed at an interface between the semiconductor layer and one surface of the transparent substrate by an intensity distribution of these laser beams. A method for manufacturing a light emitting device.
前記レーザ光の強度分布を制御する手段として、前記透明基板の他面に、組成比が可変であるパターニング材料をエピタキシャル成長させ、このパターニング材料によりレーザ光の透過率を制御することを特徴とする請求項1に記載の発光素子の製造方法。 Claims as a means of controlling the intensity distribution of the laser beam, which on the other surface of the transparent substrate, the patterning material composition ratio is variable is epitaxially grown, and controlling the transmittance of the laser beam by the patterning material Item 2. A method for manufacturing a light-emitting element according to Item 1 .
JP2008263750A 2008-10-10 2008-10-10 Method for manufacturing light emitting device Expired - Fee Related JP4915598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008263750A JP4915598B2 (en) 2008-10-10 2008-10-10 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263750A JP4915598B2 (en) 2008-10-10 2008-10-10 Method for manufacturing light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004216338A Division JP4241536B2 (en) 2004-07-23 2004-07-23 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2009010427A JP2009010427A (en) 2009-01-15
JP4915598B2 true JP4915598B2 (en) 2012-04-11

Family

ID=40325117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263750A Expired - Fee Related JP4915598B2 (en) 2008-10-10 2008-10-10 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP4915598B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642277B2 (en) * 2011-06-16 2014-12-17 パナソニック株式会社 Method for manufacturing organic electroluminescent element and organic electroluminescent element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218709A (en) * 1985-07-18 1987-01-27 Fujitsu Ltd Photovolatically growing method
JP4734770B2 (en) * 2001-06-12 2011-07-27 ソニー株式会社 Manufacturing method of resin forming element, manufacturing method of image display device, and manufacturing method of lighting device
JP3659201B2 (en) * 2001-07-11 2005-06-15 ソニー株式会社 Semiconductor light emitting device, image display device, lighting device, and method for manufacturing semiconductor light emitting device
JP2003188142A (en) * 2001-12-19 2003-07-04 Sony Corp Method for manufacturing semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JP2009010427A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
US9789566B2 (en) Manufacturing method of substrate, cutting method of processing object and laser processing apparatus
TWI380867B (en) Laser processing methods and semiconductor wafers
TWI508155B (en) Wafer dicing using hybrid split-beam laser scribing process with plasma etch
TWI471195B (en) Processing object grinding method
JP5449665B2 (en) Laser processing method
JP4749799B2 (en) Laser processing method
US7169687B2 (en) Laser micromachining method
US8163582B2 (en) Method for fabricating a light emitting diode chip including etching by a laser beam
JP4907965B2 (en) Laser processing method
TWI447964B (en) LED wafer manufacturing method
US9831363B2 (en) Laser epitaxial lift-off of high efficiency solar cell
JP5312761B2 (en) Cutting method
KR101362633B1 (en) Laser lift-off method and laser lift-off apparatus
TW200809939A (en) Laser processing of workpieces containing low-K dielectric material
TW201528357A (en) Combined wafer production method with laser treatment and temperature-induced stresses
JP5322418B2 (en) Laser processing method and laser processing apparatus
CN106077965A (en) Multi-step and asymmetric moulding laser beam line
JP2005012203A (en) Laser machining method
US10644188B2 (en) Laser epitaxial lift-off GaAs substrate
Sun et al. Low‐Energy UV Ultrafast Laser Controlled Lift‐Off for High‐Quality Flexible GaN‐Based Device
JP2008213024A (en) Method for cutting workpiece
JP4915598B2 (en) Method for manufacturing light emitting device
KR20140107121A (en) Method of manufacturing led device, wafer substrate for manufacturing led device and apparatus for manufacturing led device
US20190096763A1 (en) Laser processing method
JP2006041050A (en) Method for manufacturing light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees