JP4912776B2 - Method and apparatus for producing pyrolysis oil from rubber waste - Google Patents

Method and apparatus for producing pyrolysis oil from rubber waste Download PDF

Info

Publication number
JP4912776B2
JP4912776B2 JP2006195880A JP2006195880A JP4912776B2 JP 4912776 B2 JP4912776 B2 JP 4912776B2 JP 2006195880 A JP2006195880 A JP 2006195880A JP 2006195880 A JP2006195880 A JP 2006195880A JP 4912776 B2 JP4912776 B2 JP 4912776B2
Authority
JP
Japan
Prior art keywords
oil
pyrolysis
pyrolysis oil
gas
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006195880A
Other languages
Japanese (ja)
Other versions
JP2008024754A (en
Inventor
秀生 西村
一雄 大貫
忠司 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006195880A priority Critical patent/JP4912776B2/en
Publication of JP2008024754A publication Critical patent/JP2008024754A/en
Application granted granted Critical
Publication of JP4912776B2 publication Critical patent/JP4912776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、ゴム系廃棄物を資源として有効利用するための廃棄物熱分解油の製造方法および装置に関するものである。   The present invention relates to a method and an apparatus for producing waste pyrolysis oil for effectively using rubber waste as a resource.

廃タイヤ等のゴム系廃棄物や廃プラスチックなどに代表される高分子廃棄物の処理方法は、従来単純焼却や埋立てが中心であったが、近年循環型社会促進が大きな社会的課題となっていることを背景として、高分子廃棄物の資源としての有効利用が求められている。そこで高分子廃棄物の有効利用を目的とした廃棄物処理方法の一つとして、例えば非特許文献1、2、3に記載されているように、高分子廃棄物を熱分解炉で400〜700℃程度に加熱して熱分解ガスを生成した後、熱分解ガスを後段で冷却して熱分解ガス中に含まれる熱分解油を分離回収して燃料油等に利用し、熱分解油分離後の熱分解ガスは燃料ガスや化学原料ガスとして利用する廃棄物熱分解油化法が提案されている。   Conventional methods for treating polymer waste such as rubber waste such as waste tires and plastics have been mainly simple incineration and landfilling, but in recent years the promotion of a recycling-oriented society has become a major social issue. Therefore, effective utilization as a resource of polymer waste is demanded. Therefore, as one of waste treatment methods aiming at effective utilization of polymer waste, for example, as described in Non-Patent Documents 1, 2, and 3, polymer waste is treated in a pyrolysis furnace at 400 to 700. After generating pyrolysis gas by heating to about ℃, cool the pyrolysis gas in the later stage to separate and recover the pyrolysis oil contained in the pyrolysis gas and use it as fuel oil, etc. There is proposed a waste pyrolysis oil conversion method in which the pyrolysis gas is used as fuel gas or chemical raw material gas.

しかしながら、廃棄物熱分解油化法の抱える課題として、例えば非特許文献4、5等に記載されているように、高分子廃棄物を熱分解すると分子量が広範囲に分布した油が生成するために、回収した油は低分子量のガソリン成分から高分子量の重油成分までが混合した性状となり、安全性の問題および工業的価値の問題からそのままでは燃料油として使用することが難しいことが挙げられる。   However, as a problem of the waste pyrolysis oil conversion method, for example, as described in Non-Patent Documents 4 and 5, etc., when polymer waste is pyrolyzed, oil having a molecular weight distributed over a wide range is generated. The recovered oil is a mixture of a low molecular weight gasoline component to a high molecular weight heavy oil component, which is difficult to use as a fuel oil as it is because of safety problems and industrial value problems.

このうち安全性の問題については、例えば廃プラスチックを対象とした熱分解油化では、特許文献1に記載されているように、廃プラスチックを熱分解して生成したガス状熱分解物を冷却・凝縮して得られるガソリン成分20〜50%を含む引火点0℃以下の廃プラ熱分解油を不活性ガスでストリッピングしてガソリン成分を追い出し、廃プラ熱分解油の輸送・保管時の安全性を高める装置などが提案されている。   Among these, regarding the problem of safety, for example, in pyrolysis oil conversion for waste plastic, as described in Patent Document 1, the gaseous pyrolyzate generated by pyrolyzing waste plastic is cooled and Waste plastic pyrolysis oil with a flash point of 0 ° C or less containing 20-50% of the gasoline component obtained by condensation is stripped with an inert gas to drive off the gasoline component, and safety when transporting and storing waste plastic pyrolysis oil Devices that improve the performance have been proposed.

しかしながら、特許文献1の方法の抱える課題として、特許文献1の方法で回収される廃プラ熱分解油は、まだ灯油成分、軽油成分、重油成分が混合した状態の油であるために、利用先が大きく限定され、工業的価値の高い廃棄物熱分解油の製造方法ではない点が挙げられる。   However, as a problem of the method of Patent Document 1, the waste plastic pyrolysis oil recovered by the method of Patent Document 1 is still a mixed oil of kerosene component, light oil component and heavy oil component. Is greatly limited and is not a method for producing waste pyrolysis oil with high industrial value.

そこで、高分子廃棄物から工業的価値の高い熱分解油を製造する方法、特にゴム系廃棄物を原料として工業的用途が広い重油相当の熱分解油を製造する方法として、例えば特許文献2に記載されているように、ゴム系廃棄物の熱分解炉の後段に複数個の分留段を有する蒸留塔を設け、熱分解油を特定の沸点留分に分留して重油相当の熱分解油を回収する方法が開示され知られている。   Therefore, as a method for producing pyrolyzed oil having high industrial value from polymer waste, particularly as a method for producing pyrolyzed oil corresponding to heavy oil having a wide industrial application using rubber waste as a raw material, Patent Document 2 discloses, for example, As described, a distillation tower having a plurality of fractionation stages is provided after the pyrolysis furnace for rubber waste, and pyrolysis oil is fractionated into specific boiling fractions for pyrolysis equivalent to heavy oil. Methods for recovering oil are disclosed and known.

しかしながら、特許文献2の方法の抱える課題として、蒸留塔設置は、設備が大掛かりとなってしまうために、ゴム系廃棄物を経済的に再資源化することが困難である点が挙げられる。   However, the problem of the method of Patent Document 2 is that it is difficult to economically recycle rubber waste because the installation of a distillation tower requires a large amount of equipment.

そこで、簡易な方法によってゴム系廃棄物から特定の沸点留分の廃棄物熱分解油、特に重油相当の熱分解油を製造する方法として、例えば特許文献3の図5に記載されているように、ゴム系廃棄物の熱分解炉の後段に直接冷却式の熱分解油生成装置を設け、熱分解ガスを前記熱分解油生成装置内で冷却油と向流で直接熱交換させて熱分解油を凝縮するとともに、凝縮した熱分解油を熱分解ガスの冷却油として使用する熱分解油回収方法が提案されている。この場合、冷却油を温度コントロールすることにより特定の沸点範囲に制御された熱分解油が得られると考えられ、簡易な方法で重油相当の熱分解油を製造することが可能である。
「日本ゴム協会誌」第59巻、第10号、P565−P567(1986)、565頁、図1 「リサイクル技術研究発表会講演論文集」6th、P89−P92(1998)、92頁、図4 「セメント製造技術シンポジウム報告集」No.57、P90−P97 (2000)、91頁、Fig.1 三菱重工技報Vol.35、No.6(1988)、416頁、表3 日立造船技報第57巻2号(平成6年7月)、53頁、図5 特開平10−245569号公報 特開昭53−57180号公報 特開平8−110024号公報
Therefore, as a method for producing a waste pyrolysis oil of a specific boiling fraction, particularly a pyrolysis oil equivalent to heavy oil, from rubber waste by a simple method, for example, as described in FIG. In addition, a direct-cooling type pyrolysis oil generator is provided after the rubber waste pyrolysis furnace, and the pyrolysis gas is directly heat-exchanged with the cooling oil in the pyrolysis oil generator in a countercurrent manner. And a method for recovering pyrolysis oil that uses the condensed pyrolysis oil as cooling oil for pyrolysis gas has been proposed. In this case, it is considered that a pyrolysis oil controlled to a specific boiling point range can be obtained by controlling the temperature of the cooling oil, and it is possible to produce a pyrolysis oil equivalent to heavy oil by a simple method.
“The Journal of Japan Rubber Association” Vol. 59, No. 10, P565-P567 (1986), p. 565, FIG. "Recycling Technology Research Presentation Papers" 6th, P89-P92 (1998), p. 92, Fig. 4 “Cement Manufacturing Technology Symposium” No. 57, P90-P97 (2000), page 91, FIG. Mitsubishi Heavy Industries Technical Report Vol.35, No.6 (1988), p.416, Table 3 Hitachi Zosen Technical Report Vol.57 No.2 (July 1994), p.53, Fig.5 Japanese Patent Laid-Open No. 10-245569 JP-A-53-57180 JP-A-8-11024

しかしながら、本発明者らは、ゴム系廃棄物を熱分解処理して重油相当の熱分解油を製造する場合、特許文献3のような熱分解油回収方法では熱分解油生成装置内で油の動粘度が上昇して回収油の価値が低下してしまう問題点があることを見出した。すなわち、下記の表1にゴム系廃棄物を熱分解処理して得られた熱分解ガスを特許文献2の蒸留塔方式および特許文献3の冷却油に生成油を用いた直接熱交換方式で冷却して、重油相当の熱分解油を回収した時の熱分解油の動粘度(測定温度50℃、測定方法JIS−K2283)を示すが、特許文献3の熱分解油回収方法で製造した油は、蒸留塔方式の油に比べて高粘度となり、重油の中でも価値の高いA重油レベルの低動粘度油を製造することが困難であることがわかった。   However, when the present inventors produce a pyrolysis oil equivalent to heavy oil by pyrolyzing rubber-based waste, in the pyrolysis oil recovery method as in Patent Document 3, the oil is not contained in the pyrolysis oil generator. It has been found that there is a problem in that the kinematic viscosity increases and the value of the recovered oil decreases. That is, in Table 1 below, the pyrolysis gas obtained by thermally decomposing rubber waste is cooled by the distillation tower system of Patent Document 2 and the direct heat exchange system using the generated oil as the cooling oil of Patent Document 3. Then, the kinematic viscosity of the pyrolysis oil when the pyrolysis oil equivalent to heavy oil is recovered (measurement temperature 50 ° C., measurement method JIS-K2283) is shown. The oil produced by the pyrolysis oil recovery method of Patent Document 3 is It has been found that it is difficult to produce a low kinematic viscosity oil of A heavy oil level, which has a higher viscosity than the oil of the distillation tower system and has a high value among heavy oils.

Figure 0004912776
Figure 0004912776

従って、本発明は、従来の方法では困難であった簡易な方法でゴム系廃棄物から製造される重油相当の熱分解油の動粘度を低減させる方法および装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method and an apparatus for reducing the kinematic viscosity of pyrolysis oil equivalent to heavy oil produced from rubber waste by a simple method that is difficult with the conventional method.

さらに、本発明は、ゴム系廃棄物から製造される熱分解油の動粘度をA重油(JIS−K2205)レベルまで低減させることが可能な方法および装置を提供することを目的とする。   Furthermore, an object of this invention is to provide the method and apparatus which can reduce the kinematic viscosity of the pyrolysis oil manufactured from a rubber-type waste to A heavy oil (JIS-K2205) level.

本発明者らは、簡易な方法を用いてゴム系廃棄物熱分解ガスから低動粘度の重油相当の熱分解油を回収する方法について鋭意検討した結果、特許文献3のような直接熱交換方式の熱分解油回収装置を用いて回収した熱分解油が高動粘度を示す原因は熱分解ガス冷却媒体として熱分解油生成装置内に一時貯留される熱分解油が100〜150℃程度の低い温度条件下でも重合反応を引き起こして分子量が増加するためであることを見出し、さらに熱分解油生成装置で凝縮した熱分解油中に含まれている揮発性成分、特に揮発性のジエン化合物を低減することによって熱分解油の重合反応を抑制することが可能となることを見出し、熱分解油中の揮発性ジエン化合物を低減して熱分解油の動粘度の上昇を抑制する本方法を発明した。   As a result of intensive studies on a method for recovering pyrolysis oil corresponding to heavy oil with low kinematic viscosity from rubber-based waste pyrolysis gas using a simple method, the present inventors have conducted a direct heat exchange system as disclosed in Patent Document 3. The reason why the pyrolysis oil recovered by using this pyrolysis oil recovery device exhibits a high kinematic viscosity is that the pyrolysis oil temporarily stored in the pyrolysis oil generator as a pyrolysis gas cooling medium is as low as about 100 to 150 ° C. It was found that the molecular weight was increased by causing a polymerization reaction even under temperature conditions, and volatile components, especially volatile diene compounds, contained in the pyrolysis oil condensed by the pyrolysis oil generator were reduced. The present inventors have found that it is possible to suppress the polymerization reaction of pyrolysis oil, and invented this method of reducing the volatile diene compound in the pyrolysis oil and suppressing the increase in kinematic viscosity of the pyrolysis oil. .

本発明は、係る課題を解決するために提案されたもので、その要旨とするところは、以下の(1)〜(6)に示す通りである。   The present invention has been proposed in order to solve such problems, and the gist thereof is as shown in the following (1) to (6).

(1)第1の発明は、ゴム系廃棄物からの熱分解油の製造方法において、ゴム系廃棄物を熱分解して熱分解ガスを生成し、前記生成した熱分解ガスを冷却媒体と接触させて熱分解ガス中に含まれる油状成分を凝縮して熱分解油を生成し、前記生成した熱分解油の一部を前記冷却媒体として使用すると共に、前記生成した熱分解油を、加熱、不活性ガスとの接触、又は減圧の少なくともいずれかの方法で処理して、前記熱分解油中の揮発性ジエン化合物を低減して、前記熱分解油の動粘度の上昇を抑制した後に回収することを特徴とする。 (1) A first aspect of the present invention is a method for producing pyrolysis oil from rubber waste, in which the rubber waste is pyrolyzed to generate pyrolysis gas, and the generated pyrolysis gas is brought into contact with a cooling medium. The oily component contained in the pyrolysis gas is condensed to produce a pyrolysis oil, and a part of the produced pyrolysis oil is used as the cooling medium, and the produced pyrolysis oil is heated, Treated by at least one of contact with an inert gas or reduced pressure to reduce volatile diene compounds in the pyrolysis oil and recover after suppressing an increase in kinematic viscosity of the pyrolysis oil It is characterized by doing.

(2)第2の発明は、(1)のゴム系廃棄物からの熱分解油の製造方法において、前記熱分解油の凝縮による生成から回収までの平均滞留時間を50時間以下とすることを特徴とする。 (2) The second invention is that in the method for producing pyrolysis oil from rubber-based waste of (1), an average residence time from generation to recovery by condensation of the pyrolysis oil is set to 50 hours or less. Features.

(3)第3の発明は、(1)または(2)記載のゴム系廃棄物からの熱分解油の製造方法において、前記生成した熱分解油を、加熱、不活性ガスとの接触、又は減圧の少なくともいずれかの方法で処理して、前記回収する熱分解油の動粘度を2×10-52/sec以下に調整することを特徴とする。 (3) The third invention is the method for producing pyrolysis oil from rubber waste according to (1) or (2), wherein the produced pyrolysis oil is heated, contacted with an inert gas, or It is characterized by adjusting the kinematic viscosity of the recovered pyrolyzed oil to 2 × 10 −5 m 2 / sec or less by treating with at least one of the methods of decompression.

(4)第4の発明は、ゴム系廃棄物からの熱分解油の製造装置において、ゴム系廃棄物を熱分解処理して熱分解ガスを生成させる熱分解炉と、前記生成した熱分解ガスを冷却媒体と接触させて熱分解ガス中に含まれる油状成分を凝縮して熱分解油を生成する熱分解油生成装置と、前記生成した熱分解油を冷却する熱分解油冷却装置と、前記生成した熱分解油中の揮発性成分を揮発除去させるための、加熱、不活性ガス吹込み、又は減圧の少なくともいずれかを行い、前記熱分解油中の揮発性ジエン化合物を低減させて前記熱分解油の動粘度の上昇を抑制する揮発成分除去装置と、前記熱分解油生成装置から前記熱分解油冷却装置を通して前記熱分解油生成装置へ前記生成した熱分解油の一部を循環して前記冷却媒体とする循環配管と、前記生成した熱分解油を前記熱分解生成装置から回収する回収配管とを備えることを特徴とする。 (4) A fourth invention relates to a pyrolysis oil producing apparatus for pyrolysis oil from rubber waste, a pyrolysis furnace for pyrolyzing rubber waste to generate pyrolysis gas, and the generated pyrolysis gas In contact with a cooling medium to condense the oily component contained in the pyrolysis gas to produce pyrolysis oil, a pyrolysis oil cooling device that cools the produced pyrolysis oil, and In order to volatilize and remove the volatile components in the generated pyrolysis oil, at least one of heating, blowing an inert gas, or reducing the pressure is performed, and the volatile diene compound in the pyrolysis oil is reduced to reduce the heat. and suppressing devolatilizer an increase in the kinematic viscosity of the cracked oil, circulates a portion of the pyrolysis oil generating device of the pyrolysis oil and the product to the pyrolysis oil generating device through said pyrolytic oil cooler a circulation pipe to the cooling medium, the raw Characterized in that the pyrolytic oil and a recovery pipe for recovering from the pyrolysis oil generator.

(5)第5の発明は、ゴム系廃棄物からの熱分解油の製造装置において、ゴム系廃棄物を熱分解処理して熱分解ガスを生成させる熱分解炉と、前記生成した熱分解ガスを冷却媒体と接触させて熱分解ガス中に含まれる油状成分を凝縮して熱分解油を生成する熱分解油生成装置と、前記生成した熱分解油を冷却する熱分解油冷却装置と、前記熱分解油生成装置から前記熱分解油冷却装置を通して前記熱分解油生成装置へ前記生成した熱分解油の一部を循環して前記冷却媒体とする循環配管と、前記熱分解油生成装置にて生成した熱分解油を一時貯留し、且つ、貯留量を調整可能な油貯留タンクとを有し、前記油貯留タンクには、前記生成した熱分解油中の揮発性成分を揮発除去させて、前記熱分解油中の揮発性ジエン化合物を低減させて前記熱分解油の動粘度の上昇を抑制するための、加熱、不活性ガス吹込み、又は減圧の少なくともいずれかを行う揮発成分除去手段を備えると共に、前記一時貯留した熱分解油を回収する回収配管を備えることを特徴とする。 (5) A fifth invention relates to a pyrolysis oil producing apparatus for pyrolysis oil from rubber waste, a pyrolysis furnace for pyrolyzing rubber waste to generate pyrolysis gas, and the generated pyrolysis gas In contact with a cooling medium to condense the oily component contained in the pyrolysis gas to produce pyrolysis oil, a pyrolysis oil cooling device that cools the produced pyrolysis oil, and A circulation pipe that circulates a part of the generated pyrolyzed oil from the pyrolyzed oil generator to the pyrolyzed oil generator through the pyrolyzed oil cooler to form the cooling medium, and the pyrolyzed oil generator It has an oil storage tank that temporarily stores the generated pyrolysis oil and can adjust the storage amount, and the oil storage tank volatilizes and removes volatile components in the generated pyrolysis oil, Reducing the volatile diene compound in the pyrolysis oil to reduce the heat A recovery pipe for recovering the temporarily stored pyrolysis oil is provided with volatile component removal means for performing at least one of heating, blowing in an inert gas, and depressurization for suppressing an increase in kinematic viscosity of deoiling. It is characterized by providing.

(6)第6の発明は、(4)記載のゴム系廃棄物からの熱分解油の製造装置において、前記熱分解油生成装置に一旦熱分解油を貯留し、当該貯留した熱分解油に加熱、不活性ガス吹込み、又は減圧の少なくともいずれかを行うことで、前記熱分解油生成装置が前記揮発成分除去装置を兼ねることを特徴とする。 (6) A sixth invention is (4) Symbol in the manufacturing apparatus of the pyrolysis oil from rubber waste loading, temporarily storing the pyrolysis oil to said pyrolysis oil generating device, the pyrolysis oil and the reservoir In addition, the pyrolysis oil generator also serves as the volatile component removing device by performing at least one of heating, blowing an inert gas, and reducing pressure .

本発明により、従来の方法では困難であった簡易な方法を用いてゴム系廃棄物から製造される重油相当の熱分解油の動粘度を低減できる。さらには、熱分解油の動粘度をA重油レベルまで低減することが可能となる。   According to the present invention, it is possible to reduce the kinematic viscosity of pyrolysis oil equivalent to heavy oil produced from rubber waste using a simple method that has been difficult with the conventional method. Furthermore, the kinematic viscosity of the pyrolysis oil can be reduced to the A heavy oil level.

以下、添付図面に基づいて、本発明の好適な実施の形態を具体的に説明する。
[第1の実施形態]
図1は、第1の実施形態に係る本発明のゴム系廃棄物からの熱分解油の製造方法および装置を実施するための設備構成の一例を示すブロック図である。
Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the accompanying drawings.
[First Embodiment]
FIG. 1 is a block diagram showing an example of the equipment configuration for carrying out the method and apparatus for producing pyrolysis oil from rubber waste according to the first embodiment of the present invention.

ゴム系廃棄物1を例えばスクリューフィーダー等の廃棄物供給装置2を用いて熱分解炉3内に定量供給し、熱分解炉3内でゴム系廃棄物を熱分解して可燃性ガスと油分から構成される熱分解ガス4並びに熱分解残渣5を生成する。熱分解炉3の方式としては特に限定するところはなく、外熱ロータリーキルン式熱分解炉や流動層式熱分解炉などの一般的な熱分解方法が適用可能である。   The rubber waste 1 is quantitatively supplied into the pyrolysis furnace 3 by using a waste feeder 2 such as a screw feeder, and the rubber waste is pyrolyzed in the pyrolysis furnace 3 from the combustible gas and oil. A pyrolysis gas 4 and a pyrolysis residue 5 are formed. The method of the pyrolysis furnace 3 is not particularly limited, and a general pyrolysis method such as an external heat rotary kiln type pyrolysis furnace or a fluidized bed type pyrolysis furnace is applicable.

熱分解ガス4は熱分解炉3の後段に設けた熱分解油生成装置6に導入され、熱分解ガス冷却媒体10と向流で直接熱交換して熱分解ガス中に含まれている油状成分を凝縮させて熱分解油7を生成し、生成した熱分解油7を熱分解油生成装置6内に一時貯留する。熱分解油凝縮後熱分解ガス11は次工程以降で軽油成分回収、ガス精製等を行って可燃性ガスを回収する。   The pyrolysis gas 4 is introduced into a pyrolysis oil generator 6 provided at the subsequent stage of the pyrolysis furnace 3 and directly exchanges heat with the pyrolysis gas cooling medium 10 in a counter flow, so that the oily component contained in the pyrolysis gas is present. The pyrolysis oil 7 is generated by condensing the oil, and the generated pyrolysis oil 7 is temporarily stored in the pyrolysis oil generator 6. The pyrolysis gas 11 after pyrolysis oil condensation collects light oil components, gas purification, etc. in the subsequent steps and collects combustible gas.

熱分解ガス4と熱分解ガス冷却媒体10とを向流で直接熱交換させる方法としては、充填塔方式、濡れ壁方式、スプレー方式、スクラバー方式など蒸気凝縮やガス吸収等で用いられている一般的な方法が適用可能である。熱分解油生成装置6内に一時貯留した熱分解油7は、重合による動粘度上昇を抑制するために、加熱、不活性ガスとの接触、又は減圧の少なくともいずれかの手段により揮発性のジエン化合物を除去する。   As a method of directly exchanging heat between the pyrolysis gas 4 and the pyrolysis gas cooling medium 10 in a countercurrent manner, it is generally used for vapor condensation or gas absorption such as a packed tower method, a wet wall method, a spray method, or a scrubber method. Is applicable. The pyrolysis oil 7 temporarily stored in the pyrolysis oil generator 6 is a volatile diene by at least one of heating, contact with an inert gas, or decompression in order to suppress an increase in kinematic viscosity due to polymerization. Remove the compound.

本発明における揮発性のジエン化合物とは、加熱、不活性ガスとの接触、又は減圧の少なくともいずれかの手段により、熱分解油から揮発するジエン化合物のことである。   The volatile diene compound in the present invention refers to a diene compound that volatilizes from pyrolysis oil by at least one of heating, contact with an inert gas, or reduced pressure.

揮発性のジエン化合物除去後の熱分解油は、ダスト濃度に応じて例えば遠心分離機等のダスト除去装置13を用いて熱分解油中に含まれるカーボン等のダスト成分を除去し製品油14として回収すると共に、一部は例えば間接熱交換器等の冷却装置9を用いて冷却後熱分解ガス冷却媒体8として使用する。   The pyrolysis oil after removal of the volatile diene compound removes dust components such as carbon contained in the pyrolysis oil by using a dust removing device 13 such as a centrifuge according to the dust concentration, as a product oil 14. While recovering, a part is used as the pyrolysis gas cooling medium 8 after cooling using a cooling device 9 such as an indirect heat exchanger.

本発明者らは、ゴム系廃棄物がその構成成分としてイソプレン重合物、ブタジエン重合物、ブタジエン−スチレン重合物等のジエン系高分子を含むために、このゴム系廃棄物を熱分解するとジエン化合物を含んだ熱分解ガスが生成し、熱分解ガスを熱分解油生成装置で凝縮して熱分解油を生成する際に熱分解油中にジエン化合物が混入すること、また、このジエン化合物はDiels-Alder(ディールスアルダー)付加反応をはじめとした低温重合活性を有するためにジエン化合物が混入した熱分解油は100〜150℃程度の低温の熱分解油生成装置内でも重合反応が進行して分子量の増加が生じることを見出し、熱分解油中の揮発性のジエン化合物を低減することにより重合反応を抑制して低動粘度の油を製造することが可能であることを見出したものである。   Since the rubber waste contains diene polymers such as isoprene polymer, butadiene polymer, butadiene-styrene polymer, etc. as a constituent component, when the rubber waste is pyrolyzed, a diene compound is obtained. When the pyrolysis gas is generated and the pyrolysis gas is condensed by the pyrolysis oil generator to produce pyrolysis oil, the diene compound is mixed in the pyrolysis oil. -Alder (Diels Alder) addition reaction and other low-temperature polymerization activity, the pyrolysis oil mixed with the diene compound undergoes a polymerization reaction in a low-temperature pyrolysis oil generator at about 100 to 150 ° C, resulting in a molecular weight It has been found that an increase in the amount of volatile diene compounds in the pyrolysis oil can be reduced, and it is possible to produce a low kinematic viscosity oil by suppressing the polymerization reaction. It is intended.

図3に前述の方法に基づく熱分解油生成装置を用いてゴム系廃棄物の熱分解ガスを凝縮して熱分解油を生成した後、生成した熱分解油をジエン化合物低減処理した場合の動粘度を測定し、ジエン化合物低減処理しない場合の動粘度との動粘度比〔すなわち、動粘度比={(ジエン化合物低減処理あり熱分解油の50℃動粘度)/(ジエン化合物低減処理なし熱分解油の50℃動粘度)}〕を比較した例を示すが、ジエン化合物低減処理を実施した熱分解油は低減処理しない熱分解油に比べて動粘度を半分以下程度まで低減することが可能である。尚、動粘度の絶対値は、時間と共に増加する傾向があり、特に揮発性ジエン化合物低減処理しない場合において、より顕著である。   Fig. 3 shows the behavior when the pyrolysis gas of rubber waste is condensed to produce pyrolysis oil using the pyrolysis oil generator based on the above-described method, and then the resulting pyrolysis oil is subjected to diene compound reduction treatment. Kinematic viscosity ratio with kinematic viscosity when not measured for diene compound reduction [that is, kinematic viscosity ratio = {(50 ° C. kinematic viscosity of pyrolysis oil with diene compound reduction treatment) / (heat without diene compound reduction treatment) The example shows a comparison of cracked oil at 50 ° C kinematic viscosity)}], but it is possible to reduce the kinematic viscosity to about half or less of the pyrolyzed oil subjected to the diene compound reduction treatment compared to the pyrolysis oil not subjected to the reduction treatment. It is. Note that the absolute value of the kinematic viscosity tends to increase with time, and is particularly remarkable when the volatile diene compound reduction treatment is not performed.

揮発性のジエン化合物が低減されたかどうかは、低減処理前と低減処理後の熱分解油について、ガスクロマトグラフ質量分析計(GC−MS)によるジエン化合物のピーク強度を比較、又は、ジエン価(ヨウ素価とも呼ばれJIS−K0070で規定)を比較することで、低減処理後のジエン化合物の量が相対的に減少しているかどうかを見ることによって、確認することができる。   Whether the volatile diene compound has been reduced can be determined by comparing the peak intensity of the diene compound with a gas chromatograph mass spectrometer (GC-MS) before or after the reduction treatment, or the diene value (iodine). It can be confirmed by comparing whether or not the amount of the diene compound after the reduction treatment is relatively decreased by comparing (also referred to as a value and defined in JIS-K0070).

上述した熱分解油中のジエン化合物の低減手段に関する具体例としては、例えば、図1に示すように熱分解油生成装置内に一旦貯留した熱分解油に、不活性ガス12を吹き込んでジエン化合物の気相分圧を下げ揮発除去する方法のほか、熱分解油生成装置の後段に設けた吸引ブロアー等を用いて熱分解油生成装置内を減圧雰囲気にしてジエン化合物を揮発除去する方法や、熱分解油生成装置内で生成した熱分解油を間接熱交換器等を用いて加熱する方法など一般的な揮発性物質の分離除去方法が適用可能である。   As a specific example of the means for reducing the diene compound in the pyrolysis oil described above, for example, as shown in FIG. 1, an inert gas 12 is blown into the pyrolysis oil once stored in the pyrolysis oil generator so that the diene compound. In addition to the method of lowering the gas phase partial pressure and removing the volatilization, a method of volatilizing and removing the diene compound by making the inside of the pyrolysis oil generator a reduced pressure atmosphere using a suction blower provided at the subsequent stage of the pyrolysis oil generator, A general method for separating and removing volatile substances such as a method of heating the pyrolysis oil generated in the pyrolysis oil generator using an indirect heat exchanger or the like can be applied.

また、その際の、不活性ガスの投入流量や、減圧時の装置内設定圧力、加熱温度等の操業条件は、熱分解油の動粘度の上昇抑制程度を見ながら、適宜設定すれば良い。   In this case, the operation conditions such as the flow rate of the inert gas, the set pressure in the apparatus at the time of decompression, the heating temperature, and the like may be appropriately set while observing the degree of suppression of the increase in the kinematic viscosity of the pyrolysis oil.

[第2の実施形態]
さらに図2に示すように熱分解油生成装置15で生成した熱分解油を、不活性ガス吹込装置を備えた油貯留タンク18に供給して油貯留タンク内で不活性ガスと接触させることによりジエン除去性能の更なる向上を図ることが可能となる。尚、不活性ガスとの接触に替えて、加熱又は減圧することや、不活性ガスとの接触、加熱、減圧のいずれかを組み合わせて、揮発性ジエン化合物を除去しても構わない。
[Second Embodiment]
Furthermore, as shown in FIG. 2, the pyrolysis oil produced | generated by the pyrolysis oil production | generation apparatus 15 is supplied to the oil storage tank 18 provided with the inert gas blowing apparatus, and is made to contact with an inert gas in an oil storage tank. It is possible to further improve the diene removal performance. Note that the volatile diene compound may be removed by combining heating, depressurization, or contact with an inert gas, heating, or depressurization instead of contacting with the inert gas.

図2は、本発明の第2の実施形態に係るゴム系廃棄物熱分解方法の熱分解油動粘度調整方法および装置を実施するための別の装置構成例を示すブロック図である。前述の第1の実施形態と大きく異なる点は、不活性ガス吹込装置を備えた油貯留タンク18を備える点である。熱分解ガス4を熱分解油生成装置15で凝縮させて得た熱分解油16をダスト濃度に応じてダスト除去装置17でカーボン等のダストを除去した後に不活性ガス吹込み装置を備えた油貯留タンク18に供給する。この際、熱分解油16の一部は冷却装置9で冷却して前記熱分解油生成装置15に循環配管を通して循環させる。熱分解油を油貯留タンク18内で不活性ガスと接触して熱分解油中のジエン化合物を気相側に移行させ、排ガス20と共に除去する。ジエン化合物除去後の熱分解油は製品油21として回収するが、熱分解ガスに同伴して熱分解油生成装置15内に持ち込まれるダスト量が多い場合は必要に応じて製品油の一部を熱分解油戻し配管22を介して熱分解油生成装置15に戻して熱分解油生成装置内へのダスト蓄積を防止する。   FIG. 2 is a block diagram showing another apparatus configuration example for carrying out the pyrolysis oil kinematic viscosity adjusting method and apparatus of the rubber waste pyrolysis method according to the second embodiment of the present invention. A significant difference from the first embodiment described above is that an oil storage tank 18 including an inert gas blowing device is provided. Oil provided with an inert gas blowing device after the pyrolysis oil 16 obtained by condensing the pyrolysis gas 4 with the pyrolysis oil generator 15 removes dust such as carbon with the dust removal device 17 according to the dust concentration. Supply to the storage tank 18. At this time, a part of the pyrolysis oil 16 is cooled by the cooling device 9 and circulated through the pyrolysis oil generation device 15 through a circulation pipe. The pyrolysis oil is brought into contact with an inert gas in the oil storage tank 18 to transfer the diene compound in the pyrolysis oil to the gas phase side and removed together with the exhaust gas 20. The pyrolyzed oil after removal of the diene compound is recovered as product oil 21, but if the amount of dust brought into the pyrolyzed oil generator 15 accompanying the pyrolyzed gas is large, a part of the product oil is taken as necessary. It returns to the pyrolysis oil production | generation apparatus 15 via the pyrolysis oil return piping 22, and dust accumulation in a pyrolysis oil production | generation apparatus is prevented.

第2の実施形態によるジエン化合物除去方法は、熱分解ガス共存のない雰囲気下に不活性ガスを吹き込んでジエン化合物の揮発除去を行うため、熱分解炉操業変動等に伴う熱分解ガス量や熱分解ガス組成の変動がなく、気相側のジエン分圧を一定に維持することが可能となってより安定したジエン化合物除去を行うことができる。   The diene compound removal method according to the second embodiment performs volatilization and removal of the diene compound by blowing an inert gas in an atmosphere that does not coexist with the pyrolysis gas. There is no change in the decomposition gas composition, and the diene partial pressure on the gas phase side can be kept constant, so that more stable diene compound removal can be performed.

尚、第2の実施形態においては、ジエン化合物の除去方法として、油貯留タンク18での除去に加えて、熱分解油生成装置15にても、第1の実施形態に記載の方法と同様の方法で除去しても構わない。この場合、油貯留タンク18と熱分解油生成装置15の両方でジエン化合物を除去することで、より確実な除去が可能となる。   In the second embodiment, as a method for removing the diene compound, in addition to the removal in the oil storage tank 18, the pyrolysis oil generator 15 is the same as the method described in the first embodiment. It may be removed by a method. In this case, more reliable removal is possible by removing the diene compound in both the oil storage tank 18 and the pyrolysis oil generator 15.

上記の第1の実施形態及び第2の実施形態共に、適用可能な不活性ガス種としては窒素、炭酸ガス、水蒸気などの一般的な不活性ガスが挙げられる。不活性ガス以外の可燃性ガスや熱分解油と反応性のあるガス種などは安全上(火災・爆発等の危険性)や製品油品質上の観点から好ましくない。   In the first embodiment and the second embodiment described above, applicable inert gas species include general inert gases such as nitrogen, carbon dioxide, and water vapor. Combustible gases other than inert gases and gas species reactive with pyrolysis oil are not preferable from the viewpoint of safety (risk of fire and explosion) and product oil quality.

対象とする、熱分解油から除去する揮発性のジエン化合物としては、例えばシクロオクタジエン、ジメチルシクロヘキサジエン、ジメチルシクロペンタジエンのような沸点250℃程度以下のジエン化合物とすることが好ましい。これは、沸点250℃を超える、より沸点の高いジエン化合物まで除去対象に含めると、ジエン化合物に同伴して揮発する熱分解油中の低分子量油成分の割合が増加して熱分解油の平均分子量がアップするため、ジエン化合物除去による動粘度上昇抑制の効果が飽和し、更には動粘度がかえって上昇する場合があるためである。   The target volatile diene compound to be removed from the pyrolysis oil is preferably a diene compound having a boiling point of about 250 ° C. or lower, such as cyclooctadiene, dimethylcyclohexadiene, or dimethylcyclopentadiene. This is because when a diene compound having a boiling point exceeding 250 ° C. and a higher boiling point is included in the removal target, the proportion of the low molecular weight oil component in the pyrolysis oil that volatilizes with the diene compound increases, and the average of the pyrolysis oil This is because the molecular weight is increased, so that the effect of suppressing the increase in kinematic viscosity by removing the diene compound is saturated, and the kinematic viscosity may increase instead.

ジエン化合物除去に必要な不活性ガス吹き込み量は、熱分解油の温度や質によっても異なるが、例えば熱分解油温度130〜140℃の場合、熱分解油回収量(m3−Oil)に対して不活性ガスを50〜100Nm3/m3−Oil程度吹き込んで熱分解油と接触させれば沸点250℃程度以下のジエン化合物を除去することができる。 The amount of inert gas blown to remove the diene compound varies depending on the temperature and quality of the pyrolysis oil. For example, when the pyrolysis oil temperature is 130 to 140 ° C., the amount of pyrolysis oil recovered (m 3 -Oil) Then, if an inert gas is blown in an amount of about 50 to 100 Nm 3 / m 3 -Oil and brought into contact with the pyrolysis oil, a diene compound having a boiling point of about 250 ° C. or less can be removed.

また、上述の手段で揮発性のジエン化合物を除去することに加えて、更に、前記熱分解油生成装置6、15での凝縮から製品油14、21として回収されるまでの熱分解油の平均滞留時間を50時間以下になるように設定することによって熱分解油の動粘度上昇を更に抑制することができる。   Further, in addition to removing the volatile diene compound by the above-mentioned means, the average of the pyrolysis oil from the condensation in the pyrolysis oil generators 6 and 15 to the recovery as the product oils 14 and 21 is further obtained. By setting the residence time to be 50 hours or less, the increase in kinematic viscosity of the pyrolysis oil can be further suppressed.

本発明者らは、不活性ガスと接触させてジエン化合物を除去した後の熱分解油の反応特性について調査した結果、図4に示すように熱分解油生成装置および油貯留タンクでの熱分解油の平均滞留時間を50時間以下に調整すれば熱分解油中に残存する高沸点のジエン化合物等の重合に起因する動粘度上昇についても回避可能であることを見出した。   As a result of investigating the reaction characteristics of the pyrolysis oil after contact with an inert gas to remove the diene compound, the inventors have conducted pyrolysis in the pyrolysis oil generator and the oil storage tank as shown in FIG. It has been found that an increase in kinematic viscosity due to polymerization of a high-boiling diene compound or the like remaining in the pyrolysis oil can be avoided by adjusting the average oil residence time to 50 hours or less.

例えば熱分解炉での廃棄物処理速度を落とした操業に切り替えて熱分解油発生量が減少した場合、熱分解油製造装置および油貯留タンク内での熱分解油の平均滞留時間が50時間以下を超えないように調整することによって製品油を低動粘度に維持することが可能となる。   For example, when the amount of pyrolysis oil generated is reduced by switching to an operation that reduces the waste treatment speed in the pyrolysis furnace, the average residence time of pyrolysis oil in the pyrolysis oil production apparatus and oil storage tank is 50 hours or less The product oil can be maintained at a low kinematic viscosity by adjusting so as not to exceed.

熱分解油の平均滞留時間の調整方法としては、代表的には下記の方法を例示することができる。
すなわち、例えば廃棄物単位処理量あたりの熱分解油発生原単位を予め調査しておき、廃棄物の処理速度を変更した場合には熱分解油生成装置や油貯留タンク内での熱分解油体積の設定値を変更して、図1の構成例では次式
{(熱分解油生成装置内での熱分解油体積の設定値)/(廃棄物処理速度×熱分解油発生原単位)}≦50時間
を満足するような熱分解油体積に調整し、図2の構成例では次式
{(熱分解油生成装置および油貯留タンク内での熱分解油体積の設定値)/(廃棄物処理速度×熱分解油発生原単位)}≦50時間
を満足するような熱分解油体積に調整する方法を挙げることができる。
As a method for adjusting the average residence time of pyrolysis oil, the following methods can be typically exemplified.
That is, for example, when the pyrolysis oil generation basic unit per waste unit processing amount is investigated in advance and the waste processing speed is changed, the pyrolysis oil volume in the pyrolysis oil generator or oil storage tank is changed. 1 is changed to the following formula {(set value of pyrolysis oil volume in the pyrolysis oil generator) / (waste treatment speed × pyrolysis oil generation basic unit)} ≦ In the configuration example of FIG. 2, the following formula {(set value of pyrolysis oil volume in pyrolysis oil generator and oil storage tank) / (waste treatment) Speed × pyrolysis oil generation unit)} ≦ 50 It is possible to include a method of adjusting the pyrolysis oil volume so as to satisfy 50 hours.

また、例えば熱分解油生成装置や油貯留タンク内での熱分解油体積を液面レベル計等を用いて一定レベルに維持すると共に、熱分解油生成装置や油貯留タンク内からの熱分解油の抜出し速度を測定し、図1の構成例では次式
{(熱分解油生成装置内での熱分解油体積)/(熱分解油の抜出し速度)}≦50時間
を満足するように熱分解油の抜出し速度を調整し、図2の構成例では次式
{(熱分解油生成装置および油貯留タンク内での熱分解油体積)/(熱分解油の抜出し速度)}≦50時間
を満足するように熱分解油の抜出し速度を調整する方法を挙げることができる。
Further, for example, the pyrolysis oil volume in the pyrolysis oil generator or oil storage tank is maintained at a constant level using a liquid level meter or the like, and the pyrolysis oil from the pyrolysis oil generator or oil storage tank is also maintained. 1 is measured, and in the configuration example of FIG. 1, pyrolysis is performed so as to satisfy the following formula {(pyrolysis oil volume in pyrolysis oil generator) / (pyrolysis oil extraction speed)} ≦ 50 hours. The oil extraction speed is adjusted, and in the configuration example of FIG. 2, the following formula {(pyrolysis oil volume in pyrolysis oil generator and oil storage tank) / (pyrolysis oil extraction speed)} ≦ 50 hours is satisfied A method of adjusting the extraction speed of the pyrolysis oil can be mentioned.

さらに、上記の方法以外にも、連続槽型反応器等での滞留時間調整手段として考えられる種々の方法の適用が可能である。   In addition to the above methods, various methods that can be considered as means for adjusting the residence time in a continuous tank reactor or the like can be applied.

(実施例1)
以下に、図1に示した第1の実施形態の構成例を用いて、ゴム系廃棄物である廃タイヤを処理規模200t/日で処理し、重油相当の熱分解油を製造した例を示す。
Example 1
In the following, an example in which a waste tire, which is a rubber waste, is treated at a treatment scale of 200 t / day to produce pyrolysis oil equivalent to heavy oil, using the configuration example of the first embodiment shown in FIG. .

熱分解炉としてはLNG焚き熱風発生炉を備えた外熱式ロータリーキルンを用い、熱分解油生成装置としては熱分解ガスを冷却媒体と向流で直接熱交換させて油状成分を熱分解油として凝縮させるとともに生成した熱分解油を熱分解ガスの冷却媒体として使用する直接熱交換方式を用い、熱分解油からのジエン化合物除去方法としては熱分解油生成装置に一時貯留した熱分解油中に不活性ガスとして窒素ガスを吹き込みジエン化合物を揮発除去させる方法を用い、また、熱分解油からのダスト除去装置としては遠心分離機を用いた。   An externally heated rotary kiln equipped with an LNG-fired hot air generator is used as the pyrolysis furnace, and the pyrolysis oil generator is directly heat-exchanged with the cooling medium in a countercurrent to condense the oily components as pyrolysis oil. As a method of removing diene compounds from pyrolysis oil, a pyrolysis oil temporarily stored in the pyrolysis oil generator is not used. A method in which nitrogen gas was blown as an active gas to volatilize and remove the diene compound was used, and a centrifuge was used as a dust removing device from pyrolysis oil.

廃棄物を熱分解炉に装入して熱分解ガスと熱分解残渣を生成し、熱分解ガスを熱分解油生成装置に導入して熱分解ガス冷却媒体と接触させて熱分解油を約1m3/hr回収し、回収した熱分解油中に窒素ガスを80Nm3/hr吹き込んで熱分解油と接触させ、窒素ガス接触後の熱分解油を遠心分離機で処理してカーボンダストを中心とするダスト分をスラッジとして分離除去し、ダスト分離除去後の熱分解油を製品油として回収した。熱分解油生成装置内での熱分解油体積は約30m3に設定して熱分解油の平均滞留時間を30時間程度とした。 Waste is charged into a pyrolysis furnace to produce pyrolysis gas and pyrolysis residue, and the pyrolysis gas is introduced into the pyrolysis oil generator and brought into contact with the pyrolysis gas cooling medium so that the pyrolysis oil is about 1 m. 3 / hr recovered, nitrogen gas is blown into the recovered pyrolyzed oil at 80 Nm 3 / hr to make contact with the pyrolyzed oil, and the pyrolyzed oil after contact with the nitrogen gas is treated with a centrifuge to focus on carbon dust. The dust content was separated and removed as sludge, and the pyrolysis oil after the dust separation and removal was recovered as product oil. The volume of pyrolysis oil in the pyrolysis oil generator was set to about 30 m 3, and the average residence time of pyrolysis oil was about 30 hours.

回収した製品油は、動粘度(測定温度50℃)1.8×10-5〜2.5×10-52/sec(18〜25cSt)、引火点60〜90℃となり、ゴム系廃棄物からほぼA重油並みの低粘度を有する重油相当の油を製造することができた。製品油の分子量を測定したところ重量平均分子量250〜300であった。 The recovered product oil has a kinematic viscosity (measuring temperature 50 ° C.) 1.8 × 10 −5 to 2.5 × 10 −5 m 2 / sec (18 to 25 cSt), flash point 60 to 90 ° C., and rubber-based disposal It was possible to produce an oil equivalent to heavy oil having a low viscosity comparable to that of heavy oil A. When the molecular weight of the product oil was measured, it was a weight average molecular weight of 250 to 300.

また、熱分解油生成装置に一時貯留した熱分解油中に窒素ガスを吹き込んでジエン化合物を揮発除去する操業を試験的に行わずに回収した製品油をガスクロマトグラフ質量分析計(GC−MS)で成分分析したところ、シクロオクタジエンやジメチルシクロペンタジエン等の炭素数5〜10程度を有する複数種類のジエン化合物のピークが検出されたが、実施例1の操業を行って回収した製品油中には炭素数5〜10程度のジエン化合物のピークが消失ないしは半分以下まで減少しており、窒素ガス吹き込みによるジエン化合物の低減を確認した。   Gas chromatograph mass spectrometer (GC-MS) collects the product oil recovered without conducting a trial of removing the diene compound by volatilizing and removing nitrogen gas into the pyrolysis oil temporarily stored in the pyrolysis oil generator. As a result of component analysis in Fig. 1, peaks of plural kinds of diene compounds having about 5 to 10 carbon atoms such as cyclooctadiene and dimethylcyclopentadiene were detected, but in the product oil recovered by performing the operation of Example 1. The peak of the diene compound having about 5 to 10 carbon atoms disappeared or decreased to less than half, and it was confirmed that the diene compound was reduced by blowing nitrogen gas.

(実施例2)
以下に、図2に示した第2の実施形態の構成例を用いて、実施例1と同様に廃タイヤを処理規模200t/日で処理して重油相当の熱分解油を製造した例を示す。
(Example 2)
In the following, using the configuration example of the second embodiment shown in FIG. 2, an example in which pyrolytic oil equivalent to heavy oil is produced by treating waste tires at a treatment scale of 200 t / day in the same manner as in Example 1 will be shown. .

熱分解炉としては実施例1と同様にLNG焚き熱風発生炉を備えた外熱式ロータリーキルンを用い、熱分解油生成装置としては熱分解ガスを冷却媒体と向流で直接熱交換させて油状成分を熱分解油として凝縮させるともに生成した熱分解油を熱分解ガスの冷却媒体として使用する直接熱交換方式を用い、熱分解油からのジエン化合物除去方法としては凝縮回した熱分解油をダスト除去した後に窒素ガス吹込み装置を備えた油貯留タンクに供給して油貯留タンク内で熱分解油と不活性ガスを接触させてジエン化合物を揮発除去させる方法を用い、また、熱分解油からのダスト除去装置としては遠心分離機を用いた。   As in the first embodiment, an externally heated rotary kiln equipped with an LNG-fired hot air generator is used as the pyrolysis furnace, and as a pyrolysis oil generator, an oily component is obtained by directly exchanging the pyrolysis gas with a cooling medium in countercurrent As a method for removing diene compounds from pyrolysis oil, the condensed pyrolysis oil is removed by dust. After that, a method is used in which the diene compound is volatilized and removed by contacting the pyrolysis oil with an inert gas in an oil storage tank provided with a nitrogen gas blowing device. A centrifuge was used as the dust removing device.

廃棄物を熱分解炉に装入して熱分解ガスと熱分解残渣を生成し、熱分解ガスを熱分解油生成装置に導入して熱分解ガス冷却媒体と接触させて熱分解油を約1m3/hr生成し、生成した熱分解油を遠心分離機でダスト分をスラッジとして分離除去した後油貯留タンクに供給し、油貯留タンク中の窒素ガスを70Nm3/hr吹き込んで熱分解油と接触させ、窒素ガス接触後の熱分解油を製品油として回収した。熱分解油生成装置および油貯留タンク内での熱分解油体積は約30m3に設定して熱分解油の平均滞留時間を30時間程度とした。 Waste is charged into a pyrolysis furnace to produce pyrolysis gas and pyrolysis residue, and the pyrolysis gas is introduced into the pyrolysis oil generator and brought into contact with the pyrolysis gas cooling medium so that the pyrolysis oil is about 1 m. 3 / hr, and the generated pyrolysis oil is separated and removed as sludge by a centrifuge and then supplied to the oil storage tank. Nitrogen gas in the oil storage tank is blown in at 70 Nm 3 / hr to generate pyrolysis oil and The pyrolysis oil after contact with nitrogen gas was recovered as product oil. The pyrolysis oil volume in the pyrolysis oil generator and the oil storage tank was set to about 30 m 3, and the average residence time of the pyrolysis oil was about 30 hours.

この実施例2においては、熱分解ガス共存のない雰囲気下に不活性ガスを吹き込んでジエン化合物の揮発除去を行うことにより実施例1に比べジエン除去性能の安定性が向上したため、回収した製品油は、動粘度(測定温度50℃)1.7×10-5〜2.0×10-52/sec(17〜20cSt)、引火点70〜80℃と実施1よりもさらに性状の安定した低粘度な重油相当の油を製造することができた。 In this Example 2, since the stability of diene removal performance was improved compared to Example 1 by blowing an inert gas into an atmosphere without the presence of pyrolysis gas and performing volatilization removal of the diene compound, the recovered product oil Is kinematic viscosity (measurement temperature 50 ° C.) 1.7 × 10 −5 to 2.0 × 10 −5 m 2 / sec (17 to 20 cSt), flash point 70 to 80 ° C. It was possible to produce an oil equivalent to heavy oil with low viscosity.

(比較例1)
比較例1として、熱分解油生成装置に一時貯留した熱分解油中への不活性ガス吹き込みや減圧によるジエン化合物除去を行わず、その他の条件は実施例1と同一条件とし、実施例1と同じ性状の廃タイヤを同一処理量200t/日で処理した。
(Comparative Example 1)
As Comparative Example 1, the inert gas was not blown into the pyrolysis oil temporarily stored in the pyrolysis oil generator and the diene compound was not removed by decompression. The other conditions were the same as in Example 1, and Waste tires with the same properties were treated at the same throughput of 200 t / day.

遠心分離機でダスト除去後の製品油は、動粘度(測定温度50℃)5.0×10-5〜1.5×10-42/sec(50〜150cSt)、引火点60〜90℃となり、実施例1に比べて高粘度で工業価値の低い油となった。また、回収した製品油の分子量を測定したところ重量平均分子量300〜400となり、上記の実施例1及び実施例2に比べ、熱分解油の重合が進行して分子量が増加していることがわかった。 The product oil after removing dust with a centrifuge has a kinematic viscosity (measured temperature 50 ° C.) 5.0 × 10 −5 to 1.5 × 10 −4 m 2 / sec (50 to 150 cSt), flash point 60 to 90. It became oil with high viscosity and low industrial value compared with Example 1. Further, when the molecular weight of the recovered product oil was measured, the weight average molecular weight was 300 to 400, and it was found that the molecular weight was increased due to the progress of the polymerization of the pyrolysis oil as compared with Examples 1 and 2 above. It was.

(実施例3)
実施例3として、実施例2と同一の設備を用いて廃タイヤ処理速度を100t/日と実施例2の半分に落とした操業条件下で重油相当の熱分解油を製造した例を示す。
(Example 3)
As Example 3, an example in which pyrolysis oil corresponding to heavy oil was produced using the same equipment as in Example 2 under the operating conditions in which the waste tire processing speed was reduced to 100 t / day and half that of Example 2 was shown.

廃棄物を熱分解炉に装入して熱分解ガスと熱分解残渣を生成し、熱分解ガスを熱分解油生成装置に導入して熱分解ガス冷却媒体と接触させて熱分解油を約0.5m3/hr生成し、生成した熱分解油を遠心分離機でダスト分をスラッジとして分離除去した後油貯留タンクに供給し、油貯留タンク中の窒素ガスを35Nm3/hr吹き込んで熱分解油と接触させ、窒素ガス接触後の熱分解油を製品油として回収した。 The waste is charged into a pyrolysis furnace to produce pyrolysis gas and pyrolysis residue, and the pyrolysis gas is introduced into the pyrolysis oil generator and brought into contact with the pyrolysis gas cooling medium to reduce the pyrolysis oil to about 0. .5m 3 / hr is generated, and the generated pyrolysis oil is separated and removed by using a centrifugal separator as sludge, then supplied to the oil storage tank, and nitrogen gas in the oil storage tank is blown at 35 Nm 3 / hr for thermal decomposition. It was made to contact oil and the pyrolysis oil after nitrogen gas contact was collect | recovered as product oil.

また、実施例2に比べ油貯留タンクの液面レベルの設定値を下げて、熱分解油生成装置および油貯留タンク内の熱分解油体積を20〜25m3に調整し、油貯留タンクおよび熱分解油生成装置内での熱分解油の平均滞留時間を50時間以下となるよう調整した。 Further, the set value of the liquid level of the oil storage tank is lowered as compared with the second embodiment, the pyrolysis oil volume in the pyrolysis oil generator and the oil storage tank is adjusted to 20 to 25 m 3 , and the oil storage tank and the heat The average residence time of the pyrolysis oil in the cracked oil production | generation apparatus was adjusted so that it might be 50 hours or less.

回収した製品油は、動粘度(測定温度50℃)1.9×10-5〜2.0×10-52/sec(19〜20cSt)、引火点70〜80℃となり、実施例2とほぼ同等の性状の油を得ることができた。 The recovered product oil had a kinematic viscosity (measurement temperature 50 ° C.) of 1.9 × 10 −5 to 2.0 × 10 −5 m 2 / sec (19 to 20 cSt) and a flash point of 70 to 80 ° C. Oil with almost the same properties as the above.

(実施例4)
実施例4として、実施例3と同様に廃タイヤの処理速度を100t/日と実施例2の半分に落とした条件で重油相当の熱分解油を生成し、油貯留タンクおよび熱分解油生成装置内での熱分解油体積を実施例2並みの30m3とした他は実施例3と同一の条件で操業した例を示す。
Example 4
As Example 4, the pyrolysis oil equivalent to heavy oil is generated under the condition that the processing speed of the waste tire is reduced to 100 t / day and half that of Example 2 as in Example 3, and the oil storage tank and the pyrolysis oil generation device An example of operation under the same conditions as in Example 3 is shown except that the volume of pyrolysis oil inside is 30 m 3 which is the same as that in Example 2.

回収した製品油は、動粘度(測定温度50℃)2.5×10-5〜3.5×10-52/sec(25〜35cSt)、引火点70〜80℃となり、実施例3に比べ動粘度が上昇した油が得られた。 The recovered product oil had a kinematic viscosity (measured temperature: 50 ° C.) 2.5 × 10 −5 to 3.5 × 10 −5 m 2 / sec (25 to 35 cSt) and a flash point of 70 to 80 ° C. Example 3 Oil with an increased kinematic viscosity was obtained.

図1は、本発明の第1の発明に係る装置の設備例を示すブロック図である。FIG. 1 is a block diagram showing an example of equipment of the apparatus according to the first invention of the present invention. 図2は、本発明の第1の発明に係る装置の別の設備例を示すブロック図である。FIG. 2 is a block diagram showing another facility example of the apparatus according to the first invention of the present invention.

図3は、本発明の第1の発明に係るジエン化合物低減処理した熱分解油の動粘度(測定温度50℃)およびジエン化合物低減処理しない熱分解油の動粘度の動粘度比(=ジエン化合物低減処理あり熱分解油の動粘度/ジエン化合物低減処理なし熱分解油の動粘度)と熱分解油生成装置内および油貯留タンク内での熱分解油の平均滞留時間の相関図である。FIG. 3 shows the kinematic viscosity ratio (= diene compound) of the kinematic viscosity (measured temperature 50 ° C.) of the pyrolyzed oil subjected to reduction treatment of the diene compound and the pyrolysis oil not treated with diene compound reduction according to the first invention of the present invention. FIG. 4 is a correlation diagram of the kinematic viscosity of pyrolysis oil with reduction treatment / kinematic viscosity of pyrolysis oil without diene compound reduction treatment) and the average residence time of pyrolysis oil in the pyrolysis oil generator and oil storage tank.

図4は、本発明の第2の発明に係る熱分解油生成装置内および油貯留タンク内での熱分解油の平均滞留時間と熱分解油の動粘度(測定温度50℃)の相関図である。FIG. 4 is a correlation diagram between the average residence time of the pyrolysis oil and the kinematic viscosity (measurement temperature 50 ° C.) of the pyrolysis oil in the pyrolysis oil generator and the oil storage tank according to the second invention of the present invention. is there.

符号の説明Explanation of symbols

1…ゴム系廃棄物、2…廃棄物供給装置、3…熱分解炉、4…熱分解ガス、5…熱分解残渣、6…熱分解油生成装置、7…熱分解油、8…熱分解ガス冷却媒体、9…冷却装置、10…冷却後の熱分解冷却媒体、11…熱分解油凝縮後熱分解ガス、12…不活性ガス、13…ダスト除去装置、14…製品油、15…熱分解油生成装置、16…熱分解油、17…ダスト除去装置、18…油貯留タンク、19…不活性ガス、20…排ガス、21…製品油、22…熱分解油戻し配管。   DESCRIPTION OF SYMBOLS 1 ... Rubber waste, 2 ... Waste supply apparatus, 3 ... Pyrolysis furnace, 4 ... Pyrolysis gas, 5 ... Pyrolysis residue, 6 ... Pyrolysis oil production | generation apparatus, 7 ... Pyrolysis oil, 8 ... Pyrolysis Gas cooling medium, 9 ... Cooling device, 10 ... Pyrolysis cooling medium after cooling, 11 ... Pyrolysis gas after condensation of pyrolysis oil, 12 ... Inert gas, 13 ... Dust removal device, 14 ... Product oil, 15 ... Heat Decomposed oil generation device, 16 ... pyrolysis oil, 17 ... dust removal device, 18 ... oil storage tank, 19 ... inert gas, 20 ... exhaust gas, 21 ... product oil, 22 ... pyrolysis oil return pipe.

Claims (6)

ゴム系廃棄物を熱分解して熱分解ガスを生成し、前記生成した熱分解ガスを冷却媒体と接触させて熱分解ガス中に含まれる油状成分を凝縮して熱分解油を生成し、前記生成した熱分解油の一部を前記冷却媒体として使用すると共に、前記生成した熱分解油を、加熱、不活性ガスとの接触、又は減圧の少なくともいずれかの方法で処理して、前記熱分解油中の揮発性ジエン化合物を低減して、前記熱分解油の動粘度の上昇を抑制した後に回収することを特徴とするゴム系廃棄物からの熱分解油の製造方法。   Pyrolysis gas is generated by pyrolyzing rubber waste, and the generated pyrolysis gas is brought into contact with a cooling medium to condense oil components contained in the pyrolysis gas to generate pyrolysis oil, A part of the generated pyrolytic oil is used as the cooling medium, and the generated pyrolytic oil is treated by at least one of heating, contact with an inert gas, or reduced pressure, and the pyrolysis is performed. A method for producing pyrolytic oil from rubber-based waste, characterized in that volatile diene compounds in the oil are reduced and the increase in kinematic viscosity of the pyrolytic oil is suppressed and then recovered. 前記熱分解油の凝縮による生成から回収までの平均滞留時間を50時間以下とすることを特徴とする請求項1記載のゴム系廃棄物からの熱分解油の製造方法。   The method for producing pyrolytic oil from rubber-based waste according to claim 1, wherein an average residence time from generation to recovery by condensation of the pyrolytic oil is 50 hours or less. 前記生成した熱分解油を、加熱、不活性ガスとの接触、又は減圧の少なくともいずれかの方法で処理して、前記回収する熱分解油の動粘度を2×10-52/sec以下に調整することを特徴とする請求項1又は2記載のゴム系廃棄物からの熱分解油の製造方法。 The generated pyrolysis oil is treated by at least one of heating, contact with an inert gas, or reduced pressure, and the kinematic viscosity of the recovered pyrolysis oil is 2 × 10 −5 m 2 / sec or less. The method for producing pyrolysis oil from rubber-based waste according to claim 1 or 2, wherein ゴム系廃棄物を熱分解処理して熱分解ガスを生成させる熱分解炉と、前記生成した熱分解ガスを冷却媒体と接触させて熱分解ガス中に含まれる油状成分を凝縮して熱分解油を生成する熱分解油生成装置と、前記生成した熱分解油を冷却する熱分解油冷却装置と、前記生成した熱分解油中の揮発性成分を揮発除去させるための、加熱、不活性ガス吹込み、又は減圧の少なくともいずれかを行い、前記熱分解油中の揮発性ジエン化合物を低減させて前記熱分解油の動粘度の上昇を抑制する揮発成分除去装置と、前記熱分解油生成装置から前記熱分解油冷却装置を通して前記熱分解油生成装置へ前記生成した熱分解油の一部を循環して前記冷却媒体とする循環配管と、前記生成した熱分解油を前記熱分解生成装置から回収する回収配管とを備えることを特徴とするゴム系廃棄物からの熱分解油の製造装置。 A pyrolysis furnace for pyrolyzing rubber waste to generate pyrolysis gas, and contacting the generated pyrolysis gas with a cooling medium to condense the oily components contained in the pyrolysis gas and pyrolyzing oil A pyrolysis oil generator for generating the pyrolysis oil, a pyrolysis oil cooling device for cooling the generated pyrolysis oil, and heating and blowing an inert gas to volatilize and remove volatile components in the generated pyrolysis oil. From the volatile component removing device that reduces the volatile diene compound in the pyrolysis oil and suppresses the increase in the kinematic viscosity of the pyrolysis oil, and the pyrolysis oil generator A circulation pipe that circulates a part of the generated pyrolysis oil to the pyrolysis oil generator through the pyrolysis oil cooler as the cooling medium, and the generated pyrolysis oil from the pyrolysis oil generator. With recovery piping to recover Preparative pyrolysis oil of an apparatus for manufacturing a rubber waste, wherein. ゴム系廃棄物を熱分解処理して熱分解ガスを生成させる熱分解炉と、前記生成した熱分解ガスを冷却媒体と接触させて熱分解ガス中に含まれる油状成分を凝縮して熱分解油を生成する熱分解油生成装置と、前記生成した熱分解油を冷却する熱分解油冷却装置と、前記熱分解油生成装置から前記熱分解油冷却装置を通して前記熱分解油生成装置へ前記生成した熱分解油の一部を循環して前記冷却媒体とする循環配管と、前記熱分解油生成装置にて生成した熱分解油を一時貯留し、且つ、貯留量を調整可能な油貯留タンクとを有し、前記油貯留タンクには、前記生成した熱分解油中の揮発性成分を揮発除去させて、前記熱分解油中の揮発性ジエン化合物を低減させて前記熱分解油の動粘度の上昇を抑制するための、加熱、不活性ガス吹込み、又は減圧の少なくともいずれかを行う揮発成分除去手段を備えると共に、前記一時貯留した熱分解油を回収する回収配管を備えることを特徴とするゴム系廃棄物からの熱分解油の製造装置。 A pyrolysis furnace for pyrolyzing rubber waste to generate pyrolysis gas, and contacting the generated pyrolysis gas with a cooling medium to condense the oily components contained in the pyrolysis gas and pyrolyzing oil The pyrolysis oil generator that generates the pyrolysis oil, the pyrolysis oil cooler that cools the generated pyrolysis oil, and the pyrolysis oil generator that generates the pyrolysis oil from the pyrolysis oil generator through the pyrolysis oil cooler. A circulation pipe that circulates a part of the pyrolysis oil to serve as the cooling medium , and an oil storage tank that temporarily stores the pyrolysis oil generated by the pyrolysis oil generator and can adjust the storage amount. The oil storage tank has a volatile component in the generated pyrolysis oil removed by volatilization to reduce a volatile diene compound in the pyrolysis oil and increase the kinematic viscosity of the pyrolysis oil. Heating, inert gas blowing, or Provided with a least volatile component removing means for performing any of the pressure, pyrolysis oil of an apparatus for manufacturing a rubber waste, characterized in that it comprises a recovery pipe for recovering the pyrolysis oil which stores the temporarily. 前記熱分解油生成装置に一旦熱分解油を貯留し、当該貯留した熱分解油に加熱、不活性ガス吹込み、又は減圧の少なくともいずれかを行うことで、前記熱分解油生成装置が前記揮発成分除去装置を兼ねることを特徴とする請求項4記載のゴム系廃棄物からの熱分解油の製造装置。 The pyrolysis oil is temporarily stored in the pyrolysis oil generation device, and the pyrolysis oil generation device is volatile by performing at least one of heating, blowing an inert gas, and decompressing the stored pyrolysis oil. pyrolysis oil of an apparatus for manufacturing a rubber waste according to claim 4 Symbol mounting, characterized in that also serves as a component removal device.
JP2006195880A 2006-07-18 2006-07-18 Method and apparatus for producing pyrolysis oil from rubber waste Active JP4912776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195880A JP4912776B2 (en) 2006-07-18 2006-07-18 Method and apparatus for producing pyrolysis oil from rubber waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195880A JP4912776B2 (en) 2006-07-18 2006-07-18 Method and apparatus for producing pyrolysis oil from rubber waste

Publications (2)

Publication Number Publication Date
JP2008024754A JP2008024754A (en) 2008-02-07
JP4912776B2 true JP4912776B2 (en) 2012-04-11

Family

ID=39115737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195880A Active JP4912776B2 (en) 2006-07-18 2006-07-18 Method and apparatus for producing pyrolysis oil from rubber waste

Country Status (1)

Country Link
JP (1) JP4912776B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087353B1 (en) * 2018-10-18 2022-12-16 Arkema France METHOD FOR TREATMENT OF A GAS EFFLUENT FROM A PYROLYTIC DECOMPOSITION OF A POLYMER
KR102608852B1 (en) * 2021-10-06 2023-12-05 두산에너빌리티 주식회사 Reforming system of pyrolysis-gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110024A (en) * 1994-10-11 1996-04-30 Kobe Steel Ltd Heat treatment method of rubber waste
JP3500487B2 (en) * 1997-03-05 2004-02-23 日立造船株式会社 Equipment for removing low boiling components from waste plastic oil products
JPH10310778A (en) * 1997-05-12 1998-11-24 Mitsubishi Oil Co Ltd Purification of oil made from waste plastic and purified fraction

Also Published As

Publication number Publication date
JP2008024754A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP5144020B2 (en) Waste oiling method
JP5629053B2 (en) Cement production method
JP4959976B2 (en) Waste pyrolysis treatment system and method
RU2645342C2 (en) Method of removing heat in the plants for obtaining the vinyl chloride monomer or in the set of plants for producing dichloroethane / vinyl chloride and the device that is suitable for this purpose
US20080179257A1 (en) Process for the Thermal Treatment of Pharmaceutical Waste Material
JP4912776B2 (en) Method and apparatus for producing pyrolysis oil from rubber waste
KR20090078006A (en) A motor car and machinery of used lubricating oil refining process at the same time
JP6498270B2 (en) Purification of used oil
JP2002012411A (en) Recovering method for hydrogen chloride gas
JP2001520684A (en) Partial oxidation of waste plastic material
WO2011074623A1 (en) Method for producing recovered oil
JP4916849B2 (en) Method and apparatus for producing pyrolysis oil from rubber waste
JP4644172B2 (en) Thermal decomposition method for waste tires
KR20230116463A (en) Apparatus and method for recycling waste synthetic resin
KR101278298B1 (en) Production method for coking additive for coal
CA2807003A1 (en) Method and apparatus for producing a pyrolysis liquid
JPS5944351B2 (en) Treatment method for waste mainly consisting of organic matter
KR20180138188A (en) Recovery method of d-limonene by fast pyrolysis of waste tire and pyrolysis oil distillation and oil thereof
JP2960691B2 (en) Method and apparatus for treating a mixture of substances having at least two phases with different boiling temperatures
US3904483A (en) Thermal cracking apparatus for hydrocarbonaceous materials of high molecular weight
JP2001198561A (en) Method for recovering bromine from waste printed circuit board
JP2005132802A (en) Method for recovery of styrene and apparatus therefor
WO2016170000A1 (en) Method of thermochemical decomposition of waste
KR102721868B1 (en) Equipment and method of recovering silane
JP2003321680A (en) Method for producing absorbing oil for treating coke gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R151 Written notification of patent or utility model registration

Ref document number: 4912776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350