JP4912599B2 - Deposition method - Google Patents

Deposition method Download PDF

Info

Publication number
JP4912599B2
JP4912599B2 JP2005042111A JP2005042111A JP4912599B2 JP 4912599 B2 JP4912599 B2 JP 4912599B2 JP 2005042111 A JP2005042111 A JP 2005042111A JP 2005042111 A JP2005042111 A JP 2005042111A JP 4912599 B2 JP4912599 B2 JP 4912599B2
Authority
JP
Japan
Prior art keywords
substrate
film forming
film
columnar crystal
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005042111A
Other languages
Japanese (ja)
Other versions
JP2006225733A (en
Inventor
信 青代
瞬 三上
慶 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005042111A priority Critical patent/JP4912599B2/en
Publication of JP2006225733A publication Critical patent/JP2006225733A/en
Application granted granted Critical
Publication of JP4912599B2 publication Critical patent/JP4912599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Physical Vapour Deposition (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Description

本発明は成膜技術に関し、特に、特定の成膜材料を用いて基板上に柱状結晶を成長させる技術に関する。   The present invention relates to a film forming technique, and more particularly to a technique for growing columnar crystals on a substrate using a specific film forming material.

従来より、放射線を吸収蓄積し、発光する蛍光体膜の成膜には蒸着法が用いられている。CsIやCsBrのようなハロゲン化Csを蛍光体膜の成膜材料に用いる場合には、柱状結晶で蛍光体膜を構成することが好ましい。   Conventionally, a vapor deposition method has been used to form a phosphor film that absorbs and accumulates radiation and emits light. When halogenated Cs such as CsI or CsBr is used as a material for forming the phosphor film, it is preferable to form the phosphor film with columnar crystals.

従来技術の成膜装置では、基板と蒸着源との間の距離を大きくして、柱状結晶を成長させていた。
しかしながら、基板と蒸着源との間の距離を大きいと蒸着効率が悪く、また近年基板の大型化に伴い、蒸着源と基板との間の距離も大きくなり、その結果、成膜装置が大型化するという問題があった。
特開2002−181997号公報 特開昭61−142500号公報
In the conventional film forming apparatus, the columnar crystal is grown by increasing the distance between the substrate and the vapor deposition source.
However, if the distance between the substrate and the vapor deposition source is large, the vapor deposition efficiency is poor, and with the recent increase in size of the substrate, the distance between the vapor deposition source and the substrate also increases. There was a problem to do.
JP 2002-181997 A JP-A-61-142500

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、装置の大型化せずに、基板に対して概ね垂直に配置され、均一形状の柱状結晶膜を成膜可能にするものである。   The present invention was created in order to solve the above-mentioned disadvantages of the prior art, and the object of the present invention is to arrange a columnar crystal film having a uniform shape that is arranged substantially perpendicular to the substrate without increasing the size of the apparatus. It is what makes the membrane possible.

本発明者等が鋭意検討を行った結果、本発明者等は、蒸気粒子の入射角度を20°以下にすれば、柱状結晶が基板表面に対して垂直に、かつ均一な形状で成長することを見出した。   As a result of intensive studies by the present inventors, the present inventors have found that if the incident angle of vapor particles is set to 20 ° or less, columnar crystals grow perpendicularly to the substrate surface and in a uniform shape. I found.

係る知見に基づいてなされた請求項1記載の発明は、蒸着源から真空雰囲気中に成膜材料の蒸気粒子を放出し、前記真空雰囲気に配置された基板の表面に前記蒸気粒子を到達させ、前記基板の表面に前記成膜材料の薄膜を形成する成膜方法であって、前記成膜材料として、CsIとCsBrのいずれか一方又は両方を用い、前記蒸気粒子が前記基板の表面に入射する方向と、前記基板表面の法線との成す角度を入射角度とすると、基板中心とは異なる位置を回転中心として前記基板を水平面内で回転させながら、前記蒸気粒子の放出を行い、前記入射角度が20°を超えて前記基板方向に飛行する前記蒸気粒子を遮蔽部材に付着させると共に、前記回転中心が含まれる範囲の前記基板表面に前記蒸気粒子を到達させ、前記成膜材料の柱状結晶を前記基板表面に対して略垂直に成長させ、前記柱状結晶からなる薄膜を形成する成膜方法である。
請求項2記載の発明は、請求項1記載の成膜方法であって、前記蒸気粒子を、前記基板の回転中心を含む成膜範囲に到達させる成膜方法である。
Invention of Claim 1 made | formed based on the knowledge concerned discharge | releases the vapor particle of the film-forming material in a vacuum atmosphere from a vapor deposition source, makes the vapor particle reach the surface of the board | substrate arrange | positioned in the said vacuum atmosphere, A film forming method for forming a thin film of the film forming material on the surface of the substrate, wherein one or both of CsI and CsBr is used as the film forming material, and the vapor particles are incident on the surface of the substrate. When the angle between the direction and the normal of the substrate surface is an incident angle, the vapor particles are emitted while rotating the substrate in a horizontal plane with a position different from the substrate center as a rotation center, and the incident angle. There the vapor particles flying to the substrate direction beyond 20 °, Rutotomoni adhered to the shielding member, allowed to reach the vapor particles on the substrate surface in a range that includes the rotational center, columnar said film-forming material Result Substantially vertically grown to the substrate surface, a film forming method for forming a thin film made of the columnar crystal.
A second aspect of the present invention is the film forming method according to the first aspect, wherein the vapor particles reach a film forming range including a rotation center of the substrate.

本発明は上記のように構成されており、遮蔽部材は入射角度を20°を超える蒸気粒子を遮蔽するので、基板表面には入射角度が20°以下の蒸気粒子が入射し、成膜材料の柱状結晶が基板表面に対して垂直に成長する。このように、本発明では基板と蒸着源との距離を大きくしなくても、入射角度を制限することで柱状結晶の膜を成膜可能なので、成膜装置が大型化しない。   The present invention is configured as described above, and the shielding member shields vapor particles having an incident angle of more than 20 °. Therefore, vapor particles having an incident angle of 20 ° or less are incident on the substrate surface. Columnar crystals grow perpendicular to the substrate surface. As described above, in the present invention, since the columnar crystal film can be formed by limiting the incident angle without increasing the distance between the substrate and the evaporation source, the film forming apparatus does not increase in size.

尚、本発明で蒸気粒子とは、成膜材料が気化して発生した成膜材料の粒子のことであり、具体的には成膜材料の分子、成膜材料の原子、成膜材料の分子集団、または成膜材料の原子集団のことである。   In the present invention, the vapor particles are particles of the film forming material generated by vaporization of the film forming material. Specifically, the molecules of the film forming material, the atoms of the film forming material, and the molecules of the film forming material. A group or an atomic group of film forming materials.

本発明によれば、成膜装置を大型化しなくても、柱状結晶の膜を成膜可能であり、成膜装置の製造コストが安くなる。さらに、基板に対して概ね垂直で、均一な形状の柱状結晶の膜を成膜することができる。   According to the present invention, a columnar crystal film can be formed without increasing the size of the film forming apparatus, and the manufacturing cost of the film forming apparatus is reduced. Further, it is possible to form a columnar crystal film that is substantially perpendicular to the substrate and has a uniform shape.

図1の符号1は本発明に用いる成膜装置の一例を示しており、成膜装置1は真空槽2と、蒸着源20と、基板ホルダ7と、遮蔽部材5とを有している。基板ホルダ7は、真空槽2内部の天井側に配置されている。蒸着源20は容器状であって、真空槽2内部の底壁上に配置されている。   Reference numeral 1 in FIG. 1 shows an example of a film forming apparatus used in the present invention. The film forming apparatus 1 includes a vacuum chamber 2, a vapor deposition source 20, a substrate holder 7, and a shielding member 5. The substrate holder 7 is disposed on the ceiling side inside the vacuum chamber 2. The vapor deposition source 20 has a container shape and is disposed on the bottom wall inside the vacuum chamber 2.

蒸着源20の開口23は真空槽2の天井側に向けられており、その内部には予め成膜材料25が配置され、蒸着源20内で発生した成膜材料25の蒸気粒子は開口23から真空槽2内に放出されるようになっている。   The opening 23 of the vapor deposition source 20 is directed to the ceiling side of the vacuum chamber 2, and the film forming material 25 is disposed in advance therein, and vapor particles of the film forming material 25 generated in the vapor deposition source 20 pass through the opening 23. It is discharged into the vacuum chamber 2.

遮蔽部材5は真空槽2内部であって、開口23よりも高く、基板ホルダ7よりも低い位置に配置されており、開口23から放出された蒸気粒子の一部は遮蔽部材5に付着するが、他の一部は遮蔽部材5に付着せず、基板ホルダ7に保持された基板11表面に到達するようになっている。   The shielding member 5 is disposed in the vacuum chamber 2 at a position higher than the opening 23 and lower than the substrate holder 7, and some of the vapor particles emitted from the opening 23 adhere to the shielding member 5. The other part does not adhere to the shielding member 5 and reaches the surface of the substrate 11 held by the substrate holder 7.

図1の符号Tは、蒸気粒子が基板11に到達する範囲を示しており、成膜範囲Tの中には基板11の縁が含まれるようになっている。
基板11の粒子が入射する表面(成膜面12)の法線Nと、蒸気粒子の入射方向との成す角度を粒子の入射角度とすると、図1の符号θaは基板11の縁における入射角度を示している。
A symbol T in FIG. 1 indicates a range where the vapor particles reach the substrate 11, and the film forming range T includes an edge of the substrate 11.
Assuming that the angle formed by the normal line N of the surface (deposition surface 12) on which the particles of the substrate 11 are incident and the incident direction of the vapor particles is the particle incident angle, the symbol θa in FIG. Is shown.

基板11の縁は成膜範囲Tの外周であり、成膜範囲Tの内周側の端部は遮蔽部材5の位置及び形状と、蒸着源20の位置によって定められる。符号θbは成膜範囲Tの内周側の端部における入射角度を示しており、成膜範囲T上の入射角度θxは、最大値がθa又はθbになる。
従って、成膜範囲Tにおける入射角度の最小値をθminとすると、入射角度θxは下記(1)で表される。
The edge of the substrate 11 is the outer periphery of the film forming range T, and the inner peripheral end of the film forming range T is determined by the position and shape of the shielding member 5 and the position of the vapor deposition source 20. The symbol θb indicates the incident angle at the inner peripheral end of the film formation range T, and the maximum value of the incident angle θx on the film formation range T is θa or θb.
Therefore, when the minimum value of the incident angle in the film forming range T is θmin, the incident angle θx is expressed by the following (1).

式(1):θmin≦θx≦θmax(θa,θb)
上記式(1)中、θmaxはθa、θbのうちの大きいの方の値となる。ここでは、成膜範囲Tは開口23の真上位置も含まれ、基板11は水平に保持されるようになっているから、θminは成膜範囲Tの基板11の真上位置であり、その値はゼロである。
Formula (1): θmin ≦ θx ≦ θmax (θa, θb)
In the above formula (1), θmax is the larger value of θa and θb. Here, since the deposition range T includes the position directly above the opening 23 and the substrate 11 is held horizontally, θmin is the position directly above the substrate 11 in the deposition range T. The value is zero.

本発明では遮蔽部材5と蒸着源20の位置によって、θmax(θa,θb)の大きさが定められている。従って、入射角度θxはθmax(θa,θb)以下になる。後述するようにこの成膜装置1ではθmax(θa,θb)は20°である。   In the present invention, the size of θmax (θa, θb) is determined by the positions of the shielding member 5 and the vapor deposition source 20. Accordingly, the incident angle θx is equal to or smaller than θmax (θa, θb). As will be described later, in this film forming apparatus 1, θmax (θa, θb) is 20 °.

基板ホルダ7裏面の中央位置には回転軸8が接続されている。回転軸8の回転軸線Aは鉛直であって、基板11の中心を回転軸線A上に位置させた状態で、基板11を基板ホルダ7に水平配置し、不図示のモータによって回転軸8を回転させると、基板11は基板11中心を中心として水平面内で回転する。   A rotation shaft 8 is connected to the center position of the back surface of the substrate holder 7. The rotation axis A of the rotation shaft 8 is vertical, and the substrate 11 is horizontally disposed on the substrate holder 7 with the center of the substrate 11 positioned on the rotation axis A, and the rotation shaft 8 is rotated by a motor (not shown). Then, the substrate 11 rotates in the horizontal plane around the center of the substrate 11.

図1の符号Aは基板11が回転するときの基板11の回転中心を示している。成膜範囲Tの内周側の端部は、回転中心A上、又は回転中心Aを超えた範囲に位置するようになっているので、開口23から放出された粒子は、基板11の端部から回転中心Aまで、又は基板11の端部から回転中心Aを超えた範囲まで到達する。即ち、基板11の回転中心Aは成膜範囲Tに含まれるから、基板11を回転させながら蒸気粒子の放出を行えば、基板11の全表面に蒸気粒子が到達する。   1 indicates the center of rotation of the substrate 11 when the substrate 11 rotates. Since the end on the inner peripheral side of the film formation range T is positioned on the rotation center A or in a range beyond the rotation center A, the particles emitted from the opening 23 are the end of the substrate 11. From the end of the substrate 11 to the range beyond the rotation center A. That is, since the rotation center A of the substrate 11 is included in the film forming range T, the vapor particles reach the entire surface of the substrate 11 if the vapor particles are released while rotating the substrate 11.

次に、この成膜装置1を用いて蛍光体膜を成膜する工程について説明する。
真空槽2に接続された真空排気系9を動作させ、真空槽2内部に真空雰囲気を形成する。尚、真空槽2内部を真空排気をすると共に、真空槽2内部にArガス、Xeガス等の不活性ガスを導入して、真空雰囲気の圧力を1×10-2Pa以上1×10-1Pa以下に調整してもよい。
Next, a process for forming a phosphor film using the film forming apparatus 1 will be described.
The vacuum exhaust system 9 connected to the vacuum chamber 2 is operated to form a vacuum atmosphere inside the vacuum chamber 2. The inside of the vacuum chamber 2 is evacuated and an inert gas such as Ar gas or Xe gas is introduced into the vacuum chamber 2 so that the pressure in the vacuum atmosphere is 1 × 10 −2 Pa or more and 1 × 10 −1. You may adjust to Pa or less.

真空雰囲気を維持しながら、真空槽2内部に基板11を搬入し、その基板11を基板ホルダ7に保持させる。予め蒸着源20に収容しておいた成膜材料25を加熱すると成膜材料25が気化し、成膜材料25の蒸気粒子が発生する。   The substrate 11 is carried into the vacuum chamber 2 while maintaining the vacuum atmosphere, and the substrate 11 is held by the substrate holder 7. When the film forming material 25 previously stored in the vapor deposition source 20 is heated, the film forming material 25 is vaporized, and vapor particles of the film forming material 25 are generated.

成膜材料25は、CsIやCsBrのようなハロゲン化Csを主成分としており、遮蔽部材5は上記式(1)のθmaxが20°になるように配置されている。上記式(1)は、開口23のどの部分から出た蒸気粒子にも当てはまるようになっており、ハロゲン化Csの蒸気粒子の入射角度θxを20°以下にすれば、基板11上には概ね垂直に柱状結晶の膜が成長する。   The film forming material 25 is mainly composed of halogenated Cs such as CsI or CsBr, and the shielding member 5 is arranged so that θmax of the above formula (1) is 20 °. The above formula (1) is applicable to the vapor particles emitted from any part of the opening 23. If the incident angle θx of the halogenated Cs vapor particles is set to 20 ° or less, the equation (1) is generally present on the substrate 11. A columnar crystal film grows vertically.

このとき、基板11を回転させながら蒸気粒子の放出を行えば、基板11表面全部に成膜材料の蒸気粒子が到達するので、基板11表面の全部に柱状結晶の薄膜が形成される。   At this time, if the vapor particles are released while rotating the substrate 11, the vapor particles of the film forming material reach the entire surface of the substrate 11, so that a columnar crystal thin film is formed on the entire surface of the substrate 11.

柱状結晶の膜は、例えば、画像情報読取装置の蛍光体膜に用いることができる。具体的には、柱状結晶膜の表面にX線のような放射線を照射すると、放射線が照射された柱状結晶がその放射線エネルギーの一部を吸収蓄積する。放射線エネルギーが蓄積された柱状結晶膜に、赤外線や可視光などの電磁波を照射すると、放射線エネルギーが蓄積された柱状結晶が発光する。例えば、この様な蛍光体膜を有する基板は、X線撮影のフィルムの代わりに繰り返し使用できる。   The columnar crystal film can be used, for example, as a phosphor film of an image information reading apparatus. Specifically, when the surface of the columnar crystal film is irradiated with radiation such as X-rays, the columnar crystal irradiated with the radiation absorbs and accumulates part of the radiation energy. When the columnar crystal film in which the radiation energy is accumulated is irradiated with electromagnetic waves such as infrared rays and visible light, the columnar crystal in which the radiation energy is accumulated emits light. For example, a substrate having such a phosphor film can be used repeatedly instead of an X-ray film.

基板11の柱状結晶膜が形成された側の面の表面部分には不図示のセンサー部が設けられており、このセンサー部は柱状結晶の底壁から基板11表面に入射する発光光を受光する。   A sensor portion (not shown) is provided on the surface portion of the surface of the substrate 11 on which the columnar crystal film is formed, and this sensor portion receives emitted light incident on the surface of the substrate 11 from the bottom wall of the columnar crystal. .

柱状結晶は放射線を蓄積したものしか発光しないので、センサー部が発光した柱状結晶の位置情報や発光強度を電気信号として処理装置に伝え、処理装置がその位置情報と発光強度を処理し、表示装置に放射線の画像情報を表示する。   Since the columnar crystal emits only the radiation that accumulates radiation, the position information and emission intensity of the columnar crystal emitted by the sensor unit are transmitted to the processing device as an electrical signal, and the processing device processes the position information and the emission intensity, and the display device The radiation image information is displayed on the screen.

柱状結晶が基板11表面に対して斜めに成長すると、放射線の入射位置と、センサー部の受光位置がずれるため、位置情報に誤差が生じ、画像情報が不鮮明になるが、本発明によれば、柱状結晶が基板11表面に対して垂直に均一な形状で成長するので、位置情報に誤差が生じず、画像情報が鮮明に表示される。   When the columnar crystal grows obliquely with respect to the surface of the substrate 11, the incident position of the radiation and the light receiving position of the sensor unit are shifted, so that an error occurs in the position information and the image information becomes unclear. Since the columnar crystals grow in a uniform shape perpendicular to the surface of the substrate 11, no error occurs in the position information, and the image information is displayed clearly.

上記工程で作成された柱状結晶膜を実施例の柱状結晶膜とし、実施例の柱状結晶膜と比較例の柱状結晶膜を走査型電子顕微鏡で観察し、柱状結晶の直径(コラム径)を測定した。また、成膜装置1から遮蔽部材5を取り除き、蒸気粒子の入射角度の制限を行わずに成膜したものを比較例の柱状結晶膜とし、この柱状結晶膜について、上記実施例と同じ方法で観察と、コラム径の測定を行った。
観察された実施例の柱状結晶膜の模式図を図3(a)に、比較例の柱状結晶膜の模式図を図3(b)に示し、測定されたコラム径を図4に示した。
The columnar crystal film created in the above process is used as the columnar crystal film of the example, and the columnar crystal film of the example and the columnar crystal film of the comparative example are observed with a scanning electron microscope, and the diameter (column diameter) of the columnar crystal is measured. did. Further, the shielding member 5 is removed from the film forming apparatus 1 and the film formed without limiting the incident angle of the vapor particles is used as the columnar crystal film of the comparative example, and this columnar crystal film is subjected to the same method as the above example. Observation and measurement of the column diameter were performed.
FIG. 3A shows a schematic diagram of the columnar crystal film of the observed example, FIG. 3B shows a schematic diagram of the columnar crystal film of the comparative example, and FIG. 4 shows the measured column diameter.

図3(a)、(b)を比較すると明らかなように、遮蔽部材5で入射角度θxを20°以下に制限した実施例では、基板11表面に対して略垂直方向に成長した柱状結晶15が、基板11表面の全領域で見られた。これに対し、入射角度θxを制限しなかった比較例では、蒸着源20から離れた位置を通過する時に、成膜材料が斜めに入射するため、基板11の端部で柱状結晶が斜めに成長しており、入射角度θxを20°以下に制限することで、柱状結晶を基板11表面に対して垂直に成長することが確認された。   3A and 3B, in the embodiment in which the incident angle θx is limited to 20 ° or less by the shielding member 5, the columnar crystal 15 grown in a direction substantially perpendicular to the surface of the substrate 11. Was observed in the entire region of the surface of the substrate 11. On the other hand, in the comparative example in which the incident angle θx is not limited, the columnar crystal grows obliquely at the end of the substrate 11 because the film forming material is incident obliquely when passing through a position away from the vapor deposition source 20. It was confirmed that the columnar crystal grows perpendicular to the surface of the substrate 11 by limiting the incident angle θx to 20 ° or less.

図4の横軸は基板11の回転中心からの距離を示し、縦軸はコラム径を示している。尚、コラム径は柱状結晶の基板11側の面(底壁面)の直径のことである。図4から明らかなように、実施例の柱状結晶膜は、比較例に比べてコラム径が小さく、コラム径のばらつきも殆どなかった。これに対し、比較例はコラム径が大きく、基板の端部側ほどコラム径が大きくなる傾向があった。   The horizontal axis in FIG. 4 indicates the distance from the rotation center of the substrate 11, and the vertical axis indicates the column diameter. The column diameter is the diameter of the surface (bottom wall surface) of the columnar crystal on the substrate 11 side. As is clear from FIG. 4, the columnar crystal film of the example had a smaller column diameter than the comparative example, and there was almost no variation in the column diameter. In contrast, the comparative example had a large column diameter, and the column diameter tended to increase toward the end of the substrate.

コラム径が大きいほど、センサー部が受光する範囲も大きくなるので、画像にぼけが生じやすく、コラム径が異なると、同じ強度のX線が入射した場合であっても、柱状結晶毎に発光強度が異なってしまうので、正確な画像情報が読み取れない。上述したように、本発明により成膜された柱状結晶膜はコラム径が小さく、かつコラム径のばらつきも少ないので、鮮明な画像情報を読取可能な画像情報読取装置を得ることができる。   The larger the column diameter, the larger the range of light received by the sensor unit, so the image is more likely to be blurred. If the column diameter is different, even if X-rays with the same intensity are incident, the emission intensity for each columnar crystal Therefore, accurate image information cannot be read. As described above, since the columnar crystal film formed according to the present invention has a small column diameter and a small variation in the column diameter, an image information reading apparatus capable of reading clear image information can be obtained.

基板11の形状や大きさは特に限定されないが、例えば、一辺の長さが500mm以下の正方形形状の基板を用いることができる。
基板11と蒸着源20の位置関係は、入射角度θxが20°以下になるのであれば、特に限定されないが、一般的には開口23から基板11表面までの高さが300mm以上700mm以下であり、基板11の回転中心から開口23の中心までのX軸方向の距離は、200mm以上350mm以下である。
The shape and size of the substrate 11 are not particularly limited. For example, a square substrate having a side length of 500 mm or less can be used.
The positional relationship between the substrate 11 and the vapor deposition source 20 is not particularly limited as long as the incident angle θx is 20 ° or less, but generally the height from the opening 23 to the surface of the substrate 11 is 300 mm or more and 700 mm or less. The distance in the X-axis direction from the rotation center of the substrate 11 to the center of the opening 23 is not less than 200 mm and not more than 350 mm.

以上は基板11表面に設けられたセンサー部で、柱状結晶の発光光を受光する場合について説明したが本発明はこれに限定されるものではない。例えば、基板にセンサー部を設けず、柱状結晶膜上に発光光を受光するセンサーを配置し、電磁波等で柱状結晶膜を発光させて、センサーでその発光光を受光してもよい。   The above is a description of the case where the sensor portion provided on the surface of the substrate 11 receives light emitted from the columnar crystals, but the present invention is not limited to this. For example, a sensor for receiving emitted light may be disposed on a columnar crystal film without providing a sensor portion on the substrate, the columnar crystal film may be caused to emit light by electromagnetic waves or the like, and the emitted light may be received by the sensor.

成膜材料に用いるハロゲン化Csの種類も限定されるものではない。ハロゲン化Csは1種類を単独で成膜材料に用いてもよいし、2種類以上を混合して成膜材料に用いてもよい。更に、成膜材料にドーパントや添加剤を添加することもできる。   The type of halogenated Cs used for the film forming material is not limited. One type of halogenated Cs may be used alone as a film forming material, or two or more types may be mixed and used as a film forming material. Further, a dopant or an additive can be added to the film forming material.

また、上述した成膜材料の蒸気粒子の入射角度θxを20°以下に制限できるのであれば、真空槽2内に蒸着源20を2つ以上配置してもよい。また、蒸着源20の開口23の形状や数も特に限定されず、蒸気粒子の入射角度θxを20°以下に制限できるのであれば、開口23を2つ以上設け、2つ以上の開口23から同時に蒸気粒子を放出することもできる。   Further, two or more vapor deposition sources 20 may be arranged in the vacuum chamber 2 as long as the incident angle θx of the vapor particles of the film forming material described above can be limited to 20 ° or less. Further, the shape and number of the openings 23 of the vapor deposition source 20 are not particularly limited. If the vapor particle incident angle θx can be limited to 20 ° or less, two or more openings 23 are provided. At the same time, vapor particles can be released.

更に、上述した成膜材料25が収容された蒸着源20と一緒に、異なる種類の成膜材料が収容された他の蒸着源を、同じ真空槽2内部に配置することも可能である。具体的には、他の蒸着源に柱状結晶膜の副資材、具体的にはTlIのようなハロゲン化Tl、を配置し、主材であるハロゲン化Csの蒸気粒子と一緒に、副資材の蒸気粒子を発生させれば、ハロゲン化Csと副資材とを有する柱状結晶を得ることができる。   Furthermore, it is also possible to arrange another vapor deposition source containing different kinds of film deposition materials in the same vacuum chamber 2 together with the vapor deposition source 20 containing the film deposition material 25 described above. Specifically, a columnar crystal film auxiliary material, specifically a halogenated Tl such as TlI, is arranged in another vapor deposition source, and together with the vapor particles of halogenated Cs as the main material, If vapor particles are generated, columnar crystals having halogenated Cs and auxiliary materials can be obtained.

副資材の収容された他の蒸着源の、遮蔽部材5や基板11に対する位置関係は特に限定されるものではなく、主材の蒸着源20と同様に、遮蔽部材5で副資材蒸気粒子の一部が遮蔽部材5に付着するように配置してもよいし、副資材の蒸気粒子が遮蔽部材5に付着しないように配置してもよい。また、副資材の添加量が少ない場合には、副資材の蒸気の発生は、主材の蒸気の発生と同時である必要もない。   The positional relationship of the other vapor deposition source in which the secondary material is accommodated with respect to the shielding member 5 and the substrate 11 is not particularly limited. The part may be disposed so as to adhere to the shielding member 5, or may be disposed so that the vapor particles of the auxiliary material do not adhere to the shielding member 5. Further, when the added amount of the auxiliary material is small, the generation of the vapor of the auxiliary material does not need to be performed simultaneously with the generation of the vapor of the main material.

遮蔽部材5の配置方法も特に限定されるものではなく、図1に示すように板状の遮蔽部材5を立設してもよいし、図2に示すように板状の遮蔽部材5を水平配置してもよい。また、遮蔽部材5の形状は板状に限定されず、湾曲した形状であってもよい。また、遮蔽部材5に蒸気粒子が通過する貫通孔を設け、入射角度θxが20°以下になる蒸気粒子がその貫通孔を通るようにしてもよい。   The arrangement method of the shielding member 5 is not particularly limited, and the plate-like shielding member 5 may be erected as shown in FIG. 1, or the plate-like shielding member 5 is placed horizontally as shown in FIG. You may arrange. Moreover, the shape of the shielding member 5 is not limited to a plate shape, and may be a curved shape. Further, a through hole through which the vapor particles pass may be provided in the shielding member 5 so that the vapor particles having an incident angle θx of 20 ° or less pass through the through hole.

以上は、基板11を水平配置する場合について説明したが、本発明はこれに限定されるものではなく、蒸気粒子の入射角度θxが20°以下に制限できるのであれば、基板11を斜めに配置してもよい。尚、基板11を斜めに配置した時には、入射角度θxは、真上ではなく、基板11の表面に対して垂直方向に入射したときにゼロとなる。   The above is a description of the case where the substrate 11 is horizontally disposed. However, the present invention is not limited to this, and the substrate 11 is disposed obliquely as long as the incident angle θx of the vapor particles can be limited to 20 ° or less. May be. Note that when the substrate 11 is disposed obliquely, the incident angle θx is not directly above, but becomes zero when incident on the surface of the substrate 11 in the vertical direction.

基板11の回転中心Aは基板11中心から外れていてもよく、その場合も成膜範囲Tに回転中心が含まれるようにすれば、基板11表面に全て薄膜を形成することができる。
以上は、基板11表面全部に柱状結晶の膜を形成する場合について説明したが、本発明はこれに限定されず、基板11表面の一部だけに柱状結晶の膜を形成してもよい。
The rotation center A of the substrate 11 may be deviated from the center of the substrate 11. In this case as well, if the rotation center is included in the film formation range T, a thin film can be formed on the entire surface of the substrate 11.
The case where the columnar crystal film is formed on the entire surface of the substrate 11 has been described above. However, the present invention is not limited to this, and the columnar crystal film may be formed only on a part of the surface of the substrate 11.

本発明の成膜装置の一例を説明する断面図Sectional drawing explaining an example of the film-forming apparatus of this invention 本発明の成膜装置の他の例を説明する断面図Sectional drawing explaining the other example of the film-forming apparatus of this invention (a)実施例の柱状結晶膜と、(b)比較例の柱状結晶膜を模式的に示す断面図(A) Cross-sectional view schematically showing a columnar crystal film of an example and (b) a columnar crystal film of a comparative example 柱状結晶のコラム径と、基板の回転中心からの距離との関係を示すグラフA graph showing the relationship between the columnar crystal column diameter and the distance from the center of rotation of the substrate 回析強度と、基板ホルダー中心からの距離の関係を示すグラフGraph showing the relationship between diffraction intensity and distance from the center of the substrate holder

符号の説明Explanation of symbols

1……成膜装置 2……真空槽 5……遮蔽部材 7……基板ホルダ 8……回転軸 11……ターゲット 15……柱状結晶 20……蒸着源 23……開口 25……成膜材料   DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus 2 ... Vacuum chamber 5 ... Shielding member 7 ... Substrate holder 8 ... Rotating shaft 11 ... Target 15 ... Columnar crystal 20 ... Deposition source 23 ... Opening 25 ... Film-forming material

Claims (2)

蒸着源から真空雰囲気中に成膜材料の蒸気粒子を放出し、前記真空雰囲気に配置された基板の表面に前記蒸気粒子を到達させ、前記基板の表面に前記成膜材料の薄膜を形成する成膜方法であって、
前記成膜材料として、CsIとCsBrのいずれか一方又は両方を用い、
前記蒸気粒子が前記基板の表面に入射する方向と、前記基板表面の法線との成す角度を入射角度とすると、
基板中心とは異なる位置を回転中心として前記基板を水平面内で回転させながら、前記蒸気粒子の放出を行い、
前記入射角度が20°を超えて前記基板方向に飛行する前記蒸気粒子を、遮蔽部材に付着させると共に、前記回転中心が含まれる範囲の前記基板表面に前記蒸気粒子を到達させ、
前記成膜材料の柱状結晶を前記基板表面に対して略垂直に成長させ、前記柱状結晶からなる薄膜を形成する成膜方法。
The vapor particles of the film forming material are released from the vapor deposition source into the vacuum atmosphere, the vapor particles reach the surface of the substrate disposed in the vacuum atmosphere, and the thin film of the film forming material is formed on the surface of the substrate. A membrane method,
As the film forming material, one or both of CsI and CsBr are used,
When the angle formed between the direction in which the vapor particles are incident on the surface of the substrate and the normal line of the substrate surface is an incident angle,
While rotating the substrate in a horizontal plane with a position different from the substrate center as the rotation center, the vapor particles are released,
Wherein said vapor particles incident angle to fly in the substrate direction beyond 20 °, Rutotomoni adhered to the shielding member, allowed to reach the vapor particles on the substrate surface in a range that includes the rotational center,
A film forming method for growing a columnar crystal of the film forming material substantially perpendicularly to the surface of the substrate to form a thin film made of the columnar crystal.
前記蒸気粒子を、前記基板の回転中心を含む成膜範囲に到達させる請求項1記載の成膜方法。   The film forming method according to claim 1, wherein the vapor particles are allowed to reach a film forming range including a rotation center of the substrate.
JP2005042111A 2005-02-18 2005-02-18 Deposition method Active JP4912599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042111A JP4912599B2 (en) 2005-02-18 2005-02-18 Deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042111A JP4912599B2 (en) 2005-02-18 2005-02-18 Deposition method

Publications (2)

Publication Number Publication Date
JP2006225733A JP2006225733A (en) 2006-08-31
JP4912599B2 true JP4912599B2 (en) 2012-04-11

Family

ID=36987352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042111A Active JP4912599B2 (en) 2005-02-18 2005-02-18 Deposition method

Country Status (1)

Country Link
JP (1) JP4912599B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126758A1 (en) * 2007-04-05 2008-10-23 Konica Minolta Medical & Graphic, Inc. Scintillator plate
US7964855B2 (en) 2007-04-05 2011-06-21 Konica Minolta Medical & Graphic, Inc. Scintillator panel
WO2008155959A1 (en) * 2007-06-19 2008-12-24 Konica Minolta Medical & Graphic, Inc. Scintillator panel and method for manufacturing the same
WO2009122809A1 (en) * 2008-04-03 2009-10-08 コニカミノルタエムジー株式会社 Manufacturing equipment for radiographic image conversion panel and manufacturing method for radiographic image conversion panel
WO2010104119A1 (en) * 2009-03-13 2010-09-16 浜松ホトニクス株式会社 Radiation image conversion panel and method for producing same
JP5610798B2 (en) * 2010-03-12 2014-10-22 キヤノン株式会社 Manufacturing method of scintillator
JP2015021752A (en) * 2013-07-16 2015-02-02 キヤノン株式会社 Radiation imaging apparatus, manufacturing method thereof and radiation inspection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181611B2 (en) * 1991-02-22 2001-07-03 コニカ株式会社 Vapor deposition equipment
CA2185640A1 (en) * 1995-11-30 1997-05-31 Russell J. Hill Electron beam evaporation apparatus and method
JP2000001771A (en) * 1998-06-18 2000-01-07 Hitachi Ltd Production of dielectric protective layer and apparatus for production thereof as well as plasma display panel and image display device using the same
JP3995038B2 (en) * 2001-12-17 2007-10-24 富士フイルム株式会社 Phosphor sheet manufacturing equipment
JP4731091B2 (en) * 2002-08-07 2011-07-20 コニカミノルタホールディングス株式会社 Radiation image conversion panel and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006225733A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4912599B2 (en) Deposition method
US7048967B2 (en) Organic film vapor deposition method and a scintillator panel
JP2009245944A (en) Environmental cell for particle-optical apparatus
US8597565B2 (en) Method for forming microscopic 3D structures
US20080054183A1 (en) Scintillator panel
US7439523B2 (en) Method for preparing radiation image storage panel
JP2008224357A (en) Scintillator plate
JP4317169B2 (en) Scintillator panel
US9530530B2 (en) Scintillator panel, radiation detector, and methods for manufacturing the same
US6841777B2 (en) Electron diffraction system for use in production environment and for high pressure deposition techniques
JP2008082872A (en) Manufacturing method for radiation detector
JP2009236704A (en) Radiation detection device
JP2015017899A (en) Electron back scattering diffraction device
JP2007297695A (en) Crucible for vacuum deposition and vacuum deposition system
KR100684739B1 (en) Apparatus for sputtering organic matter
JP4916472B2 (en) Crucible and vacuum deposition equipment
JP3684106B2 (en) Deposition equipment
JP7149834B2 (en) Scintillator manufacturing method
JP2005126822A (en) Method and apparatus for vacuum deposition
JP2009236705A (en) Radiation detection device
WO2009122809A1 (en) Manufacturing equipment for radiographic image conversion panel and manufacturing method for radiographic image conversion panel
JP2014224285A (en) Thin film formation device, and thin film formation method
WO2023032041A1 (en) Sputtering apparatus and film formation method
JP2009084471A (en) Scintillator plate
JP2007240514A (en) Manufacturing method for radiation image conversion panel, and manufacturing device for radiation image conversion panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100416

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110616

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4912599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250