JP4912245B2 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP4912245B2
JP4912245B2 JP2007188988A JP2007188988A JP4912245B2 JP 4912245 B2 JP4912245 B2 JP 4912245B2 JP 2007188988 A JP2007188988 A JP 2007188988A JP 2007188988 A JP2007188988 A JP 2007188988A JP 4912245 B2 JP4912245 B2 JP 4912245B2
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
display device
crystal display
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007188988A
Other languages
Japanese (ja)
Other versions
JP2009025578A (en
Inventor
理 伊東
昇一 廣田
昌哉 足立
真一郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Liquid Crystal Display Co Ltd
Original Assignee
Panasonic Liquid Crystal Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Liquid Crystal Display Co Ltd filed Critical Panasonic Liquid Crystal Display Co Ltd
Priority to JP2007188988A priority Critical patent/JP4912245B2/en
Publication of JP2009025578A publication Critical patent/JP2009025578A/en
Application granted granted Critical
Publication of JP4912245B2 publication Critical patent/JP4912245B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

液晶層を有する液晶表示装置に関する。   The present invention relates to a liquid crystal display device having a liquid crystal layer.

携帯型情報機器の記憶容量が増大し、あるいはまた通信速度が高速化すれば、よりデータ量の多い画像情報が取り扱われるようになる。これに伴い、インターフェイスである表示装置にも今まで以上の高画質と高精細表示が要求される。高画質に関してより具体的に述べると、高コントラスト,高色再現性,広視野角,屋外視認性が挙げられる。   If the storage capacity of the portable information device increases or the communication speed increases, image information with a larger amount of data can be handled. As a result, display devices that are interfaces are required to have higher image quality and higher definition than ever. More specifically, regarding high image quality, high contrast, high color reproducibility, wide viewing angle, and outdoor visibility can be mentioned.

携帯型情報機器は持ち運びが可能なことから、照度が極端に異なる多様な環境下で用いられる可能性がある。例えば、高照度の極限として真夏の直射日光下が、低照度の極限として暗室が挙げられる。これらの全般において良好な表示を得るには、半透過型液晶表示装置が適している。   Since portable information devices are portable, they may be used in various environments with extremely different illuminances. For example, the limit of high illuminance is under direct sunlight in midsummer, and the limit of low illuminance is a dark room. In order to obtain a good display in all of these, a transflective liquid crystal display device is suitable.

IPS(In-Plane Switching)方式液晶表示装置は広視野角,高コントラスト比の透過表示が特徴であり、これを半透過型とした半透過IPS方式液晶表示装置が提案されている。半透過IPS方式液晶表示装置の反射表示部には外部からの入射光を反射するための反射板が配置されており、表面に微小な凹凸を有する拡散反射板が用いられている(特許文献1)。拡散反射板はマクロな反射面に対して入射角と出射角が異なる反射を示し、これを拡散反射と呼ぶことにする。これに対して、反射面が平らな鏡面反射板ではマクロな反射面に対して入射角と出射角が等しい正反射を示し、これを鏡面反射と呼ぶことにする。   An IPS (In-Plane Switching) liquid crystal display device is characterized by a transmissive display with a wide viewing angle and a high contrast ratio, and a transflective IPS liquid crystal display device in which this is a transflective type has been proposed. A reflection plate for reflecting incident light from the outside is disposed in the reflective display portion of the transflective IPS liquid crystal display device, and a diffuse reflection plate having minute irregularities on the surface is used (Patent Document 1). ). The diffuse reflector reflects the macro-reflecting surface with different incident angles and outgoing angles, and this is called diffuse reflection. On the other hand, a specular reflection plate with a flat reflection surface exhibits regular reflection with the same incident angle and emission angle with respect to a macro reflection surface, and this is called specular reflection.

鏡面反射板では光源と観察者の位置関係の変化に伴い観察者に到達する光量がめまぐるしく変化し、良好な視認性が得られない。これに対して、拡散反射板では上記の変化が少なく、紙のような高品位の視認性が得られる。また、多くの場合観察者は半透過型液晶表示装置を法線方向から観察するが、光源は法線方向から離れた方向にある。この時、光源光が正反射されても観察者には到達しないため、鏡面反射板では充分な光量が得られず、観察者に到達する光量を増大するには拡散反射が必要で、そのため拡散反射板が必要になる。前述のように拡散反射板は表面に微小な凹凸を有し、かつ液晶層に近接するため、拡散反射板の凹部では液晶層がより厚くなる傾向にあり、凸部では液晶層がより薄くなる傾向にある。このように、拡散反射板は液晶層の厚さに局所的な変動を与える原因になる。   With a specular reflector, the amount of light reaching the observer changes rapidly with changes in the positional relationship between the light source and the observer, and good visibility cannot be obtained. On the other hand, the diffuse reflection plate has little change as described above, and high quality visibility like paper can be obtained. In many cases, the observer observes the transflective liquid crystal display device from the normal direction, but the light source is in a direction away from the normal direction. At this time, even if the light source light is specularly reflected, it does not reach the observer, so a sufficient amount of light cannot be obtained with the specular reflector, and diffuse reflection is necessary to increase the amount of light reaching the observer, and therefore diffusion A reflector is required. As described above, since the diffuse reflector has minute irregularities on the surface and is close to the liquid crystal layer, the liquid crystal layer tends to be thicker at the concave portion of the diffuse reflector, and the liquid crystal layer becomes thinner at the convex portion. There is a tendency. Thus, the diffusive reflector causes local fluctuations in the thickness of the liquid crystal layer.

特開2000−338520号公報JP 2000-338520 A

液晶表示装置では2つの電極を用いて液晶層に電界を印加し、このうち画像情報に対応した電位を各画素毎に与える方を画素電極、画素間で共通の電位を与える方を共通電極と呼ぶ。IPS方式液晶表示装置では画素電極と共通電極の少なくとも一方が櫛歯状であり、電気力線は画素電極と共通電極を結ぶように、液晶層内にアーチ状の弧を描いて分布する。アーチ状の電気力線の各部分で電気力線の方向と電界強度が異なることから、電界印加時における液晶の配向状態も不均一となる。均一な液晶配向は電圧無印加時にのみ得られるため、電圧無印加時を暗表示にし、電圧印加と共に透過率、若しくは反射率が増大するノーマリクローズ型の印加電圧依存性にしなければならない。   In a liquid crystal display device, an electric field is applied to a liquid crystal layer using two electrodes, and among these, a pixel electrode is applied with a potential corresponding to image information for each pixel, and a common electrode is applied between pixels. Call. In the IPS liquid crystal display device, at least one of the pixel electrode and the common electrode has a comb-like shape, and electric lines of force are distributed in an arched arc in the liquid crystal layer so as to connect the pixel electrode and the common electrode. Since the direction of the electric lines of force and the electric field strength are different in each part of the arch-shaped electric lines of force, the alignment state of the liquid crystal when the electric field is applied becomes nonuniform. Since uniform liquid crystal alignment can be obtained only when no voltage is applied, it is necessary to make dark display when no voltage is applied, and to be a normally-closed applied voltage dependency in which transmittance or reflectance increases with voltage application.

偏光板を用いた反射型液晶表示装置では、反射板に到達する光の偏光状態を円偏光にすることにより暗表示を得る。即ちこの時、偏光板を通過した時点で透過光の偏光状態は直線偏光であるが、これが反射板で反射されて再び偏光板に到達する際に偏光方向が90度回転した直線偏光になり、偏光板で完全に吸収されるからである。このことは、半透過IPS方式液晶表示装置を含む半透過型液晶表示装置の全般に該当する。   In a reflective liquid crystal display device using a polarizing plate, dark display is obtained by making the polarization state of light reaching the reflector plate circularly polarized. That is, at this time, the polarization state of the transmitted light is linearly polarized light after passing through the polarizing plate, but when this light is reflected by the reflector and reaches the polarizing plate again, it becomes linearly polarized light whose polarization direction is rotated by 90 degrees, This is because it is completely absorbed by the polarizing plate. This applies to all transflective liquid crystal display devices including transflective IPS liquid crystal display devices.

液晶層と偏光板の間には位相板を配置するが、円偏光を実現するためには液晶層と位相板のΔnd(複屈折×層厚)の合成値を4分の1波長にしなければならない。電圧無印加時においてIPS方式液晶表示装置の液晶層はホモジニアス配向であり、液晶層の見かけのΔnは0nmにはならない。そのためΔndも0nmにはならず、ある一定値をとる。前述のように拡散反射板は液晶層の厚さに局所的な変動を与えるため、Δndも変動することになる。液晶層のΔndが所定の設計値から変動すれば、反射板に到達する光の偏光状態も円偏光とは異なる偏光状態になり、暗表示時の反射率が増大する。暗表示時の反射率が増大すれば反射表示のコントラスト比が減少して良好な反射表示が得られない。   A phase plate is disposed between the liquid crystal layer and the polarizing plate. To realize circularly polarized light, the combined value of Δnd (birefringence × layer thickness) of the liquid crystal layer and the phase plate must be a quarter wavelength. When no voltage is applied, the liquid crystal layer of the IPS mode liquid crystal display device is homogeneously aligned, and the apparent Δn of the liquid crystal layer does not become 0 nm. Therefore, Δnd does not become 0 nm but takes a certain value. As described above, since the diffusive reflecting plate locally varies the thickness of the liquid crystal layer, Δnd also varies. If Δnd of the liquid crystal layer varies from a predetermined design value, the polarization state of the light reaching the reflection plate also becomes a polarization state different from the circular polarization, and the reflectance during dark display increases. If the reflectance during dark display increases, the contrast ratio of the reflective display decreases and a good reflective display cannot be obtained.

コントラスト比の低下を防ぐためには、拡散反射板の凹凸の高さを低くすべきである。その一方で、拡散反射板の拡散特性は凹凸の高さと凹凸のピッチ(凹部と凸部の平均距離)に依存する。凹凸のピッチを一定にしたまま凹凸の高さを低減すれば、拡散反射板は鏡面反射板に近い反射特性になり、充分な拡散反射が得られない。凹凸の高さと凹凸のピッチの比を一定にしながら凹凸の高さを低減しなければならないが、加工プロセス精度の制約を受けることになり、凹凸の高さを充分に低減できない場合がある。従って、従来技術を用いた場合に、コントラスト比と拡散特性の両立は困難であった。   In order to prevent a reduction in contrast ratio, the height of the unevenness of the diffuse reflector should be lowered. On the other hand, the diffusion characteristics of the diffuse reflector depend on the height of the unevenness and the pitch of the unevenness (the average distance between the recesses and the protrusions). If the height of the unevenness is reduced while keeping the pitch of the unevenness constant, the diffuse reflector has a reflection characteristic close to that of the specular reflector, and sufficient diffuse reflection cannot be obtained. It is necessary to reduce the height of the unevenness while keeping the ratio of the height of the unevenness and the pitch of the unevenness constant. However, there are cases where the height of the unevenness cannot be sufficiently reduced due to restrictions on processing process accuracy. Therefore, when the conventional technique is used, it is difficult to achieve both the contrast ratio and the diffusion characteristics.

本発明の目的は、暗表示における反射率を低減し、反射表示のコントラスト比を向上することが可能であり、且つ拡散性も良好に保つことができる液晶表示装置を提供することである。   An object of the present invention is to provide a liquid crystal display device capable of reducing the reflectance in dark display, improving the contrast ratio of the reflective display, and maintaining good diffusibility.

本発明は、上記課題を解決するために、一対の基板と、一対の基板間に挟持された液晶層と、複数の画素と、複数の画素の各画素内に反射表示部と透過表示部と、を有し、一対の基板の一方基板と液晶層間は、複数の信号配線と、複数の信号配線に交差して形成された複数の走査配線と、信号配線と走査配線との交差部に形成されたアクティブ素子と、画素電極と、共通電極と、反射表示部に対応する位置に形成された拡散反射部と、が形成され、拡散反射部は、凹部と凸部が形成された凹凸形成層と、凹凸形成層の凹部上に形成された共通電極と、凹凸形成層の凸部上及び共通電極上に形成された反射層と、を有する構成とする。   In order to solve the above problems, the present invention provides a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, a plurality of pixels, a reflective display unit and a transmissive display unit in each pixel of the plurality of pixels. And between one substrate of the pair of substrates and the liquid crystal layer are formed at the intersection of the plurality of signal lines, the plurality of scanning lines formed to intersect the plurality of signal lines, and the signal lines and the scanning lines. The formed active element, the pixel electrode, the common electrode, and the diffuse reflection portion formed at a position corresponding to the reflective display portion are formed, and the diffuse reflection portion is a concavo-convex forming layer in which a concave portion and a convex portion are formed. And a common electrode formed on the concave portion of the concave-convex forming layer, and a reflective layer formed on the convex portion of the concave-convex forming layer and the common electrode.

また、一対の基板と、一対の基板間に挟持された液晶層と、複数の画素と、複数の画素の各画素内に反射表示部と透過表示部と、を有し、一対の基板の一方基板と液晶層間は、複数の信号配線と、複数の信号配線に交差して形成された複数の走査配線と、信号配線と走査配線との交差部に形成されたアクティブ素子と、画素電極と、共通電極と、反射表示部に対応する位置に形成された拡散反射部と、が形成され、拡散反射部は、凹部と凸部が形成された凹凸形成層と、凹凸形成層上に形成された反射層と、反射層の凹部上に形成された共通電極と、を有する構成とする。   Further, the display device includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, a plurality of pixels, and a reflective display portion and a transmissive display portion in each pixel of the plurality of pixels. Between the substrate and the liquid crystal layer, a plurality of signal wirings, a plurality of scanning wirings formed to cross the plurality of signal wirings, an active element formed at an intersection of the signal wirings and the scanning wirings, a pixel electrode, A common electrode and a diffuse reflection part formed at a position corresponding to the reflective display part are formed, and the diffuse reflection part is formed on the concave / convex forming layer on which the concave part and the convex part are formed, and on the concave / convex forming layer The reflective layer and the common electrode formed on the concave portion of the reflective layer are used.

また、一対の基板と、その一対の基板間に挟持された液晶層と、複数の画素と、複数の画素の各画素内に反射表示部と透過表示部と、を有し、一方基板と液晶層間は、複数の信号配線と、複数の信号配線に交差して形成された複数の走査配線と、信号配線と走査配線との交差部に形成されたアクティブ素子と、画素電極と、反射表示部に対応する位置に形成された拡散反射部と、が形成され、一対の基板の他方基板と液晶層間は、共通電極が形成され、拡散反射部は、凹部と凸部が形成された凹凸形成層と、凹凸形成層の凹部上に形成された画素電極と、凹凸形成層の凸部上及び画素電極上に形成された反射層と、を有する構成とする。   In addition, the display device includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, a plurality of pixels, and a reflective display portion and a transmissive display portion in each pixel of the plurality of pixels. The layers include a plurality of signal lines, a plurality of scanning lines formed to intersect the plurality of signal lines, an active element formed at the intersection of the signal lines and the scanning lines, a pixel electrode, and a reflective display unit. A diffusive reflecting portion formed at a position corresponding to the substrate, a common electrode is formed between the other substrate of the pair of substrates and the liquid crystal layer, and the diffusing reflective portion is a concavo-convex forming layer in which concave portions and convex portions are formed. And a pixel electrode formed on the concave portion of the concave-convex forming layer, and a reflective layer formed on the convex portion of the concave-convex forming layer and the pixel electrode.

表示における反射率を低減し、反射表示のコントラスト比を向上することが可能であり、且つ拡散性も良好に保つことができる液晶表示装置を提供できる。   It is possible to provide a liquid crystal display device capable of reducing the reflectance in display, improving the contrast ratio of the reflective display, and maintaining good diffusibility.

以下図面を用いて各実施例を説明する。   Embodiments will be described below with reference to the drawings.

本発明の液晶表示装置の1画素の断面を図1,図3,図4に模式的に示す。それぞれの切断面は図2に記載してある。液晶表示パネルは第一の基板SU1と第二の基板SU2と液晶層LCLからなり、第一の基板SU1と第二の基板SU2は液晶層LCLを挟持する。第一の基板SU1と第二の基板SU2は液晶層LCLに近接する面上に液晶層LCLの配向状態を安定化するための配向膜(第一の配向膜AL1,第二の配向膜AL2)をそなえる。また第二の基板SU2の液晶層LCLに近接する面上に液晶層LCLに電圧を印加するための手段を備える。また、図1にあるように一画素内は透過表示部と反射表示部に面積的に分割されている。図3,図4(a)はそれぞれ透過表示部と反射表示部の断面である。   A cross section of one pixel of the liquid crystal display device of the present invention is schematically shown in FIGS. Each cut surface is described in FIG. The liquid crystal display panel includes a first substrate SU1, a second substrate SU2, and a liquid crystal layer LCL. The first substrate SU1 and the second substrate SU2 sandwich the liquid crystal layer LCL. The first substrate SU1 and the second substrate SU2 are alignment films (first alignment film AL1, second alignment film AL2) for stabilizing the alignment state of the liquid crystal layer LCL on the surface close to the liquid crystal layer LCL. Is provided. Further, a means for applying a voltage to the liquid crystal layer LCL is provided on the surface of the second substrate SU2 that is close to the liquid crystal layer LCL. Further, as shown in FIG. 1, one pixel is divided into a transmissive display portion and a reflective display portion in terms of area. FIG. 3 and FIG. 4A are cross sections of the transmissive display unit and the reflective display unit, respectively.

第一の基板SU1は透明性と平坦性に優れ、かつイオン性不純物の含有が少ないホウケイサンガラス製であり、厚さは約400μmである。第一の基板SU1は液晶層LCLに近接する側より第一の配向膜AL1,段差形成層ML,保護層PL,位相差層RE,位相差膜配向膜ALP,平坦化層LL,カラーフィルタCF,ブラックマトリクスBMが順次積層されている。第一の配向膜AL1と位相差膜配向膜ALPはポリイミド系の有機高分子膜であり、ラビング法により配向処理されており、近接する液晶層LCLに約2度のプレチルト角を付与する所謂水平配向膜である。保護層PLと平坦化層LLはアクリル系樹脂であり、透明性に優れ、下地の凹凸を平坦化し、かつ溶剤の浸透を防ぐ機能を有する。段差形成層MLは保護層PLや平坦化層LLと同様アクリル系樹脂であり、反射表示部に対応する部分にのみ分布する。カラーフィルタは赤色,緑色,青色を呈するストライプ状の各部分が繰り返し配列された平面構造を有する。ブラックマトリクスは黒色レジストからなり、画素境界部に対応するように格子状の平面分布構造を有する。   The first substrate SU1 is made of borosilicate glass that is excellent in transparency and flatness and contains little ionic impurities, and has a thickness of about 400 μm. The first substrate SU1 includes a first alignment film AL1, a step forming layer ML, a protective layer PL, a retardation layer RE, a retardation film alignment film ALP, a planarization layer LL, and a color filter CF from the side close to the liquid crystal layer LCL. , And black matrix BM are sequentially stacked. The first alignment film AL1 and the retardation film alignment film ALP are polyimide-based organic polymer films, which are aligned by a rubbing method, so-called horizontal that gives a pretilt angle of about 2 degrees to the adjacent liquid crystal layer LCL. It is an alignment film. The protective layer PL and the flattening layer LL are acrylic resins, have excellent transparency, and have a function of flattening the unevenness of the base and preventing permeation of the solvent. The step forming layer ML is an acrylic resin like the protective layer PL and the planarizing layer LL, and is distributed only in a portion corresponding to the reflective display portion. The color filter has a planar structure in which striped portions exhibiting red, green, and blue are repeatedly arranged. The black matrix is made of a black resist and has a lattice-like planar distribution structure so as to correspond to the pixel boundary portion.

第二の基板SU2は第一の基板SU1と同様にホウケイサンガラス製であり、厚さは約400μmである。第二の基板SU2は液晶層LCLに近接する側より順に、主に第二の配向膜AL2,画素電極PE,層間絶縁膜PCIL,共通電極CE,アクティブ素子,走査配線GL,信号配線SLを備える。第二の配向膜AL2は、第一の配向膜AL1と同様にポリイミド系の有機高分子膜からなる水平配向膜である。画素電極PEと共通電極CEはいずれも透明性と導電性を兼ね備えたインジウム錫酸化物(Indium Tin Oxide、ITO)であり、層厚は100nmである。両者は窒化珪素(SiN)製の層間絶縁膜PCILによって隔たれており、層間絶縁膜PCILの層厚は300nmである。画素電極PEの平面形状は櫛歯状であるのに対し、共通電極CEは後述するように共通電極空孔部CEHを有するものの、各画素のほぼ全面に渡って分布している。画素電極PEと共通電極CEが層間絶縁膜PCILで隔てられていることにより、電圧印加時には両者の間にアーチ状の電気力線が液晶層中にはみ出すように形成される。これは基板平面に対して平行な成分を有する所謂横電界であり、液晶層LCLの配向状態を主に面内で回転するように変形するIPS方式液晶表示パネルである。   Like the first substrate SU1, the second substrate SU2 is made of borosilicate glass and has a thickness of about 400 μm. The second substrate SU2 mainly includes a second alignment film AL2, a pixel electrode PE, an interlayer insulating film PCIL, a common electrode CE, an active element, a scanning line GL, and a signal line SL in order from the side close to the liquid crystal layer LCL. . Similar to the first alignment film AL1, the second alignment film AL2 is a horizontal alignment film made of a polyimide organic polymer film. The pixel electrode PE and the common electrode CE are both indium tin oxide (ITO) having both transparency and conductivity, and the layer thickness is 100 nm. Both are separated by an interlayer insulating film PCIL made of silicon nitride (SiN), and the thickness of the interlayer insulating film PCIL is 300 nm. The planar shape of the pixel electrode PE is comb-shaped, whereas the common electrode CE has a common electrode hole portion CEH as described later, but is distributed over almost the entire surface of each pixel. Since the pixel electrode PE and the common electrode CE are separated from each other by the interlayer insulating film PCIL, an arch-shaped electric field line is formed between the two when the voltage is applied. This is a so-called lateral electric field having a component parallel to the substrate plane, and is an IPS liquid crystal display panel in which the alignment state of the liquid crystal layer LCL is mainly deformed so as to rotate in the plane.

IPS方式液晶表示パネルでは電圧印加に伴う液晶層のチルト角増大が少ないため、視角方向での階調表示特性に優れた広視野角の表示が得られる。また、図1では画素電極と共通電極が重畳する部分が多数存在するが、この部分は液晶層に対して並列に結合しているため保持期間中の印加電圧を一定に保つ保持容量として機能する。   In the IPS liquid crystal display panel, the increase in tilt angle of the liquid crystal layer due to voltage application is small, so that a wide viewing angle display excellent in gradation display characteristics in the viewing angle direction can be obtained. Further, in FIG. 1, there are many portions where the pixel electrode and the common electrode overlap each other, but since this portion is coupled in parallel to the liquid crystal layer, it functions as a holding capacitor that keeps the applied voltage constant during the holding period. .

これに加えて、第二の基板SU2の反射表示部には共通電極CEの上側に反射層(反射電極RF)を備える。更に、共通電極CEの下層には凹凸形成層SCILを有し、凹凸形成層SCILは反射層と重畳する部分において多数の微小でかつなだらかな凹凸を有する。凹凸形成層SCILは有機絶縁膜からなり、有機絶縁膜の表面をエッチングして、その後これを加熱して融解状態とする。この時の表面張力を利用して表面をなだらかな凹凸にし、これを固化して凹凸を形成する。凹凸形成層SCILの上面にある反射層の反射電極RFは凹凸形成層SCILに沿った形状になるため、反射層は巨視的な層平面に対して傾いた多数の微小平面を有し、拡散反射を示す。鏡面反射板は光源と観察方向の関係が変化すれば反射輝度がめまぐるしく変化して、視認上好ましくない。拡散反射板は光源と観察方向の関係が変化しても反射輝度の変化が少なく、完全拡散面に近い高品位の反射表示面が得られる。反射層は高反射率を示すアルミ膜であり、反射層と共通電極を同電位にするため両者の間にモリブデン膜を介在している。   In addition, the reflective display portion of the second substrate SU2 includes a reflective layer (reflective electrode RF) above the common electrode CE. In addition, a concavo-convex forming layer SCIL is provided below the common electrode CE, and the concavo-convex forming layer SCIL has a large number of minute and gentle concavo-convex portions in a portion overlapping the reflective layer. The concavo-convex forming layer SCIL is made of an organic insulating film, and the surface of the organic insulating film is etched and then heated to a molten state. The surface tension at this time is used to make the surface smooth and uneven, and this is solidified to form the unevenness. Since the reflective electrode RF of the reflective layer on the upper surface of the concavo-convex forming layer SCIL has a shape along the concavo-convex forming layer SCIL, the reflective layer has a large number of minute planes inclined with respect to the macroscopic layer plane, and is diffusely reflected. Indicates. When the relationship between the light source and the viewing direction changes, the specular reflection plate changes rapidly, which is not preferable for visual recognition. Even if the relationship between the light source and the viewing direction changes, the diffuse reflector has little change in reflected luminance, and a high-quality reflective display surface close to a perfect diffuse surface can be obtained. The reflective layer is an aluminum film exhibiting a high reflectivity, and a molybdenum film is interposed between the reflective layer and the common electrode so as to have the same potential.

凹凸形成層SCILの平面構造において凸部に着目すると、凸部をより密に分布すれば平坦部の面積比が減少して拡散反射の割合が増大する。例えば凸部を円形にして最密重点配置にすれば凸部を最も密に分布させることが可能になる。図7(a)はこの状態の凸部の分布を示した平面図であり、図7(a)は凹凸形成層SCILにおける等高線に相当する。図7(a)に示した円の内側が凸部であり、その周囲よりも高くなっている。   Focusing on the convex portions in the planar structure of the concave-convex forming layer SCIL, if the convex portions are more densely distributed, the area ratio of the flat portions is reduced and the ratio of diffuse reflection is increased. For example, if the convex portions are formed in a circular shape and are arranged in the closest density, the convex portions can be distributed most densely. FIG. 7A is a plan view showing the distribution of convex portions in this state, and FIG. 7A corresponds to contour lines in the concavo-convex forming layer SCIL. The inner side of the circle shown in FIG. 7A is a convex portion, which is higher than the surrounding area.

しかし、図7(a)に示したように凸部の分布が規則的であれば、反射光に干渉効果が生じ、反射光に着色が生じる。干渉効果による着色は縞状の色分布を示し、かつ観察方向の変化に伴い色分布がめまぐるしく変化するため、視認上好ましくない。充分な拡散反射を保持しながら干渉効果を軽減するためには、個々の凸部を最密重点配置から無作為にずらせば良い。即ち、ずらす距離については最大値を最密重点配置における凸部の距離のおよそ半分以下にしながら無作為に決定し、かつずらす方向については無作為に決定すれば良い。   However, as shown in FIG. 7A, when the distribution of the convex portions is regular, an interference effect occurs in the reflected light, and the reflected light is colored. Coloring due to the interference effect is not preferable for visual recognition because it shows a striped color distribution and the color distribution changes rapidly as the viewing direction changes. In order to reduce the interference effect while maintaining sufficient diffuse reflection, it is only necessary to randomly shift the individual protrusions from the close-packed arrangement. In other words, the distance to be shifted may be determined at random while the maximum value is about half or less of the distance of the convex portion in the closest densely arranged arrangement, and the direction to be shifted may be determined at random.

この時、図7(b)に示したように2つの凸部が重畳し、平坦部の面積比が増大する。そこで図7(c)に示したように、重畳した凸部については連結し、周囲が疎になった凸部については面積を拡大すれば平坦部の面積比増大を抑制できる。あるいはまた、近接する凸部との位置関係を考慮して凸部の形状を楕円体若しくは多角形に適宜変形しても良い。   At this time, as shown in FIG. 7B, the two convex portions overlap each other, and the area ratio of the flat portion increases. Therefore, as shown in FIG. 7C, if the overlapping convex portions are connected and the area of the convex portions whose periphery is sparse is increased, an increase in the area ratio of the flat portion can be suppressed. Alternatively, the shape of the convex portion may be appropriately changed to an ellipsoid or a polygon in consideration of the positional relationship with the adjacent convex portion.

反射表示部において、共通電極CEは複数の共通電極空孔部CEHを有する。共通電極空孔部CEHと凸部の分布を図7(d)に示した。図7(d)中に破線で示したように、共通電極空孔部CEHは凹凸形成層SCILの凸部CONVに対応するように分布しており、その結果として凹凸形成層と重畳する部分において、共通電極は凹凸形成層の凹部に対応するように分布する。共通電極CEの層厚の分だけ凹凸形成層SCILによる凹部と凸部の高さの差が低減する。また、共通電極CEに平坦化の効果はなく、その厚さは均一である。凹凸形成層SCILと共通電極CEの上層に反射層が積層されるが、反射層の微小平面の角度分布は共通電極空孔部CEHが存在しない場合と同一になり、光拡散性も共通電極空孔部CEHが存在しない場合と同一になる。   In the reflective display portion, the common electrode CE has a plurality of common electrode hole portions CEH. The distribution of the common electrode hole part CEH and the convex part is shown in FIG. As shown by a broken line in FIG. 7D, the common electrode hole part CEH is distributed so as to correspond to the convex part CONV of the concave-convex forming layer SCIL, and as a result, in a portion overlapping with the concave-convex forming layer. The common electrodes are distributed so as to correspond to the concave portions of the concave-convex forming layer. The difference in height between the concave portion and the convex portion due to the concave / convex formation layer SCIL is reduced by the thickness of the common electrode CE. Further, the common electrode CE has no flattening effect and its thickness is uniform. Although the reflective layer is laminated on the concavo-convex forming layer SCIL and the common electrode CE, the angle distribution of the micro-plane of the reflective layer is the same as when the common electrode hole portion CEH does not exist, and the light diffusivity is also common electrode empty. This is the same as when no hole CEH is present.

反射層の上層には層間絶縁膜PCILと画素電極PEがあり、層間絶縁膜PCILは窒化珪素、画素電極PEはインジウム錫酸化物であり、何れも平坦化の効果がない。更にその上方には後述するように第二の配向膜AL2が存在し液晶層に接しているが、層厚が薄いため平坦化の効果がほとんどない。しかし、共通電極空孔部CEHにより凹凸形成層の凹部と凸部の高さの差が低減したことにより、反射部液晶層に与える局所的な層厚変動は共通電極空孔部CEHが存在しない場合に比較して減少する。尚、共通電極CEは画素電極PEと絶縁するためコンタクトホールの周囲で除く必要があるが、共通電極空孔部CEHもこの際に同時に形成できる。そのため、共通電極空孔部CEHは製造工程を増やさずに形成可能である。   An interlayer insulating film PCIL and a pixel electrode PE are provided above the reflective layer. The interlayer insulating film PCIL is made of silicon nitride and the pixel electrode PE is made of indium tin oxide, and both have no flattening effect. Further, as will be described later, a second alignment film AL2 exists above and is in contact with the liquid crystal layer. However, since the layer thickness is thin, there is almost no flattening effect. However, since the difference in height between the concave and convex portions of the concave / convex forming layer is reduced by the common electrode hole portion CEH, the local layer thickness variation applied to the reflective portion liquid crystal layer does not have the common electrode hole portion CEH. Decrease compared to the case. The common electrode CE needs to be removed around the contact hole in order to insulate it from the pixel electrode PE, but the common electrode hole portion CEH can be formed at the same time. Therefore, the common electrode hole portion CEH can be formed without increasing the number of manufacturing steps.

図2に示した様に、信号配線SLと走査配線GLは互いに交差している。信号配線と走査配線の交差部の近傍にはそれぞれアクティブ素子を有し、画素電極PEと1対1に対応している。画素電極PEにはアクティブ素子を介して信号配線より電位が付与され、アクティブ素子の動作は走査配線により制御される。アクティブ素子は薄膜トランジスタであり、そのチャネル部は電子移動度の比較的高いポリシリコン層から成る。ポリシリコン層はCVD(Chemical Vapor Deposition)法で形成したアモルファスシリコン層をレーザー光線で加熱焼成して形成される。各画素電極は長方形状で互いに独立に制御され、かつ第二の基板SU2上に格子状に配置されている。   As shown in FIG. 2, the signal line SL and the scanning line GL intersect each other. Active elements are provided in the vicinity of the intersections between the signal lines and the scanning lines, and correspond to the pixel electrodes PE on a one-to-one basis. A potential is applied to the pixel electrode PE from the signal wiring through the active element, and the operation of the active element is controlled by the scanning wiring. The active element is a thin film transistor, and its channel portion is made of a polysilicon layer having a relatively high electron mobility. The polysilicon layer is formed by heating and baking an amorphous silicon layer formed by a CVD (Chemical Vapor Deposition) method with a laser beam. Each pixel electrode is rectangular and controlled independently of each other, and is arranged in a grid pattern on the second substrate SU2.

透過表示部で光はカラーフィルタCFを一回だけ通過するのに対し、反射表示部では反射板で反射されるため二回通過する。そのため、反射表示部と透過表示部に同じカラーフィルタCFを用いれば、実効的な透過率は後者のほうが低下する。更に、反射表示部は外部からの入射光を光源に利用するため、周囲が充分に明るくない場合には明るい表示が得られない。より広範な環境下で明るい反射表示を得るため、反射表示部のカラーフィルタは透過表示部よりも高透過率にする。   In the transmissive display portion, the light passes through the color filter CF only once, whereas in the reflective display portion, the light passes through the color filter CF because it is reflected by the reflecting plate. Therefore, if the same color filter CF is used for the reflective display portion and the transmissive display portion, the effective transmittance is lowered in the latter case. Furthermore, since the reflective display unit uses incident light from the outside as a light source, a bright display cannot be obtained if the surroundings are not sufficiently bright. In order to obtain a bright reflective display under a wider range of environments, the color filter of the reflective display unit has a higher transmittance than the transmissive display unit.

具体的には、図5に示した様に、反射表示部にカラーフィルタCFの存在しないカラーフィルタ空孔部CFHを配置し、空孔部との加法混色で反射表示する。ここで、図5は第一の基板SU1の平面図であり、本実施例の液晶表示装置のカラーフィルタCFやブラックマトリクスBMの平面分布を示している。図5は3画素分に対応する領域を含んでおり、左側より赤,緑,青のカラーフィルタである。あるいはまた、反射表示部のカラーフィルタの厚さを低減しても同様の効果が得られる。   Specifically, as shown in FIG. 5, a color filter hole portion CFH in which the color filter CF does not exist is arranged in the reflection display portion, and reflection display is performed by additive color mixing with the hole portion. Here, FIG. 5 is a plan view of the first substrate SU1, and shows a planar distribution of the color filter CF and the black matrix BM of the liquid crystal display device of the present embodiment. FIG. 5 includes a region corresponding to three pixels, and is a red, green, and blue color filter from the left side. Alternatively, the same effect can be obtained by reducing the thickness of the color filter of the reflective display portion.

図6は図5と同様に第一の基板の平面図であるが、カラーフィルタCFやブラックマトリクスBMに加えて位相差層REの平面分布を示している。位相差層REの平面分布を示すため、ブラックマトリクスBMは実際とは異なるものの白ぬきで示してある。位相差層REは各画素の反射表示部を結ぶようにストライプ状に分布する。   FIG. 6 is a plan view of the first substrate as in FIG. 5, but shows a planar distribution of the retardation layer RE in addition to the color filter CF and the black matrix BM. In order to show the planar distribution of the phase difference layer RE, the black matrix BM is shown as white but different from the actual one. The retardation layer RE is distributed in stripes so as to connect the reflective display portions of the respective pixels.

液晶層LCLは室温を含む広い温度範囲でネマチック相を示し、液晶配向方向の誘電率がその垂直方向よりも大きい正の誘電率異方性を示す。なおかつ液晶層LCLは高抵抗を示すので、アクティブ素子がオフとなる保持期間中においても電圧低下が十分に少なく、保持期間中の透過率低下や所謂フリッカ現象を生じない。第一の配向膜AL1と第二の配向膜AL2にラビング法で配向処理を施した後、第一の基板と第二の基板を組み立て、液晶材料を真空封入して前述の液晶層LCLとする。   The liquid crystal layer LCL exhibits a nematic phase in a wide temperature range including room temperature, and exhibits positive dielectric anisotropy in which the dielectric constant in the liquid crystal alignment direction is larger than that in the vertical direction. In addition, since the liquid crystal layer LCL exhibits high resistance, the voltage drop is sufficiently small even during the holding period in which the active element is turned off, and the transmittance reduction and the so-called flicker phenomenon do not occur during the holding period. After the first alignment film AL1 and the second alignment film AL2 are subjected to alignment treatment by a rubbing method, the first substrate and the second substrate are assembled, and a liquid crystal material is vacuum-encapsulated to form the liquid crystal layer LCL described above. .

第一の配向膜AL1と第二の配向膜AL2の配向処理方向を反平行としたことにより、液晶層LCLを配向状態が安定なホモジニアス配向とする。その配向方向は信号電極の櫛歯方向に対して10度を成し、電圧印加時に発生する横電界に対して80度をなす。これにより、電圧印加時において充分に大きな液晶層の配向変化が得られる。なおかつ、電圧印加時の配向変化方向、即ち層内における液晶層の回転方向(時計回り、若しくは反時計回り)が一義的に定まり、安定な配向変化が得られる。   By making the alignment treatment directions of the first alignment film AL1 and the second alignment film AL2 antiparallel, the liquid crystal layer LCL is made homogeneous alignment with a stable alignment state. The orientation direction is 10 degrees with respect to the comb-tooth direction of the signal electrode, and 80 degrees with respect to the transverse electric field generated when a voltage is applied. Thereby, a sufficiently large change in the orientation of the liquid crystal layer can be obtained when a voltage is applied. In addition, the direction of orientation change when a voltage is applied, that is, the rotation direction (clockwise or counterclockwise) of the liquid crystal layer in the layer is uniquely determined, and a stable orientation change can be obtained.

第一の基板SU1と第二の基板SU2の外側には第一の偏光板PL1と第二の偏光板PL2を配置しており、第一の偏光板PL1と第二の偏光板PL2はヨウ素系色素を含み、ヨウ素は偏光板内で多量体を形成している。その2色性により、偏光板は入射した自然光を偏光度が十分に高い直線偏光に変換する。ヨウ素系色素の多量体の配向方向が吸収軸であり、第一の偏光板PL1と第二の偏光板PL2の吸収軸はその平面法線方向から観察して互いに直交し、かつ第一の偏光板PL1の吸収軸は液晶配向方向に平行である。   A first polarizing plate PL1 and a second polarizing plate PL2 are arranged outside the first substrate SU1 and the second substrate SU2, and the first polarizing plate PL1 and the second polarizing plate PL2 are iodine-based. It contains a pigment and iodine forms a multimer in the polarizing plate. Due to the dichroism, the polarizing plate converts incident natural light into linearly polarized light having a sufficiently high degree of polarization. The orientation direction of the iodine dye multimer is the absorption axis, and the absorption axes of the first polarizing plate PL1 and the second polarizing plate PL2 are orthogonal to each other when observed from the plane normal direction. The absorption axis of the plate PL1 is parallel to the liquid crystal alignment direction.

図8は位相差層REの形成プロセスを示す模式図であり、図6中に記したS9−S10断面について記載している。また、図8において第一の基板SU1上のカラーフィルタCFと平坦化層LLは省略してある。図8(a)は位相差膜配向膜ALPをラビング法により配向処理している状態であり、図8(b)に示した様に、位相差層REは位相差膜配向膜ALPの配向処理方向に沿ってホモジニアス配向する。位相差層REのもとになる材料はジアクリル系液晶混合物であり、これを光反応開始剤とともに有機溶媒に溶かして、スピンコート若しくは印刷等の手段で位相差膜配向膜ALP上に塗布する。塗布直後は溶液状態であるが、溶媒を蒸発させながら位相差膜配向膜ALPの配向方向に沿って配向させる。   FIG. 8 is a schematic diagram showing the formation process of the retardation layer RE, and describes the S9-S10 cross section shown in FIG. In FIG. 8, the color filter CF and the planarization layer LL on the first substrate SU1 are omitted. FIG. 8A shows a state in which the retardation film alignment film ALP is aligned by rubbing. As shown in FIG. 8B, the retardation layer RE is aligned with the retardation film alignment film ALP. Homogeneous orientation along the direction. The material for the retardation layer RE is a diacrylic liquid crystal mixture, which is dissolved in an organic solvent together with a photoreaction initiator and applied onto the retardation film alignment film ALP by means such as spin coating or printing. Although it is in a solution state immediately after coating, it is aligned along the alignment direction of the retardation film alignment film ALP while evaporating the solvent.

図8(c)に示した様に、これに紫外光を照射して分子末端のアクリル基同士を重合反応させる。この時酸素は重合反応の阻害要因となるが、光反応開始剤の濃度が充分であれば光反応が充分な速さで進行する。図8(c)には楕円で示した液晶分子がほぼ完全に結合された状態を示している。図8(d)は有機溶媒により現像した状態であり、光照射部にのみ位相差層REが形成される。以上により、液晶層LCLにおける配向状態を概略保ったまま固体化して位相差層REを形成する。図8(e)に示した様に、これ以後位相差層はRE保護層PL形成,第一の配向膜AL1形成の各プロセスで過熱される。高温状態におけるΔndの減少は、高温状態の温度が一定であれば高温状態におかれる時間の長さにほぼ比例するため、これを勘案して初期のΔndを設定する。   As shown in FIG. 8C, this is irradiated with ultraviolet light to cause a polymerization reaction between acrylic groups at the molecular ends. At this time, oxygen becomes an inhibitory factor for the polymerization reaction, but if the concentration of the photoinitiator is sufficient, the photoreaction proceeds at a sufficient speed. FIG. 8C shows a state in which liquid crystal molecules indicated by ellipses are almost completely bonded. FIG. 8D shows a state developed with an organic solvent, and the retardation layer RE is formed only on the light irradiation portion. As described above, the retardation layer RE is formed by solidifying while maintaining the alignment state in the liquid crystal layer LCL roughly. As shown in FIG. 8E, thereafter, the retardation layer is overheated in each process of forming the RE protective layer PL and forming the first alignment film AL1. Since the decrease in Δnd in the high temperature state is substantially proportional to the length of time in the high temperature state if the temperature in the high temperature state is constant, the initial Δnd is set in consideration of this.

位相差層REは反射表示部に必要であるが、透過表示部には不要である。位相差層REが透過表示部に形成されれば透過表示のコントラスト比が低下するため、位相差層REは第二の基板SU2上の透過表示部に対応する以外の部分にのみ作成する。具体的には、光照射時にフォトマスクを用いて位相差層REが必要な部分にのみ光照射して固体化する。光照射されない部分は固体化されないため、有機溶剤等で洗浄して取り除く。この場合には透過表示部から位相差層REを物理的に取り除くため、その位相差の影響を完全になくすることができる。あるいはまた、透過表示部に対応する部分はジアクリル系液晶混合物を加熱して等方層にし、この状態で光照射して等方相のまま固体化してもよい。この場合には有機現像プロセスが不要となる。   The retardation layer RE is necessary for the reflective display unit, but is not necessary for the transmissive display unit. If the retardation layer RE is formed in the transmissive display portion, the contrast ratio of the transmissive display is lowered. Therefore, the retardation layer RE is formed only in a portion other than the transmissive display portion on the second substrate SU2. Specifically, only a portion where the retardation layer RE is necessary is irradiated with light using a photomask during light irradiation to solidify. Since the portion not irradiated with light is not solidified, it is removed by washing with an organic solvent or the like. In this case, since the retardation layer RE is physically removed from the transmissive display portion, the influence of the retardation can be completely eliminated. Alternatively, the portion corresponding to the transmissive display portion may be heated to the isotropic liquid crystal mixture to form an isotropic layer, and light is irradiated in this state to solidify the isotropic phase. In this case, an organic development process becomes unnecessary.

第一の偏光板PL1と位相差層REと反射表示部液晶層の光学軸方向、並びに位相差層と反射表示部液晶層のΔndは、広帯域4分の1波長板と同様にして決定される。広帯域4分の1波長板は偏光板、2分の1波長板、4分の1波長板を順次積層した構造を有し、波長550nmを中心とした可視波長域のより広い波長域で入射偏光を円偏光、若しくはこれにごく近い偏光状態に変換する機能を有する。   The optical axis directions of the first polarizing plate PL1, the retardation layer RE, and the reflective display portion liquid crystal layer, and Δnd of the retardation layer and the reflective display portion liquid crystal layer are determined in the same manner as in the broadband quarter-wave plate. . The broadband quarter-wave plate has a structure in which a polarizing plate, a half-wave plate, and a quarter-wave plate are sequentially stacked, and is incident polarized in a wider wavelength range of the visible wavelength centered at a wavelength of 550 nm. Has a function of converting the light into circularly polarized light or a polarization state very close to this.

その原理をポアンカレ球表示を用いて以下に説明する。ポアンカレ球表示については、応用物理学会編、森北出版「結晶光学」、あるいは鶴田匡夫著、培風館「応用光学II」等の書籍に詳細に解説されている。また、以下ではポアンカレ球を地球に見立て、S3軸とポアンカレ球の交点を北極と南極、S1,S2平面とポアンカレ球の交線を赤道と呼ぶことにする。この場合、北極と南極が円偏光を表し、赤道が直線偏光を表し、その他の部分が楕円偏光を表す。また、S1,S2,S3軸はそれぞれ偏光状態のストークスパラメータであり、強度を表すストークスパラメータS0で規格化された値である。   The principle will be described below using the Poincare sphere display. The Poincare sphere display is described in detail in books such as “Applied Physics Society”, Morikita Publishing “Crystal Optics”, or by Tatsuta Tatsuo and Baifukan “Applied Optics II”. In the following, the Poincare sphere is regarded as the earth, the intersection of the S3 axis and the Poincare sphere is called the North Pole and the South Pole, and the intersection of the S1, S2 plane and the Poincare sphere is called the equator. In this case, the north and south poles represent circularly polarized light, the equator represents linearly polarized light, and the other parts represent elliptically polarized light. The S1, S2, and S3 axes are Stokes parameters in the polarization state, which are values normalized by the Stokes parameter S0 representing the intensity.

広帯域4分の1波長板は視感度が最大になる波長550nmの光を基準にして設計される。波長550nmの光が広帯域4分の1波長板を通過した際の偏光状態の変化を示す。偏光板を通過した光は直線偏光のため赤道上の一点に位置するが、2分の1波長板に入射するとその遅相軸に相当する軸の回りを2分の1回転し、赤道上の別の一点に移動する。次いで4分の1波長板に入射するとその遅相軸に相当する軸の回りを4分の1回転し、北極上に移動して円偏光に変換される。   The broadband quarter-wave plate is designed with reference to light having a wavelength of 550 nm that maximizes the visibility. A change in polarization state when light having a wavelength of 550 nm passes through a broadband quarter-wave plate is shown. The light that has passed through the polarizing plate is positioned at one point on the equator because it is linearly polarized light. However, when it enters the half-wave plate, it rotates by a half around the axis corresponding to its slow axis, and on the equator. Move to another point. Next, when the light enters the quarter-wave plate, it rotates by a quarter of the axis corresponding to the slow axis, moves to the north pole, and is converted into circularly polarized light.

大多数の光学異方性媒体と同様に、2分の1波長板のΔndは可視波長域において波長と共に単調減少する波長依存性を示す。そのため、可視波長域の長波長側では図11(b)に示したように回転が2分の1回転以下になり、赤道まで到達せずに北半球上に移動する。可視波長域の短波長側では図11(c)に示したように回転が2分の1回転以上になり、赤道を通過して南半球上に移動する。次の4分の1波長板では移動方向が概略逆方向になり、なおかつ先の2分の1波長板と同様の波長依存性を示す。可視波長の長波長側では図11(b)に示したように北半球上をスタート点として北極方向に向かうため、北極までの距離がより近いが、この時の回転が4分の1回転以下と小さいため北極付近に到達する。可視波長の短波長側では図11(c)に示したように南半球上をスタート点として北極方向に向かうため、北極までの距離がより遠いが、回転が4分の1回転以上と大きいため北極付近に到達する。このようにして、同じΔndの波長依存性を有する2分の1波長板と4分の1波長板を、ポアンカレ球上における回転方向が概略逆方向になるような角度関係で積層することによりΔndの波長依存性を相殺する。   As with most optically anisotropic media, Δnd of the half-wave plate shows a wavelength dependency that monotonously decreases with wavelength in the visible wavelength region. Therefore, on the long wavelength side of the visible wavelength region, the rotation is half or less as shown in FIG. 11B, and moves to the northern hemisphere without reaching the equator. On the short wavelength side of the visible wavelength range, as shown in FIG. 11 (c), the rotation becomes a half or more, and moves on the southern hemisphere through the equator. In the next quarter-wave plate, the moving direction is substantially opposite, and the same wavelength dependency as that of the previous half-wave plate is exhibited. On the long wavelength side of the visible wavelength, as shown in FIG. 11 (b), the distance from the North Pole is closer because the direction is toward the North Pole starting from the Northern Hemisphere, but the rotation at this time is less than a quarter turn. Because it is small, it reaches near the North Pole. On the short wavelength side of the visible wavelength, as shown in FIG. 11 (c), since it goes to the north pole starting from the southern hemisphere, the distance to the north pole is farther, but the rotation is larger than a quarter rotation, so the north pole Reach nearby. In this way, by stacking a half-wave plate and a quarter-wave plate having the same Δnd wavelength dependency in an angular relationship such that the rotation direction on the Poincare sphere is approximately opposite, Δnd Cancels the wavelength dependence of.

本発明では反射層に近接する側より反射部液晶層、位相差層REの順で積層しているため、反射部液晶層が4分の1波長板に相当し、位相差層REが2分の1波長板に相当する。即ち、反射部液晶層のΔndを4分の1波長板相当に設定し、位相差層REのリタデーションを2分の1波長板相当に設定すれば良い。光学軸の角度設定についても、図11(a)より導かれるが、より明確にするためこれをS1,S2平面に投影して図10(a)に示す。この場合中心が北極または南極に、円周が赤道になる。図10(a)で偏光状態の変換ははポアンカレ球の北半球を反時計回りに動いて北極に到達する動きとして表される。広帯域4分の1波長板としては、この他にもポアンカレ球の北半球を時計回りに動いて北極に到達、ポアンカレ球の南半球を反時計回りに動いて南極に到達、ポアンカレ球の南半球を時計回りに動いて南極に到達する動きがあり、それぞれ図10(b),(c),(d)に示した。位相差層の遅相軸方位角θPHと液晶層の配向方向方位角θLCをそれぞれ第一の偏光板の透過軸方位角を0度として反時計回りに定義すると、θPHとθLCの関係は図10(a)〜(d)より次式で表される。 In the present invention, since the reflective portion liquid crystal layer and the retardation layer RE are laminated in this order from the side close to the reflective layer, the reflective portion liquid crystal layer corresponds to a quarter-wave plate, and the retardation layer RE is divided into two minutes. This corresponds to a single wave plate. That is, Δnd of the reflective liquid crystal layer may be set to correspond to a quarter-wave plate, and retardation of the retardation layer RE may be set to correspond to a half-wave plate. The angle setting of the optical axis is also derived from FIG. 11A, but for clarity, this is projected on the S1 and S2 planes and shown in FIG. In this case, the center is the north or south pole, and the circumference is the equator. In FIG. 10A, the conversion of the polarization state is represented as a movement that moves counterclockwise in the northern hemisphere of the Poincare sphere and reaches the north pole. In addition to this, as a quarter-wave plate, the Poincare sphere's northern hemisphere moves clockwise to reach the North Pole, the Poincare sphere's southern hemisphere moves counterclockwise to the South Pole, and the Poincare sphere's southern hemisphere rotates clockwise. And moved to reach the South Pole, as shown in FIGS. 10B, 10C, and 10D, respectively. If the slow axis azimuth angle θ PH of the retardation layer and the alignment direction azimuth angle θ LC of the liquid crystal layer are respectively defined counterclockwise with the transmission axis azimuth angle of the first polarizing plate as 0 degree, θ PH and θ LC The relationship is expressed by the following equation from FIGS.

2θPH=±45°+θLC (1)
尚、図10中のθPH′とθLC′は、θPH,θLCとそれぞれ2θPH′=θPH,2θLC′=θPHの関係にある。このようにθPHとθLCには多数の組み合せが存在し、一義的には定まらない。しかしながら、本発明では液晶層LCLの配向方向は反射表示部と透過表示部で同様にし、かつ第一の偏光板PL1は液晶パネルの外側に貼り付けるため、その透過軸方位も反射表示部と透過表示部で同様にするという制約がある。従って、第一の偏光板PL1の透過軸方位に対し、反射部液晶層の配向方向は平行または直交になる。即ちθLC=0度若しくは±90度となり、かつポアンカレ球上における回転方向が概略逆方向になることを考慮して、結局θPH=±62.5度となる。
PH = ± 45 ° + θ LC (1)
Note that θ PH ′ and θ LC ′ in FIG. 10 are in the relationship of θ PH , θ LC and 2θ PH ′ = θ PH , 2θ LC ′ = θ PH , respectively. Thus, there are many combinations of θ PH and θ LC , which are not uniquely determined. However, in the present invention, the alignment direction of the liquid crystal layer LCL is the same between the reflective display portion and the transmissive display portion, and the first polarizing plate PL1 is attached to the outside of the liquid crystal panel. There is a restriction that the display is the same. Therefore, the alignment direction of the reflective liquid crystal layer is parallel or orthogonal to the transmission axis direction of the first polarizing plate PL1. That is, θ LC = 0 ° or ± 90 °, and considering that the rotation direction on the Poincare sphere is approximately opposite, θ PH = ± 62.5 ° is eventually obtained.

以上により、位相差層REと反射部液晶層の組み合せにおいて反射黒表示の反射率を最も低減できる。反射スペクトルは図9に実線で示した様に、波長550nmを中心にした広範な可視波長域に渡って反射率が低減する。あるいはまた、位相差層REと反射部液晶層のΔndの比率を概略保った上で反射部液晶層のΔndを増やせば、暗表示反射率を比較的低く保ちながら反射率を増大できる。   As described above, the reflectance of the reflected black display can be reduced most in the combination of the retardation layer RE and the reflective liquid crystal layer. As shown by the solid line in FIG. 9, the reflectance of the reflection spectrum is reduced over a wide visible wavelength range centering on the wavelength of 550 nm. Alternatively, the reflectance can be increased while keeping the dark display reflectance relatively low by increasing the Δnd of the reflection portion liquid crystal layer while keeping the ratio of Δnd between the retardation layer RE and the reflection portion liquid crystal layer approximately.

積分球光源をその開口部半径と同じ距離だけ離して本発明の液晶表示装置の上面に配置し、反射表示のコントラスト比を測定した。反射型表示では法線方向に対して傾いた方向から入射する光を光源として利用し、表示装置自体は法線方向から観察することが多いが、この方法により実際の使用状況を反映した反射表示特性評価が可能になる。得られたコントラスト比は、共通電極CEに共通電極空孔層CEHを形成しない場合に比較して、約1.6倍であった。   The integrating sphere light source was placed on the upper surface of the liquid crystal display device of the present invention with the same distance as the opening radius, and the contrast ratio of the reflective display was measured. Reflective display uses light incident from a direction inclined with respect to the normal direction as a light source, and the display device itself is often observed from the normal direction, but this method reflects the actual usage. Characteristic evaluation becomes possible. The obtained contrast ratio was about 1.6 times that in the case where the common electrode hole layer CEH was not formed on the common electrode CE.

以上のように、凹凸形成層の凸部CONVに対応するように共通電極空孔層CEHを形成したことにより、凹凸形成層の微小平面の角度分布は維持され、かつ凹部と凸部の高さの差も低減する。これにより液晶層に与える局所的な層厚変動が減少し、理想的な広帯域4分の1波長板からのΔndのずれも減少し、暗表示反射率の増大も減少する。なおかつ反射層の拡散性も保持できる。製造プロセスを増やすことなく半透過型IPS液晶表示装置の反射表示のコントラスト比を向上することができた。   As described above, by forming the common electrode hole layer CEH so as to correspond to the convex part CONV of the concave / convex forming layer, the angular distribution of the minute plane of the concave / convex forming layer is maintained, and the height of the concave part and the convex part is maintained. The difference is also reduced. This reduces local layer thickness fluctuations applied to the liquid crystal layer, reduces Δnd deviation from an ideal broadband quarter-wave plate, and reduces the increase in dark display reflectance. In addition, the diffusibility of the reflective layer can be maintained. The contrast ratio of the reflective display of the transflective IPS liquid crystal display device could be improved without increasing the manufacturing process.

実施例1において、図4(b)に示したように共通電極CEと反射層である反射電極RFの積層順を逆転した。この場合に反射層は共通電極CEを介さずに凹凸形成層SCILに近接するため、反射層の微小平面の角度分布は共通電極空孔部CEHが存在しない場合と同一になり、光拡散性も共通電極空孔部が存在しない場合と同一になる。   In Example 1, as shown in FIG. 4B, the stacking order of the common electrode CE and the reflective electrode RF as the reflective layer was reversed. In this case, since the reflective layer is close to the concavo-convex formation layer SCIL without passing through the common electrode CE, the angle distribution of the micro-plane of the reflective layer is the same as when the common electrode hole portion CEH is not present, and the light diffusibility is also high. This is the same as when no common electrode hole portion exists.

実施例1では共通電極CEと反射層を同電位にするため両者の間にモリブデン膜を介在したが、本実施例において共通電極CEと反射層の間にモリブデン膜を形成すると、反射層の上層に露出する。モリブデン膜は反射層を構成するアルミ膜より低反射率のため、反射率が低下して好ましくない。本実施例では共通電極CEと反射層の間にモリブデン膜を形成せず、共通電極CEと反射層を同電位にするため液晶表示装置の表示領域の端部においてそれぞれ独立に給電する構造とした。   In the first embodiment, a molybdenum film is interposed between the common electrode CE and the reflective layer so as to have the same potential. However, in this embodiment, when a molybdenum film is formed between the common electrode CE and the reflective layer, the upper layer of the reflective layer is formed. Exposed to. Since the molybdenum film has a lower reflectance than the aluminum film constituting the reflective layer, the reflectance is not preferable. In this embodiment, a molybdenum film is not formed between the common electrode CE and the reflective layer, and power is supplied independently at the end of the display region of the liquid crystal display device in order to make the common electrode CE and the reflective layer have the same potential. .

本実施例の場合にも液晶層LCLに与える局所的な層厚変動が減少し、なおかつ反射層の拡散性も保持できた。反射表示のコントラスト比は共通電極CEに共通電極空孔層CEHを形成しない場合に比較して向上した。   Also in this example, the local variation in the layer thickness applied to the liquid crystal layer LCL was reduced, and the diffusibility of the reflective layer could be maintained. The contrast ratio of the reflective display is improved as compared with the case where the common electrode hole layer CEH is not formed on the common electrode CE.

本実施例では、暗表示反射率を低減する位相差層REと反射部液晶層のΔndの組み合せを計算により求めた。第一の偏光板PL1と位相差層REと反射部液晶層の軸角度を請求項1における値に設定し、入射時及び反射時の光路は何れも法線方向と仮定した。Jonesマトリクス法による光学計算を行う市販の一次元計算ソフトウエアを用い、位相差層REと反射部液晶層のΔndの組み合せを変えながら暗表示反射率を計算した。計算結果を図12(a)に示す。   In this example, a combination of Δnd of the retardation layer RE and the reflective liquid crystal layer that reduces the dark display reflectance was obtained by calculation. The axial angles of the first polarizing plate PL1, the retardation layer RE, and the reflective liquid crystal layer were set to the values in claim 1, and the optical paths at the time of incidence and reflection were assumed to be normal directions. Using a commercially available one-dimensional calculation software that performs optical calculation by the Jones matrix method, the dark display reflectance was calculated while changing the combination of Δnd of the retardation layer RE and the reflective liquid crystal layer. The calculation result is shown in FIG.

図12(a)において+印は位相差層REと反射部液晶層の波長550nmにおけるΔndを理想的な広帯域4分の一波長板の値、即ち前者を275nm、後者を137.5nmにした場合を示し、実線で示す領域はこの時の値の1.5倍以下の暗表示反射率が得られる領域である。その外側の破線,一転鎖線,点線はそれぞれ理想的な広帯域4分の一波長板の2.0倍,2.5倍,3.0倍の暗表示反射率が得られる領域である。この様に、良好な暗表示反射率の得られる領域は+印を中心に概略楕円状に分布している。また、該領域は長軸が傾斜した楕円であり、その傾きは正である。位相差層REと反射部液晶層のΔndに比例関係が成立すれば、暗表示反射率を低減できることを示している。   In FIG. 12A, the + mark indicates that Δnd of the retardation layer RE and the reflective liquid crystal layer at the wavelength of 550 nm is an ideal broadband quarter-wave plate value, that is, the former is 275 nm and the latter is 137.5 nm. A region indicated by a solid line is a region in which a dark display reflectance of 1.5 times or less of the value at this time is obtained. The outer broken line, the one-dot chain line, and the dotted line are areas where a dark display reflectance of 2.0 times, 2.5 times, and 3.0 times that of an ideal broadband quarter-wave plate can be obtained. As described above, the region where a good dark display reflectance is obtained is distributed in an approximately elliptical shape with the + mark as the center. The region is an ellipse whose major axis is inclined, and its inclination is positive. If a proportional relationship is established between Δnd of the retardation layer RE and the reflective liquid crystal layer, the dark display reflectance can be reduced.

これより、その楕円の長軸に相当する直線を摘出し、その関係式を求めたのが図13(b)である。位相差層のΔndをΔndPH、反射表示部の液晶層のΔndをΔndLCとすると、ΔndPHとΔndLCはΔndPH=1.37ΔndLC+86、若しくはその近傍に位置する関係にあれば、両者のΔndが理想的な広帯域4分の一波長板の値からずれていても比較的良好な暗表示反射率が得られる。 From this, a straight line corresponding to the major axis of the ellipse was extracted, and the relational expression was obtained as shown in FIG. Assuming that Δnd of the retardation layer is Δnd PH and Δnd LC of the liquid crystal layer of the reflective display section is Δnd LC , Δnd PH and Δnd LC are Δnd PH = 1.37 Δnd LC +86 or both in the vicinity thereof. Even if Δnd deviates from the ideal broadband quarter-wave plate value, a relatively good dark display reflectance can be obtained.

このことは、図11(b),(c)を用いて定性的に説明できる。すなわち、位相差層のΔndが理想値より小さい場合には、反射部液晶層のΔndも理想値より小さければポアンカレ球の極近傍に移動可能であり、暗表示反射率を低減できる。また逆に位相差層のΔndが理想値より大きい場合には、反射部液晶層のΔndも理想値より大きければポアンカレ球の極近傍に移動可能である。   This can be explained qualitatively using FIGS. 11B and 11C. That is, when Δnd of the retardation layer is smaller than the ideal value, if Δnd of the reflective liquid crystal layer is also smaller than the ideal value, it can move to the vicinity of the Poincare sphere, and the dark display reflectance can be reduced. Conversely, when Δnd of the retardation layer is larger than the ideal value, it can be moved to the vicinity of the Poincare sphere if Δnd of the liquid crystal layer of the reflecting portion is larger than the ideal value.

以上の結果は、反射率をより優先して反射表示部液晶層のΔndを理想的な4分の一波長板の値よりも大きく設定するときに、位相差層のΔndを決定するのに有効である。   The above results are effective for determining the Δnd of the retardation layer when the reflectance is given priority and the Δnd of the liquid crystal layer of the reflective display portion is set larger than the ideal quarter-wave plate value. It is.

逆に、実施例1において、共通電極空孔部CEHを形成しなかった。この場合、凹凸形成層の凹部と凸部の高さの差は低減されず、液晶層に与える局所的な層厚変動もまた減少しなかった。そのため、反射表示のコントラスト比は実施例1に比較して低下した。   On the other hand, in Example 1, the common electrode hole portion CEH was not formed. In this case, the difference in height between the concave and convex portions of the concave / convex forming layer was not reduced, and the local variation in the layer thickness applied to the liquid crystal layer was also not reduced. Therefore, the contrast ratio of the reflective display is lower than that in Example 1.

本実施例では、液晶層LCLの厚さ方向に電界を印加して駆動する縦電界方式半透過型液晶表示装置に本発明を適用した。本実施例の液晶表示装置の一画素の断面を図13に示す。図13は、図2のS1−S2間の断面である。   In this embodiment, the present invention is applied to a vertical electric field type transflective liquid crystal display device driven by applying an electric field in the thickness direction of the liquid crystal layer LCL. FIG. 13 shows a cross section of one pixel of the liquid crystal display device of this example. FIG. 13 is a cross section taken along S1-S2 in FIG.

共通電極CEを第一の基板SU1上に形成し、画素電極PEを平板状として反射電極RFに近接するように積層した。これに伴い層間絶縁膜PCILを除き、更には位相差膜配向膜ALPと位相差層REと保護層PLを除いた。また画素電極PEを拡散反射板の凹凸形成層の凹部のみに分布するようにパターンニングした。それ以外は、前述した実施例と同様である。   The common electrode CE was formed on the first substrate SU1, and the pixel electrode PE was formed in a flat plate shape so as to be close to the reflective electrode RF. Accordingly, the interlayer insulating film PCIL is removed, and further, the retardation film alignment film ALP, the retardation layer RE, and the protective layer PL are removed. Further, the pixel electrodes PE were patterned so as to be distributed only in the concave portions of the concave / convex forming layer of the diffuse reflector. Other than that, it is the same as the embodiment described above.

つまり、本実施例においては、一対の基板(第一の基板SU1,第二の基板SU2)と、その一対の基板間に挟持された液晶層LCLと、複数の画素と、その各画素内に反射表示部と透過表示部と、を有し、一対の基板の一方基板である第二の基板SU2と液晶層LCL間は、複数の信号配線SLと、その複数の信号配線SLに交差して形成された複数の走査配線GLと、信号配線SLと走査配線GLとの交差部に形成されたアクティブ素子であるTFTと、画素電極PEと、反射表示部に対応する位置に形成された拡散反射部と、が形成され、他方基板である第一の基板SU1と液晶層LCL間は、共通電極CEが形成された構成である。   That is, in this embodiment, a pair of substrates (first substrate SU1, second substrate SU2), a liquid crystal layer LCL sandwiched between the pair of substrates, a plurality of pixels, and in each pixel Between the second substrate SU2, which is one substrate of the pair of substrates, and the liquid crystal layer LCL, the plurality of signal lines SL and the plurality of signal lines SL are crossed. A plurality of scanning lines GL formed, TFTs that are active elements formed at intersections of the signal lines SL and the scanning lines GL, pixel electrodes PE, and diffuse reflection formed at positions corresponding to the reflective display section The common electrode CE is formed between the first substrate SU1, which is the other substrate, and the liquid crystal layer LCL.

また、本実施例の液晶表示装置の反射表示部の断面を図14に示す。図14は図2のS5−S6の断面である。画素電極PEを凹凸形成層の凹部のみに分布したことにより、液晶層LCL厚に与える変動を低減した。   FIG. 14 shows a cross section of the reflective display portion of the liquid crystal display device of this example. FIG. 14 is a cross section taken along line S5-S6 of FIG. By distributing the pixel electrode PE only in the concave portions of the concave-convex forming layer, fluctuations given to the liquid crystal layer LCL thickness were reduced.

この実施例の特徴構造としては、拡散反射部は、凹部と凸部が形成された凹凸形成層SCILと、その凹凸形成層SCILの凹部上に形成された画素電極PEと、凹凸形成層SCILの凸部上及び画素電極PE上に形成された反射層である反射電極RFと、を有することであり、その効果は、実施例1と同様である。   As a characteristic structure of this embodiment, the diffuse reflection portion includes a concavo-convex forming layer SCIL in which concave and convex portions are formed, a pixel electrode PE formed on the concave portion of the concavo-convex forming layer SCIL, and a concavo-convex forming layer SCIL. A reflective electrode RF that is a reflective layer formed on the convex portion and the pixel electrode PE, and the effect thereof is the same as that of the first embodiment.

また、本実施例では、第一の基板SU1と第一の偏光板PL1の間に第一の外側位相差層ORE1を配置し、第二の基板SU2と第二の偏光板PL2の間に第二の外側位相差層ORE2を配置した。第一の外側位相差層ORE1と第二の外側位相差層ORE2は、いずれも反射表示部と透過表示部の両方に分布するように配置した。   In the present embodiment, the first outer retardation layer ORE1 is disposed between the first substrate SU1 and the first polarizing plate PL1, and the second substrate SU2 and the second polarizing plate PL2 are arranged between the first substrate SU1 and the first polarizing plate PL2. Two outer retardation layers ORE2 were disposed. The first outer retardation layer ORE1 and the second outer retardation layer ORE2 are both arranged so as to be distributed in both the reflective display portion and the transmissive display portion.

縦電界駆動にて反射表示,透過表示ともノーマリクローズ型の印加電圧依存性にするため、第一の偏光板PL1の吸収軸と第二の偏光板PL2の吸収軸、液晶層LCLの配向状態、Δndを変更した。液晶表示装置を使用状態において法線方向から観察し、この時の水平方向を方位角0度とし、反時計回りに増大するように定義した。第一の偏光板PL1と第二の偏光板PL2の吸収軸方位角をそれぞれ140度,55度にした。第一の外側位相差層ORE1の遅相軸方位角を125度、波長550nmにおけるΔndを400nm、Nz係数を0とした。第二の外側位相差層PLE2の遅相軸方位角を170度、波長550nmにおけるΔndを185nm、Nz係数を1とした。   In order to make the reflective display and transmissive display dependent on the normally closed type applied voltage by vertical electric field driving, the absorption axis of the first polarizing plate PL1, the absorption axis of the second polarizing plate PL2, and the alignment state of the liquid crystal layer LCL , Δnd was changed. The liquid crystal display device was observed from the normal direction in the state of use, and the horizontal direction at this time was defined as an azimuth angle of 0 degrees and increasing counterclockwise. The absorption axis azimuth angles of the first polarizing plate PL1 and the second polarizing plate PL2 were 140 degrees and 55 degrees, respectively. The slow axis azimuth of the first outer retardation layer ORE1 was 125 degrees, Δnd at a wavelength of 550 nm was 400 nm, and the Nz coefficient was 0. The slow axis azimuth of the second outer retardation layer PLE2 was 170 degrees, Δnd at a wavelength of 550 nm was 185 nm, and the Nz coefficient was 1.

液晶層LCLには室温を含む広い温度範囲でネマチック相を示す液晶材料を用い、Δnを0.072とした。第一の配向膜PL1と第二の配向膜PL2の配向処理方向を方位角にしてそれぞれ20度,250度とし、さらには液晶層LCLに自発捩れを誘発するカイラル剤を添加して、液晶層LCLを捩れ角が50度の捩れ配向とした。段差形成層MLの厚さを調整して、透過表示部と反射表示部における液晶層厚をそれぞれ5.1μm,3.6μmとした。   For the liquid crystal layer LCL, a liquid crystal material exhibiting a nematic phase in a wide temperature range including room temperature was used, and Δn was set to 0.072. The alignment process direction of the first alignment film PL1 and the second alignment film PL2 is set to 20 degrees and 250 degrees, respectively, and a chiral agent that induces spontaneous twisting is added to the liquid crystal layer LCL to add a liquid crystal layer The LCL was twisted with a twist angle of 50 degrees. The thickness of the step forming layer ML was adjusted so that the liquid crystal layer thicknesses in the transmissive display portion and the reflective display portion were 5.1 μm and 3.6 μm, respectively.

本実施例の場合には、暗表示を行う電圧無印加時において反射表示部の液晶層は約260nmのΔndを有するが、液晶層に与える局所的な層厚変動が減少したことによりΔndの変動も低減することができた。なおかつ、反射層の拡散性も保持することができた。これにより、反射表示のコントラスト比を共通電極CEに共通電極空孔層を形成しない場合に比較して向上させることができた。   In the case of this embodiment, the liquid crystal layer of the reflective display portion has Δnd of about 260 nm when no voltage is applied for performing dark display. However, the variation in Δnd is caused by the reduction in local layer thickness variation applied to the liquid crystal layer. Could also be reduced. In addition, the diffusibility of the reflective layer could be maintained. Thereby, the contrast ratio of the reflective display can be improved as compared with the case where the common electrode hole layer is not formed on the common electrode CE.

実施例一の液晶表示装置の一画素の断面図である。It is sectional drawing of one pixel of the liquid crystal display device of Example 1. 実施例一の液晶表示装置の第二の基板上の構成を示す平面図である。It is a top view which shows the structure on the 2nd board | substrate of the liquid crystal display device of Example 1. FIG. 実施例一の液晶表示装置の透過表示部の断面図である。It is sectional drawing of the transmissive display part of the liquid crystal display device of Example 1. FIG. 実施例一と実施例二の液晶表示装置の反射表示部の断面図である。It is sectional drawing of the reflective display part of the liquid crystal display device of Example 1 and Example 2. FIG. 実施例一の液晶表示装置の第一の基板上の構成を示す平面図である。It is a top view which shows the structure on the 1st board | substrate of the liquid crystal display device of Example 1. FIG. 実施例一の液晶表示装置の第一の基板上の構成を示す平面図である。It is a top view which shows the structure on the 1st board | substrate of the liquid crystal display device of Example 1. FIG. 凹凸形成層の凸部と共通電極空孔部の分布を示す平面図である。It is a top view which shows distribution of the convex part of an uneven | corrugated formation layer, and a common electrode hole part. 実施例一の位相差層の形成プロセスを表す図である。It is a figure showing the formation process of the phase difference layer of Example 1. FIG. 実施例一の液晶表示装置の反射表示部の暗表示時の反射スペクトルを表す図である。It is a figure showing the reflection spectrum at the time of the dark display of the reflective display part of the liquid crystal display device of Example 1. FIG. 位相差層と反射部液晶層による暗表示時における入射光の偏光状態の変換を表す図である。It is a figure showing conversion of the polarization state of incident light at the time of dark display by a phase contrast layer and a reflection part liquid crystal layer. 位相差層と反射部液晶層による暗表示時における入射光の偏光状態の変換を表す図である。It is a figure showing conversion of the polarization state of incident light at the time of dark display by a phase contrast layer and a reflection part liquid crystal layer. 暗表示反射率を低減する位相差層と反射部液晶層のリタデーション関係を示す図である。It is a figure which shows the retardation relationship of the phase difference layer and reflective part liquid crystal layer which reduce a dark display reflectance. 実施例四の液晶表示装置の一画素の断面図である。It is sectional drawing of one pixel of the liquid crystal display device of Example 4. 実施例四の液晶表示装置の反射表示部の断面図である。It is sectional drawing of the reflective display part of the liquid crystal display device of Example 4.

符号の説明Explanation of symbols

PL1 第一の偏光板
PL2 第二の偏光板
SU1 第一の基板
SU2 第二の基板
LL 平坦化層
AL1 第一の配向膜
LCL 液晶層
AL2 第二の配向膜
GL 走査配線
CF カラーフィルタ
BM ブラックマトリクス
RE 位相差層
ML 段差形成層
ALP 位相差膜配向膜
PL 保護層
PCIL 層間絶縁膜
CE 共通電極
GIL 走査配線絶縁膜
PE 画素電極
CH コンタクトホール
SE ソース配線
RF 反射電極
SL 信号配線
CFR 赤色カラーフィルタ
CFG 緑色カラーフィルタ
CFB 青色カラーフィルタ
CFH カラーフィルタ空孔部
NEP 非露光部
RUL ラビングロール
RE′ 完成前の位相差層
LCAL 液晶配向方向
REAL 位相差層遅相軸
CONV 凹凸形成層の凸部
CEH 共通電極空孔部
SCIL 凹凸形成層
ORE1 第一の外側位相差層
ORE2 第二の外側位相差層
PL1 first polarizing plate
PL2 Second polarizing plate SU1 First substrate SU2 Second substrate LL Flattening layer AL1 First alignment film LCL Liquid crystal layer AL2 Second alignment film GL Scanning wiring CF Color filter BM Black matrix RE Phase difference layer ML Step Formation layer ALP Phase difference film Alignment film PL Protective layer PCIL Interlayer insulating film CE Common electrode GIL Scanning wiring insulating film PE Pixel electrode CH Contact hole SE Source wiring RF Reflecting electrode SL Signal wiring CFR Red color filter CFG Green color filter CFB Blue color filter CFH Color filter hole portion NEP Non-exposed portion RUL Rubbing roll RE ′ Pre-finished retardation layer LCAL Liquid crystal alignment direction REAL Retardation layer slow axis CONV Convex portion forming layer CEH Common electrode hole portion SCIL Uneven portion forming layer ORE1 First outer retardation layer ORE2 Second outer position Retardation layer

Claims (17)

一対の基板と、
前記一対の基板間に挟持された液晶層と、
複数の画素と、
前記複数の画素の各画素内に反射表示部と透過表示部と、を有し、
前記一対の基板の一方基板と前記液晶層間は、複数の信号配線と、前記複数の信号配線に交差して形成された複数の走査配線と、前記信号配線と前記走査配線との交差部に形成されたアクティブ素子と、画素電極と、共通電極と、前記反射表示部に対応する位置に形成された拡散反射部と、が形成され、
前記拡散反射部は、凹部と凸部が形成された凹凸形成層と、前記凹凸形成層の前記凸部に対応するように分布する複数の空孔部を有して前記凹凸形成層の凹部上に形成された前記共通電極と、前記凹凸形成層の凸部上及び前記共通電極上に形成された反射層と、を有する液晶表示装置。
A pair of substrates;
A liquid crystal layer sandwiched between the pair of substrates;
A plurality of pixels;
A reflective display portion and a transmissive display portion in each of the plurality of pixels;
Between one of the pair of substrates and the liquid crystal layer, a plurality of signal wirings, a plurality of scanning wirings formed to intersect the plurality of signal wirings, and an intersection of the signal wirings and the scanning wirings are formed. An active element, a pixel electrode, a common electrode, and a diffuse reflection part formed at a position corresponding to the reflective display part,
The diffusive reflecting portion has a concavo-convex forming layer in which a concave portion and a convex portion are formed, and a plurality of hole portions distributed so as to correspond to the convex portion of the concavo-convex forming layer, on the concave portion of the concavo-convex forming layer A liquid crystal display device comprising: the common electrode formed on the surface; and a reflective layer formed on the convex portion of the unevenness forming layer and the common electrode.
請求項1記載の液晶表示装置において、
前記画素電極と前記共通電極は前記一対の基板面に対して平行な成分を含む電界を前記液晶層に印加する液晶表示装置。
The liquid crystal display device according to claim 1.
The liquid crystal display device in which the pixel electrode and the common electrode apply an electric field including a component parallel to the pair of substrate surfaces to the liquid crystal layer.
請求項1記載の液晶表示装置において、
電界無印加時における前記液晶層の配向状態はホモジニアス配向である液晶表示装置。
The liquid crystal display device according to claim 1.
The liquid crystal display device wherein the alignment state of the liquid crystal layer when no electric field is applied is homogeneous alignment.
請求項1記載の液晶表示装置において、
前記画素電極は、櫛歯電極である液晶表示装置。
The liquid crystal display device according to claim 1.
The liquid crystal display device, wherein the pixel electrode is a comb electrode.
請求項1記載の液晶表示装置において、
前記共通電極と前記反射層とは同電位が供給されている液晶表示装置。
The liquid crystal display device according to claim 1.
A liquid crystal display device in which the common electrode and the reflective layer are supplied with the same potential.
請求項2記載の液晶表示装置において、
前記一対の基板の他方基板と前記液晶層間で、且つ前記反射表示部のみに配置された位相差板を有する液晶表示装置。
The liquid crystal display device according to claim 2.
A liquid crystal display device comprising a retardation plate disposed between the other substrate of the pair of substrates and the liquid crystal layer and only in the reflective display portion.
請求項6記載の液晶表示装置において、
前記反射表示部の前記液晶層は、4分の1波長板として機能し、
前記位相差板は、2分の1波長板として機能する液晶表示装置。
The liquid crystal display device according to claim 6.
The liquid crystal layer of the reflective display unit functions as a quarter wave plate,
The retardation plate is a liquid crystal display device that functions as a half-wave plate.
請求項1記載の液晶表示装置において、
前記凹凸形成層の前記凸部は、平面内においてランダムに配置されて、
前記共通電極における前記複数の空孔部は、前記凹凸形成層の前記凸部に対応するように分布する液晶表示装置。
The liquid crystal display device according to claim 1.
The convex portions of the concave-convex forming layer are randomly arranged in a plane,
The liquid crystal display device in which the plurality of hole portions in the common electrode are distributed so as to correspond to the convex portions of the concave-convex forming layer .
一対の基板と、
前記一対の基板間に挟持された液晶層と、
複数の画素と、
前記複数の画素の各画素内に反射表示部と透過表示部と、を有し、
前記一対の基板の一方基板と前記液晶層間は、複数の信号配線と、前記複数の信号配線に交差して形成された複数の走査配線と、前記信号配線と前記走査配線との交差部に形成されたアクティブ素子と、画素電極と、共通電極と、前記反射表示部に対応する位置に形成された拡散反射部と、が形成され、
前記拡散反射部は、凹部と凸部が形成された凹凸形成層と、前記凹凸形成層上に形成された反射層と、前記凹凸形成層の前記凸部に対応するように分布する複数の空孔部を有して前記反射層の凹部上に形成された前記共通電極と、を有する液晶表示装置。
A pair of substrates;
A liquid crystal layer sandwiched between the pair of substrates;
A plurality of pixels;
A reflective display portion and a transmissive display portion in each of the plurality of pixels;
Between one of the pair of substrates and the liquid crystal layer, a plurality of signal wirings, a plurality of scanning wirings formed to intersect the plurality of signal wirings, and an intersection of the signal wirings and the scanning wirings are formed. An active element, a pixel electrode, a common electrode, and a diffuse reflection part formed at a position corresponding to the reflective display part,
The diffuse reflection portion includes a concavo-convex forming layer in which concave and convex portions are formed, a reflective layer formed on the concavo-convex forming layer, and a plurality of voids distributed so as to correspond to the convex portions of the concavo-convex forming layer. And a common electrode formed on the concave portion of the reflective layer with a hole .
請求項9記載の液晶表示装置において、
前記画素電極と前記共通電極は前記一対の基板面に対して平行な成分を含む電界を前記液晶層に印加する液晶表示装置。
The liquid crystal display device according to claim 9.
The liquid crystal display device in which the pixel electrode and the common electrode apply an electric field including a component parallel to the pair of substrate surfaces to the liquid crystal layer.
請求項9記載の液晶表示装置において、
電界無印加時における前記液晶層の配向状態はホモジニアス配向である液晶表示装置。
The liquid crystal display device according to claim 9.
The liquid crystal display device wherein the alignment state of the liquid crystal layer when no electric field is applied is homogeneous alignment.
請求項10記載の液晶表示装置において、
前記共通電極と前記反射層とは、独立に給電され、同電位とする液晶表示装置。
The liquid crystal display device according to claim 10.
The liquid crystal display device in which the common electrode and the reflective layer are supplied with power independently and have the same potential.
請求項10記載の液晶表示装置において、
前記一対の基板の他方基板と前記液晶層間で、且つ前記反射表示部のみに配置された位相差板を有する液晶表示装置。
The liquid crystal display device according to claim 10.
A liquid crystal display device comprising a retardation plate disposed between the other substrate of the pair of substrates and the liquid crystal layer and only in the reflective display portion.
請求項10記載の液晶表示装置において、
前記反射表示部の前記液晶層は、4分の1波長板として機能し、
前記位相差板は、2分の1波長板として機能する液晶表示装置。
The liquid crystal display device according to claim 10.
The liquid crystal layer of the reflective display unit functions as a quarter wave plate,
The retardation plate is a liquid crystal display device that functions as a half-wave plate.
請求項9記載の液晶表示装置において、
前記凹凸形成層の前記凸部は、平面内においてランダムに配置されて、
前記共通電極における前記複数の空孔部は、前記凹凸形成層の前記凸部に対応するように分布する液晶表示装置。
The liquid crystal display device according to claim 9.
The convex portions of the concave-convex forming layer are randomly arranged in a plane,
The liquid crystal display device in which the plurality of hole portions in the common electrode are distributed so as to correspond to the convex portions of the concave-convex forming layer .
一対の基板と、
前記一対の基板間に挟持された液晶層と、
複数の画素と、
前記複数の画素の各画素内に反射表示部と透過表示部と、を有し、
前記一対の基板の一方基板と前記液晶層間は、複数の信号配線と、前記複数の信号配線に交差して形成された複数の走査配線と、前記信号配線と前記走査配線との交差部に形成されたアクティブ素子と、画素電極と、前記反射表示部に対応する位置に形成された拡散反射部と、が形成され、
前記一対の基板の他方基板と前記液晶層間は、共通電極が形成され、
前記拡散反射部は、凹部と凸部が形成された凹凸形成層と、前記凹凸形成層の前記凸部に対応するように分布する複数の空孔部を有して前記凹凸形成層の凹部上に形成された前記画素電極と、前記凹凸形成層の凸部上及び前記画素電極上に形成された反射層と、を有する液晶表示装置。
A pair of substrates;
A liquid crystal layer sandwiched between the pair of substrates;
A plurality of pixels;
A reflective display portion and a transmissive display portion in each of the plurality of pixels;
Between one of the pair of substrates and the liquid crystal layer, a plurality of signal wirings, a plurality of scanning wirings formed to intersect the plurality of signal wirings, and an intersection of the signal wirings and the scanning wirings are formed. An active element formed, a pixel electrode, and a diffuse reflection part formed at a position corresponding to the reflective display part,
A common electrode is formed between the other substrate of the pair of substrates and the liquid crystal layer,
The diffusive reflecting portion has a concavo-convex forming layer in which a concave portion and a convex portion are formed, and a plurality of hole portions distributed so as to correspond to the convex portion of the concavo-convex forming layer, on the concave portion of the concavo-convex forming layer A liquid crystal display device comprising: the pixel electrode formed on the surface; and a reflective layer formed on the protrusion of the unevenness forming layer and on the pixel electrode.
請求項16記載の液晶表示装置において、
前記一対の基板を挟持する一対の偏光板と、
前記一対の基板の一方基板と前記一対の偏光板の一方偏光板間、及び前記一対の基板の他方基板と前記一対の偏光板の他方偏光板間に形成された一対の位相差層と、を有する液晶表示装置。
The liquid crystal display device according to claim 16.
A pair of polarizing plates sandwiching the pair of substrates;
A pair of retardation layers formed between one substrate of the pair of substrates and one polarizing plate of the pair of polarizing plates, and between the other substrate of the pair of substrates and the other polarizing plate of the pair of polarizing plates; A liquid crystal display device.
JP2007188988A 2007-07-20 2007-07-20 Liquid crystal display Expired - Fee Related JP4912245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188988A JP4912245B2 (en) 2007-07-20 2007-07-20 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188988A JP4912245B2 (en) 2007-07-20 2007-07-20 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2009025578A JP2009025578A (en) 2009-02-05
JP4912245B2 true JP4912245B2 (en) 2012-04-11

Family

ID=40397423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188988A Expired - Fee Related JP4912245B2 (en) 2007-07-20 2007-07-20 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP4912245B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297997B (en) * 2014-11-05 2017-02-01 京东方科技集团股份有限公司 Liquid crystal display panel, and display method and display device thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3666181B2 (en) * 1997-03-21 2005-06-29 ソニー株式会社 Reflective and transmissive display device
JP2001075091A (en) * 1999-07-07 2001-03-23 Matsushita Electric Ind Co Ltd Semitransmitting liquid crystal display device
JP2001330715A (en) * 2000-05-19 2001-11-30 Casio Comput Co Ltd Reflection transmission combination type plate and liquid crystal display device using the same
JP2003241187A (en) * 2002-02-22 2003-08-27 Matsushita Electric Ind Co Ltd Semitransmission type liquid crystal display device
JP2004177897A (en) * 2002-11-29 2004-06-24 Toshiba Matsushita Display Technology Co Ltd Translucent liquid crystal display
JP2005043552A (en) * 2003-07-25 2005-02-17 Alps Electric Co Ltd Reflector, liquid crystal display device, and method and device for manufacturing reflector
JP2006201214A (en) * 2005-01-18 2006-08-03 Seiko Epson Corp Electrooptical apparatus and manufacturing method of electrooptical apparatus

Also Published As

Publication number Publication date
JP2009025578A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4886474B2 (en) Liquid crystal display
JP4082683B2 (en) Transflective liquid crystal display device
KR100457365B1 (en) Liquid crystal display device
JP4223992B2 (en) Liquid crystal display
JP3852342B2 (en) Reflector, reflector manufacturing method, liquid crystal device, electronic device
JP4292596B2 (en) Diffuse reflector, manufacturing method thereof and display device
JP5943265B2 (en) Liquid crystal display
US6788370B2 (en) Liquid crystal display apparatus
TW200424615A (en) LCD apparatus and electronic machine
JP2004361823A (en) Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic appliance
JP2007212498A (en) Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic equipment
KR20090014105A (en) Liquid crystal display device
JP2004199030A (en) Semi-transmission/reflection type display device with different pretilt angles
JP2000305074A (en) Reflective liquid crystal display
JP2006293393A (en) Reflector, method for manufacturing reflector, liquid crystal apparatus, and electronic appliance
JP5275591B2 (en) Liquid crystal display
JP4088042B2 (en) Liquid crystal display
JP2008203382A (en) Liquid crystal display device
JP4912245B2 (en) Liquid crystal display
JP4960164B2 (en) Liquid crystal display
JP2003131266A (en) Liquid crystal device and electronic appliance
JP4510797B2 (en) Reflective liquid crystal display
JP3752798B2 (en) Reflective display device
JP5299361B2 (en) Optical elements, liquid crystal devices, electronic equipment
JP4753557B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4912245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees