JP4911991B2 - Airflow classifier, vibration device - Google Patents

Airflow classifier, vibration device Download PDF

Info

Publication number
JP4911991B2
JP4911991B2 JP2006055827A JP2006055827A JP4911991B2 JP 4911991 B2 JP4911991 B2 JP 4911991B2 JP 2006055827 A JP2006055827 A JP 2006055827A JP 2006055827 A JP2006055827 A JP 2006055827A JP 4911991 B2 JP4911991 B2 JP 4911991B2
Authority
JP
Japan
Prior art keywords
classification
powder
hopper
vibration
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006055827A
Other languages
Japanese (ja)
Other versions
JP2006289349A (en
Inventor
信康 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006055827A priority Critical patent/JP4911991B2/en
Publication of JP2006289349A publication Critical patent/JP2006289349A/en
Application granted granted Critical
Publication of JP4911991B2 publication Critical patent/JP4911991B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

本発明は、粉体例えば電子写真用粉体の付着除去に適した容器またはホッパーまたはフィルター式濾過装置または捕集容器またはフィーダおよび電子写真用トナーのような電子写真粉体の分級装置及び分級方法、特に低温定着用小粒径トナーの分級に適した分級装置及び分級方法に関する。   The present invention relates to a classification apparatus and classification method for electrophotographic powders such as containers or hoppers or filter-type filtration devices or collection containers or feeders suitable for adhering and removing powders such as electrophotographic powders and toners for electrophotography. In particular, the present invention relates to a classification device and a classification method suitable for classification of a small particle size toner for low-temperature fixing.

近年粉体または微粒子粉体の需要が高まってきておりこの粉体をハンドリングするために様々な容器や装置が使われている。例えば電子写真法、静電気写真法等の画像形成法では静電潜像を現像するためにトナーが使用されている。最終製品が微細粒子であることが要求される静電潜像のトナー製造における原料個体粒子を、粉砕及び分級して最終製品を得るには、結着剤樹脂、着色剤(染料、顔料、磁性体等)などの所定材料を溶融混練し、冷却して固化させた後粉砕し分級する。
近年、電子写真は高速印字、高画質化という顧客要望に基づき、トナーは高速印字のための低融点化、高画質化のための小粒径化によって比表面積が増加している。
さらにはシステムの高精細化に対処するためにトナー中へのWax高充填が要求されている。
In recent years, the demand for powders or fine particle powders has increased, and various containers and apparatuses have been used to handle these powders. For example, in image forming methods such as electrophotography and electrostatic photography, toner is used to develop an electrostatic latent image. In order to obtain the final product by crushing and classifying the solid particles in the production of electrostatic latent image toner, which requires the final product to be fine particles, a binder resin, a colorant (dye, pigment, magnetic) A predetermined material such as a body is melt-kneaded, cooled and solidified, and then pulverized and classified.
In recent years, based on customer demand for high-speed printing and high image quality in electrophotography, the specific surface area of toner has increased due to low melting point for high-speed printing and small particle size for high image quality.
Furthermore, in order to cope with high definition of the system, high Wax filling into the toner is required.

例えば電子写真トナーなどの微粒子粉体を分級するためには、一般的に旋回気流を利用する分級装置が用いられ、例えば図1に示されるようなディスパージョンセパレータ(DS型:日本ニューマチック社製)が使用される。またこのようなトナーを生産する製造においては粉体を一次保管するための容器またはホッパーまたは粉体輸送や粉砕・分級時にトナーを固気分離するためのフィルター式濾過装置または捕集容器または粉体を定量供給するためのフィーダ等が使用されているが、微粒化に伴う比表面積の増加または粉体の品質要求に対応するために流動性の低下が発生し内壁面に凝集付着し、堆積崩落を繰り返すために定量排出に課題がある。また従来のDS分級機では、分級された粗粒子が排出される際、ホッパーの内壁面に凝集付着し、堆積崩落を繰り返すために定量排出されず脈流や最悪の場合、次工程への阻害となっている。
特に精密な分級を要求される場合は前記分級機を直列二段に組合せてその間を搬送路で連結した閉回路分級が主流となるため、脈流による機内粉体循環量が乱れ分級精度の低下または最悪の場合、機内での粉体閉塞が発生し、分級の継続が不可能となる状態が発生する。
For example, in order to classify a fine particle powder such as an electrophotographic toner, a classifier using a swirling airflow is generally used. For example, a dispersion separator (DS type: manufactured by Nippon Pneumatic Co., Ltd.) as shown in FIG. ) Is used. Also, in the production of such toner, a container or hopper for primary storage of powder, or a filter type filtration device or collection container or powder for solid-gas separation of toner during transport, pulverization and classification A feeder is used to quantitatively supply the material, but the increase in specific surface area associated with atomization or a decrease in fluidity occurs to meet the quality requirements of the powder, resulting in agglomeration and adhesion on the inner wall surface, and deposition collapse There is a problem in quantitative discharge to repeat the process. Also, with conventional DS classifiers, when the classified coarse particles are discharged, they aggregate and adhere to the inner wall surface of the hopper, and do not discharge quantitatively due to repeated collapse of the sediment, and in the worst case, impede the next process It has become.
In particular, when precise classification is required, closed-class classification, in which the classifiers are combined in two stages in series and connected between them by a conveyance path, is the mainstream, so the amount of powder circulation in the machine due to pulsation is disturbed and classification accuracy decreases. Or, in the worst case, powder clogging occurs in the machine, and a state where classification cannot be continued occurs.

近年、重合トナーとして粉砕を行わずに化学的反応により製造されるトナーでも分級段階において同様の現象は発生する。
分級機の付着面に加工を行うことで機内の付着を防止狙った発明として、分級エッジにフッ素樹脂を用いたものとしては、特許文献1(特開平02−294660号公報)や特許文献2(特開平02−294661号公報)、特許文献3(特開平02−294662号公報)、特許文献4(特開平02−294663号公報)があるが、連続分級時において十分とはいえない。
In recent years, the same phenomenon occurs in the classification stage even in a toner manufactured by a chemical reaction without being pulverized as a polymerized toner.
As an invention aiming at preventing adhesion in the machine by processing on the adhesion surface of the classifier, those using a fluororesin at the classification edge are disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 02-294660) and Patent Document 2 ( Japanese Patent Laid-Open No. 02-294661), Patent Document 3 (Japanese Patent Laid-Open No. 02-294661), and Patent Document 4 (Japanese Patent Laid-Open No. 02-294663) are not sufficient during continuous classification.

流動層粉砕機壁面に導電性フッ素樹脂を用いものとしては、特許文献5(特開2004−113839号公報)や特許文献6(特開2003−280263号公報)があるが、続分級時において十分とはいえない。   There are Patent Document 5 (Japanese Patent Laid-Open No. 2004-113939) and Patent Document 6 (Japanese Patent Laid-Open No. 2003-280263) as those using a conductive fluororesin on the wall surface of the fluidized bed grinder. That's not true.

振動ホッパーを用いて付着を防止する方法も特許文献7(実公昭61−037674号公報)で提案されているが、本体を振動するため分級精度を落とすことになる。   A method for preventing adhesion using a vibration hopper is also proposed in Patent Document 7 (Japanese Utility Model Publication No. 61-037674), but the classification accuracy is lowered because the main body vibrates.

特開平02−294660号公報Japanese Patent Laid-Open No. 02-294660 特開平02−294661号公報JP 02-294661 A 特開平02−294662号公報Japanese Patent Laid-Open No. 02-294661 特開平02−294663号公報Japanese Patent Laid-Open No. 02-294663 特開2004−113839号公報JP 2004-1113839 A 特開2003−280263号公報JP 2003-280263 A 実公昭61−037674号公報Japanese Utility Model Publication No. 61-037674

本発明の目的は、ホッパーまたはフィルター式濾過装置または捕集容器またはフィーダにおいて付着・凝集を抑制し、円滑な粉体濾過、捕集または供給をすることにある。また静電荷像現像用トナーで帯電量が安定し且つ良好な画質を与えるトナーを製造する粉砕において、付着・凝集を抑制し、超微粉発生率及び粗大粒子の混入が少なく生産効率面においても経済面で有利な製造方法を提供することである。
また、上記従来技術の問題に対し本発明の目的とするところは、粗粒子、微粒子用ホッパー内壁面、容器内壁面の排出を容易にし、脈流による次工程へ円滑に粗粒子、微粒子を排出できる新規な分級法を提案することにある。
An object of the present invention is to suppress adhesion and aggregation in a hopper, a filter-type filtration device, a collection container, or a feeder, and to perform smooth powder filtration, collection, or supply. In addition, in the pulverization of producing a toner that provides a stable charge amount and good image quality with a toner for developing electrostatic images, it suppresses adhesion / aggregation, reduces the incidence of ultrafine powder and coarse particles, and is economical in terms of production efficiency. It is to provide an advantageous manufacturing method.
Further, the object of the present invention with respect to the above-mentioned problems of the prior art is to facilitate discharge of coarse particles and fine particle hopper inner wall surface and container inner wall surface, and smoothly discharge coarse particles and fine particles to the next process by pulsating flow. The purpose is to propose a new classification method.

上記課題は、本発明のつぎの(1)〜(12)によって解決される。
(1):分級手段とその下に粉体を一次的に貯蔵する粉体容器とを備える分級装置であって、前記粉体容器は、前記分級手段の振動により振動するホッパー形状の振動部を有し、該振動部は、スリット及び上部周縁の少なくとも一部に挟みシロを有し、該挟みシロが前記粉体容器の上縁と前記分級手段の分級室の下縁との間に挟まれることにより、該振動ホッパーを宙吊状態で保持されるものであることを特徴とする分級装置。
(2):前記粉体が電子写真用粉体であることを特徴とする前記第(1)項に記載の分級装置。
(3):前記スリット長さ(P)はホッパー高さ(H)に対し、1/10H≦P≦9/10Hであることを特徴とする前記第(1)項または前記第(2)項に記載の分級装置。
(4):前記スリットの間隔はホッパー円周を2乃至8分割するものであることを特徴とする前記第(1)項乃至前記第(3)項のいずれかに記載の分級装置。
(5):前記分級手段としてサイクロン捕集機を用いたことを特徴とする前記第(1)項乃至前記第(4)項のいずれかに記載の分級装置。
(6):前記分級手段は、分散室と、その下の分級室とを有し、該分散室は、粉体材料と一次空気との混合流体を導入するための分散室流入口と、内部気体を排出するための排気管とを有し、該分級室は、周辺部から二次空気流を導入する二次空気流口と、円錐形状のセンターコアと、このセンターコアの外周下側に設けられたセパレータコアと、周辺域に設けられた粗粉下降口と、中心域に設けられた微粉下降口とを有し、該ホッパーは、前記微粉下降口から導びかれる微粉を排出する微粉排出口と、前記粗粉下降口からの粗粉を排出する粗粉排出口を有し、前記ホッパー内に、振動部を宙吊状態で配置したことを特徴とする前記第(1)項乃至前記第(5)項のいずれかに記載の分級装置。
(7):前記振動部が導電性の材料で形成されていることを特徴とする前記第(1)項乃至前記第(6)項のいずれかに記載の分級装置。
(8):前記振動部の表面は離型剤で形成されていることを特徴とする前記第(1)項乃至前記第(7)項のいずれかに記載の分級装置。
(9):前記振動部の表面は導電性の離型剤で形成されていることを特徴とする前記第(1)項乃至前記第(8)項のいずれかに記載の分級装置。
(10):前記振動部の表面は、研磨処理されていることを特徴とする前記第(1)項乃至前記第(9)項のいずれかに記載の分級装置。
(11):前記振動部の表面積(S1)は前記ホッパーの内壁面の表面積(S)に対して下記の範囲を特徴とする前記第(1)項乃至前記第(10)項のいずれかに記載の分級装置;
0.30×S≦S1≦0.99×S
(12)前記第(1)項乃至前記第(11)項のいずれかに記載の分級装置を用いたことを特徴とする電子写真用粉体の分級方法。
The said subject is solved by following (1)-( 12 ) of this invention.
(1): A classification device including classification means and a powder container for temporarily storing powder under the classification means , wherein the powder container includes a hopper-shaped vibrating portion that vibrates due to vibration of the classification means. The vibrating part has a scissors sandwiched at least at a part of the slit and the upper peripheral edge, and the sandwich scissors are sandwiched between the upper edge of the powder container and the lower edge of the classification chamber of the classification means Thus, the classification device characterized in that the vibration hopper is held in a suspended state .
(2) The classification device according to item (1), wherein the powder is an electrophotographic powder .
(3): The slit length (P) is 1 / 10H ≦ P ≦ 9 / 10H with respect to the hopper height (H), wherein the item (1) or the item (2) is characterized. Classification device according to.
(4) The classifying device according to any one of (1) to (3), wherein the interval between the slits divides the hopper circumference into two to eight.
(5): The classification device according to any one of (1) to (4), wherein a cyclone collector is used as the classification means.
(6): the classification unit includes a dispersion chamber, and a classifying chamber underneath, the dispersion chamber, the dispersion chamber inlet for introducing a fluid mixture of powder material and the primary air, the internal An exhaust pipe for discharging gas, and the classification chamber has a secondary air flow inlet for introducing a secondary air flow from the peripheral portion, a conical center core, and a lower outer periphery of the center core. A fine powder that has a separator core provided, a coarse powder lowering port provided in a peripheral region, and a fine powder lowering port provided in a central region, and the hopper discharges fine powder guided from the fine powder lowering port. Item (1) to Item (1) , wherein a discharge port and a coarse powder discharge port for discharging coarse powder from the coarse powder descending port are provided, and a vibrating part is arranged in a suspended state in the hopper. The classification device according to any one of (5) .
(7): The classification device according to any one of (1) to (6), wherein the vibration section is formed of a conductive material.
(8) The classification device according to any one of (1) to (7), wherein a surface of the vibrating portion is formed of a release agent.
(9) The classification device according to any one of (1) to (8), wherein a surface of the vibration part is formed of a conductive release agent.
(10) The classification device according to any one of (1) to (9), wherein the surface of the vibration unit is polished.
(11) The surface area (S1) of the vibrating portion is any of the items (1) to (10) characterized by the following range with respect to the surface area (S) of the inner wall surface of the hopper: The classifier described;
0.30 × S ≦ S1 ≦ 0.99 × S
(12) A method for classifying an electrophotographic powder, characterized in that the classification apparatus according to any one of (1) to (11) is used.

以下の詳細な説明から理解されるように、前記本発明により、振動部によって容器に保管する粉体付着が解消され、粉体の移動保管が容易となり、また、振動部によって容器に保管する粉体付着が解消されるため、容器内の粉体状態が安定し、また、フィーダの定量性が向上し、振動部によって容器に保管する粉体付着が解消されるため本機能を活用するホッパーの粉体状態が安定し、本機を用いた付帯機器の性能が向上する。
また、前記本発明により、フィーダより定量供給された粉体の状態を変化させることなく、ホッパーへ移動保管が可能となり、フィルター式濾過装置の性能が長期にわたって維持でき、振動部または振動ホッパーによって機内の粉体付着が解消され、長時間にわたって安定した分級精度が保たれ、該振動ホッパーの宙吊状態が容易に装着可能となり、作業性が大きく向上する。
As will be understood from the following detailed description, the present invention eliminates the adhesion of powder stored in the container by the vibrating part, facilitates moving storage of the powder, and also allows the powder stored in the container by the vibrating part. Since the adhesion of the body is eliminated, the powder state in the container is stabilized, the quantitative property of the feeder is improved, and the adhesion of the powder stored in the container by the vibrating part is eliminated, so that the hopper utilizing this function The powder state is stable, and the performance of ancillary equipment using this machine is improved.
Further, according to the present invention, it is possible to move and store in the hopper without changing the state of the powder supplied quantitatively from the feeder, and the performance of the filter type filtration device can be maintained over a long period of time. The powder adhesion is eliminated, stable classification accuracy is maintained for a long time, the suspended state of the vibration hopper can be easily mounted, and workability is greatly improved.

また、本発明の前記装置を用いることで微小な振動で広範囲に振動が伝達され、さらに分級精度が向上し安定維持できるものになり、また、摩擦帯電によるトナー付着も解消されかつ、静電気が防止され安全性も確保でき、振動ホッパーの表面の離型性が向上し、分級精度が長期に保たれ、分級ホッパー内の付着が広範囲で解消される。
さらに、本発明の前記装置を用いることで摩擦帯電または付着性の強いトナー付着も解消され、安全性と離型性が大幅に向上し、また、分級ホッパー内の付着が広範囲で解消され、装置の稼動有無に関係なく自在に付着を除去でき、また、装置の稼動有無に関係なく自在に付着が広範囲で解消除去される。
In addition, by using the device of the present invention, vibrations are transmitted over a wide range with minute vibrations, and classification accuracy is improved and can be stably maintained. Also, toner adhesion due to frictional charging is eliminated and static electricity is prevented. Therefore, safety can be secured, the releasability of the surface of the vibration hopper is improved, classification accuracy is maintained for a long time, and adhesion in the classification hopper is eliminated in a wide range.
Further, by using the apparatus of the present invention, toner adhesion with high frictional charge or adhesion is also eliminated, safety and releasability are greatly improved, and adhesion in the classification hopper is eliminated in a wide range, and the apparatus Adhesion can be freely removed regardless of whether or not the apparatus is in operation, and adhesion can be removed and removed in a wide range regardless of whether or not the apparatus is in operation.

また、本発明の装置を用いたトナーを用いることで飛びの少ないシャープなトナーが得られ、また本発明の装置を用いることで製品回収率の高い分級トナーを得ることができるという極めて優れた効果が発揮される。   Further, by using the toner using the apparatus of the present invention, a sharp toner with less skipping can be obtained, and by using the apparatus of the present invention, a classified toner having a high product recovery rate can be obtained. Is demonstrated.

以下に、本発明の理解を容易ならしめるため、まず、従来の気流式DS分級機、ならびに装置の詳細を図1に基づいて説明する(また、以下の文章において各名称の後の数字は図中の数字に対応する)。
図1において、気流式DS分級装置は上から分散室(5)、分級室(4)、ホッパー(3)から構成されており、分散室(5)と分級室(4)の接合部は、上部ケーシング(1)内に保持されることにより、着脱自在に接合され、また、分級室(4)とホッパー(3)の接合部は、下部ケーシング(2)内に保持されることにより、着脱自在に接合されている。
Hereinafter, in order to facilitate understanding of the present invention, the details of a conventional airflow DS classifier and apparatus will be described with reference to FIG. 1 (and the numbers after each name in the following text are figures). Corresponding to the numbers inside).
In FIG. 1, the airflow type DS classifier is composed of a dispersion chamber (5), a classification chamber (4), and a hopper (3) from the top, and the junction between the dispersion chamber (5) and the classification chamber (4) is It is detachably joined by being held in the upper casing (1), and the joint between the classification chamber (4) and the hopper (3) is detachable by being held in the lower casing (2). Joined freely.

分散室(5)の上部外周面に一次空気流及び粉体材料供給のための分散室流入口(6)が周面からの流入として接続されており、また、内部気体を排出するための排気管が設けられている。分散室(5)内の下に中央が高い円錐上のセンターコア(7)が取り付けられており、このセンターコア(7)の下縁外周囲には微粉を導くためのセパレーターコア(10)とその周囲に環状の粗粉下降口(11)が形成され、中心域には、微粉下降口(9)が設けられ、ホッパー(3)には、粗粉下降口(11)からの粗粉を排出する粗粉排出口(13)と、微粉下降口(9)から導びかれる微粉を排出する微粉排出管(9a)の微粉排出口(14)が設けられている。   A dispersion chamber inlet (6) for supplying the primary air flow and the powder material is connected to the upper outer peripheral surface of the dispersion chamber (5) as an inflow from the peripheral surface, and exhaust for discharging the internal gas. A tube is provided. A conical center core (7) having a high center is attached below the dispersion chamber (5), and a separator core (10) for guiding fine powder around the lower edge of the center core (7); An annular coarse powder lowering port (11) is formed around the periphery, a fine powder lowering port (9) is provided in the central area, and the hopper (3) receives coarse powder from the coarse powder lowering port (11). A coarse powder discharge port (13) for discharging and a fine powder discharge port (14) of a fine powder discharge pipe (9a) for discharging the fine powder guided from the fine powder lowering port (9) are provided.

また、分級室(4)の下部周壁外周部縁には二次空気流が流入するための流路が羽形状をした仕切板で多数の小領域に仕切られた二次空気流入口(12)(ルーバーとも呼ばれる)が少なくとも1箇所に具備されており、粉体材料を分散させると共に旋回速度を加速させるように構成されている。   In addition, a secondary air inlet (12) in which a flow path for the secondary air flow into the lower peripheral wall outer peripheral edge of the classification chamber (4) is partitioned into a plurality of small regions by a wing-shaped partition plate (Also called a louver) is provided in at least one place, and is configured to disperse the powder material and accelerate the turning speed.

気流式DS分級方式の分級原理は、分級室内において流入する二次空気流が粉体材料を旋回状に反自由流動させる際、粗大粒子と微細粒子の間の質量の差が、粒子の円運動(旋回流動)に基く加速度定数を乗ずること(加速度の2乗を質量に乗ずること)により増幅され大きな差(力学的差)となるので、より分離し易くなることを利用し、該粉体材料中の粗粒子と微粒子に対して働く遠心力(及び向心力)が異なることを利用するものである。従って、分級室内では分散された粗粒子や微粒子が、装置内壁等に付着したり再凝集することなく、速やかに分級され粗粒子はその運動エネルギーを喪失して排出口(13)より、また微粒子は排出口(14)よりに排出されることが望ましい。   The classification principle of the airflow DS classification method is that when the secondary air flow that flows in the classification chamber causes the powder material to swirl counter-freely, the difference in mass between coarse particles and fine particles causes the circular motion of the particles. By multiplying the acceleration constant based on (swirl flow) (multiplying the square of acceleration by the mass) and making a large difference (mechanical difference), the powder material is utilized because it is easier to separate. It utilizes the fact that centrifugal force (and centripetal force) acting on the coarse particles and fine particles inside is different. Accordingly, the coarse particles and fine particles dispersed in the classification chamber are quickly classified without adhering to the inner wall of the apparatus or re-aggregating, and the coarse particles lose their kinetic energy and are discharged from the discharge port (13). Is preferably discharged from the discharge port (14).

次に、本発明の実施態様を示す。
[1]本発明の1つの方式について、その概要を図7に示す。
本発明においては、容器(19)や空洞躯体等の内壁に付着する粉体の密着強度を振動部(20)によって低下させ付着を防止し、分離された粗粒子を速やかに容器底部に落下させる。振動部(20)は、後述するように、ある場合には、ホッパー形状の振動部であることができ、また、好ましい。
Next, embodiments of the present invention will be shown.
[1] FIG. 7 shows an outline of one method of the present invention.
In the present invention, the adhesion strength of the powder adhering to the inner wall of the container (19) or the hollow housing is reduced by the vibrating section (20) to prevent the adhesion, and the separated coarse particles are quickly dropped to the bottom of the container. . As will be described later, the vibrating section (20) can be a hopper-shaped vibrating section in some cases, and is preferable.

[2]本発明のフィダーを用いた粉体処理方式の1例について、その概要を図11に示す。
投入口(29−1)より投入された粉体は排出スクリュー(29−2)によって排出口(29−3)に排出されるが、フィーダ内壁に付着する粉体の密着強度を振動部(29)によって低下させ付着を防止し、分離された粒子を速やかに排出口(29−3)に排出させる。
[2] FIG. 11 shows an outline of an example of the powder processing method using the feeder of the present invention.
The powder input from the input port (29-1) is discharged to the discharge port (29-3) by the discharge screw (29-2), but the adhesion strength of the powder adhering to the inner wall of the feeder is determined by the vibrating portion (29 ) To prevent adhesion and quickly discharge the separated particles to the discharge port (29-3).

[3]本発明のホッパーを用いた粉体処理方式の1例について、その概要を図8に示す。
一次保管され、ホッパー容器(20A)の内壁に付着する粉体の密着強度を振動部(21)、ホッパー部(20C)の振動部(22)によって低下させ付着を防止し、分離された粗粒子を速やかに容器底部(20B)に落下させる。
[3] FIG. 8 shows an outline of an example of a powder processing method using the hopper of the present invention.
The coarse particles separated by preventing the adhesion by lowering the adhesion strength of the powder that is primarily stored and adhered to the inner wall of the hopper container (20A) by the vibration part (21) and the vibration part (22) of the hopper part (20C). Is quickly dropped onto the bottom of the container (20B).

[4]本発明のフィダーを下部に具備するホッパーを用いた粉体処理方式の1例について、その概要を図11に示す。この例の方式では、振動部を容器(20A)に有する先の方式と異なり、容器(20A)に振動部(27)を,ホッパー(20C)に振動部(28)を、それぞれ有する。
投入口(27−1)より投入された粉体は排出スクリュー(27−2)によって排出口(27−3)に排出されるが、フィーダ内壁に付着する粉体の密着強度を振動部(27),(28)によって低下させ付着を防止し、分離された粒子を速やかに排出口(27−3)に排出させる。
[4] FIG. 11 shows an outline of an example of a powder processing method using a hopper having a feeder according to the present invention at the bottom. In the system of this example, unlike the previous system having the vibration part in the container (20A), the container (20A) has the vibration part (27), and the hopper (20C) has the vibration part (28).
The powder input from the input port (27-1) is discharged to the discharge port (27-3) by the discharge screw (27-2). The adhesion strength of the powder adhering to the feeder inner wall is controlled by the vibrating portion (27). ), (28) to prevent adhesion and quickly discharge the separated particles to the outlet (27-3).

[5]本発明の、振動部を内部に宙吊状態で配置した容器を用いたフィルター式濾過装置による濾過方式の1例について、その概要を図9に示す。
流入口(23−1)より流入する粉流体は内部のフィルター(23−3)で吸着処理された後、流体(エアー流)はエアー排出口(23−2)より排出させる。吸着された粉体は容器(23A)頂部の噴射口(23−5)よりフィルター(23−3)内部に噴射する洗浄エアーによって自重落下しホッパー(23C)の下部の排出口(23−4)より排出させる。フィルター濾過装置内壁に装着付着する粉体の密着強度を振動部(23)によって低下させ付着を防止し、また、ホッパー(23C)内に配置した振動部(24)によっても粉体をホッパー(23C)の内壁に残留することなく速やかに粉体排出口(23−4)より排出させる。
振動部(24)を、容器(23A)内に宙吊状態で配置するには、例えば、振動部(23)の上部周縁の少なくとも一部に挟みシロを設け、該挟みシロを、前記ホッパーの上縁と前記分級室の下縁との間に挟まれることにより、宙吊状態で配置することができ、または、適当な弾性の宙吊部材を用いて容器(23A)内壁面に支承させることもできる
[5] FIG. 9 shows an outline of an example of a filtration method using a filter-type filtration device using a container in which the vibration unit is suspended in the interior of the present invention.
After the powder fluid flowing in from the inflow port (23-1) is adsorbed by the internal filter (23-3), the fluid (air flow) is discharged from the air discharge port (23-2). The adsorbed powder falls by its own weight by the cleaning air injected into the filter (23-3) from the injection port (23-5) at the top of the container (23A), and the discharge port (23-4) below the hopper (23C). More drain. The adhesion strength of the powder attached to and adhered to the inner wall of the filter filtration device is reduced by the vibrating portion (23) to prevent the adhesion, and the powder is also hopper (23C) by the vibrating portion (24) disposed in the hopper (23C). ) And quickly discharged from the powder discharge port (23-4) without remaining on the inner wall.
In order to dispose the vibrating part (24) in a suspended state in the container (23A), for example, a pinch is provided on at least a part of the upper peripheral edge of the vibrating part (23), and the pinch is attached to the hopper. It can be placed in a suspended state by being sandwiched between the upper edge and the lower edge of the classifying chamber, or can be supported on the inner wall surface of the container (23A) using a suitable elastic suspension member. Can also

[6]本発明の、振動部付き容器を用いたホッパーと分S裡手段とを備えた分級装置を用いる分級方式の1例として、図13に、回転式ロータ分級の一例を示す。傾斜している材料供給口(30)より供給される分級材料は、装置上部に位置し回転する分級ロータ(31)の遠心力とその内部より吸引する風量の向心力によって粗粉は、下方に位置する粗粉排出口(33)より排出され、微粉は上方に位置する微粉排出口(32)より排出される。その際、分級機内ホッパー(34)には振動部(34−1)が装着されているため粗粒子の機内滞留はなく、安定した分級精度が保たれる。このようにホッパーと分級手段を設け本発明の要件を満たす分級機であれば、方式および構造の規定はない。 [6] FIG. 13 shows an example of a rotary rotor classification as an example of a classification method using a classification device provided with a hopper using a container with a vibrating part and a classification S 裡 means according to the present invention. The classification material supplied from the inclined material supply port (30) is located in the upper part of the apparatus, and the coarse powder is positioned downward by the centrifugal force of the rotating classification rotor (31) and the centripetal force of the air volume sucked from the inside. The fine powder is discharged from the coarse powder outlet (33), and the fine powder is discharged from the fine powder outlet (32) located above. At that time, since the vibration part (34-1) is mounted on the classifier hopper (34), coarse particles do not stay in the machine, and stable classification accuracy is maintained. As long as the classifier is provided with a hopper and classification means and satisfies the requirements of the present invention, there is no definition of the system and structure.

[7]本発明の前記「分散室と、その下の分級室と、その下の前記ホッパーを有する粉体の分級装置」、即ち、「分散室と、その下の分級室と、その下の前記ホッパーを有する粉体の分級装置であって、該分散室は、粉体材料と一次空気との混合流体を導入するための分散室流入口と、内部気体を排出するための排気管とを有し、該分級室は、周辺部から二次空気流を導入する二次空気流口と、円錐形状のセンターコアと、このセンターコアの外周下側に設けられたセパレータコアと、周辺域に設けられた粗粉下降口と、中心域に設けられた微粉下降口とを有し、該ホッパーは、前記微粉下降口から導びかれる微粉を排出する微粉排出口と、前記粗粉下降口からの粗粉を排出する粗粉排出口を有し、前記ホッパー内に、振動部を宙吊状態で配置したことを特徴とする粉体の分級装置」について、その概要を図2に示す。 [7] In the present invention, the “dispersion chamber, the classification chamber below it, and the powder classification device having the hopper below it”, that is, the “dispersion chamber, the classification chamber below it, and the A powder classification apparatus having the hopper, wherein the dispersion chamber includes a dispersion chamber inlet for introducing a fluid mixture of the powder material and primary air, and an exhaust pipe for discharging the internal gas. The classification chamber has a secondary air flow port for introducing a secondary air flow from the peripheral portion, a conical center core, a separator core provided on the lower outer periphery of the center core, and a peripheral region. A coarse powder lowering port provided in the center area, and the hopper includes a fine powder discharge port for discharging fine powder guided from the fine powder downward port, and the coarse powder lowering port. A coarse powder outlet is provided for discharging the coarse powder, and the vibrating part is suspended in the hopper. For classifying apparatus of the powder, characterized in that the "shows the outline in FIG.

以下の記載で、該当図に記されていない各名称及びその名称後の数字は、図1及び他の図と同様である。
本発明の該分級装置の特徴を以下に示す。
図2に示す気流式DS分級装置において、本発明の対象となるホッパー(3)の内部
にシート状の板厚0.3〜3.0mmによって製缶した振動部(3a)(この例ではホッパー形状の振動部)を装着し、振動部(3a)がなければホッパー(3)内壁に付着する粉体の密着強度を振動によって低下させ付着を防止し、分離された粗粒子を速やかに排出口(13)に導く。
In the following description, each name not shown in the corresponding figure and the number after that name are the same as those in FIG. 1 and other figures.
The characteristics of the classifier of the present invention are shown below.
In the airflow type DS classifying apparatus shown in FIG. 2, a vibrating part (3a) (made in this example a hopper) made by a sheet-like plate thickness of 0.3 to 3.0 mm inside a hopper (3) which is an object of the present invention. If there is no vibrating part (3a), the adhesion strength of the powder adhering to the inner wall of the hopper (3) is reduced by vibration to prevent adhesion, and the separated coarse particles are discharged quickly. Guide to (13).

この振動部(3a)の詳細を図3(A)の立体図で説明すると、例えば、バネ(3b)等でホッパー(3)に接続することにより宙吊状態で配置し、かつ、片持ちにして分級機器の振動で容易に振動部(3a)へ共振する構造を有している。ホッパー(3)と接続する治具は振動が容易に伝達できれば良く、材質は他にゴム、シリコン等も可能で特に限定はない。   The details of the vibration part (3a) will be described with reference to the three-dimensional view of FIG. 3 (A). Thus, it has a structure that easily resonates to the vibration part (3a) by vibration of the classifying device. The jig connected to the hopper (3) only needs to be able to easily transmit vibration, and other materials such as rubber and silicon can be used, and there is no particular limitation.

片持ち構造とは、ホッパー形状の振動部(3a)は、分級機本体を振動させるため分級精度へと影響を及ぼすことと成るが、片持ち構造のホッパー形状振動部(3a)を用いることで、分級機本体を振動することなく少ないエネルギーで振動面(ホッパー面)が振動するため、粒子の密着強度が低下し、付着を防止することができる。
振動部(3a)のホッパー(3)との接続部分は固定、板厚0.3〜3.0mmが固有振動に対する共振の点で好ましい。
With the cantilever structure, the hopper-shaped vibrating part (3a) vibrates the classifier main body and affects the classification accuracy. By using the cantilevered hopper-shaped vibrating part (3a) Since the vibration surface (hopper surface) vibrates with less energy without vibrating the classifier body, the adhesion strength of the particles can be reduced and adhesion can be prevented.
The connecting portion of the vibrating portion (3a) with the hopper (3) is fixed, and a plate thickness of 0.3 to 3.0 mm is preferable in terms of resonance with respect to natural vibration.

振動部(3a)のための振動器は一般的にバイブレータ(V)を用いる。このバイブレータには電磁作用を用いた機械式又はピストンや回転式を用いたエアー式等があるが、安全性や機能性や操作性より判断し、エアー回転式を主流として用いる。また振動のモードは連続式、間欠式稼動の双方共有効であるが、騒音または消費エネルギーを考慮し、間欠稼動を主流として用いる。   A vibrator (V) is generally used as a vibrator for the vibrating part (3a). This vibrator includes a mechanical type using an electromagnetic action or an air type using a piston or a rotary type, and the air rotary type is used as a mainstream, judging from safety, functionality and operability. The vibration mode is effective for both continuous and intermittent operation, but intermittent operation is used as the mainstream in consideration of noise or energy consumption.

[8]図2に示される本発明の気流式DS分級装置を図4(A)及び図5(A)(詳細図)に示す。
ここで、振動部が、上部周縁の少なくとも一部に挟みシロを有し、該挟みシロは、前記ホッパーの上縁と前記分級室の下縁との間に〔着脱自在に〕挟まれることにより、該振動ホッパーを宙吊状態で保持するものである場合について、1つの例を説明すると、そのような分級装置は、装着する振動部(3a)の上部エッジに挟みシロ(3C)を設け、この挟みシロ(3C)をホッパー(3)の上縁と分級室(4)の下縁との間に、挟むことにより、振動部(3a)を中吊状態で保持するものである。
挟みシロの具体的取付け方法の他の好ましい1例を図4(B)に示す。分級室(4)下縁の二次エアー流入口部材(12)下面とホッパー(3)の上縁面の間に挟みシロ(3c)を着脱自在にセットし固定する。振動部(3a)、挟みシロ(3c)によってホッパー(3)内に振動部(3a)を片持ち固定するため、振動部(3a)全体に振動が伝わりやすくなる。
[8] The airflow DS classifier of the present invention shown in FIG. 2 is shown in FIGS. 4 (A) and 5 (A) (detailed view).
Here, the vibrating part has a scissors on at least a part of the upper peripheral edge, and the scissors are sandwiched between the upper edge of the hopper and the lower edge of the classification chamber (removably). In the case where the vibrating hopper is held in a suspended state, an example will be described. Such a classifying device is provided with a scissors (3C) sandwiched between the upper edges of the vibrating portion (3a) to be mounted, By sandwiching the pinch white (3C) between the upper edge of the hopper (3) and the lower edge of the classification chamber (4), the vibrating part (3a) is held in a suspended state.
FIG. 4B shows another preferred example of a specific method for attaching the pinch scissors. A scissors (3c) is detachably set and fixed between the lower surface of the secondary air inlet member (12) at the lower edge of the classification chamber (4) and the upper edge surface of the hopper (3). Since the vibrating part (3a) is cantilevered and fixed in the hopper (3) by the vibrating part (3a) and the pinch scissors (3c), the vibration is easily transmitted to the entire vibrating part (3a).

[9]本発明における振動部(3a)にスリットを装着した装置は、前記(7)、(8)の分級装置において装着する振動部(3a)の側面に、図3(B)、図5(B)に示すスリット(3S)を振動部(3a)の側面に対し1個〜10個、装着したことを特徴とする分級装置である。
スリット(3S)の設置位置(P)は、ホッパー高さ(H)に対し1/10H≦P≦9/10、スリット(3S)の間隔はホッパー円周に対し2〜8分割等がより振動が伝わりやすくなる。
[9] A device in which a slit is attached to the vibration part (3a) according to the present invention is provided on the side surface of the vibration part (3a) to be attached in the classification devices of (7) and (8). The classifying apparatus is characterized in that one to ten slits (3S) shown in (B) are attached to the side surface of the vibrating section (3a).
The installation position (P) of the slit (3S) is 1 / 10H ≦ P ≦ 9/10 with respect to the hopper height (H), and the interval between the slits (3S) is 2-8 divisions with respect to the hopper circumference. Is easier to communicate.

[10]本発明における振動部(3a)が導電性の材料で形成されているものである場合の装置は、前記[7]〜[9]の振動部(3a)の材質を導電性金属で製作し粉体の摩擦帯電による付着を防止するものである。
具体的な導電性金属としては、一般的にSUS、Al、Cu、SS材等を用いるが限定するものではない。
[10] In the apparatus in which the vibration part (3a) in the present invention is formed of a conductive material, the material of the vibration part (3a) of [7] to [9] is made of a conductive metal. This prevents the powder from adhering due to frictional charging.
As a specific conductive metal, SUS, Al, Cu, SS material or the like is generally used, but is not limited.

[11]本発明における振動部(3a)が離型性の材料で形成されているものである場合の装置は、前記振動部(3a)の材質表面に離型剤処理を施し、粉砕によって発生する装置内の付着・凝集・融着・固着を抑制することを特徴とする気流式粉砕・分級機である。
導電性離型剤処理は、例えば電気抵抗値10〜1016Ω・cm、体積抵抗値10〜1016Ω・cmの範囲で、主にそれぞれの電気抵抗値が10〜10Ω・cmである基本フッ素樹脂:PTFE(テフロン:登録商標),PFA(テトラフルオロエチレン−パーフルオロアルキルビニールエーテル共重合体),FEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体),ETFE(テトラルフルオロエチレンーエチレン共重合体)を振動ホッパーにコーティングする。
[11] The apparatus in the case where the vibration part (3a) in the present invention is formed of a releasable material is generated by subjecting the material surface of the vibration part (3a) to a release agent treatment and pulverization. It is an airflow type pulverizing / classifying machine characterized by suppressing adhesion, aggregation, fusion, and adhesion in the apparatus.
The conductive mold release agent treatment is, for example, in the range of an electric resistance value of 10 3 to 10 16 Ω · cm and a volume resistance value of 10 3 to 10 16 Ω · cm, and the electric resistance value is mainly 10 6 to 10 9 Ω. Basic fluororesin that is cm: PTFE (Teflon: registered trademark), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene-hexafluoropropylene copolymer), ETFE (tetral) A vibration hopper is coated with a fluoroethylene-ethylene copolymer).

[12]本発明における振動部(3a)が導電性の離型性の材料で形成されているものである場合の装置は、前記振動部(3a)に導電性及び離型性の双方を兼ね備えたものをホッパー(3)に装着した分級装置を特徴とする。 [12] The apparatus in the case where the vibration part (3a) in the present invention is made of a conductive releasable material, the vibration part (3a) has both conductivity and releasability. It is characterized by a classifier that is mounted on a hopper (3).

[13]本発明における前記振動部(3a)の表面が研磨加工されているものである場合の装置は、前記振動部(3a)の材質表面をブラスト処理等の研磨処理し、凹凸面はRa0.05〜1.0μm、Ry1.0〜5.0μm、Rz1.0〜5.0μm、Rq Ra0.05〜1.0μmの範囲に平滑にしたことを特徴とする。
研磨処理方法としては、5〜50μmの微粒子金属粉または樹脂ビーズを媒体に高圧エアーで表面に照射する乾式ブラスト処理が一般的となる。
[13] In the apparatus when the surface of the vibration part (3a) in the present invention is polished, the material surface of the vibration part (3a) is subjected to polishing treatment such as blasting, and the uneven surface is Ra0. 0.05 to 1.0 μm, Ry 1.0 to 5.0 μm, Rz 1.0 to 5.0 μm, Rq Ra 0.05 to 1.0 μm.
As a polishing method, dry blasting is generally performed in which a surface is irradiated with high-pressure air on a medium of 5 to 50 μm fine metal powder or resin beads.

[14]本発明における、前記振動部(3a)の表面積(S1)は前記ホッパーの内壁面の表面積(S)に対して[0.30×S≦S1≦0.99×S]の範囲であることを特徴とする分級装置は、分級機内の振動部(3a)は粉体特性に応じて完全に付着除去が出来るように、ホッパー(3)の表面積(S)に対する振動部(3a)の形状、特に表面積(S1)を、0.30×S≦S1≦0.99×Sにするのが好ましく、最も望ましくは、0.6×S≦S1≦0.9×Sの範囲を特徴とする分級装置である。 [14] In the present invention, the surface area (S1) of the vibrating portion (3a) is in the range of [0.30 × S ≦ S1 ≦ 0.99 × S] with respect to the surface area (S) of the inner wall surface of the hopper. The classifying device is characterized in that the vibrating part (3a) in the classifier can be completely attached and removed in accordance with the powder characteristics, so that the vibrating part (3a) with respect to the surface area (S) of the hopper (3) can be removed. The shape, particularly the surface area (S1), is preferably 0.30 × S ≦ S1 ≦ 0.99 × S, and most desirably is characterized by a range of 0.6 × S ≦ S1 ≦ 0.9 × S. This is a classification device.

[15]本発明における、前記振動部(3a)に自己振動できるバイブレータを設けたことを特徴とする分級装置は、分級機内の振動部(3a)外面に、図6に示すバイブレータ(V)により振動部(3a)が自己振動できることを特徴とする。
例えば、ABB社のネッターニューマチックタービンバイブレータ等のエアー振動バイブレータの他、電気的な振動バイブレータ等が一般的に用いられるが、これに限定されるものではない。
バイブレータの範囲は振動数(回数/min)3000〜25000min−1、好ましくは7000〜23000min−1、振動力の範囲(1N=0.102kg)は1000〜4000N、好ましくは1500〜3000Nの範囲を用いる。
[15] In the classifying apparatus according to the present invention, a vibrator capable of self-vibration is provided in the vibrating section (3a). The classifying apparatus includes a vibrator (V) shown in FIG. 6 on the outer surface of the vibrating section (3a) in the classifier. The vibration part (3a) is capable of self-vibration.
For example, in addition to an air vibration vibrator such as an ABB company netter pneumatic turbine vibrator, an electric vibration vibrator or the like is generally used, but the invention is not limited to this.
The range of the vibrator is a frequency (number of times / min) of 3000 to 25000 min-1, preferably 7000 to 23000 min-1, and the range of vibration force (1N = 0.102 kg) is 1000 to 4000 N, preferably 1500 to 3000 N. .

[16]この場合のバイブレーターの取付位置(VS)は、図6に示す振動部(3a)の高さ(H)に対し[0.3×H≦VS≦0.8H]の範囲、好ましくは[0.5×H≦VS≦0.6H]の範囲にあることが望ましい。バイブレータ取付け位置(VS)が0.3×Hより小さいHS方向に装着すると、振動が振動バイブレータに到達できず十分な振動が伝達できない。また、0.8Hより大きいと、振動ホッパーへの振幅が大きくなり、分級ホッパー(3)と干渉し、騒音や金属磨耗が発生し、好ましくない。
振動器は一般的にバイブレータを用いる。このバイブレータには電磁作用を用いた機械式又はピストンや回転式を用いたエアー式等があるが、安全性や機能性や操作性より判断し、エアー回転式を主流として用いる。また、振動のモードは連続式、間欠式稼動の双方共有効であるが、騒音または消費エネルギーを考慮し、間欠稼動を主流として用いる。
[16] The vibrator mounting position (VS) in this case is in the range of [0.3 × H ≦ VS ≦ 0.8H] with respect to the height (H) of the vibrating portion (3a) shown in FIG. 6, preferably It is desirable to be in the range of [0.5 × H ≦ VS ≦ 0.6H]. If the vibrator attachment position (VS) is mounted in the HS direction smaller than 0.3 × H, vibration cannot reach the vibration vibrator and sufficient vibration cannot be transmitted. On the other hand, if it is larger than 0.8H, the amplitude to the vibration hopper becomes large, which interferes with the classification hopper (3), and noise and metal wear occur.
A vibrator is generally used as the vibrator. This vibrator includes a mechanical type using an electromagnetic action or an air type using a piston or a rotary type, and the air rotary type is used as a mainstream, judging from safety, functionality and operability. The vibration mode is effective for both continuous and intermittent operation, but intermittent operation is used as the mainstream in consideration of noise or energy consumption.

[17]本発明における、前記分級装置としてサイクロン捕集機を用いた場合について、図10を参照して説明する。
装置外周に設けられた粉流体流入口(25−1)より接線方向に流入する粉流体はサイクロンの旋回流効果によって遠心力が働き粉体は内壁面を旋回、流体(エアー流)は装置上方に設けられたエアー排出口(25−2)より排出させる。粉体は旋回を続けながら自重落下し、装置下部に設けられた粉体排出口(25−3)より排出されるが、捕集容器サイクロン内壁に付着する粉体の密着強度を振動部(25)、(26)によって低下させ付着を防止し、分離された粗粒子を速やかにサイクロン容器底部に落下させる。
[17] A case where a cyclone collector is used as the classification device in the present invention will be described with reference to FIG.
The pulverized fluid that flows in the tangential direction from the pulverized fluid inlet (25-1) provided on the outer periphery of the device acts by centrifugal force due to the swirling flow effect of the cyclone, and the powder swirls on the inner wall surface, and the fluid (air flow) is above the device It is made to discharge from the air discharge port (25-2) provided in. The powder falls by its own weight while continuing to swivel and is discharged from the powder discharge port (25-3) provided at the lower part of the apparatus. The adhesion strength of the powder adhering to the inner wall of the collection container cyclone is controlled by the vibrating portion (25 ) And (26) to prevent adhesion and quickly drop the separated coarse particles to the bottom of the cyclone container.

以下、具体的に本発明の分級機で分級した状況を示す。
これらは、本発明の一態様にすぎず、これらに本発明の技術的範囲は限定されない。
稼働時間は一定としてその場合の分級度、あるいは一定の条件になるまで稼動させて効率を示す。
Hereinafter, the situation classified with the classifier of this invention is shown concretely.
These are only one aspect of the present invention, and the technical scope of the present invention is not limited thereto.
The operating time is constant, and the efficiency is shown by operating until the degree of classification in that case or a certain condition.

参考例1(振動部(3a)を宙吊状態で配置した容器、該容器使用のフィーダの使用例)
スチレンアクリル共重合樹脂70重量%とポリエステル樹脂10重量%とカルナバWAX5%をカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。
次に、この粗粉砕物をジェットミルにて重量粉砕粒子径6.4μmに微粉砕して微粉砕物を容器に投入後、振動条件他:振動数21000min−1、振動力の範囲は2200Nを用いた。
容器及びフィーダ内壁へのトナー付着や偏析は一切みられなかった。
Reference example 1 (container in which the vibrating part (3a) is suspended in a suspended state, an example of using a feeder using the container)
A mixture of 70% by weight of styrene-acrylic copolymer resin, 10% by weight of polyester resin and 5% by weight of Carnauba WAX was melt kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill.
Next, this coarsely pulverized product is finely pulverized to a particle size of 6.4 μm by a jet mill, and the finely pulverized product is put into a container. Using.
There was no toner adhesion or segregation on the inner wall of the container or feeder.

参考例2(フィルター式濾過装置の使用例)
スチレンアクリル共重合樹脂70重量%とポリエステル樹脂10重量%とカルナバWAX5%をカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。
次に、この粗粉砕物をジェットミルにて重量粉砕粒子径6.0μmに微粉砕して微粉砕物を得た。
振動条件他:振動数21000min−1、振動力の範囲は2200Nを用いた。
この微粉砕物を図7に示した気流式DS分級機で分級を行った。
重量粉砕粒子径6.4μm、4μm以下の極微粒子で個数含有率10%を得た。
上記粉砕、分級物は図9に示すフィルター式濾過装置を用い粉砕、分級工程と同様に振動条件他:振動数21000min−1、振動力の範囲は2200Nを用いたところ各フィルター式濾過装置の粉体排出量は99.5%であった。
Reference Example 2 ( Example of use of filter type filtration device)
A mixture of 70% by weight of styrene-acrylic copolymer resin, 10% by weight of polyester resin and 5% by weight of Carnauba WAX was melt kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill.
Next, this coarsely pulverized product was finely pulverized to a finely pulverized particle size of 6.0 μm with a jet mill to obtain a finely pulverized product.
Vibration conditions, etc .: A frequency of 21000 min −1 and a vibration force range of 2200 N were used.
The finely pulverized product was classified with an airflow DS classifier shown in FIG.
A number content of 10% was obtained with ultrafine particles having a weight-pulverized particle size of 6.4 μm and 4 μm or less.
The above pulverized and classified products are pulverized using the filter type filtration device shown in FIG. 9, and vibration conditions are the same as in the classification step: the frequency is 21000 min-1, the range of vibration force is 2200 N. Body discharge was 99.5%.

参考例3(サイクロン捕集機を分級手段として有する分級装置の使用例)
スチレンアクリル共重合樹脂70重量%とポリエステル樹脂10重量%とカルナバWAX5%をカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。
次に、この粗粉砕物をジェットミルにて重量粉砕粒子径6.4μmに微粉砕して微粉砕物を得た。
振動条件他:振動数21000min−1、振動力の範囲は2200Nを用いた。
この微粉砕物を図7に示した気流式DS分級機で分級を行った。
重量粉砕粒子径6.8μm、4μm以下の極微粒子で個数含有率8%を得た。
上記粉砕、分級物は図10に示すサイクロンを用い粉砕、分級工程と同様に振動条件他:振動数21000min−1、振動力の範囲は2200Nを用いたところ各サイクロンの粉体排出量は99.0%であった。
Reference Example 3 (Usage example of a classification device having a cyclone collector as a classification means)
A mixture of 70% by weight of styrene-acrylic copolymer resin, 10% by weight of polyester resin and 5% by weight of Carnauba WAX was melt kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill.
Next, this coarsely pulverized product was finely pulverized to a weight-pulverized particle size of 6.4 μm with a jet mill to obtain a finely pulverized product.
Vibration conditions, etc .: A frequency of 21000 min −1 and a vibration force range of 2200 N were used.
The finely pulverized product was classified with an airflow DS classifier shown in FIG.
A number content of 8% was obtained with ultrafine particles having a weight-pulverized particle diameter of 6.8 μm and 4 μm or less.
The above pulverized and classified products are pulverized using the cyclone shown in FIG. 10, and vibration conditions are the same as in the classification process: the frequency is 21000 min-1, the range of vibration force is 2200 N. 0%.

参考例4(下部フィーダを有し、振動部(3a)を宙吊状態で配置した容器ホッパーの使用例)
スチレンアクリル共重合樹脂70重量%とポリエステル樹脂10重量%とカルナバWAX5%をカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。
次に、この粗粉砕物をジェットミルにて重量粉砕粒子径6.4μmに微粉砕して微粉砕物を得た粉体を図11に示すフィーダを用いて;
振動条件他:振動数20000min−1、振動力の範囲は2100Nを用いて図7に示した気流式DS分級機に供給しで分級を行った。
重量粉砕粒子径6.8μm、4μm以下の極微粒子で個数含有率9%を得た。
Reference Example 4 (Usage example of a container hopper having a lower feeder and a vibrating part (3a) arranged in a suspended state)
A mixture of 70% by weight of styrene-acrylic copolymer resin, 10% by weight of polyester resin and 5% by weight of Carnauba WAX was melt kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill.
Next, the coarsely pulverized product was finely pulverized with a jet mill to a weight pulverized particle size of 6.4 μm to obtain a finely pulverized product, using the feeder shown in FIG. 11;
Vibration conditions, etc .: Using a frequency of 20000 min-1 and a vibration force range of 2100 N, classification was performed by supplying the airflow DS classifier shown in FIG.
A number content of 9% was obtained with ultrafine particles having a weight-pulverized particle size of 6.8 μm and 4 μm or less.

参考例5(バイブレータを振動部(3a)に設けた分級装置の使用例)
スチレンアクリル共重合樹脂70重量%とポリエステル樹脂10重量%とカルナバWAX5%をカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後、ハンマーミルにて粗粉砕した。
次に、この粗粉砕物をジェットミルにて重量粉砕粒子径6.4μmに微粉砕して微粉砕物を得た。
振動条件他:振動数21000min−1、振動力の範囲は2200Nを用いた。
この微粉砕物を図2に示した気流式DS分級機で分級を行った。
重量粉砕粒子径6.8μm、4μm以下の極微粒子で個数含有率8%を得た。
Reference Example 5 (Usage example of a classifier equipped with a vibrator in the vibrating part (3a))
A mixture of 70% by weight of styrene-acrylic copolymer resin, 10% by weight of polyester resin and 5% by weight of Carnauba WAX was melt kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill.
Next, this coarsely pulverized product was finely pulverized to a weight-pulverized particle size of 6.4 μm with a jet mill to obtain a finely pulverized product.
Vibration conditions, etc .: A frequency of 21000 min −1 and a vibration force range of 2200 N were used.
This finely pulverized product was classified with an airflow DS classifier shown in FIG.
A number content of 8% was obtained with ultrafine particles having a weight-pulverized particle diameter of 6.8 μm and 4 μm or less.

比較例1
図1に示す現行の分級装置にて実施例5と同等条件で分級を行ったところ、稼動1時間で重量粉砕粒子径6.90μm、4μm以下の極微粒子で個数含有率10%を得た。2時間後、4μm以下の極微粒子は個数含有率が12%に増加し、機内を確認した結果、ホッパー内にトナー付着が確認された。
Comparative Example 1
As a result of classification using the current classifier shown in FIG. 1 under the same conditions as in Example 5, a number content of 10% was obtained with very fine particles having a weight-pulverized particle size of 6.90 μm and 4 μm or less in one hour of operation. After 2 hours, the number content of ultrafine particles of 4 μm or less increased to 12%. As a result of checking the inside of the apparatus, toner adhesion was confirmed in the hopper.

実施例(図2に示した気流式DS分級機の使用例)
参考例5と同様の混練、粉砕を経て得た微粉砕物を図2に示した気流式DS分級機で分級を行った。
重量粉砕粒子径6.8μm、4μm以下の極微粒子で個数含有率8%を得た。
Example 1 (Usage example of the airflow type DS classifier shown in FIG. 2)
The finely pulverized product obtained through the same kneading and pulverization as in Reference Example 5 was classified using the airflow DS classifier shown in FIG.
A number content of 8% was obtained with ultrafine particles having a weight-pulverized particle diameter of 6.8 μm and 4 μm or less.

実施例((図4に示した気流式DS分級機の使用例)
参考例5と同様の混練、粉砕を経て得た微粉砕物を図4に示した気流式DS分級機で分級を行い重量粉砕粒子径6.7μm、4μm以下の極微粒子で個数含有率7.5%を得た。
Example 2 ((Usage example of the airflow type DS classifier shown in FIG. 4)
The finely pulverized product obtained through the same kneading and pulverization as in Reference Example 5 is classified by the airflow DS classifier shown in FIG. 5% was obtained.

実施例(導電性材料で形成された振動部(3a)を有する分級装置の使用例)
参考例5と同様の混練、粉砕を経て得た微粉砕物を伝導率95%の銅板で製作した振動ホッパーを用いて10時間稼働し、重量粉砕粒子径6.85μm、4μm以下の極微粒子で個数含有率8%を得た。
Example 3 (Usage example of a classifier having a vibrating part (3a) formed of a conductive material)
The finely pulverized product obtained through the same kneading and pulverization as in Reference Example 5 was operated for 10 hours using a vibration hopper made of a copper plate having a conductivity of 95%, and the finely pulverized particle size was 6.85 μm and ultrafine particles of 4 μm or less. A number content of 8% was obtained.

実施例(導電性の離型剤材料で形成された振動部(3a)を有する分級装置の使用例)
参考例5と同様の混練、粉砕を経て得た微粉砕物を伝導率95%の銅板で製作した後、電気抵抗値108Ω・cm、体積抵抗値106Ω・cmのフッ素樹脂振動ホッパーにコートさせ12時間稼働し、重量粉砕粒子径6.8μm、4μm以下の極微粒子で個数含有率7.5%を得た。
Example 4 (Usage example of a classifier having a vibrating part (3a) formed of a conductive release agent material)
A finely pulverized product obtained by kneading and pulverizing in the same manner as in Reference Example 5 was manufactured using a copper plate having a conductivity of 95%, and then coated on a fluororesin vibration hopper having an electric resistance of 108 Ω · cm and a volume resistance of 106 Ω · cm The mixture was operated for a while, and a number content of 7.5% was obtained with ultrafine particles having a weight-pulverized particle size of 6.8 μm and 4 μm or less.

実施例(ブラスト研磨された振動部(3a)を有する分級装置の使用例)
参考例5と同様の混練、粉砕を経て得た微粉砕物を伝導率95%の銅板で製作した後、表面を凹凸面をRa0.10μm、Ry3.0μm、Rz3.0μm、Rq Ra3.0μmにブラストした振動ホッパーを用いて15時間稼働し、重量粉砕粒子径6.8μm、4μm以下の極微粒子で個数含有率7.0%を得た。
Example 5 (Usage example of a classifier having a vibration part (3a) subjected to blast polishing)
After a finely pulverized product obtained by kneading and pulverizing in the same manner as in Reference Example 5 was produced with a copper plate having a conductivity of 95%, the uneven surface was changed to Ra 0.10 μm, Ry 3.0 μm, Rz 3.0 μm, Rq Ra 3.0 μm. It was operated for 15 hours using a blasted vibration hopper, and a number content of 7.0% was obtained with extremely fine particles having a weight-pulverized particle size of 6.8 μm and 4 μm or less.

参考例6(バイブレータ取付位置(VS)と振動ホッパーの高さ(H)が図6に示される[0.3×H≦VS≦0.8H]の関係にある分級装置の使用例)
実施例5と同様の混練、粉砕を経て得た微粉砕物を振動ホッパー表面積(S1)がホッパー表面積(S)に対し0.8×Sを用いて15時間稼働し、重量粉砕粒子径6.7μm、4μm以下の極微粒子で個数含有率7.0%を得た。
Reference Example 6 (Usage example of a classification device in which the vibrator mounting position (VS) and the height (H) of the vibration hopper are in the relationship of [0.3 × H ≦ VS ≦ 0.8H] shown in FIG. 6)
The finely pulverized product obtained through the same kneading and pulverization as in Example 5 was operated for 15 hours using a vibration hopper surface area (S1) of 0.8 × S with respect to the hopper surface area (S). A number content of 7.0% was obtained with ultrafine particles of 7 μm and 4 μm or less.

参考例7(振動部(3a)に自己振動できるバイブレータを設けた分級装置の使用例)
参考例5と同様の混練、粉砕を経て得た微粉砕物を振動ホッパーに振動数(回数/min)22500min−1、振動力は500〜5000Nを用いて15時間稼働し、重量粉砕粒子径6.7μm、4μm以下の極微粒子で個数含有率7.0%を得た。
Reference Example 7 (Usage example of a classifier equipped with a vibrator that can vibrate on the vibrating part (3a))
The finely pulverized product obtained through the same kneading and pulverization as in Reference Example 5 was operated in a vibration hopper for 15 hours using a frequency (number of times / min) of 22500 min-1, a vibration force of 500 to 5000 N, and a weight pulverized particle size of 6 A number content of 7.0% was obtained with ultrafine particles of 7 μm and 4 μm or less.

参考例8バイブレータの取付位置(VS)と振動ホッパーの高さ(H)が[0.3×H≦VS≦0.8H]の関係にある分級装置の使用例)
参考例5と同様の混練、粉砕を経て得た微粉砕物を振動ホッパーにホッパーの高さHに対しHS方向から0.5Hに装着しバイブレータの装着振動数(回数/min)22500min−1、振動力は500〜5000Nを用いて15時間稼働し、重量粉砕粒子径6.7μm、4μm以下の極微粒子で個数含有率6.5%を得た。
Reference Example 8 Example of use of classification device in which vibrator mounting position (VS) and vibration hopper height (H) are in a relationship of [0.3 × H ≦ VS ≦ 0.8H]
A finely pulverized product obtained through the same kneading and pulverization as in Reference Example 5 is mounted on a vibration hopper at 0.5 H from the HS direction with respect to the height H of the hopper, and the vibration frequency (frequency / min) of the vibrator is 22500 min-1, The vibration force was operated for 15 hours using 500 to 5000 N, and a number content of 6.5% was obtained with ultrafine particles having a weight-pulverized particle size of 6.7 μm and 4 μm or less.

従来の分級装置を示す図である。It is a figure which shows the conventional classification apparatus. 本発明の分級装置を示す図である。It is a figure which shows the classification apparatus of this invention. (A)は本発明のホッパー部の拡大図、(B)は本発明のホッパー部の拡大図(スリット)である。(A) is an enlarged view of the hopper part of this invention, (B) is an enlarged view (slit) of the hopper part of this invention. (A)は本発明の分級装置(挟みシロ)、(B)は本発明の振動ホッパー装着図である。(A) is a classification device (pinching white) of the present invention, and (B) is a mounting view of a vibration hopper of the present invention. (A)は本発明のホッパー部の拡大図(挟みシロ)、(B)は本発明のスリット式挟みシロ付きホッパー部の拡大図である。(A) is an enlarged view of the hopper portion of the present invention (pinching white), and (B) is an enlarged view of the hopper portion with a slit pinch of the present invention. 本発明のホッパー部の拡大図(振動装置)である。It is an enlarged view (vibration device) of the hopper part of this invention. 本発明の振動部を(20)の装着を示す容器、20−aは振動部の立体図、20−bはスリット式の立体図である。The vibration part of the present invention is a container showing the mounting of (20), 20-a is a three-dimensional view of the vibration part, and 20-b is a slit-type three-dimensional view. 本発明の振動部を(21)の装着を示すホッパー、21−a、22−aは振動部の立体図、21−b、22−bはスリット式の立体図である。The vibration part of the present invention is a hopper showing attachment of (21), 21-a, 22-a are three-dimensional views of the vibration part, 21-b, 22-b are slit-type three-dimensional views. 本発明の振動部を(23)の装着を示すフィルター式濾過装置、23−a、24−aは振動部の立体図、23−b、24−bはスリット式の立体図である。The filter type filtration device 23-a, 24-a showing the attachment of the vibration part (23) of the present invention is a three-dimensional view of the vibration part, 23-b, 24-b are slit-type three-dimensional views. 本発明の振動部を(25)の装着を示す捕集容器サイクロン、25−a、26−aは振動部の立体図、25−b、26−bはスリット式の立体図である。The vibrating part of the present invention is a collection container cyclone showing the mounting of (25), 25-a and 26-a are three-dimensional views of the vibrating part, and 25-b and 26-b are slit-type three-dimensional views. 本発明のフィーダ装着の一例を示す図である。It is a figure which shows an example of the feeder mounting | wearing of this invention. 本発明のフィーダ装着の他の例を示す図である。It is a figure which shows the other example of the feeder mounting | wearing of this invention. 本発明の回転式ロータ分級の一例を示す図である。It is a figure which shows an example of the rotary rotor classification | category of this invention.

符号の説明Explanation of symbols

1:上部ケーシング部
2:下部ケーシング部
3:ホッパー
3a: 振動部
3b:バネ
3C:挟みシロ
3S:スリット
4:分級室
5:分散室
6:分級室流入口
7:センターコア
9:微粉下降口
9a:微粉排出管
10:セパレーターコア
11:粗粉下降口
12:二次空気流入口
13:粗粒子排出口
14:微粒子排出口
17:排気管
20:振動部
20A:容器
20B:容器底部
20C:ホッパー部
21:振動部
22:振動部
23:振動部
23A:容器
23C:ホッパー
23−3:フィルター
23−2;エアー排出口
23−3:フィルター
23−4:粉体排出口
23−5:噴射口
24:振動部
25:振動部
25A;容器
25−1:粉流体流入口
25−2:エアー排出口
25−3:粉体排出口
26:振動部
26A:ホッパー部
27:振動部
27−1:粉体投入口
27−2:粉体排出スクリュー
27−3:排出口
27−1:粒子排出口
23−1:粉流体流入口
28:振動部
29:振動部
29−1:粉体投入口
29−2:粉体排出スクリュー
29−3:粒子排出口
30:材料供給口
31:分級ロータ
32:微粉排出口
33:粗粉排出口
34:分級機内ホッパー
34−1:振動部
H:振動部&ホッパーの高さ
S:ホッパー表面積
V:バイブレータ
S1:振動部表面積
VS:バイブレータ取付位置
HS:バイブレータ取付位置基準
P:スリット設置位置

1: Upper casing part 2: Lower casing part 3: Hopper 3a: Vibrating part 3b: Spring 3C: Scissors white 3S: Slit 4: Classification room 5: Dispersion room 6: Classification room inlet 7: Center core 9: Fine powder lowering hole 9a: Fine powder discharge pipe 10: Separator core 11: Coarse powder lowering port 12: Secondary air inlet 13: Coarse particle discharge port 14: Fine particle discharge port 17: Exhaust pipe 20: Vibrating part 20A: Container 20B: Container bottom part 20C: Hopper part 21: Vibrating part 22: Vibrating part 23: Vibrating part 23A: Container 23C: Hopper 23-3: Filter 23-2; Air outlet 23-3: Filter 23-4: Powder outlet 23-5: Injection Port 24: Vibrating unit 25: Vibrating unit 25A; Container 25-1: Powder fluid inlet 25-2: Air outlet 25-3: Powder outlet 26: Vibrating unit 26A: Hopper unit 27: Vibrating unit 27-1 :powder Inlet 27-2: Powder discharge screw 27-3: Discharge port 27-1: Particle discharge port 23-1: Powder fluid inlet 28: Vibrating unit 29: Vibrating unit 29-1: Powder inlet 29-2: Powder discharge screw 29-3: Particle discharge port 30: Material supply port 31: Classification rotor 32: Fine powder discharge port 33: Coarse powder discharge port 34: Classifier hopper 34-1: Vibration part H: High vibration part & hopper height S: Surface area of hopper V: Vibrator S1: Surface area of vibration part VS: Vibrator mounting position HS: Vibrator mounting position reference P: Slit mounting position

Claims (12)

分級手段とその下に粉体を一次的に貯蔵する粉体容器とを備える分級装置であって、前記粉体容器は、前記分級手段の振動により振動するホッパー形状の振動部を有し、該振動部は、スリット及び上部周縁の少なくとも一部に挟みシロを有し、該挟みシロが前記粉体容器の上縁と前記分級手段の分級室の下縁との間に挟まれることにより、該振動ホッパーを宙吊状態で保持されるものであることを特徴とする分級装置。 A classification apparatus comprising a classification means and a powder container for temporarily storing powder under the classification means , wherein the powder container has a hopper-shaped vibration part that vibrates due to vibration of the classification means, The vibrating part has a scissors on at least a part of the slit and the upper peripheral edge, and the scissors are sandwiched between the upper edge of the powder container and the lower edge of the classification chamber of the classification means, A classification device characterized in that the vibration hopper is held in a suspended state . 前記粉体が電子写真用粉体であることを特徴とする請求項1に記載の分級装置。 The classification device according to claim 1, wherein the powder is an electrophotographic powder . 前記スリット長さ(P)はホッパー高さ(H)に対し、1/10H≦P≦9/10Hであることを特徴とする請求項1または2に記載の分級装置。The classification device according to claim 1, wherein the slit length (P) is 1 / 10H ≦ P ≦ 9 / 10H with respect to the hopper height (H). 前記スリットの間隔はホッパー円周を2乃至8分割するものであることを特徴とする請求項1乃至3のいずれかに記載の分級装置。The classifying apparatus according to any one of claims 1 to 3, wherein the interval between the slits divides the hopper circumference into 2 to 8 parts. 前記分級手段としてサイクロン捕集機を用いたことを特徴とする請求項1乃至4のいずれかに記載の分級装置。 The classification device according to any one of claims 1 to 4 , wherein a cyclone collector is used as the classification means. 前記分級手段は、分散室と、その下の分級室とを有し、該分散室は、粉体材料と一次空気との混合流体を導入するための分散室流入口と、内部気体を排出するための排気管とを有し、該分級室は、周辺部から二次空気流を導入する二次空気流口と、円錐形状のセンターコアと、このセンターコアの外周下側に設けられたセパレータコアと、周辺域に設けられた粗粉下降口と、中心域に設けられた微粉下降口とを有し、該ホッパーは、前記微粉下降口から導びかれる微粉を排出する微粉排出口と、前記粗粉下降口からの粗粉を排出する粗粉排出口を有し、前記ホッパー内に、振動部を宙吊状態で配置したことを特徴とする請求項1乃至5のいずれかに記載の分級装置。 The classification unit comprises: a dispersion chamber, and a classifying chamber underneath, the dispersion chamber is discharged and the dispersion chamber inlet for introducing a fluid mixture of powder material and the primary air, an interior gas The classification chamber has a secondary air flow inlet for introducing a secondary air flow from the peripheral portion, a conical center core, and a separator provided on the lower outer periphery of the center core. A core, a coarse powder lowering port provided in the peripheral region, and a fine powder lowering port provided in the central region, and the hopper has a fine powder discharge port for discharging fine powder guided from the fine powder lowering port; it has a coarse powder discharge port for discharging the coarse powder from the coarse powder falling opening, into the hopper, according to any one of claims 1 to 5, characterized in that arranged in a state suspended the air vibration unit Classification device. 前記振動部が導電性の材料で形成されていることを特徴とする請求項1乃至6のいずれかに記載の分級装置。 The classification device according to any one of claims 1 to 6 , wherein the vibration section is made of a conductive material. 前記振動部の表面は離型剤で形成されていることを特徴とする請求項1乃至7のいずれかに記載の分級装置。 The classifying apparatus according to claim 1, wherein a surface of the vibration part is formed of a release agent. 前記振動部の表面は導電性の離型剤で形成されていることを特徴とする請求項1乃至8のいずれかに記載の分級装置。 The classifying apparatus according to claim 1, wherein the surface of the vibration part is formed of a conductive release agent. 前記振動部の表面は、研磨処理されていることを特徴とする請求項1乃至9のいずれかに記載の分級装置。 Wherein the surface of the vibrating portion, the classification apparatus according to any one of claims 1 to 9, characterized in that it is polished. 前記振動部の表面積(S1)は前記ホッパーの内壁面の表面積(S)に対して下記の範囲を特徴とする請求項1乃至10のいずれかに記載の分級装置。
0.30×S≦S1≦0.99×S
The classification device according to any one of claims 1 to 10 , wherein the surface area (S1) of the vibrating portion has the following range with respect to the surface area (S) of the inner wall surface of the hopper.
0.30 × S ≦ S1 ≦ 0.99 × S
請求項1乃至11のいずれかに記載の分級装置を用いたことを特徴とする電子写真用粉体の分級方法。 12. A method for classifying an electrophotographic powder, characterized in that the classification apparatus according to claim 1 is used.
JP2006055827A 2005-03-14 2006-03-02 Airflow classifier, vibration device Expired - Fee Related JP4911991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055827A JP4911991B2 (en) 2005-03-14 2006-03-02 Airflow classifier, vibration device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005072037 2005-03-14
JP2005072037 2005-03-14
JP2006055827A JP4911991B2 (en) 2005-03-14 2006-03-02 Airflow classifier, vibration device

Publications (2)

Publication Number Publication Date
JP2006289349A JP2006289349A (en) 2006-10-26
JP4911991B2 true JP4911991B2 (en) 2012-04-04

Family

ID=37410522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055827A Expired - Fee Related JP4911991B2 (en) 2005-03-14 2006-03-02 Airflow classifier, vibration device

Country Status (1)

Country Link
JP (1) JP4911991B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972577B2 (en) * 2008-02-15 2012-07-11 株式会社リコー Airflow classifier

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4739093Y1 (en) * 1969-01-30 1972-11-27
JP2769859B2 (en) * 1989-05-10 1998-06-25 キヤノン株式会社 Color toner manufacturing method
JPH06106677A (en) * 1991-12-27 1994-04-19 Fujikura Rubber Ltd Adhesion preventing diaphragm
JPH06345179A (en) * 1993-06-14 1994-12-20 Kubota Corp Hopper with anti-arching device
JPH0741082A (en) * 1993-07-20 1995-02-10 Toyo Hightech Kk Device for feeding powder for powder densification
JPH0747213A (en) * 1993-08-06 1995-02-21 Kao Corp Bag filter
JPH1017076A (en) * 1996-07-03 1998-01-20 Minolta Co Ltd Container tank for powdery material
JP3606710B2 (en) * 1997-06-24 2005-01-05 株式会社リコー Airflow type DS classifier
JP3693530B2 (en) * 1999-07-02 2005-09-07 株式会社リコー Airflow classifier
JP2003063590A (en) * 2001-08-22 2003-03-05 Takuma Co Ltd Apparatus for preventing or removing bridge of powder
JP4024566B2 (en) * 2002-03-20 2007-12-19 株式会社リコー Airflow pulverizer / classifier
JP3992224B2 (en) * 2002-03-20 2007-10-17 株式会社リコー Fluidized tank type pulverizing and classifying machine for producing electrophotographic toner and toner production method using the same
JP2004057843A (en) * 2002-07-24 2004-02-26 Ricoh Co Ltd Classifier and production method of toner using the same
JP2005081320A (en) * 2003-09-11 2005-03-31 Kowa Industry Co Ltd Vibration separator

Also Published As

Publication number Publication date
JP2006289349A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP3054883B2 (en) Manufacturing method of electrostatic image developing toner and apparatus system for the same
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
US20060214036A1 (en) Air-flow classification apparatus and method for classification
JP4662462B2 (en) Toner manufacturing apparatus and manufacturing method
JPS59142877A (en) Air classifier
US6568536B2 (en) Classifier and method for preparing toner
JP2007216171A (en) Apparatus and method for separating powder
JP2011230048A (en) Airflow type classifier and fine particle manufacturing apparatus
JPH11216425A (en) Fine powder producing system
JP4911991B2 (en) Airflow classifier, vibration device
JP4854413B2 (en) Toner classification device
JP4058706B2 (en) Powder raw material classification method and cylindrical screen classifier
JP2004057843A (en) Classifier and production method of toner using the same
JPH09187732A (en) Preparation of toner
JP4076159B2 (en) Classification device and developer production method
JP2000042494A (en) Air-current classification
CN1031450C (en) Particles grader using gas current, method and apparatus for preparing colour material
JP4011279B2 (en) Classification device and toner manufacturing method using the same
KR930004694B1 (en) Air current classifier process for preparing toner and apparatus for preparing toner
JP5234411B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP3740202B2 (en) Toner production method
JP2020006290A (en) Pneumatic sorter
JP3632098B2 (en) Classification device and method for producing toner using the same
JP3647018B2 (en) Classification device
JP3493489B2 (en) Airflow classification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4911991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees