JP4911730B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP4911730B2
JP4911730B2 JP2008324902A JP2008324902A JP4911730B2 JP 4911730 B2 JP4911730 B2 JP 4911730B2 JP 2008324902 A JP2008324902 A JP 2008324902A JP 2008324902 A JP2008324902 A JP 2008324902A JP 4911730 B2 JP4911730 B2 JP 4911730B2
Authority
JP
Japan
Prior art keywords
membrane
tank
sludge
solubilization
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008324902A
Other languages
Japanese (ja)
Other versions
JP2009061455A (en
Inventor
貴義 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2008324902A priority Critical patent/JP4911730B2/en
Publication of JP2009061455A publication Critical patent/JP2009061455A/en
Application granted granted Critical
Publication of JP4911730B2 publication Critical patent/JP4911730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、有機性汚泥を排出する方法に関し、例えば、下水処理場、屎尿処理場などの下水処理プロセス、食品工場、化学工場などの製造プロセスから排出される有機性汚泥を含有する有機性廃水を生物反応により処理する方法に関する。   The present invention relates to a method for discharging organic sludge, for example, organic wastewater containing organic sludge discharged from a sewage treatment process such as a sewage treatment plant and a manure treatment plant, a manufacturing process such as a food factory and a chemical factory. The present invention relates to a method for treating biotin by biological reaction.

従来より、かかる有機性廃水を処理する方法としては、活性汚泥法と呼ばれる好気性生物処理法が、最も一般的に実施されている。この方法は、例えば図2に示すように、有機性廃水貯留槽1から生物反応槽3に導入された下水などの有機性廃水が、生物反応槽3において好気性条件にて、微生物による酸化分解反応である生物酸化によって、二酸化炭素もしくは水などの無機物にまで分解される方法である。そして、生物反応槽3にて処理された有機性廃水は、固液分離槽5にて処理水301と汚泥302に固液分離され、汚泥302の一部は微生物源として生物反応槽3に返送されるとともに、残りの汚泥は余剰汚泥303として廃棄等の処理をされているのが一般的である。   Conventionally, an aerobic biological treatment method called an activated sludge method has been most commonly performed as a method for treating such organic wastewater. In this method, as shown in FIG. 2, for example, organic wastewater such as sewage introduced from the organic wastewater storage tank 1 to the biological reaction tank 3 is oxidatively decomposed by microorganisms in the biological reaction tank 3 under aerobic conditions. It is a method in which it is decomposed into inorganic substances such as carbon dioxide or water by biological oxidation as a reaction. The organic wastewater treated in the biological reaction tank 3 is solid-liquid separated into the treated water 301 and sludge 302 in the solid-liquid separation tank 5, and a part of the sludge 302 is returned to the biological reaction tank 3 as a microorganism source. In addition, the remaining sludge is generally disposed of as surplus sludge 303.

このため、できるだけ余剰汚泥を排出しない処理方法として、近年、余剰汚泥を可溶化反応処理槽で可溶化して、可溶化した汚泥を生物反応槽にもどし、再び生物処理する方法が提案されている。例えば、汚泥を高温好気状態の可溶化反応処理槽で好熱菌により可溶化し、その液を生物反応槽に戻すことで、活性汚泥法において、余剰汚泥を減溶化する技術が開示されている(例えば特許文献1)。可溶化反応処理槽部分に投入する汚泥を濃縮機などを利用して、水分率99%以下にすることで可溶化反応処理槽の大きさを小さくできる技術が開示されている(例えば特許文献2)。   For this reason, as a treatment method that does not discharge as much surplus sludge as possible, in recent years, a method has been proposed in which surplus sludge is solubilized in a solubilization reaction treatment tank, the solubilized sludge is returned to the bioreaction tank, and biological treatment is performed again. . For example, a technique for reducing excess sludge in an activated sludge method by solubilizing sludge with thermophilic bacteria in a solubilization reaction treatment tank in a high-temperature aerobic state and returning the liquid to the biological reaction tank has been disclosed. (For example, Patent Document 1). A technique is disclosed in which the size of a solubilization reaction treatment tank can be reduced by making sludge to be introduced into a solubilization reaction treatment tank part into a moisture content of 99% or less by using a concentrator or the like (for example, Patent Document 2). ).

しかし、特許文献1のような汚泥の可溶化方法では、完全に溶けない物質が生物反応槽で難分解性物質として蓄積されてくる。この蓄積物は、可溶化した汚泥を生物反応槽に戻す方法において固液分離後の処理水の化学的酸素要求量いわゆるCODや透視度などの水質を悪化させる原因の1つとなっている。特許文献2では、可溶化処理反応槽を小さくするために、可溶化反応処理槽の前に濃縮機を入れている。その際脱水しやすくするために、高分子凝集剤などの凝集剤を入れることがあるが、そのような場合には高分子凝集剤自体が有機物であるために、生物処理をするための負荷が高くなることがあった。   However, in the sludge solubilization method as in Patent Document 1, a substance that does not completely dissolve is accumulated as a hardly decomposable substance in the biological reaction tank. This accumulated substance is one of the causes of deterioration of water quality such as chemical oxygen demand of so-called COD and transparency of treated water after solid-liquid separation in the method of returning solubilized sludge to the biological reaction tank. In patent document 2, in order to make a solubilization reaction reaction tank small, the concentrator is put before the solubilization reaction treatment tank. In this case, in order to facilitate dehydration, a flocculant such as a polymer flocculant may be added. In such a case, since the polymer flocculant itself is an organic substance, a load for biological treatment is increased. Sometimes it was high.

また、一般的に溶質を溶媒に溶かした液は、粘度が高くなるため、汚泥を可溶化した際にも、菌などが液にとけるので、液の粘度が上がり、膜での濾過には高粘度のために適さないと思われてきた。   In addition, since a solution in which a solute is dissolved in a solvent generally has a high viscosity, even when sludge is solubilized, bacteria and the like can be dissolved in the solution, which increases the viscosity of the solution and is high for filtration through a membrane. It has been considered unsuitable due to viscosity.

特開平9−10791号公報JP-A-9-10791 特開平11−235598号公報JP 11-235598 A

本発明は、上記のような従来技術の問題点を解消し、有機性廃水の生物処理に伴って発生する余剰汚泥の発生量を顕著に減少させることが可能な新規な有機性廃水の処理方法を提供することを目的とする。   The present invention eliminates the problems of the prior art as described above, and a novel organic wastewater treatment method capable of significantly reducing the amount of surplus sludge generated with biological treatment of organic wastewater. The purpose is to provide.

本発明者は、有機性廃水の生物処理に伴って発生する汚泥を可溶化反応処理槽で可溶化し、可溶化液を膜濾過装置で膜濾過し、膜濾過液を生物反応槽で生物処理し、膜濃縮液は、可溶化反応処理槽内で濃縮される方法により余剰汚泥発生量を顕著に減少させることが可能であることを見出し、本発明を完成させた   The present inventor has solubilized sludge generated by biological treatment of organic wastewater in a solubilization reaction treatment tank, membrane-filtered the solubilized liquid with a membrane filtration device, and biological treatment of the membrane filtrate with a biological reaction tank. The membrane concentrate was found to be able to significantly reduce the amount of excess sludge generated by the method of concentrating in the solubilization reaction treatment tank, and the present invention was completed.

すなわち本発明は、下記のとおりである。
1)有機性廃水を生物反応槽にて生物処理し、発生する汚泥を可溶化反応処理槽で中高温の微生物処理をするとともに、該可溶化反応処理槽中の液の少なくとも一部を該液に気体を混入させつつ、濾過膜が中空糸膜状である膜濾過装置に送り、該膜濾過装置により膜濾過液と膜濃縮液に分離し、膜濾過液は前記生物反応槽に戻し、膜濃縮液は該可溶化反応処理槽に戻し、かつ必要時に逆洗することを特徴とする有機性廃水の処理方法。2)膜濾過装置が膜濾過液を吸引するポンプを有することを特徴とする1)の有機性廃水の処理方法。3)濾過膜が限外濾過膜からなることを特徴とする1)或いは2)の有機性廃水の処理方法。4)濾過膜が精密濾過膜からなることを特徴とする1)或いは2)の有機性廃水の処理方法。
That is, the present invention is as follows.
1) Organic wastewater is biologically treated in a biological reaction tank, and the generated sludge is subjected to medium-to-high temperature microbial treatment in a solubilization reaction treatment tank, and at least a part of the liquid in the solubilization reaction treatment tank is removed from the liquid. While the gas is mixed in, the membrane is sent to a membrane filtration device having a hollow fiber membrane shape. The membrane filtration device separates the membrane filtrate into a membrane filtrate, and the membrane filtrate is returned to the biological reaction tank. A method for treating organic wastewater, wherein the concentrate is returned to the solubilization reaction treatment tank and backwashed when necessary. 2) The method for treating organic wastewater according to 1), wherein the membrane filtration device has a pump for sucking the membrane filtrate. 3) The method for treating organic wastewater according to 1) or 2), wherein the filtration membrane comprises an ultrafiltration membrane. 4) The method for treating organic wastewater according to 1) or 2), wherein the filtration membrane comprises a microfiltration membrane.

生物処理とは、下水などの廃水中の汚濁物質を生物学的作用により分解、安定化する処理のことであり、好気性処理と嫌気性処理に区別される。一般的に有機物は、生物処理により酸素呼吸・硝酸呼吸・発酵過程などで分解されて、ガス化されるか、微生物の体内に取り込まれ、汚泥として除去される。窒素(硝化脱窒法)やりん(生物学的リン除去法)の除去処理もできる。このような生物処理を行う槽を生物反応槽という。   Biological treatment is treatment that decomposes and stabilizes pollutants in wastewater such as sewage by biological action, and is classified into aerobic treatment and anaerobic treatment. In general, organic matter is decomposed by biological treatment through oxygen respiration, nitric acid respiration, fermentation process, etc., and gasified or taken into the body of microorganisms and removed as sludge. Nitrogen (nitrification denitrification method) and phosphorus (biological phosphorus removal method) can also be removed. A tank that performs such biological treatment is called a biological reaction tank.

可溶化とは、水不溶物であった有機物が微生物による生分解や熱処理による熱分解等を受け、低分子化等の変化の結果水にとける様になることである。可溶化反応処理槽で中高温の微生物処理とは、中高温の温度がかかっている状態で上記の可溶化が微生物による酵素反応で起こっていることを指す。温度として、好ましくは、40〜70℃である。   Solubilization means that an organic substance that has been insoluble in water undergoes biodegradation by microorganisms, thermal decomposition by heat treatment, and the like, and as a result of changes such as low molecular weight, it becomes soluble in water. The medium-high temperature microbial treatment in the solubilization reaction processing tank means that the above-mentioned solubilization is caused by an enzyme reaction by microorganisms in a state where a medium-high temperature is applied. The temperature is preferably 40 to 70 ° C.

膜濾過装置とは、濾過膜と配管とポンプ等を組み合わせて濾過できるしくみにした装置を指す。ここでいうポンプとは、液を送るポンプや空気を送るエアーポンプも含まれる。
限外濾過膜とは、分画分子量500〜100万程度の孔径の濾過膜を指す。精密濾過膜とは、0.01マイクロメートルから10マイクロメートル程度の平均膜孔径の濾過膜を指す。
The membrane filtration device refers to a device that is configured to filter by combining a filtration membrane, piping, a pump, and the like. The pump here includes a pump for sending liquid and an air pump for sending air.
An ultrafiltration membrane refers to a filtration membrane having a pore size of about 500 to 1,000,000 in the molecular weight cut-off. The microfiltration membrane refers to a filtration membrane having an average membrane pore diameter of about 0.01 to 10 micrometers.

有機性廃水の生物処理に伴って発生する汚泥を可溶化反応処理槽で可溶化し、可溶化液を膜濾過装置で膜濾過し、膜濾過液を生物反応槽で生物処理し、膜濃縮液は、可溶化反応処理槽内で濃縮する方法により余剰汚泥発生量を顕著に減少させることが可能である。
また、固液分離後の処理水の水質も放流可能な水質を保つことが可能である。
Sludge generated during biological treatment of organic wastewater is solubilized in a solubilization reaction treatment tank, the solubilized liquid is membrane filtered with a membrane filtration device, the membrane filtrate is biologically treated in the biological reaction tank, and the membrane concentrate Can significantly reduce the amount of excess sludge generated by the method of concentrating in the solubilization reaction treatment tank.
In addition, the quality of the treated water after the solid-liquid separation can be kept at a water quality that can be discharged.

以下、本発明について、特にその好ましい形態を中心に、具体的に説明する。   Hereinafter, the present invention will be specifically described focusing on its preferred form.

本発明に用いる、生物反応槽は、好気性生物処理あるいは嫌気性生物処理のいずれの方式も適用できる。一般的には、かかる有機性廃水を処理する方法としては、活性汚泥法と呼ばれる好気性生物処理法が、最も一般的に実施されている。   The bioreactor used in the present invention can employ either aerobic biological treatment or anaerobic biological treatment. In general, an aerobic biological treatment method called an activated sludge method is most commonly implemented as a method for treating such organic wastewater.

本発明を、図1で説明する。有機性廃水貯留槽1から生物反応槽3に導入された下水などの有機性廃水が、生物反応槽3において好気性条件にて、微生物による酸化分解反応で   The present invention is illustrated in FIG. Organic wastewater such as sewage introduced from the organic wastewater storage tank 1 into the biological reaction tank 3 is subjected to an oxidative degradation reaction by microorganisms in the biological reaction tank 3 under aerobic conditions.

ある生物酸化によって、二酸化炭素もしくは水などの無機物に分解される方法である。そして、生物反応槽3にて処理された廃水は、固液分離槽5にて処理水301と汚泥302に固液分離され、汚泥302の一部は微生物源として生物反応槽3に返送される。 It is a method of decomposing into inorganic substances such as carbon dioxide or water by some biological oxidation. The wastewater treated in the biological reaction tank 3 is solid-liquid separated into the treated water 301 and sludge 302 in the solid-liquid separation tank 5, and a part of the sludge 302 is returned to the biological reaction tank 3 as a microorganism source. .

生物反応槽に返送される汚泥の一部を中高温の微生物処理による可溶化反応処理槽に送る。本発明の中高温での微生物処理は、40〜70℃が好ましい。この方法は、中高温の嫌気性処理、好気性処理のいずれでも適用できる。好気性にするためには、該可溶化反応処理槽の中に空気を入れ、可溶化反応処理槽の液を曝気できれば、何でも良い。例えば、ブロアーで可溶化反応処理槽中に空気を管で導入しても良い。本発明で使用する濾過膜は、中空糸膜状、平膜状、など何でも良いが、中空糸膜状のものが目詰まり物質の洗浄が逆洗により行ないやすく好ましい。膜の材質は、ポリエチレン系、ポリアクリロニトリル系、ポリスルホン系、ポリフッ化ビニリデン系、酢酸セルロース系など様々なものが適用できるが、温度や液により膜の材質を使い分けることが効果的である。耐熱性、薬品洗浄の耐性からポリスルホン系およびポリフッ化ビニリデン系が特に好ましい。濾過膜は、膜同士を束ねたり、のり巻き状に巻いたり、端部を接着材によりシールして膜モジュールという濾過膜の一次側と2次側とを隔離した形にして使用する。膜モジュールの形は、先に述べた理由で中空糸膜型が好ましい。本発明で使用する膜濾過装置とは、濾過膜の1次側入り口配管と出口配管と2次側の出口配管を備え、1次側と2次側に差圧を与える手段を持つ装置をいう。   Part of the sludge returned to the biological reaction tank is sent to the solubilization reaction processing tank by the medium and high temperature microorganism treatment. The microorganism treatment at a medium high temperature of the present invention is preferably 40 to 70 ° C. This method can be applied to any of a medium to high temperature anaerobic treatment and aerobic treatment. In order to make it aerobic, anything can be used as long as air can be introduced into the solubilization reaction treatment tank and the solution in the solubilization reaction treatment tank can be aerated. For example, air may be introduced by a tube into a solubilization reaction processing tank using a blower. The filtration membrane used in the present invention may be anything such as a hollow fiber membrane shape or a flat membrane shape, but a hollow fiber membrane shape is preferred because clogging substances can be easily washed by backwashing. Various materials such as polyethylene-based, polyacrylonitrile-based, polysulfone-based, polyvinylidene fluoride-based, and cellulose acetate-based materials can be applied, but it is effective to use different materials depending on the temperature and liquid. Polysulfone and polyvinylidene fluoride are particularly preferred from the viewpoint of heat resistance and chemical washing resistance. The filtration membrane is used in such a form that the membranes are bundled or wound in a roll shape, or the ends are sealed with an adhesive and the primary side and the secondary side of the membrane are called membrane modules. The shape of the membrane module is preferably a hollow fiber membrane type for the reason described above. The membrane filtration device used in the present invention means a device having means for providing a differential pressure between the primary side and the secondary side, comprising a filtration membrane primary side inlet pipe, outlet pipe, and secondary side outlet pipe. .

例えば、本実施例での膜濾過装置は、ポリスルホン系の膜材質を使用した中空糸膜型モジュールを使用し、中空糸膜モジュールの1次側入り口配管と出口配管と2次側出口配管を備え、1次側の入り口配管には、膜モジュールに液を送るためのポンプと1次側出口配管には、バルブを備え、1次側と2次側に差圧を与える手段を持つ装置とした。さらに、1次側に膜モジュールに液を送る際に気体を混入させる方法は、膜濾過装置の1次側に液を送るポンプと膜モジュールの間に、エアーポンプを備え、液体に対して、気体を混入させる。例えば、図.1では、9のラインの途中に配管のエアーポンプ10を入れる。気体を混入させることにより、膜モジュールの入り口に汚泥などが詰まりにくくなり、膜面でも膜目詰まり物質の付着を妨げ、膜濾過速度を高く保つことができる。可溶化反応処理槽の液に膜濾過装置に液があるときも気体を混入させることは、生物処理の観点から好ましい。好気反応の場合は、膜濾過装置内でも好気条件となり、生物反応する時間が長く取れる。また、嫌気反応の場合は、可溶化槽内で発生するガスを使用したり、酸素以外の気体を使用すれば、絶えず嫌気状態を保つことができ、嫌気反応が進む。また、可溶化槽内で発生した気体を使用すれば、気体を発生させる装置を改めて備えなくて良く、コストダウンにも寄与する。   For example, the membrane filtration apparatus in the present embodiment uses a hollow fiber membrane type module using a polysulfone-based membrane material, and includes a primary side inlet pipe, an outlet pipe, and a secondary side outlet pipe of the hollow fiber membrane module. The primary side inlet pipe is equipped with a pump for sending liquid to the membrane module, and the primary side outlet pipe is equipped with a valve, and has a means to provide differential pressure between the primary side and the secondary side. . Furthermore, the method of mixing the gas when sending the liquid to the membrane module on the primary side includes an air pump between the pump that sends the liquid to the primary side of the membrane filtration device and the membrane module, Mix gas. For example, FIG. In 1, the air pump 10 of piping is put in the middle of the 9th line. By mixing the gas, sludge and the like are hardly clogged at the entrance of the membrane module, and the membrane clogging substance can be prevented from adhering to the membrane surface and the membrane filtration rate can be kept high. It is preferable from the viewpoint of biological treatment that gas is mixed in the liquid in the solubilization reaction treatment tank even when the liquid is in the membrane filtration device. In the case of an aerobic reaction, aerobic conditions are used even in the membrane filtration apparatus, and a long time for biological reaction can be taken. Moreover, in the case of an anaerobic reaction, if the gas generated in the solubilization tank is used or a gas other than oxygen is used, an anaerobic state can be constantly maintained, and the anaerobic reaction proceeds. Moreover, if the gas generated in the solubilization tank is used, it is not necessary to provide a device for generating gas again, which contributes to cost reduction.

また、本発明の処理方法では、濾過速度を高く保つために、逆洗を適用したほうが良い。逆洗とは、濾過速度の低下を極力抑制するための膜の洗浄方法であり、この方法は、膜の濾過液側に濾過時とは逆の濾過圧をかけて、膜濾過液側から膜濃縮液側に液を流して、膜濃縮液側の膜表面に付着した目詰まり物質を除く方法である。さらに、逆洗の時に膜に対する目詰まり物を洗浄する薬剤を投入しても良い。膜濾過装置には、逆洗可能な設備、例えば膜モジュールの濾過液側から圧力がかけられるように逆洗ポンプと逆洗時薬剤を添加できる装置を付加した方が好ましい。膜濾過装置での膜濾過液は、生物反応槽に戻し、膜濃縮液は、可溶化反応処理槽に戻す。膜濃縮液には、膜を透過できない好熱菌や酵素が存在し、可溶化反応処理槽で再利用される。本発明では、図3のように、生物反応槽に返送される液の一部を中高温の微生物処理による可溶化反応可能な装置に送るところまでは、図1と同様であるが、図3のように濾過液側から吸引ポンプ16などで濾過液を吸引することが好ましい。膜濾過液を得て、得た膜濾過液は、生物反応槽に戻す。濾過膜を透過しない濃縮液は、可溶化反応処理槽内に返送される。   In the treatment method of the present invention, it is better to apply backwashing in order to keep the filtration rate high. Backwashing is a method for washing a membrane to suppress a decrease in filtration rate as much as possible, and this method applies a filtration pressure opposite to that during filtration to the filtrate side of the membrane, so that the membrane filtrate side to the membrane side. This is a method of removing clogging substances adhering to the membrane surface on the membrane concentrate side by flowing the solution to the concentrate side. In addition, a chemical for cleaning clogging on the membrane may be added during backwashing. It is preferable to add a backwashing pump and a device that can add a chemical during backwashing so that pressure can be applied from the filtrate side of the membrane module to the membrane filtration device. The membrane filtrate in the membrane filtration device is returned to the biological reaction tank, and the membrane concentrate is returned to the solubilization reaction treatment tank. The membrane concentrate contains thermophilic bacteria and enzymes that cannot permeate the membrane and is reused in the solubilization reaction treatment tank. In the present invention, as shown in FIG. 3, it is the same as in FIG. 1 until a part of the liquid returned to the biological reaction tank is sent to an apparatus capable of solubilizing reaction by a medium-high temperature microbial treatment. As described above, the filtrate is preferably sucked from the filtrate side by the suction pump 16 or the like. A membrane filtrate is obtained, and the obtained membrane filtrate is returned to the biological reaction tank. The concentrate that does not permeate the filtration membrane is returned to the solubilization reaction treatment tank.

本発明では、図5に示すように、膜濾過装置として1段目に精密濾過膜を設置し、2段目に限外濾過膜を設置することが好ましい。それぞれから発生する膜濃縮液はまとめて膜濾過装置の膜濃縮液として、可溶化反応処理槽に戻すようにした。2段目の限外濾過の膜濾過液は、濾過膜装置の膜濾過液として生物反応槽にもどす。   In the present invention, as shown in FIG. 5, it is preferable that a microfiltration membrane is installed in the first stage and an ultrafiltration membrane is installed in the second stage as a membrane filtration device. The membrane concentrates generated from each were collectively returned to the solubilization reaction treatment tank as the membrane concentrate of the membrane filtration device. The membrane filtrate of the second ultrafiltration is returned to the biological reaction tank as the membrane filtrate of the filtration membrane device.

濾過膜の孔径は、限外濾過膜の場合は、分画分子量500〜100万程度の孔径ものを指し、精密濾過膜の場合0.01マイクロメートルから10マイクロメートル程度の平均膜孔径のものを指す。分画分子量とは、膜が特定の阻止率で阻止できる最小の分子量を意味する。本発明では特定の阻止率として90%が用いた。分画分子量を測定する際の標準物質としては、ポリエチレングリコールやデキストラン、球状タンパクなどが用いられる。   In the case of an ultrafiltration membrane, the pore size of the filtration membrane indicates a pore size of about 500 to 1,000,000, and in the case of a microfiltration membrane, the average membrane pore size is about 0.01 to 10 micrometers. Point to. The fractional molecular weight means the minimum molecular weight that the membrane can block at a specific blocking rate. In the present invention, 90% was used as the specific rejection rate. Polyethylene glycol, dextran, globular protein and the like are used as standard substances for measuring the molecular weight cut off.

本発明において、限外濾過膜は、可溶化反応処理槽内の酵素の濃縮に有効に使用される。一般的に酵素は、数千から数十万の分子量である。従って、限外濾過膜は酵素を阻止できる分画分子量1,000〜100,000程度である事が好ましい。さらに好ましくは、分画分子量5,000〜50,000程度である。さらに好ましくは、6,000〜10,000である。あまり小さいと、濾過速度が小さくなる傾向があり、大きすぎても、酵素が抜けやすくなる。酵素が濃縮できると可溶化処理反応槽において酵素による可溶化反応が進む効果がある。精密濾過膜は、菌体を濃縮できる。一般に菌体の大きさは、0.2マイクロメートルから数マイクロメートルであるので、精密濾過膜の平均膜孔径は、0.1マイクロメートルから1マイクロメートルが好ましい。あまり小さいと、濾過速度が小さくなる傾向があり、大きすぎても、菌体が抜けやすい。菌体を可溶化処理反応槽において濃縮できると菌体による可溶化が進む効果がある。精密濾過膜の平均膜孔径とは、ASTM F316−86の「泡立ち点試験及び平均流量細孔試験による薄膜フィルタ細孔径の特定標準試験方法による測定」で平均流量の細孔の圧力から求めた細孔径のことを指す。
以下に本発明の実施例を記載する。
In the present invention, the ultrafiltration membrane is effectively used for the concentration of the enzyme in the solubilization reaction treatment tank. In general, enzymes have molecular weights of thousands to hundreds of thousands. Therefore, it is preferable that the ultrafiltration membrane has a molecular weight cut-off of about 1,000 to 100,000 capable of blocking the enzyme. More preferably, the molecular weight cut off is about 5,000 to 50,000. More preferably, it is 6,000-10,000. If it is too small, the filtration rate tends to decrease, and if it is too large, the enzyme is easily removed. If the enzyme can be concentrated, the solubilization reaction by the enzyme proceeds in the solubilization reaction tank. The microfiltration membrane can concentrate bacterial cells. In general, since the size of the bacterial cells is 0.2 to several micrometers, the average membrane pore diameter of the microfiltration membrane is preferably 0.1 to 1 micrometer. If it is too small, the filtration rate tends to be low, and if it is too large, the bacterial cells are easily removed. If the bacterial cells can be concentrated in the solubilization treatment reaction tank, solubilization by the bacterial cells is effective. The average membrane pore size of the microfiltration membrane is defined by the fine pressure determined from the pressure of the pores at the average flow rate in ASTM F316-86 “Measurement by a specific standard test method of the membrane filter pore size by the bubble point test and the average flow pore test”. It refers to the pore size.
Examples of the present invention will be described below.

〔実施例1〕
実施例1で使用した装置概略図を図1に示す。図1において、3が生物反応槽、5が固液分離槽、6が返送汚泥ラインである。6の返送汚泥ラインから分岐して送液ライン7を経て、可溶化反応処理槽に液を送る。8が可溶化反応処理槽、81がばっ気装置からのエアー配管であり、これを可溶化反応装置とする。10がエアーポンプで、11が膜濾過装置である。本実施例において、生物反応槽3に流入する有機性廃水は、BOD濃度200mg/Lであった。該有機性廃水は、肉エキス:ペプトン=1:1(重量比)とし、BOD濃度:窒素濃度:リン濃度=100:5:1になるように更に無機塩類を添加したモデル液を使用した。BOD濃度とは、1リットル(L)の水中の有機物が微生物の働きによって分解されるときに消費される酸素の量で、河川の有機汚濁を測る代表的な指標であり、日本工業規格、工場排水試験方法K0102.21によって測定した。有機性廃水は流入量70L/dayで生物反応槽3に供給した。生物反応槽の容量は20Lであった。生物反応槽3から流出した液は、固液分離槽5に送られる。固液分離槽としてはここでは沈降分離法による固液分離槽を用い、上澄み液と汚泥に分けた。固液分離槽5で沈降分離した汚泥は、一部返送汚泥として生物反応槽3に返送される。また、一部の汚泥は、7の送液ラインを通り、浮遊物質(SS)1重量%で0.8L/dayの流量で可溶化反応処理槽8に送られる。可溶化反応処理槽8には、ばっ気装置からのエアー配管81で0.05L/分のエアーを送り、60℃の温度が保てるように、保温措置のために可溶化反応処理槽8のジャケットに温水をいれておいた。可溶化反応処理槽8を通った液は、送液ライン9の経路上にポンプ(図示せず)を設置し、エアーポンプからは、10L/minエアーを送りながら、膜濾過装置11に送った。固液分離槽5で分離された汚泥はポンプで適宜可溶化反応処理槽8に送られるものとした。膜濾過装置11での膜濃縮液は、膜濾過装置濃縮液ライン12を通り、可溶化反応処理槽8に送る。膜濾過液は、膜濾過液ライン13をとおり、生物反応槽3に送液した。膜分離装置の連続運転条件は、膜濾過液量は、0.8L/dayであった。適宜、逆洗をした。膜濃縮液量3L/hrで可溶化反応処理槽8に送った。膜濾過装置に使用した濾過膜モジュールは、ポリスルホン製の中空糸型限外濾過膜である旭化成(株)製、SLP−1053(膜面積0.1m)を使用した。分画分子量は10,000である。この状態で、10日間の連続運転を行った。
[Example 1]
A schematic diagram of the apparatus used in Example 1 is shown in FIG. In FIG. 1, 3 is a biological reaction tank, 5 is a solid-liquid separation tank, and 6 is a return sludge line. The liquid is branched from the return sludge line 6 and sent to the solubilization reaction treatment tank through the liquid feed line 7. 8 is a solubilization reaction processing tank, 81 is an air piping from an aeration apparatus, and this is a solubilization reaction apparatus. 10 is an air pump and 11 is a membrane filtration device. In this example, the organic wastewater flowing into the biological reaction tank 3 had a BOD concentration of 200 mg / L. The organic waste water used was a model solution in which inorganic extract was added so that meat extract: peptone = 1: 1 (weight ratio) and BOD concentration: nitrogen concentration: phosphorus concentration = 100: 5: 1. BOD concentration is the amount of oxygen consumed when organic matter in 1 liter (L) of water is decomposed by the action of microorganisms, and is a representative index for measuring organic pollution in rivers. Measured by the drainage test method K0102.21. The organic wastewater was supplied to the biological reaction tank 3 at an inflow rate of 70 L / day. The capacity of the bioreactor was 20L. The liquid flowing out from the biological reaction tank 3 is sent to the solid-liquid separation tank 5. Here, a solid-liquid separation tank by a sedimentation separation method was used as the solid-liquid separation tank, and it was divided into a supernatant and sludge. The sludge settled and separated in the solid-liquid separation tank 5 is returned to the biological reaction tank 3 as a partially returned sludge. Part of the sludge passes through the liquid feed line 7 and is sent to the solubilization reaction treatment tank 8 at a flow rate of 0.8 L / day with 1% by weight of suspended solids (SS). The jacket of the solubilization reaction treatment tank 8 is used for heat retention so that 0.05 L / min of air is sent to the solubilization reaction treatment tank 8 through the air pipe 81 from the aeration apparatus and the temperature of 60 ° C. can be maintained. I put warm water in the room. The liquid that passed through the solubilization reaction treatment tank 8 was sent to the membrane filtration device 11 while sending a 10 L / min air from the air pump by installing a pump (not shown) on the route of the liquid feeding line 9. . The sludge separated in the solid-liquid separation tank 5 was appropriately sent to the solubilization reaction treatment tank 8 by a pump. The membrane concentrate in the membrane filtration device 11 is sent to the solubilization reaction treatment tank 8 through the membrane filtration device concentrate line 12. The membrane filtrate was sent to the biological reaction tank 3 through the membrane filtrate line 13. As for the continuous operation condition of the membrane separator, the amount of the membrane filtrate was 0.8 L / day. Backwashing was performed as appropriate. It was sent to the solubilization reaction treatment tank 8 at a membrane concentration of 3 L / hr. The filtration membrane module used in the membrane filtration device was SLP-1053 (membrane area 0.1 m 2 ) manufactured by Asahi Kasei Corporation, which is a hollow fiber type ultrafiltration membrane made of polysulfone. The molecular weight cut-off is 10,000. In this state, continuous operation for 10 days was performed.

結果は、表1のとおりである。
表1は、実験開始日を1日目として、5日目以降を定常状態として、5〜10日目の平均した各値を記載した。
定常状態での可溶化反応処理槽8に入る液のSSは、12,000mg/Lであったが、膜濾過液のSSは、0mg/Lであった。膜濾過液のBODは、30mg/Lであった。
The results are shown in Table 1.
Table 1 lists the averaged values for the 5th to 10th days, with the experiment start date as the first day and the fifth and subsequent days as a steady state.
The SS of the liquid entering the solubilization reaction treatment tank 8 in the steady state was 12,000 mg / L, but the SS of the membrane filtrate was 0 mg / L. The BOD of the membrane filtrate was 30 mg / L.

固液分離後の処理水の透視度は、30度。
固液分離後の処理水の化学的酸素要求量CODは、8mg/Lであった。
浮遊物質(SS)は、日本工業規格、工場排水試験方法K102.14.1により測定した。
CODは、日本工業規格、工場排水試験方法K102.14.1により測定した。
BODは日本工業規格、工場排水試験方法K0102.17により測定した。
透視度は、日本工業規格、工場排水試験方法K102.9により測定した。
The transparency of treated water after solid-liquid separation is 30 degrees.
The chemical oxygen demand COD of the treated water after the solid-liquid separation was 8 mg / L.
Suspended matter (SS) was measured by Japanese Industrial Standards, factory drainage test method K102.14.1.
The COD was measured according to Japanese Industrial Standard, factory drainage test method K102.14.1.
BOD was measured according to Japanese Industrial Standards, factory wastewater test method K0102.17.
The degree of transparency was measured by Japanese Industrial Standard, factory drainage test method K102.9.

〔比較例1〕
比較例1で使用した装置概略図を図2に示す。図2において、3が生物反応槽、5が固液分離槽、6が返送汚泥ラインであり、一般的な生物処理装置である。
生物反応槽3に流入する有機性廃水は、BOD濃度200mg/L。有機性廃水は、実施例1と同じ組成のものを使用した。有機性廃水は、70L/dayで生物反応槽に供給した。生物反応槽3の容量は20Lであった。生物反応槽3から流出した液は、固液分離槽5に送られる。固液分離槽5で沈降分離した汚泥は、一部返送汚泥として、生物反応槽3に返送される。
[Comparative Example 1]
A schematic diagram of the apparatus used in Comparative Example 1 is shown in FIG. In FIG. 2, 3 is a biological reaction tank, 5 is a solid-liquid separation tank, and 6 is a return sludge line, which is a general biological treatment apparatus.
The organic wastewater flowing into the biological reaction tank 3 has a BOD concentration of 200 mg / L. The organic waste water having the same composition as in Example 1 was used. Organic wastewater was supplied to the bioreactor at 70 L / day. The capacity of the biological reaction tank 3 was 20L. The liquid flowing out from the biological reaction tank 3 is sent to the solid-liquid separation tank 5. The sludge settled and separated in the solid-liquid separation tank 5 is returned to the biological reaction tank 3 as a partially returned sludge.

その連続運転のデータとして表1の結果を得た。固液分離後の処理水の水質は、表1のように透視度は、30度、CODは、6mg/Lと良好なものの、余剰汚泥は、乾燥重量で、5〜10日目の平均で8g/day発生した。   The result of Table 1 was obtained as the data of the continuous operation. As shown in Table 1, the water quality of the treated water after solid-liquid separation is as good as 30 ° C. and COD of 6 mg / L. 8 g / day was generated.

〔比較例2〕
使用した装置概略図を図4に示す。図4において、3が生物反応槽、5が固液分離槽、6が返送汚泥ラインであり、一般的な生物処理装置である。6の返送汚泥ラインから分岐して、可溶化反応処理槽8に液を送る。8が可溶化反応処理槽、81がばっ気装置からのエアー配管であり、可溶化反応処理装置にあたる。本比較例において、生物反応槽3に流入する有機性廃水は、BOD濃度200mg/L。有機性廃水は、実施例1と同じ組成のものを使用し生物反応槽3へは70L/dayの流入量であった。生物反応槽3の容量は20L。生物反応槽3から流出した液は、固液分離槽5に送られる。固液分離槽5で沈降分離した汚泥は、一部返送汚泥として、生物反応槽3に返送される。また、一部の汚泥は、7の送液ラインを通り、SS濃度1重量%で2L/dayの流量で可溶化反応処理槽8に送られる。可溶化反応処理槽8には、ばっ気装置からのエアー配管81で0.05リットル/分のエアーを送り、60℃の温度が保てるように、保温措置のためにジャケットに温水をいれておいた。可溶化反応処理槽8を通った液は、可溶化液返送ライン20で生物反応槽3に戻した。
[Comparative Example 2]
A schematic diagram of the apparatus used is shown in FIG. In FIG. 4, 3 is a biological reaction tank, 5 is a solid-liquid separation tank, and 6 is a return sludge line, which is a general biological treatment apparatus. Branching from the return sludge line 6, the liquid is sent to the solubilization reaction treatment tank 8. 8 is a solubilization reaction processing tank, 81 is an air piping from the aeration apparatus, and corresponds to the solubilization reaction processing apparatus. In this comparative example, the organic waste water flowing into the biological reaction tank 3 has a BOD concentration of 200 mg / L. The organic wastewater having the same composition as in Example 1 was used, and the amount of inflow of 70 L / day into the biological reaction tank 3 was obtained. The capacity of the biological reaction tank 3 is 20L. The liquid flowing out from the biological reaction tank 3 is sent to the solid-liquid separation tank 5. The sludge settled and separated in the solid-liquid separation tank 5 is returned to the biological reaction tank 3 as a partially returned sludge. Moreover, a part of sludge is sent to the solubilization reaction treatment tank 8 at a flow rate of 2 L / day with an SS concentration of 1% by weight through a liquid feed line 7. The solubilization reaction treatment tank 8 is fed with 0.05 liter / min of air through the air pipe 81 from the aeration apparatus, and warm water is put in the jacket for heat insulation so that the temperature of 60 ° C. can be maintained. It was. The liquid that passed through the solubilization reaction treatment tank 8 was returned to the biological reaction tank 3 through the solubilization liquid return line 20.

その連続運転のデータとして表1の結果を得た。固液分離後の処理水の水質は、表1のように透視度は15度、化学的酸素要求量であるCODは、21mg/L。余剰汚泥は、乾燥重量で、0g/dayであった。   The result of Table 1 was obtained as the data of the continuous operation. As shown in Table 1, the water quality of the treated water after the solid-liquid separation is 15 ° C., and the chemical oxygen demand COD is 21 mg / L. The excess sludge was 0 g / day in terms of dry weight.

比較例1では、余剰汚泥が発生し、比較例2では、固液分離後の処理水のCODが多く残留するが、実施例1では、余剰汚泥は、0g/L、CODは、8mg/Lと可溶化反応処理装置と膜処理装置を入れて、余剰汚泥の削減、固液分離後の処理水水質の維持になっている。   In Comparative Example 1, surplus sludge is generated, and in Comparative Example 2, much COD of the treated water after solid-liquid separation remains, but in Example 1, the surplus sludge is 0 g / L, and the COD is 8 mg / L. And solubilization reaction treatment device and membrane treatment device are put in, and the amount of excess sludge is reduced and the quality of treated water after solid-liquid separation is maintained.

[表1]

Figure 0004911730

[Table 1]
Figure 0004911730

本発明は、有機性汚泥を排出する装置及び方法に関し、例えば、下水処理場、屎尿処理場などの下水処理プロセス、食品工場、化学工場などの製造プロセスから排出される有機性汚泥を含有する有機性廃水を生物反応により処理する方法であり、余剰汚泥の減量化に好適である。   The present invention relates to an apparatus and a method for discharging organic sludge, for example, an organic material containing organic sludge discharged from a sewage treatment process such as a sewage treatment plant and a sewage treatment plant, a manufacturing process such as a food factory and a chemical factory. This is a method of treating wastewater with a biological reaction, and is suitable for reducing excess sludge.

実施例1の処理方法を示す模式図。FIG. 3 is a schematic diagram illustrating a processing method according to the first embodiment. 従来の活性汚泥法を示す模式図。The schematic diagram which shows the conventional activated sludge method. 本発明の処理方法の例を示す模式図。The schematic diagram which shows the example of the processing method of this invention. 比較例2の処理方法を示す模式図。The schematic diagram which shows the processing method of the comparative example 2. FIG. 本発明の処理方法の例を示す模式図。The schematic diagram which shows the example of the processing method of this invention.

符号の説明Explanation of symbols

1 有機性廃水貯留槽
2 廃水送液ライン
3 生物反応槽
4 送液ライン
5 固液分離槽
6 返送汚泥ライン
7 送液ライン
8 可溶化反応処理槽
9 送液ライン
10 エアーポンプ
11 膜濾過装置
12 膜濾過装置濃縮液ライン
13 膜濾過液ライン
14 精密濾過膜
15 限外濾過膜
16 吸引ポンプ
20 可溶化液返送ライン
31 エアー配管
81 エアー配管
112 限外濾過膜濃縮液ライン
121 精密濾過膜濾過液ライン
301 処理液
302 汚泥
303 余剰汚泥
DESCRIPTION OF SYMBOLS 1 Organic waste water storage tank 2 Waste water feed line 3 Biological reaction tank 4 Liquid feed line 5 Solid-liquid separation tank 6 Return sludge line 7 Liquid feed line 8 Solubilization reaction treatment tank 9 Liquid feed line 10 Air pump 11 Membrane filtration device 12 Membrane filtration device concentrate line 13 Membrane filtrate line 14 Microfiltration membrane 15 Ultrafiltration membrane 16 Suction pump 20 Solubilized liquid return line 31 Air pipe 81 Air pipe 112 Ultrafiltration membrane concentrate line 121 Microfiltration membrane filtrate line 301 Treatment liquid 302 Sludge 303 Excess sludge

Claims (4)

有機性廃水を生物反応槽にて生物処理し、発生する汚泥を可溶化反応処理槽で中高温の微生物処理をするとともに、該可溶化反応処理槽中の液の少なくとも一部を該液に気体を混入させつつ、濾過膜が中空糸膜状である膜濾過装置に送り、該膜濾過装置により膜濾過液と膜濃縮液に分離し、膜濾過液は前記生物反応槽に戻し、膜濃縮液は該可溶化反応処理槽に戻し、かつ必要時に逆洗することを特徴とする有機性廃水の処理方法。   Organic wastewater is biologically treated in a biological reaction tank, and generated sludge is subjected to medium-to-high temperature microorganism treatment in a solubilization reaction treatment tank, and at least a part of the liquid in the solubilization reaction treatment tank is gasified into the liquid. The membrane is fed into a membrane filtration device having a hollow fiber membrane, and is separated into a membrane filtrate and a membrane concentrate by the membrane filtration device. The membrane filtrate is returned to the biological reaction tank, and the membrane concentrate Is a method for treating organic wastewater, which is returned to the solubilization reaction treatment tank and backwashed when necessary. 膜濾過装置が、膜濾過液を吸引するポンプを有することを特徴とする請求項1記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 1, wherein the membrane filtration device has a pump for sucking the membrane filtrate. 濾過膜が、限外濾過膜からなることを特徴とする請求項1または2記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 1 or 2, wherein the filtration membrane comprises an ultrafiltration membrane. 濾過膜が、精密濾過膜からなることを特徴とする請求項1または2記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 1 or 2, wherein the filtration membrane comprises a microfiltration membrane.
JP2008324902A 2008-12-22 2008-12-22 Organic wastewater treatment method Expired - Fee Related JP4911730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324902A JP4911730B2 (en) 2008-12-22 2008-12-22 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324902A JP4911730B2 (en) 2008-12-22 2008-12-22 Organic wastewater treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003282149A Division JP4293529B2 (en) 2003-07-29 2003-07-29 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2009061455A JP2009061455A (en) 2009-03-26
JP4911730B2 true JP4911730B2 (en) 2012-04-04

Family

ID=40556548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324902A Expired - Fee Related JP4911730B2 (en) 2008-12-22 2008-12-22 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4911730B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397292A (en) * 1986-10-14 1988-04-27 Kubota Ltd Waste water treatment device
JP3111463B2 (en) * 1990-07-27 2000-11-20 栗田工業株式会社 Organic wastewater treatment equipment
JP4187303B2 (en) * 1998-03-27 2008-11-26 栗田工業株式会社 Biological treatment method for organic drainage
JP4124902B2 (en) * 1999-03-15 2008-07-23 前澤工業株式会社 Wastewater treatment equipment
JP4862209B2 (en) * 2000-02-17 2012-01-25 栗田工業株式会社 Organic drainage treatment method and apparatus
JP2002177981A (en) * 2000-12-13 2002-06-25 Sumitomo Heavy Ind Ltd Waste water treatment method and equipment
JP2002219482A (en) * 2001-01-24 2002-08-06 Mitsubishi Kakoki Kaisha Ltd Wastewater treatment equipment

Also Published As

Publication number Publication date
JP2009061455A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5223219B2 (en) Organic wastewater treatment equipment
KR101467476B1 (en) Method for biological processing of water containing organic material
Alsalhy et al. Oil refinery wastewater treatment by using membrane bioreactor (MBR)
JP2014061487A (en) Water treatment method and water treatment system
KR101214991B1 (en) Method for treating waste water
KR101463987B1 (en) Method of treating organic waste water
JP2014061486A (en) Water treatment method and water treatment system
EP1440944A1 (en) Waste water treatment method
CN109704514A (en) A kind of system and method for advanced treatment of wastewater and concentrated water disposition
JP2014180629A (en) Water treatment method and system
JP2003053363A (en) Treatment method and treatment equipment for organic matter-containing water
US20220234930A1 (en) Method for Purifying Contaminated Water
JP4293529B2 (en) Organic wastewater treatment method
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
JP2014065008A (en) Water treatment method and water treatment system
CN111675428A (en) Method for emergency treatment of black and odorous water body based on flat membrane and flat ultrafiltration membrane thereof
JP2011016126A (en) Method for treating organic waste liquid
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2013240794A (en) Membrane separation activated sludge treatment apparatus, and membrane separation activated sludge treatment method
CN209685515U (en) A kind of system of advanced treatment of wastewater and concentrated water disposition
JP5105608B2 (en) Waste water treatment system and operation method thereof
JP4911730B2 (en) Organic wastewater treatment method
JP2012206039A (en) Treatment apparatus of organic matter containing wastewater
JP2009189943A (en) Water treatment method and apparatus
KR20200000056A (en) The method and apparatus for treatment of livestock manure, livestock wastewater or livestock washing water using ceramic membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees