JP4911659B2 - Method for manufacturing dielectric thin film capacitor - Google Patents

Method for manufacturing dielectric thin film capacitor Download PDF

Info

Publication number
JP4911659B2
JP4911659B2 JP2004245776A JP2004245776A JP4911659B2 JP 4911659 B2 JP4911659 B2 JP 4911659B2 JP 2004245776 A JP2004245776 A JP 2004245776A JP 2004245776 A JP2004245776 A JP 2004245776A JP 4911659 B2 JP4911659 B2 JP 4911659B2
Authority
JP
Japan
Prior art keywords
thin film
dielectric thin
temperature
heat treatment
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004245776A
Other languages
Japanese (ja)
Other versions
JP2006066542A (en
Inventor
光樹 渋谷
裕 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004245776A priority Critical patent/JP4911659B2/en
Priority to US10/933,309 priority patent/US7223665B2/en
Publication of JP2006066542A publication Critical patent/JP2006066542A/en
Application granted granted Critical
Publication of JP4911659B2 publication Critical patent/JP4911659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チタン酸バリウムストロンチウムなどの誘電体薄膜を用いた誘電体薄膜キャパシタの製造方法に関する。   The present invention relates to a method for manufacturing a dielectric thin film capacitor using a dielectric thin film such as barium strontium titanate.

集積回路のデカップリング用や、DRAMなどに用いられるキャパシタとして誘電体薄膜キャパシタがある。電子機器の小型化に伴って誘電体薄膜キャパシタも小さい面積で大きな容量を得ることが要求されており、薄い膜厚で誘電率の高い誘電体薄膜を成膜する技術が求められている。   There is a dielectric thin film capacitor as a capacitor used for decoupling an integrated circuit or a DRAM. With the miniaturization of electronic devices, dielectric thin film capacitors are also required to have a large capacitance with a small area, and a technique for forming a thin dielectric film with a thin film thickness and a high dielectric constant is required.

従来より知られている誘電体薄膜キャパシタの製造方法として、特許文献1に記載された発明がある。   As a conventionally known method for manufacturing a dielectric thin film capacitor, there is an invention described in Patent Document 1.

特許文献1に記載された発明は、(a)基板上に下部電極を形成する工程と、(b)誘電体薄膜の原料溶液を下部電極上に塗布して誘電体膜を形成する工程と、(c)誘電体が結晶化する温度より低い温度で仮焼成する工程と、(d)誘電体膜上に上部電極を形成する工程と、(e)誘電体が結晶化する温度以上の温度で本焼成する工程と、を含んでなる。   The invention described in Patent Document 1 includes (a) a step of forming a lower electrode on a substrate, (b) a step of forming a dielectric film by applying a raw material solution of a dielectric thin film on the lower electrode, (C) a preliminary firing step at a temperature lower than the temperature at which the dielectric crystallizes; (d) a step of forming an upper electrode on the dielectric film; and (e) a temperature equal to or higher than the temperature at which the dielectric crystallizes. And a main baking step.

この発明は、結晶化温度以下で仮焼し、上部電極を形成したのちに結晶化温度以上で本焼成することにより、本焼成における誘電体の結晶化が上部電極に規制され、表面が平滑な誘電体薄膜を得ることができる。これにより、膜厚が均一な誘電体膜を得ることができ、リーク電流が減少するとされている。
特開平8−78636号公報
In this invention, calcination is performed at a temperature lower than the crystallization temperature, and after the upper electrode is formed and then main baking is performed at a temperature higher than the crystallization temperature, the crystallization of the dielectric in the main baking is regulated by the upper electrode, and the surface is smooth. A dielectric thin film can be obtained. As a result, a dielectric film having a uniform thickness can be obtained, and leakage current is reduced.
JP-A-8-78636

特許文献1の図2(b)によれば、誘電体膜としてチタン酸バリウムストロンチウムを用いて上述の方法で誘電体薄膜キャパシタを製造した場合、誘電体膜の比誘電率は高くても220程度である。   According to FIG. 2B of Patent Document 1, when a dielectric thin film capacitor is manufactured by the above-described method using barium strontium titanate as a dielectric film, the dielectric film has a relative dielectric constant of about 220 at the highest. It is.

この比誘電率の値はチタン酸バリウムストロンチウムとしては比較的低い値であり、誘電体薄膜キャパシタの小型化を進めるにあたって不利である。   This relative dielectric constant is a relatively low value for barium strontium titanate, which is disadvantageous in promoting the miniaturization of dielectric thin film capacitors.

本発明はこの問題に鑑みてなされたものであり、本発明は平滑でありながら十分に高い誘電率を持つ誘電体薄膜キャパシタを提供することを目的とする。   The present invention has been made in view of this problem, and an object of the present invention is to provide a dielectric thin film capacitor having a sufficiently high dielectric constant while being smooth.

上記の目的を達成するため本発明に係る誘電体薄膜キャパシタの製造方法は、(a)基板上に下部導体を形成する工程と、(b)前記下部導体上に原料溶液を塗布して前駆体膜を形成する工程と、(c)前記前駆体膜の結晶化温度よりも50℃〜150℃高い温度で1回目の熱処理を行い、前記前駆体膜を結晶化させて誘電体薄膜を得る工程と、(d)前記誘電体薄膜上に上部導体を形成する工程と、(e)1回目の熱処理温度よりも100℃以上高い温度で2回目の熱処理を行う工程と、を含むことを特徴とする
これにより、表面が十分平滑でクラック等の発生も少なく、かつ、十分に高い誘電率を持つ誘電体薄膜キャパシタを得ることができる。
In order to achieve the above object, a dielectric thin film capacitor manufacturing method according to the present invention includes: (a) a step of forming a lower conductor on a substrate; and (b) a precursor by applying a raw material solution on the lower conductor. A step of forming a film, and (c) a step of performing a first heat treatment at a temperature 50 ° C. to 150 ° C. higher than the crystallization temperature of the precursor film to crystallize the precursor film to obtain a dielectric thin film And (d) forming an upper conductor on the dielectric thin film; and (e) performing a second heat treatment at a temperature 100 ° C. higher than the first heat treatment temperature. This makes it possible to obtain a dielectric thin film capacitor having a sufficiently smooth surface, few cracks and the like, and a sufficiently high dielectric constant.

1回目の熱処理温度が結晶化温度よりも50℃以上高くない場合には、2回目の熱処理を行ってもtanδが大きく、また、十分な絶縁性を得ることができない。一方、1回目の熱処理温度が高すぎると誘電体の結晶粒が成長しすぎて誘電体薄膜の表面が平坦となりにくく、クラックの発生やリーク電流の増大を招く。よって、1回目の熱処理温度は前駆体膜の結晶化温度よりも50℃〜150℃高い温度とすることが好ましい。   When the first heat treatment temperature is not higher than the crystallization temperature by 50 ° C. or more, tan δ is large even if the second heat treatment is performed, and sufficient insulation cannot be obtained. On the other hand, if the temperature of the first heat treatment is too high, dielectric crystal grains grow too much and the surface of the dielectric thin film is difficult to flatten, causing cracks and an increase in leakage current. Therefore, it is preferable that the first heat treatment temperature is 50 ° C. to 150 ° C. higher than the crystallization temperature of the precursor film.

また、2回目の熱処理の温度が1回目の熱処理の温度よりも100℃以上高くない場合には、誘電体の結晶成長が十分に進まず、誘電体薄膜の誘電率が十分に上昇せず、さらにはショート不良も発生しやすい。よって、2回目の熱処理温度は1回目の熱処理温度よりも100℃以上高い温度とすることが好ましい。   In addition, when the temperature of the second heat treatment is not higher than the temperature of the first heat treatment by 100 ° C. or more, the crystal growth of the dielectric does not proceed sufficiently, and the dielectric constant of the dielectric thin film does not sufficiently increase, Furthermore, short-circuit defects are likely to occur. Therefore, it is preferable that the second heat treatment temperature is 100 ° C. higher than the first heat treatment temperature.

さらに本発明においては、前記誘電体薄膜として、チタン酸バリウム、チタン酸ストロンチウム、チタン酸バリウムストロンチウムなどのぺロブスカイト型構造を有する金属化合物を好適に用いることができる。   Furthermore, in the present invention, as the dielectric thin film, a metal compound having a perovskite structure such as barium titanate, strontium titanate, barium strontium titanate or the like can be suitably used.

ぺロブスカイト型構造を有する金属化合物は誘電率が高いので、小型で大きな容量をもつ誘電体薄膜キャパシタを得ることができる。   Since the metal compound having a perovskite structure has a high dielectric constant, a small dielectric thin film capacitor having a large capacity can be obtained.

このように本発明によれば、1回目の熱処理を結晶化温度よりも50〜150℃高い温度で行い、かつ、2回目の熱処理を1回目の熱処理よりも100℃以上高い温度で行うことにより、表面が十分平滑でクラック等の発生も少なく、かつ、十分に高い誘電率を持つ誘電体薄膜キャパシタを得ることができる。   As described above, according to the present invention, the first heat treatment is performed at a temperature 50 to 150 ° C. higher than the crystallization temperature, and the second heat treatment is performed at a temperature higher by 100 ° C. than the first heat treatment. Thus, a dielectric thin film capacitor having a sufficiently smooth surface and few cracks and a sufficiently high dielectric constant can be obtained.

以下において添付図面を参照しつつ本発明を実施するための最良の形態について説明する。図1は本発明に係る誘電体薄膜キャパシタの製造工程を示す断面図であり、図2は製造工程の要部を示すフローチャートである。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view showing a manufacturing process of a dielectric thin film capacitor according to the present invention, and FIG. 2 is a flowchart showing a main part of the manufacturing process.

まず、図1(a)に示すように単結晶Siからなる基板10を用意する。基板10の表面にはSiO2膜12が形成されているため、基板10はSi層11とSiO2膜12の2層構造となっている。 First, as shown in FIG. 1A, a substrate 10 made of single crystal Si is prepared. Since the SiO 2 film 12 is formed on the surface of the substrate 10, the substrate 10 has a two-layer structure of the Si layer 11 and the SiO 2 film 12.

次に、図1(b)に示すように、Ba,Sr,Tiの有機化合物を含む原料溶液をスピンコートによって塗布し、乾燥および酸化雰囲気中での熱処理を行い、チタン酸バリウムストロンチウム(BaSrTiO3、以下BSTと省略する)からなる密着層20を形成する。 Next, as shown in FIG. 1B, a raw material solution containing an organic compound of Ba, Sr, Ti is applied by spin coating, dried and heat-treated in an oxidizing atmosphere, and barium strontium titanate (BaSrTiO 3). , Hereinafter referred to as BST).

密着層20はBSTに限らず、TiやTaなどを用いてもよいし、密着層20を形成しなくてもよい。   The adhesion layer 20 is not limited to BST, and Ti, Ta, or the like may be used, or the adhesion layer 20 may not be formed.

次に、図1(c)に示すように、スパッタ法や蒸着法などの任意の成膜方法により、密着層20上に下部導体30を形成する。下部導体30としては酸化雰囲気中で加熱しても高抵抗化しにくい貴金属や導電性酸化物が好適であり、具体的にはPt,RuO2,IrO2などを用いることができる。 Next, as shown in FIG. 1C, the lower conductor 30 is formed on the adhesion layer 20 by any film forming method such as sputtering or vapor deposition. The lower conductor 30 is preferably a noble metal or a conductive oxide that is difficult to increase in resistance even when heated in an oxidizing atmosphere, and specifically, Pt, RuO 2 , IrO 2, or the like can be used.

次に、Ba,Sr,Tiの有機化合物を含みBa:Sr:Ti=7:3:10となるように調製されたBSTの原料溶液を下部導体30上にスピンコートによって塗布し、ホットプレート上で乾燥させ前駆体膜を形成する。原料溶液の塗布と乾燥は、任意の膜厚が得られるまで繰り返してもよい。そして、前駆体膜に対して、酸化雰囲気中で誘電体(ここではBST)の結晶化温度より50℃〜150℃高い温度で熱処理(1回目の熱処理)を行うことによって前駆体膜を結晶化させ、図1(d)に示すように誘電体薄膜40を得る。   Next, a raw material solution of BST containing an organic compound of Ba, Sr, Ti and prepared to have Ba: Sr: Ti = 7: 3: 10 is applied onto the lower conductor 30 by spin coating, and then on a hot plate. To form a precursor film. Application and drying of the raw material solution may be repeated until an arbitrary film thickness is obtained. Then, the precursor film is crystallized by performing a heat treatment (first heat treatment) at a temperature 50 ° C. to 150 ° C. higher than the crystallization temperature of the dielectric (here, BST) in an oxidizing atmosphere. As a result, a dielectric thin film 40 is obtained as shown in FIG.

誘電体薄膜40としては、高い誘電率を有するぺロブスカイト型構造を持つ金属化合物が好ましく、チタン酸バリウムストロンチウム、チタン酸バリウム、チタン酸ストロンチウムなどを用いることができる。   The dielectric thin film 40 is preferably a metal compound having a perovskite structure having a high dielectric constant, and barium strontium titanate, barium titanate, strontium titanate, or the like can be used.

次に、誘電体薄膜40上にスパッタ法や蒸着法などの任意の成膜方法により、図1(e)に示すように上部導体51,52を形成する。上部導体51,52としては酸化雰囲気中で加熱しても高抵抗化しにくい貴金属や導電性酸化物が好適であり、具体的にはPt,RuO2,IrO2などを用いることができる。 Next, as shown in FIG. 1E, upper conductors 51 and 52 are formed on the dielectric thin film 40 by an arbitrary film forming method such as sputtering or vapor deposition. As the upper conductors 51 and 52, a noble metal or a conductive oxide that is difficult to increase in resistance even when heated in an oxidizing atmosphere is preferable, and specifically, Pt, RuO 2 , IrO 2, or the like can be used.

図では誘電体薄膜40上に部分的に上部導体51,52が形成されているが、誘電体薄膜40上の全面に上部導体を形成してもよい。   Although the upper conductors 51 and 52 are partially formed on the dielectric thin film 40 in the figure, the upper conductor may be formed on the entire surface of the dielectric thin film 40.

次に、酸化雰囲気中で、1回目の熱処理よりも100℃以上高い温度で熱処理(2回目の熱処理)を行うことにより、誘電体薄膜40の誘電率を上昇させる。このとき、1回目の熱処理よりも100℃以上高い温度でなければ誘電体薄膜40の結晶化が十分に進まず、誘電率が上昇しなかったり、絶縁性が低下したりする。   Next, the dielectric constant of the dielectric thin film 40 is increased by performing a heat treatment (second heat treatment) at a temperature higher by 100 ° C. than the first heat treatment in an oxidizing atmosphere. At this time, unless the temperature is higher by 100 ° C. or more than the first heat treatment, the crystallization of the dielectric thin film 40 does not proceed sufficiently, and the dielectric constant does not increase or the insulating property decreases.

これにより、クラック等の発生が少なく表面が平坦で、かつ十分に高い誘電率を持つ誘電体薄膜キャパシタが完成する。   As a result, a dielectric thin film capacitor having a sufficiently high dielectric constant with a flat surface and few cracks is completed.

以下において、再び図1を参照しつつ、本発明のより具体的な実施例について説明する。   Hereinafter, a more specific embodiment of the present invention will be described with reference to FIG. 1 again.

図1(a)に示すように、単結晶Siからなり直径4インチの基板10を用意する。基板10はSi層11とSiO2膜12の2層構造となっている。 As shown in FIG. 1A, a substrate 10 made of single crystal Si and having a diameter of 4 inches is prepared. The substrate 10 has a two-layer structure of an Si layer 11 and an SiO 2 film 12.

次に、BSTの原料となる有機化合物を溶解した原料溶液をスピンコートによって塗布し、ホットプレート上で乾燥させた。スピンコートによる塗布と乾燥とを数回繰り返してからRTA(ラピッド・サーマル・アニーリング)装置を用いて、酸化雰囲気中650℃で10分間の熱処理を行い、図1(b)に示すようにBSTからなる密着層20を形成した。   Next, a raw material solution in which an organic compound as a BST raw material was dissolved was applied by spin coating and dried on a hot plate. After applying spin coating and drying several times, heat treatment was performed at 650 ° C. for 10 minutes in an oxidizing atmosphere using an RTA (rapid thermal annealing) apparatus, and from BST as shown in FIG. The resulting adhesion layer 20 was formed.

次に、図1(c)に示すように、RFスパッタ法によってPtからなる下部導体30を密着層20上に形成する。下部導体30の膜厚を厚くすると誘電体薄膜キャパシタの等価直列抵抗が低下する反面、製造コストが高くなるので、所望の等価直列抵抗と製造コストにあわせて適宜膜厚を設定すればよい。   Next, as shown in FIG. 1C, a lower conductor 30 made of Pt is formed on the adhesion layer 20 by RF sputtering. Increasing the film thickness of the lower conductor 30 reduces the equivalent series resistance of the dielectric thin film capacitor, but increases the manufacturing cost. Therefore, the film thickness may be set appropriately according to the desired equivalent series resistance and the manufacturing cost.

次に、Ba,Sr,Tiの有機化合物を含みBa:Sr:Ti=7:3:10となるように調製されたBSTの原料溶液を下部導体30上にスピンコートによって塗布し、ホットプレート上で乾燥させ前駆体膜を形成する。ここでは、所望の膜厚を得るために原料溶液の塗布と乾燥は2回ずつ繰り返した。そしてRTA装置を用いて、酸化雰囲気中で誘電体の結晶化温度より50℃〜150℃高い温度で熱処理を行う(1回目の熱処理)。これにより前駆体膜を結晶化させて、図1(d)に示すように誘電体薄膜40を得る。誘電体薄膜40の膜厚は、エリプソメータ(偏光解析装置)によって測定した結果、125〜130nmであった。   Next, a raw material solution of BST containing an organic compound of Ba, Sr, Ti and prepared to have Ba: Sr: Ti = 7: 3: 10 is applied onto the lower conductor 30 by spin coating, and then on a hot plate. To form a precursor film. Here, in order to obtain a desired film thickness, application and drying of the raw material solution were repeated twice. Then, using an RTA apparatus, heat treatment is performed in an oxidizing atmosphere at a temperature 50 ° C. to 150 ° C. higher than the crystallization temperature of the dielectric (first heat treatment). As a result, the precursor film is crystallized to obtain a dielectric thin film 40 as shown in FIG. The film thickness of the dielectric thin film 40 was 125 to 130 nm as a result of measurement with an ellipsometer (an ellipsometer).

ここでは、誘電体の結晶化温度が500〜550℃の間に存在することを予め確認してあるので、結晶化温度よりも少なくとも50℃以上高い温度とするためには600℃以上で熱処理を行えばよい。また、結晶化温度よりも150℃以上高い温度にならないようにするためには、650℃以下で熱処理を行えばよい。   Here, since it has been confirmed in advance that the crystallization temperature of the dielectric is between 500 and 550 ° C., heat treatment is performed at 600 ° C. or higher in order to obtain a temperature at least 50 ° C. higher than the crystallization temperature. Just do it. In order to prevent the temperature from being higher than 150 ° C. above the crystallization temperature, heat treatment may be performed at 650 ° C. or lower.

誘電体の結晶化温度は誘電体の種類や組成によって異なり、また、同一の組成であっても原料溶液の組成によっても異なってくるので、予め実験によって確認しておくことが好ましい。ここでは、熱処理後にX線回折法によって分析を行い、BSTのぺロブスカイト相に由来するピークを確認することによって、結晶化しているか否かを確認するという方法を取った。   The crystallization temperature of the dielectric varies depending on the type and composition of the dielectric, and also varies depending on the composition of the raw material solution even if it is the same composition. Here, an analysis was performed by an X-ray diffraction method after the heat treatment, and a peak derived from the perovskite phase of BST was confirmed to confirm whether or not it was crystallized.

次に、図1(e)に示すように、ステンレス製のメタルマスクを用いRFスパッタ法によってPtからなる直径1mmの上部導体51,52を形成した。   Next, as shown in FIG. 1E, upper conductors 51 and 52 made of Pt and having a diameter of 1 mm were formed by RF sputtering using a stainless steel metal mask.

次に、RTA装置を用いて、酸化雰囲気中で1回目の熱処理温度より100℃以上高い温度で所定時間の熱処理(2回目の熱処理)を行うことによって、誘電体薄膜40の誘電率を上昇させて本発明に係る誘電体薄膜キャパシタが完成する。
(実験1)
上記の工程において、1回目の熱処理を550℃から700℃までの所定の温度で30分間行って誘電体薄膜キャパシタを作製し、誘電体薄膜40の比誘電率およびtanδを測定した。測定結果を表1に示す。なお、表1中で試料番号#1および#4は本発明の範囲外の比較例である。比誘電率およびtanδの値は、測定周波数1kHzでの測定値である。
Next, the dielectric constant of the dielectric thin film 40 is increased by performing a heat treatment for a predetermined time (second heat treatment) at a temperature higher by 100 ° C. than the first heat treatment temperature in an oxidizing atmosphere using an RTA apparatus. Thus, the dielectric thin film capacitor according to the present invention is completed.
(Experiment 1)
In the above process, the first heat treatment was performed at a predetermined temperature from 550 ° C. to 700 ° C. for 30 minutes to produce a dielectric thin film capacitor, and the dielectric constant and tan δ of the dielectric thin film 40 were measured. The measurement results are shown in Table 1. In Table 1, sample numbers # 1 and # 4 are comparative examples outside the scope of the present invention. The values of relative permittivity and tan δ are measured values at a measurement frequency of 1 kHz.

Figure 0004911659
Figure 0004911659

表1から明らかなように、1回目の熱処理温度を550℃とした#1は、1回目の熱処理温度が結晶化温度よりも50℃以上高くないため、比誘電率は高いもののtanδが大きくなっており、好ましくない。   As is apparent from Table 1, in the case of # 1 in which the first heat treatment temperature is 550 ° C., the first heat treatment temperature is not higher than the crystallization temperature by 50 ° C. or more. This is not preferable.

また、#4は1回目の熱処理温度が高すぎるため、誘電体薄膜40にクラックが発生してショートを起こしてしまい、比誘電率およびtanδを測定することができなかった。   In # 4, since the temperature of the first heat treatment was too high, cracks occurred in the dielectric thin film 40 to cause a short circuit, and the relative dielectric constant and tan δ could not be measured.

これに対して本発明の範囲内である#2と#3は、比誘電率がそれぞれ390と385であって特許文献1に記載された誘電体薄膜キャパシタと比較して大きな誘電率を得られているとともに、tanδの値も2.1と低く低損失になっている。
(実験2)
上記の工程において、2回目の熱処理を700℃から850℃までの所定の温度で30分間行い誘電体薄膜キャパシタを作製し、誘電体薄膜40の比誘電率、tanδおよび不良率を測定した。測定結果を表2に示す。なお、表2中で試料番号#5は本発明の範囲外の比較例である。tanδの値は、測定周波数1kHzでの測定値である。また、不良率とは初期ショートによる不良の割合を示している。
On the other hand, # 2 and # 3, which are within the scope of the present invention, have relative dielectric constants of 390 and 385, respectively, and can obtain a large dielectric constant as compared with the dielectric thin film capacitor described in Patent Document 1. In addition, the value of tan δ is as low as 2.1, which is low loss.
(Experiment 2)
In the above process, the second heat treatment was performed at a predetermined temperature from 700 ° C. to 850 ° C. for 30 minutes to produce a dielectric thin film capacitor, and the relative dielectric constant, tan δ and defect rate of the dielectric thin film 40 were measured. The measurement results are shown in Table 2. In Table 2, sample number # 5 is a comparative example outside the scope of the present invention. The value of tan δ is a measurement value at a measurement frequency of 1 kHz. The defect rate indicates the ratio of defects due to initial short circuit.

Figure 0004911659
Figure 0004911659

表2から明らかなように、2回目の熱処理温度が1回目の熱処理温度よりも100℃以上高くない#5では、誘電体薄膜40の比誘電率が250と比較的低い値に留まっているとともに、不良率が46%と著しく歩留まりが低下している。これは、2回目の熱処理温度が十分に高くないために、誘電体薄膜40の結晶化が十分進まなかったことが原因であると考えられる。   As is apparent from Table 2, when the second heat treatment temperature is not higher than the first heat treatment temperature by 100 ° C. or more, # 5, the relative dielectric constant of the dielectric thin film 40 remains at a relatively low value of 250. The defect rate is 46% and the yield is remarkably lowered. This is considered to be because the crystallization of the dielectric thin film 40 did not proceed sufficiently because the second heat treatment temperature was not sufficiently high.

これに対して本発明の範囲内である#6〜#8では、比誘電率が325〜420となって特許文献1に記載された誘電体薄膜キャパシタと比較して大きな誘電率を得られているとともに、tanδの値も1.7〜2.2と低く低損失になっている。また、不良率も4%以下に抑えられており、歩留まりが向上する効果も見られる。   On the other hand, in # 6 to # 8, which is within the scope of the present invention, the relative dielectric constant is 325 to 420, and a large dielectric constant can be obtained as compared with the dielectric thin film capacitor described in Patent Document 1. In addition, the value of tan δ is as low as 1.7 to 2.2, which is low loss. Moreover, the defect rate is also suppressed to 4% or less, and the effect of improving the yield is also seen.

また、#8の試料の絶縁性を調べるために室温におけるリーク電流を測定したところ、10kV/cmの電界強度に対するリーク電流密度が3.1×10-10A/cm2と非常に低く、良好な絶縁性を有していることが確認された。 In addition, when the leakage current at room temperature was measured in order to investigate the insulation of the sample # 8, the leakage current density with respect to the electric field strength of 10 kV / cm was very low as 3.1 × 10 −10 A / cm 2, which was good. It was confirmed that it has a good insulating property.

以上説明したように本発明の誘電体薄膜キャパシタの製造方法によれば、表面が平滑でクラック等の発生が少なく、かつ、十分に高い誘電率を持つ誘電体薄膜キャパシタを得ることができる。   As described above, according to the method for manufacturing a dielectric thin film capacitor of the present invention, it is possible to obtain a dielectric thin film capacitor having a smooth surface, few cracks and the like, and a sufficiently high dielectric constant.

なお、本発明は上記の実施例に限定されるものではなく、本発明の作用効果を得られる範囲内で種々の変更を加えてもよい。例えば下部導体、上部導体、誘電体薄膜の形状や膜厚は任意に変更してよいし、さらに別の構成を付加してもよい。   In addition, this invention is not limited to said Example, You may add a various change within the range which can obtain the effect of this invention. For example, the shapes and film thicknesses of the lower conductor, the upper conductor, and the dielectric thin film may be arbitrarily changed, and another configuration may be added.

本発明の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of this invention. 本発明のを本発明の製造工程の要部を説明するフローチャートである。It is a flowchart explaining the principal part of the manufacturing process of this invention.

符号の説明Explanation of symbols

10 基板
20 密着層
30 下部導体
40 誘電体薄膜
51,52 上部導体
10 Substrate 20 Adhesion layer 30 Lower conductor 40 Dielectric thin film 51, 52 Upper conductor

Claims (1)

基板上に下部導体を形成する工程と、
前記下部導体上に原料溶液を塗布して前駆体膜を形成する工程と、
前記前駆体膜の結晶化温度よりも50℃〜150℃高い温度で1回目の熱処理を行い、前記前駆体膜を結晶化させて誘電体薄膜を得る工程と、
前記誘電体薄膜上に上部導体を形成する工程と、
1回目の熱処理温度よりも100℃以上高い温度で2回目の熱処理を行う工程と、を含み、前記誘電体薄膜は、チタン酸バリウムストロンチウム、チタン酸バリウム、チタン酸ストロンチウムのいずれかであることを特徴とする誘電体薄膜キャパシタの製造方法。
Forming a lower conductor on the substrate;
Applying a raw material solution on the lower conductor to form a precursor film;
Performing a first heat treatment at a temperature 50 ° C. to 150 ° C. higher than the crystallization temperature of the precursor film to crystallize the precursor film to obtain a dielectric thin film;
Forming an upper conductor on the dielectric thin film;
Performing a second heat treatment at a temperature 100 ° C. higher than the first heat treatment temperature, and the dielectric thin film is any one of barium strontium titanate, barium titanate, and strontium titanate. A method for manufacturing a dielectric thin film capacitor.
JP2004245776A 2003-09-04 2004-08-25 Method for manufacturing dielectric thin film capacitor Active JP4911659B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004245776A JP4911659B2 (en) 2004-08-25 2004-08-25 Method for manufacturing dielectric thin film capacitor
US10/933,309 US7223665B2 (en) 2003-09-04 2004-09-03 Method for manufacturing dielectric thin film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245776A JP4911659B2 (en) 2004-08-25 2004-08-25 Method for manufacturing dielectric thin film capacitor

Publications (2)

Publication Number Publication Date
JP2006066542A JP2006066542A (en) 2006-03-09
JP4911659B2 true JP4911659B2 (en) 2012-04-04

Family

ID=36112759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245776A Active JP4911659B2 (en) 2003-09-04 2004-08-25 Method for manufacturing dielectric thin film capacitor

Country Status (1)

Country Link
JP (1) JP4911659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067797A (en) 2017-09-28 2019-04-25 Tdk株式会社 Thin film capacitor

Also Published As

Publication number Publication date
JP2006066542A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP2006523153A (en) Multilayer structure containing barium strontium titanate on metal foil
KR100478748B1 (en) Method of producing a bismuth layer structured ferroelectric thin flim
KR100938073B1 (en) Thin film dielectrics with co-fired electrodes for capacitors and methods of making thereof
WO2005102958A1 (en) Composition for thin film capacitive device, insulating film with high dielectric constant, thin film capacitive device, thin-film laminated capacitor and process for producing thin film capacitive device
JP2010074172A (en) Method of forming memory cell including capacitor that includes strontium titanate based dielectric layer, and device obtained therefrom
KR100798288B1 (en) Dielectric membranes and a process for preparing the same
CN1790569B (en) Dielectric thin film, dielectric thin film device, and method of production thereof
JP5861278B2 (en) Thin film capacitor manufacturing method and thin film capacitor obtained by the method
US6338970B1 (en) Ferroelectric capacitor of semiconductor device and method for fabricating the same
Nayak et al. Electrical and dielectric properties of (Ba0. 5Sr0. 5) TiO3 thin films prepared by a hydroxide–alkoxide precursor-based sol–gel method
JP4911659B2 (en) Method for manufacturing dielectric thin film capacitor
JP4604939B2 (en) Dielectric thin film, thin film dielectric element and manufacturing method thereof
JPH10200069A (en) Thin film capacitor
JPH0878636A (en) Manufacture of semiconductor device provided with capacitor
JP2008235088A (en) Dielectric thin film, dielectric thin film capacitor, and manufacturing method of dielectric thin film capacitor
US7223665B2 (en) Method for manufacturing dielectric thin film capacitor
JP5326699B2 (en) Dielectric element and manufacturing method thereof
JP2008294319A (en) Method for manufacturing thin-film capacitor
JP2005526390A (en) Improved electrode for thin film capacitor devices.
JP3654352B2 (en) Manufacturing method of semiconductor device having capacitor
JP2005085812A (en) Dielectric thin film capacitor
JP4245552B2 (en) Method for producing crystalline thin film of composite oxide
JP5030349B2 (en) Dielectric film fabrication method
JP2008227115A (en) Lower electrode for thin film capacitor and its manufacturing method
JPH10178153A (en) Thin film capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

R150 Certificate of patent or registration of utility model

Ref document number: 4911659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3