JP4911593B2 - Spherical porous alloy, method for producing spherical porous alloy composite - Google Patents

Spherical porous alloy, method for producing spherical porous alloy composite Download PDF

Info

Publication number
JP4911593B2
JP4911593B2 JP2006300921A JP2006300921A JP4911593B2 JP 4911593 B2 JP4911593 B2 JP 4911593B2 JP 2006300921 A JP2006300921 A JP 2006300921A JP 2006300921 A JP2006300921 A JP 2006300921A JP 4911593 B2 JP4911593 B2 JP 4911593B2
Authority
JP
Japan
Prior art keywords
alloy
palladium
silver
resin
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006300921A
Other languages
Japanese (ja)
Other versions
JP2008115439A (en
Inventor
敏重 鈴木
正誉 堀篭
アルフレド・パチェコ・タナカ
マルゴット・ヨサ・タンコ
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006300921A priority Critical patent/JP4911593B2/en
Publication of JP2008115439A publication Critical patent/JP2008115439A/en
Application granted granted Critical
Publication of JP4911593B2 publication Critical patent/JP4911593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、配合比を制御したパラジウム・銀合金球状多孔体の製造方法に関するものであり、更に詳しくは、球状のキレート樹脂を鋳型に使用して作製した、パラジウムと銀の配合比を任意の比率で制御し、保持させた球状パラジウム・銀多孔質合金の製造方法に関するものである。本発明は、パラジウムと銀との合金化比率、合金の形態及びサイズ等を高精度に制御した球状多孔質パラジウム・銀合金を作製し、それにより、水素化触媒や水素吸蔵金属、水素透過膜素材等として、従来材にない特異な機能を発現する新しい球状多孔質合金材料を提供するものである。 The present invention relates to the production how palladium-silver alloy spherical porous body with a controlled mixing ratio, more particularly, the spherical chelating resin was produced using a template, the compounding ratio of the palladium and silver controlled in any ratio, but relates to the production how spherical palladium-silver porous alloy which is held. The present invention produces a spherical porous palladium / silver alloy in which the alloying ratio of palladium and silver, the form and size of the alloy, etc. are controlled with high precision, thereby producing a hydrogenation catalyst, a hydrogen storage metal, and a hydrogen permeable membrane. The present invention provides a new spherical porous alloy material that expresses a unique function not found in conventional materials.

従来、高分子樹脂、イオン交換樹脂、デキストラン等の高分子支持体に、金属イオンないしは金属ナノ粒子を混合、含浸あるいは吸着担持し、これを高温で焼成することで、支持体の高分子を除去し、金属多孔体を作製する方法が知られている(非特許文献1、2)。この際に、支持体が鋳型となるため、元の支持体の形態が残り、また、有機成分が燃焼して、支持体の形の多孔質金属が得られる。また、同様な金属保持高分子樹脂を、不活性ガス雰囲気で焼成することで、有機成分が炭素化し、金属が分散担持した多孔質炭素が得られることが報告されている(非特許文献3、4)。   Conventionally, polymer ions such as polymer resin, ion exchange resin, dextran, etc. are mixed with metal ions or metal nanoparticles, impregnated or adsorbed, and baked at a high temperature to remove the polymer on the support. And the method of producing a metal porous body is known (nonpatent literatures 1 and 2). At this time, since the support serves as a template, the form of the original support remains, and the organic component burns to obtain a porous metal in the form of the support. Further, it has been reported that by firing a similar metal-holding polymer resin in an inert gas atmosphere, the organic component is carbonized and porous carbon in which the metal is dispersed and supported can be obtained (Non-Patent Document 3, 4).

しかしながら、これらの従来の方法では、金属イオンや金属ナノ粒子を高分子支持体と単に混合、含浸あるいは支持体表面での静電相互作用等の弱い結合により保持しているため、金属イオンや金属ナノ粒子の支持体への保持力が不十分であり、また、単一金属の担持が主であり、しかも、複数の金属の配合比を高精度に制御した合金を簡便に作製する方法がなく、そのような合金を作製することは困難であった。   However, in these conventional methods, metal ions and metal nanoparticles are held by a weak bond such as mixing, impregnation, or electrostatic interaction on the support surface with the polymer support. Insufficient retention of nanoparticles on the support, mainly supported by a single metal, and there is no easy way to produce an alloy with a high control of the compounding ratio of multiple metals. It has been difficult to produce such an alloy.

Walsh, L. Arcell, T. Inomata, J. Tanaka, S. Mann, Nature Mater., 2, 386(2003)Walsh, L. Arcell, T. Inomata, J. Tanaka, S. Mann, Nature Mater., 2, 386 (2003) H. Zhang, A. I. Cooper, J. Mater. Chem., 15, 2157(2005)H. Zhang, A. I. Cooper, J. Mater. Chem., 15, 2157 (2005) H. Konno, R. Matsuura, M. Yamasaki, H. Habazaki, Syn. Met., 125, 167(2002)H. Konno, R. Matsuura, M. Yamasaki, H. Habazaki, Syn. Met., 125, 167 (2002) H. Nakagawa, K. Watanabe, Y. Harada, K. Miura, Carbon, 37, 1455 (1999)H. Nakagawa, K. Watanabe, Y. Harada, K. Miura, Carbon, 37, 1455 (1999)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術の問題点を解決することを可能とすると共に、配合比や形態を高精度に制御することで、従来材に期待できない特異な機能を発現することを可能とする新しいパラジウム・銀合金を開発することを目標として鋭意研究を積み重ねた結果、キレート樹脂を鋳型に用いてパラジウムと銀を任意の比率で保持させる方法を採用することで所期の目的を達成し得ることを見出し、本発明を完成するに至った。本発明は、配合比率を制御して従来材にない特異な機能の発現を可能にしたパラジウム・銀合金球状多孔体の製造方法を提供することを目的とするものである。 In such a situation, in view of the prior art, the present inventors can solve the problems of the prior art, and control the blending ratio and form with high accuracy, As a result of intensive research aimed at developing a new palladium-silver alloy that enables the development of unique functions that cannot be expected from conventional materials, palladium and silver can be used in any ratio using chelate resin as a mold. It has been found that the intended purpose can be achieved by adopting the holding method, and the present invention has been completed. The present invention aims to provide a manufacturing how palladium-silver alloy spherical porous body to allow the expression of specific functional unprecedented material by controlling the mixing ratio.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
)パラジウムと銀との比率を制御した合金からなる球状多孔質合金を製造する方法であって、パラジウム塩と銀塩を任意の比率で含む水溶液に、キレート形成基を有する高分子を加えて、パラジウムイオンと銀イオンとを錯体形成により任意の比率で保持させた金属担持キレート樹脂を調製し、これを酸素の存在下で焼成して有機成分を燃焼除去した後、水素雰囲気下で焼成して合金成分を還元することにより球状多孔質合金を作製することを特徴とする球状多孔質合金の製造方法。
)パラジウムと銀との比率を制御した合金ナノ粒子が炭素化物に均一に担持されている球状多孔質合金複合体を製造する方法であって、パラジウム塩と銀塩を任意の比率で含む水溶液にキレート形成基を有する高分子を加えて、パラジウムイオンと銀イオンとを錯体形成により任意の比率で保持させた金属担持キレート樹脂を調製し、これを不活性ガス雰囲気下で焼成して有機成分を炭素化した後、水素雰囲気下で焼成して合金成分を還元することにより合金ナノ粒子が炭素化物に均一に担持されている球状多孔質合金複合体を作製することを特徴とする球状多孔質合金複合体の製造方法。
)キレート形成基を有する高分子が、球形のキレート樹脂である、前記()又は()に記載の方法。
)キレート樹脂のキレート基として、アミン、アミノカルボン酸、アミノチオール、アミノアルコール、又はチオールを用いる、前記()に記載の方法。
)キレート樹脂の母材高分子が、架橋ポリスチレン樹脂、架橋ポリアクリル樹脂、又は架橋ポリアクリルアミドの球状樹脂である、前記()に記載の方法。
The present invention for solving the above-described problems comprises the following technical means.
( 1 ) A method for producing a spherical porous alloy comprising an alloy in which the ratio of palladium and silver is controlled, wherein a polymer having a chelate-forming group is added to an aqueous solution containing a palladium salt and a silver salt in an arbitrary ratio. Then, a metal-supported chelate resin in which palladium ions and silver ions are held in an arbitrary ratio by complex formation is prepared, and this is baked in the presence of oxygen to burn off organic components, and then baked in a hydrogen atmosphere. And producing a spherical porous alloy by reducing the alloy components.
( 2 ) A method for producing a spherical porous alloy composite in which alloy nanoparticles in which the ratio of palladium to silver is controlled is uniformly supported on a carbonized product, and includes a palladium salt and a silver salt in an arbitrary ratio A metal-supported chelate resin is prepared by adding a polymer having a chelate-forming group to an aqueous solution and holding palladium ions and silver ions in an arbitrary ratio by complex formation, and this is baked in an inert gas atmosphere and organically prepared. Spherical porous alloy composite in which alloy nanoparticles are uniformly supported on carbonized material by carbonizing the components and then reducing the alloy components by firing in a hydrogen atmosphere Of producing a high alloy composite.
( 3 ) The method according to ( 1 ) or ( 2 ) above, wherein the polymer having a chelate-forming group is a spherical chelate resin.
( 4 ) The method according to ( 3 ) above, wherein an amine, aminocarboxylic acid, aminothiol, aminoalcohol, or thiol is used as the chelating group of the chelating resin.
( 5 ) The method according to ( 3 ), wherein the matrix polymer of the chelate resin is a spherical resin of a crosslinked polystyrene resin, a crosslinked polyacrylic resin, or a crosslinked polyacrylamide.

次に、本発明について更に詳細に説明する。
本発明で得られる目的物は、パラジウムと銀との比率を制御した球状多孔質合金であって、球形で、多孔質であり、焼成後のパラジウムの重量比率が1〜95%であり、両元素は内部まで均一に分散していて、直径が20μm以上のサイズである、ことを特徴とするものである。また、本発明で得られる目的物は、球状多孔質合金複合体であって、上記のパラジウムと銀との比率を制御した合金ナノ粒子からなる球状多孔質合金が炭素化物に均一に担持していることを特徴とするものである。
Next, the present invention will be described in more detail.
The target product obtained in the present invention is a spherical porous alloy in which the ratio of palladium to silver is controlled, is spherical and porous, and the weight ratio of palladium after firing is 1 to 95%. The elements are uniformly dispersed up to the inside and have a diameter of 20 μm or more. In addition, the object obtained by the present invention is a spherical porous alloy composite, and the spherical porous alloy composed of alloy nanoparticles with a controlled ratio of palladium and silver is uniformly supported on the carbonized product. It is characterized by being.

また、本発明は、パラジウムと銀との比率を制御した合金ナノ粒子からなる球状多孔質合金を製造する方法であって、パラジウム塩と銀塩を任意の比率で含む水溶液に、キレート形成基を有する高分子を加えて、パラジウムイオンと銀イオンとを錯体形成により任意の比率で保持させた金属担持キレート樹脂を調製し、これを酸素の存在下で焼成して有機成分を燃焼除去した後、水素雰囲気下で焼成することにより球状多孔質合金を作製することを特徴とするものである。   The present invention also provides a method for producing a spherical porous alloy comprising alloy nanoparticles with a controlled ratio of palladium to silver, wherein a chelate-forming group is added to an aqueous solution containing a palladium salt and a silver salt in an arbitrary ratio. After adding a polymer having, preparing a metal-supported chelate resin in which palladium ions and silver ions are held in an arbitrary ratio by complex formation, and firing this in the presence of oxygen to burn and remove organic components, A spherical porous alloy is produced by firing in a hydrogen atmosphere.

更に、本発明は、パラジウムと銀との比率を制御した合金ナノ粒子を炭素化物に担持した球状多孔質合金複合体を製造する方法であって、パラジウム塩と銀塩を任意の比率で含む水溶液にキレート形成基を有する高分子を加えて、パラジウムイオンと銀イオンとを錯体形成により任意の比率で保持させた金属担持キレート樹脂を調製し、これを不活性ガス雰囲気下で焼成した後、水素雰囲気下で焼成することにより球状多孔質合金複合体を作製することを特徴とするものである。   Furthermore, the present invention is a method for producing a spherical porous alloy composite in which alloy nanoparticles with a controlled ratio of palladium and silver supported on a carbonized product, and an aqueous solution containing a palladium salt and a silver salt in an arbitrary ratio A metal-supported chelate resin in which palladium ions and silver ions are held in an arbitrary ratio by complex formation is prepared by adding a polymer having a chelate-forming group, and calcined in an inert gas atmosphere. A spherical porous alloy composite is produced by firing in an atmosphere.

本発明は、合金作製の前駆体として、キレート結合で強固に金属イオンを保持できるキレート樹脂粒子を用いることで、金属の保持比が制御可能と成ること、並びに球状の多孔体が得られること、を特徴としている。本発明では、特に、パラジウムと銀は、任意に混ざり合って合金を形成するため、キレート樹脂への2種類の金属の保持量を高精度に制御することで、焼成後に任意の比率の合金多孔体が得られる。また、本発明では、窒素などの不活性気体の雰囲気下で焼成することで、キレート樹脂の有機成分が炭素化し、合金が高分散した多孔質炭素化物を得ることができる。   The present invention uses a chelate resin particle capable of firmly holding metal ions with a chelate bond as a precursor for producing an alloy, whereby the metal holding ratio can be controlled, and a spherical porous body can be obtained. It is characterized by. In the present invention, in particular, palladium and silver are arbitrarily mixed to form an alloy. Therefore, by controlling the holding amount of two kinds of metals in the chelate resin with high accuracy, the porosity of the alloy at an arbitrary ratio after firing is obtained. The body is obtained. In the present invention, a porous carbonized product in which the organic component of the chelate resin is carbonized and the alloy is highly dispersed can be obtained by firing in an atmosphere of an inert gas such as nitrogen.

本発明の方法では、金属イオンを強固に結合するキレート基を有する球状のキレート樹脂を鋳型に用い、パラジウムと銀を任意の比率で保持させた後、酸素雰囲気下で焼成し、次いで、水素雰囲気下で還元することにより、有機成分を燃焼除去し、元の形態を鋳型として保持したパラジウム・銀多孔質合金が得られる。また、同様の焼成操作を不活性ガス雰囲気で行い、次いで、水素で還元することにより、合金粒子を担持した球状多孔質炭素化物が得られる。   In the method of the present invention, a spherical chelate resin having a chelate group that strongly binds metal ions is used as a template, palladium and silver are held in an arbitrary ratio, and then fired in an oxygen atmosphere, and then a hydrogen atmosphere By reducing under, an organic component is burned and removed, and a palladium / silver porous alloy retaining the original form as a mold is obtained. In addition, a similar porous operation is performed in an inert gas atmosphere and then reduced with hydrogen to obtain a spherical porous carbonized material carrying alloy particles.

本発明において、金属イオンや金属ナノ粒子を強固に結合する支持体として、パラジウム並びに銀と安定な錯体を形成するキレート基を分子内に多数持った高分子樹脂(以下、キレート樹脂と記載する。)が用いられる。具体的には、キレート基として、アミン、アミノカルボン酸、アミノチオール、アミノアルコール、チオール等を有する高分子樹脂が例示される。   In the present invention, a polymer resin having a large number of chelate groups in the molecule forming a stable complex with palladium and silver (hereinafter referred to as chelate resin) is used as a support for firmly binding metal ions and metal nanoparticles. ) Is used. Specifically, polymer resins having amine, aminocarboxylic acid, aminothiol, aminoalcohol, thiol and the like as the chelate group are exemplified.

パラジウム塩、銀塩ないしはこれらのナノ粒子を用いて、パラジウムと銀が任意の比率で配合した水溶液を調製し、これにキレート樹脂を加え、これらの金属イオンないしナノ粒子を錯体形成によりキレート樹脂に保持させ、その後、該金属保持キレート樹脂を焼成し、有機成分を焼成除去する、ないしは炭化することで、元の樹脂の形態を保った多孔質のパラジウム・銀合金ないしは合金を炭化物に分散担持した球状多孔質炭素化物を得ることができる。   Prepare an aqueous solution containing palladium and silver in any ratio using palladium salt, silver salt, or these nanoparticles, add chelate resin to this, add these metal ions or nanoparticles to chelate resin by complex formation. After that, the metal-holding chelate resin is baked, and the organic component is baked and removed or carbonized to disperse and carry the porous palladium / silver alloy or alloy that maintains the original resin form in the carbide. A spherical porous carbonized product can be obtained.

上述のように、本発明は、金属イオンを強固に結合するキレート基を有する球状のキレート樹脂を鋳型に用い、パラジウムと銀とを任意の比率で保持させた後、水素雰囲気下での焼成により有機成分を除去し、多孔質のパラジウム・銀合金を得るものである。キレート形成により、パラジウムや銀イオンあるいはそれらのナノ粒子が強固に保持され、その結合が強固であるため、金属イオンは溶出されない。   As described above, the present invention uses a spherical chelate resin having a chelate group that strongly binds metal ions as a template, holds palladium and silver in an arbitrary ratio, and then calcines in a hydrogen atmosphere. An organic component is removed to obtain a porous palladium / silver alloy. By chelate formation, palladium and silver ions or their nanoparticles are firmly held and their bonds are strong, so that metal ions are not eluted.

また、キレート形成基を有する高分子のキレート基としては、アミン、アミノカルボン酸、アミノチオール、アミノアルコール、チオール等が用いられるが、これらのうち、特に、パラジウムと銀を、共に強固に結合できる、イミノジ酢酸、EDTA型のアミノカルボン酸、並びにジアミン、トリアミン等のアミン類が最も好ましい。   As the chelate group of the polymer having a chelate-forming group, amine, aminocarboxylic acid, aminothiol, aminoalcohol, thiol and the like are used, and among these, in particular, palladium and silver can be firmly bonded together. , Iminodiacetic acid, EDTA type aminocarboxylic acid, and amines such as diamine and triamine are most preferable.

上記キレート形成基を有するキレート樹脂の基材としては、通常、ビーズ状の球形樹脂で、ジビニルベンゼンなどで部分架橋することにより不溶化したポリスチレン、ポリアクリル酸、ポリアクリルアミドなどの共重合体が用いられる。また、ポリスチレン、ポリアクリル酸、ポリアクリルアミドなどの共重合体としては、非多孔質のゲル型、多孔質のマクロポーラス型のいずれも用いることができる。樹脂ビーズのサイズは、用途によって異なるが、触媒や電極の作製に用いる場合、50−400メッシュが好ましく、とりわけ100―200メッシュが好適である。   As the base material of the chelate resin having the chelate-forming group, a copolymer such as polystyrene, polyacrylic acid or polyacrylamide which is insolubilized by partial cross-linking with divinylbenzene or the like is usually used as a bead-shaped spherical resin. . Further, as a copolymer such as polystyrene, polyacrylic acid, polyacrylamide, etc., any of non-porous gel type and porous macroporous type can be used. The size of the resin beads varies depending on the application, but when used for production of a catalyst or an electrode, 50-400 mesh is preferable, and 100-200 mesh is particularly preferable.

キレート樹脂へのパラジウムイオンと銀イオンの担持は、両金属イオンを含有する水溶液ないしは有機溶媒溶液の中に、キレート樹脂ビーズを加え、攪拌や振り混ぜにより行われる。用いる金属塩としては、水あるいは有機溶媒に溶けるものであれば特に制限は無く、適宜の金属塩を使用することができる。具体的には、パラジウムとしては、酢酸パラジウム、塩化パラジウム、パラジウム錯体、銀としては、硝酸銀、銀錯体が好適に用いられる。また、金属塩溶液の代わりに、金属ナノ粒子分散液を用いることも適宜可能である。   Palladium ions and silver ions are supported on the chelate resin by adding chelate resin beads to an aqueous solution or an organic solvent solution containing both metal ions, and stirring or shaking. The metal salt to be used is not particularly limited as long as it is soluble in water or an organic solvent, and an appropriate metal salt can be used. Specifically, palladium acetate, palladium chloride, and palladium complex are suitably used as palladium, and silver nitrate and silver complex are suitably used as silver. Moreover, it is also possible to use a metal nanoparticle dispersion instead of the metal salt solution.

パラジウムと銀を保持したキレート樹脂を、水洗後、酸素雰囲気下、電気炉中で加熱、焼成し、有機成分を燃焼除去し、更に、水素雰囲気下で還元することにより、金属部分が合金多孔体として残留する。2種の金属イオンは、キレート樹脂内に均一に分散しているため、水素雰囲気での加熱により容易に合金化が進む。あらかじめキレート樹脂に保持させる金属イオンの比率を調整することで、任意の比率の合金が得られる。   The chelate resin holding palladium and silver is washed with water, heated and baked in an electric furnace in an oxygen atmosphere, the organic components are burned and removed, and further reduced in a hydrogen atmosphere, so that the metal part becomes an alloy porous body. Remains as. Since the two types of metal ions are uniformly dispersed in the chelate resin, alloying easily proceeds by heating in a hydrogen atmosphere. By adjusting the ratio of metal ions held in the chelate resin in advance, an alloy having an arbitrary ratio can be obtained.

一方、パラジウムと銀を保持したキレート樹脂を、水洗後、窒素などの不活性ガス雰囲気下、電気炉中で加熱、焼成することで、有機成分は、カーボンとして残留し、更に、水素雰囲気下で還元することにより、パラジウムと銀の合金粒子が分散したカーボン粒子が得られる。   On the other hand, the chelate resin holding palladium and silver is washed with water and then heated and baked in an electric furnace under an inert gas atmosphere such as nitrogen, so that the organic component remains as carbon, and further in a hydrogen atmosphere. By reducing, carbon particles in which alloy particles of palladium and silver are dispersed are obtained.

金属を担持させたキレート樹脂の焼成温度は、500℃以上が望ましく、酸素雰囲気下での有機分の燃焼除去には、600〜800℃が良好に適用される。また、不活性ガス雰囲気で有機成分を炭化し、同時に合金化するためには、700〜1200℃が適用され、銀の融点の960以上が好ましい。これよりも低い温度では、合金化に時間がかかるという問題がある。焼成時間は、焼成温度にもよるが、5時間以上が望ましい。金属の還元のため、焼成の雰囲気は、水素気流下で行うが、好適には、20〜400kPaの水素圧が適用される。   The firing temperature of the chelate resin carrying a metal is desirably 500 ° C. or higher, and 600 to 800 ° C. is favorably applied to the combustion removal of organic components in an oxygen atmosphere. Moreover, in order to carbonize an organic component in an inert gas atmosphere and to alloy it simultaneously, 700-1200 degreeC is applied and 960 or more of melting | fusing point of silver is preferable. At a temperature lower than this, there is a problem that it takes a long time for alloying. The firing time is preferably 5 hours or longer, although it depends on the firing temperature. In order to reduce the metal, the firing atmosphere is carried out under a hydrogen stream, and preferably a hydrogen pressure of 20 to 400 kPa is applied.

パラジウム並びにパラジウム・銀合金は、例えば、水素化触媒や水素吸蔵金属、水素透過膜素材として、また、水素拡散電極として、顕著な効果を示すが、本発明では、パラジウムは、銀と任意の比率で混ざり、合金を形成し、銀との合金化比率により、水素の溶解性や拡散係数が変化し、特異な水素透過能や触媒機能の発現と制御が期待できる。パラジウムは、水素脆性の欠点があるが、それは、銀との合金化により著しく緩和される。また、合金を球状で、多孔質とすることにより、表面積が大きくなり、触媒や電極素材として利用する際に、その反応活性が著しく向上する。高分子樹脂を鋳型として用いることで、形態が焼成後にも反映され、上述の応用に適した所望のサイズと形状の多孔質合金材料を作製できる。   Palladium and palladium / silver alloy, for example, have a remarkable effect as a hydrogenation catalyst, a hydrogen storage metal, a hydrogen permeable membrane material, and as a hydrogen diffusion electrode. In the present invention, palladium is in any ratio with silver. The solubility and diffusion coefficient of hydrogen change depending on the alloying ratio with silver, and the expression and control of unique hydrogen permeability and catalytic function can be expected. Palladium has the disadvantage of hydrogen embrittlement, but it is significantly relaxed by alloying with silver. Further, by making the alloy spherical and porous, the surface area is increased, and when used as a catalyst or an electrode material, the reaction activity is remarkably improved. By using a polymer resin as a mold, the form is reflected even after firing, and a porous alloy material having a desired size and shape suitable for the above-described application can be produced.

本発明で得られる球状多孔質合金複合体は、球形、多孔質で、焼成後のパラジウムの重量比率が1〜95%で、両元素は内部まで略均一に分散しており、合金ナノ粒子が20nm以下の合金微粒子であり、窒素吸着法による比表面積が少なくとも50m/gである、ことで特徴付けられるパラジウム・銀合金球状多孔体を有していることで、従来材にない特徴を有する。 The spherical porous alloy composite obtained in the present invention is spherical and porous, the weight ratio of palladium after firing is 1 to 95%, both elements are dispersed almost uniformly to the inside, and the alloy nanoparticles are Having a palladium / silver alloy spherical porous body characterized by being an alloy fine particle of 20 nm or less and having a specific surface area by nitrogen adsorption method of at least 50 m 2 / g, it has characteristics not found in conventional materials. .

本発明により、次のような効果が奏される。
(1)本発明により、配合比を高精度に制御したパラジウム・銀合金球状多孔体を合成し、提供することができる。
(2)また、パラジウムと銀との比率を制御した合金ナノ粒子を均一に分散担持した球状多孔質炭素化物を合成することができる。
(3)上記パラジウム・銀合金球状多孔体及び多孔質炭素化物は、特異な水素透過性や触媒機能を発現するので、水素吸蔵合金、水素化触媒、水素透過膜素材等として有用である。
(4)また、これらは、反応活性が著しく向上した触媒や電極素材として好適に利用することができる。
The present invention has the following effects.
(1) According to the present invention, it is possible to synthesize and provide a palladium / silver alloy spherical porous body whose blending ratio is controlled with high accuracy.
(2) It is also possible to synthesize a spherical porous carbonized product in which alloy nanoparticles with a controlled ratio of palladium to silver are uniformly dispersed and supported.
(3) upper Symbol palladium-silver alloy spherical porous body and the porous carbonized material, because express specific hydrogen permeability and catalytic function, the hydrogen storage alloy, a hydrogenation catalyst, is useful as a hydrogen permeable membrane material and the like.
(4) Moreover, these can be suitably utilized as a catalyst or electrode material with significantly improved reaction activity.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

図1に示したジエチレントリアミン−N,N,N’,N’−四酢酸をキレート基として有する球形ポリスチレン樹脂(100−200メッシュサイズ)5gを、硝酸銀並びにテトラアンミンパラジウムを60:40の比率で水に溶解した、pH5.5の水溶液250mlに加え、12時間振りまぜた。パラジウムと銀を合わせた総濃度を0.05Mとした。キレート樹脂をろ過し、水洗・乾燥後、電気炉に入れ、酸素雰囲気下、600℃で6時間焼成し、次いで、水素雰囲気下で600℃、3時間焼成した。   1 g of spherical polystyrene resin (100-200 mesh size) having diethylenetriamine-N, N, N ′, N′-tetraacetic acid as a chelating group shown in FIG. 1 and silver nitrate and tetraammine palladium in water at a ratio of 60:40. The solution was added to 250 ml of an aqueous solution having a pH of 5.5 and shaken for 12 hours. The total concentration of palladium and silver was 0.05M. The chelate resin was filtered, washed with water and dried, then placed in an electric furnace, calcined at 600 ° C. for 6 hours in an oxygen atmosphere, and then calcined at 600 ° C. for 3 hours in a hydrogen atmosphere.

得られた焼成体の電子顕微鏡(SEM)写真を図2に示す。焼成体は、球形で、多孔質であることが認められる。ICP発光分光分析による焼成後の金属比率は、64:36であった。図3に、焼成後のX線回折パターンを示す。2θ=39.92°に、パラジウムと銀の合金のピークが認められる。   An electron microscope (SEM) photograph of the fired body obtained is shown in FIG. It is recognized that the fired body is spherical and porous. The metal ratio after firing by ICP emission spectroscopic analysis was 64:36. FIG. 3 shows an X-ray diffraction pattern after firing. A peak of an alloy of palladium and silver is observed at 2θ = 39.92 °.

ジエチレントリアミン−N,N,N’,N’−四酢酸をキレート基として有する球形ポリスチレン樹脂(100−200メッシュサイズ)5gを、硝酸銀並びにテトラアンミンパラジウムを40:60の比率で水に溶解した水溶液に加え、12時間振りまぜた。実施例1と同様に、キレート樹脂をろ過し、水洗・乾燥後、電気炉に入れ、酸素雰囲気下、600℃で6時間焼成し、次いで、水素雰囲気下で600℃、3時間焼成し、多孔質合金を得た。ICP発光分光分析による焼成後の金属比率は、42:58であった。   5 g of spherical polystyrene resin (100-200 mesh size) having diethylenetriamine-N, N, N ′, N′-tetraacetic acid as a chelating group is added to an aqueous solution in which silver nitrate and tetraammine palladium are dissolved in water at a ratio of 40:60. And shaken for 12 hours. In the same manner as in Example 1, the chelate resin was filtered, washed with water, dried, put into an electric furnace, baked in an oxygen atmosphere at 600 ° C. for 6 hours, then baked in a hydrogen atmosphere at 600 ° C. for 3 hours, and porous. A quality alloy was obtained. The metal ratio after firing by ICP emission spectroscopic analysis was 42:58.

ジエチレントリアミン−N,N,N’,N’−四酢酸をキレート基として有する球形ポリスチレン樹脂(100−200メッシュサイズ)5gを、硝酸銀並びにテトラアンミンパラジウムを20:80の比率で水に溶解した水溶液に加え、12時間振りまぜた。実施例1と同様に、キレート樹脂をろ過し、水洗・乾燥後、電気炉に入れ、酸素雰囲気下、600℃で6時間焼成し、次いで、水素雰囲気下で600℃、3時間焼成し、多孔質合金を得た。ICP発光分光分析による焼成後の金属比率は、20:80であった。   5 g of spherical polystyrene resin (100-200 mesh size) having diethylenetriamine-N, N, N ′, N′-tetraacetic acid as a chelating group is added to an aqueous solution in which silver nitrate and tetraammine palladium are dissolved in water at a ratio of 20:80. And shaken for 12 hours. In the same manner as in Example 1, the chelate resin was filtered, washed with water, dried, put into an electric furnace, baked in an oxygen atmosphere at 600 ° C. for 6 hours, then baked in a hydrogen atmosphere at 600 ° C. for 3 hours, and porous. A quality alloy was obtained. The metal ratio after firing by ICP emission spectroscopic analysis was 20:80.

ジエチレントリアミン−N,N,N’,N’−四酢酸をキレート基として有する球形ポリスチレン樹脂(100−200メッシュサイズ)5gを、硝酸銀並びにテトラアンミンパラジウムを80:20の比率で水に溶解した水溶液に加え、12時間振りまぜた。実施例1と同様に、キレート樹脂をろ過し、水洗・乾燥後、電気炉に入れ、酸素雰囲気下、600℃で6時間焼成し、次いで、水素雰囲気下で600℃、3時間焼成し、多孔質合金を得た。ICP発光分光分析による焼成後の金属比率は78:22であった。図4に、実施例1、2、3、4における合金組成と合金のX線ピークの位置の変化を示す。   5 g of spherical polystyrene resin (100-200 mesh size) having diethylenetriamine-N, N, N ′, N′-tetraacetic acid as a chelating group is added to an aqueous solution in which silver nitrate and tetraammine palladium are dissolved in water at a ratio of 80:20. And shaken for 12 hours. In the same manner as in Example 1, the chelate resin was filtered, washed with water, dried, put into an electric furnace, baked in an oxygen atmosphere at 600 ° C. for 6 hours, then baked in a hydrogen atmosphere at 600 ° C. for 3 hours, and porous. A quality alloy was obtained. The metal ratio after firing by ICP emission spectroscopic analysis was 78:22. FIG. 4 shows changes in the alloy composition and the X-ray peak position of Examples 1, 2, 3, and 4.

ジエチレントリアミン−N,N,N’,N’−四酢酸をキレート基として有する球形ポリスチレン樹脂(100−200メッシュサイズ)5gを、硝酸銀並びにテトラアンミンパラジウムを20:80の比率で水に溶解した水溶液に加え、18時間振りまぜた。不活性ガス雰囲気下、電気炉内で900℃に焼成し、その後、水素雰囲気下、1050℃で還元して、合金と炭素化物の複合粒子を得た。   5 g of spherical polystyrene resin (100-200 mesh size) having diethylenetriamine-N, N, N ′, N′-tetraacetic acid as a chelating group is added to an aqueous solution in which silver nitrate and tetraammine palladium are dissolved in water at a ratio of 20:80. And shake for 18 hours. The mixture was fired at 900 ° C. in an electric furnace in an inert gas atmosphere, and then reduced at 1050 ° C. in a hydrogen atmosphere to obtain composite particles of an alloy and a carbonized product.

上記複合粒子の窒素吸着法による比表面積は、1gあたり220mであった。焼成体の電子顕微鏡(SEM)写真を図5に示す。合金と炭素の複合粒子は、球形で緻密であることが認められる。この複合粒子の断面をEDX法により分析した。パラジウムと銀を分析した結果を図6に示す。両元素は内部まで均一に分布していることが分かる。また、薄片のTEM観察の結果を図7に示す。10nm以下の合金微粒子が分布していることが分かる。 The specific surface area of the composite particles by the nitrogen adsorption method was 220 m 2 per gram. An electron microscope (SEM) photograph of the fired body is shown in FIG. It can be seen that the alloy and carbon composite particles are spherical and dense. The cross section of the composite particle was analyzed by the EDX method. The result of analyzing palladium and silver is shown in FIG. It can be seen that both elements are uniformly distributed to the inside. Moreover, the result of TEM observation of a thin piece is shown in FIG. It can be seen that alloy fine particles of 10 nm or less are distributed.

応用例1
実施例4で作製した合金ナノ粒子が分散した炭素複合体とポリテトラフルオロエチレン(PTFE)とを9:1に混練し、銀製の金網にプレスし、これを電極とした。電極をテフロン(登録商標)製のホルダーに挿入して水素を供給し、35℃の1M硫酸水溶液を電解質として、水素拡散電極としての電気化学分極測定を行った。合金組成と交換電流密度の関係を図8に示す。銀の固溶量が40mol%の場合に著しく高い活性を示すことが分かる。これは、銀を固溶することで、水素の溶解性と拡散性、及び導電率が変化するためと考えられる。
Application example 1
The carbon composite in which the alloy nanoparticles prepared in Example 4 were dispersed and polytetrafluoroethylene (PTFE) were kneaded at 9: 1 and pressed into a silver wire netting, which was used as an electrode. The electrode was inserted into a Teflon (registered trademark) holder to supply hydrogen, and an electrochemical polarization measurement as a hydrogen diffusion electrode was performed using a 1 M sulfuric acid aqueous solution at 35 ° C. as an electrolyte. FIG. 8 shows the relationship between the alloy composition and the exchange current density. It can be seen that the activity is extremely high when the solid solution amount of silver is 40 mol%. This is presumably because the solubility and diffusibility of hydrogen and the conductivity change due to solid solution of silver.

以上詳述したように、本発明は、配合比を制御したパラジウム・銀合金球状多孔体の製造方法に係るものであり、本発明により、配合比を制御したパラジウム・銀合金球状多孔体を合成することができる。また、パラジウムと銀との比率を制御した合金ナノ粒子を均一に分散担持した球状多孔質炭素化物を合成することができる。また、本発明で得られる上記パラジウム・銀合金球状多孔体及び多孔質炭素化物は、特異な水素透過性や触媒機能を発現する水素吸蔵合金、水素透過膜素材等として有用である。更に、これらは、反応特性が著しく向上した触媒や電極素材として好適に利用することができる。本発明は、パラジウムと銀との合金化比率を高精度に制御することにより、特異な水素透過能や触媒機能の発現と制御を可能とするパラジウム・銀合金を提供するものとして有用である。 As described above in detail, the present invention according to the manufacturing how palladium-silver alloy spherical porous body with a controlled mixing ratio, the present invention, a palladium-silver alloy spherical porous body with controlled mixing ratio Can be synthesized. Further, it is possible to synthesize a spherical porous carbonized product in which alloy nanoparticles with a controlled ratio of palladium to silver are uniformly dispersed and supported. Further, the palladium / silver alloy spherical porous body and porous carbonized product obtained in the present invention are useful as a hydrogen storage alloy, a hydrogen permeable membrane material and the like that exhibit unique hydrogen permeability and catalytic function. Furthermore, they can be suitably used as a catalyst or electrode material with significantly improved reaction characteristics. INDUSTRIAL APPLICABILITY The present invention is useful for providing a palladium / silver alloy that enables the expression and control of specific hydrogen permeability and catalytic function by controlling the alloying ratio of palladium and silver with high accuracy.

実施例1で用いたキレート樹脂の金属捕捉基を示す。The metal capture group of the chelate resin used in Example 1 is shown. 合金多孔体の電子顕微鏡(SEM)画像を示す。The electron microscope (SEM) image of an alloy porous body is shown. 合金多孔体のX線回折パターンを示す。The X-ray diffraction pattern of an alloy porous body is shown. パラジウムと銀の比率の異なる合金のX線ピーク(純パラジウムの2θ=40°ピークの合金化による変化)を示す。縦軸は2θの値、横軸は銀の含有量(重量%)。X-ray peaks of alloys having different ratios of palladium and silver (change due to alloying of 2θ = 40 ° peak of pure palladium) are shown. The vertical axis represents the value of 2θ, and the horizontal axis represents the silver content (% by weight). 炭素化物の電子顕微鏡(SEM)画像を示す。The electron microscope (SEM) image of a carbonized material is shown. 炭素化物断面のSEM画像とパラジウムと銀の存在状態を示すEDXパターンを示す。The SDX image of a carbonized substance cross section and the EDX pattern which shows the presence state of palladium and silver are shown. 炭素化物内部に分散するPd−Ag合金ナノ粒子の透過電子顕微鏡(TEM)画像を示す。The transmission electron microscope (TEM) image of the Pd-Ag alloy nanoparticle disperse | distributed inside carbonized material is shown. 炭素化物から作成した電極の合金組成と発生した電流密度の関係を示す。縦軸は電流密度、横軸は合金中の銀の含有量(重量%)。The relationship between the alloy composition of the electrode produced from carbonized material and the generated current density is shown. The vertical axis represents current density, and the horizontal axis represents the silver content (% by weight) in the alloy.

Claims (5)

パラジウムと銀との比率を制御した合金からなる球状多孔質合金を製造する方法であって、パラジウム塩と銀塩を任意の比率で含む水溶液に、キレート形成基を有する高分子を加えて、パラジウムイオンと銀イオンとを錯体形成により任意の比率で保持させた金属担持キレート樹脂を調製し、これを酸素の存在下で焼成して有機成分を燃焼除去した後、水素雰囲気下で焼成して合金成分を還元することにより球状多孔質合金を作製することを特徴とする球状多孔質合金の製造方法。   A method for producing a spherical porous alloy comprising an alloy in which the ratio of palladium and silver is controlled, wherein a polymer having a chelate-forming group is added to an aqueous solution containing a palladium salt and a silver salt in an arbitrary ratio, and palladium is added. A metal-supported chelate resin in which ions and silver ions are held in an arbitrary ratio by complex formation is prepared, and this is fired in the presence of oxygen to burn off organic components, and then fired in a hydrogen atmosphere to form an alloy. A method for producing a spherical porous alloy, comprising producing a spherical porous alloy by reducing components. パラジウムと銀との比率を制御した合金ナノ粒子が炭素化物に均一に担持されている球状多孔質合金複合体を製造する方法であって、パラジウム塩と銀塩を任意の比率で含む水溶液にキレート形成基を有する高分子を加えて、パラジウムイオンと銀イオンとを錯体形成により任意の比率で保持させた金属担持キレート樹脂を調製し、これを不活性ガス雰囲気下で焼成して有機成分を炭素化した後、水素雰囲気下で焼成して合金成分を還元することにより合金ナノ粒子が炭素化物に均一に担持されている球状多孔質合金複合体を作製することを特徴とする球状多孔質合金複合体の製造方法。   A method for producing a spherical porous alloy composite in which alloy nanoparticles with a controlled ratio of palladium and silver are uniformly supported on a carbonized product, and chelated in an aqueous solution containing a palladium salt and a silver salt in an arbitrary ratio A polymer having a forming group is added to prepare a metal-supported chelate resin in which palladium ions and silver ions are held in an arbitrary ratio by complex formation, and this is baked in an inert gas atmosphere to convert the organic component to carbon. And then producing a spherical porous alloy composite in which the alloy nanoparticles are uniformly supported on the carbonized product by reducing the alloy components by firing in a hydrogen atmosphere. Body manufacturing method. キレート形成基を有する高分子が、球形のキレート樹脂である、請求項又はに記載の方法。 The method according to claim 1 or 2 , wherein the polymer having a chelate-forming group is a spherical chelate resin. キレート樹脂のキレート基として、アミン、アミノカルボン酸、アミノチオール、アミノアルコール、又はチオールを用いる、請求項に記載の方法。 The method according to claim 3 , wherein an amine, aminocarboxylic acid, aminothiol, aminoalcohol, or thiol is used as the chelating group of the chelating resin. キレート樹脂の母材高分子が、架橋ポリスチレン樹脂、架橋ポリアクリル樹脂、又は架橋ポリアクリルアミドの球状樹脂である、請求項に記載の方法。 The method according to claim 3 , wherein the matrix polymer of the chelate resin is a cross-linked polystyrene resin, a cross-linked polyacrylic resin, or a cross-linked polyacrylamide spherical resin.
JP2006300921A 2006-11-06 2006-11-06 Spherical porous alloy, method for producing spherical porous alloy composite Expired - Fee Related JP4911593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300921A JP4911593B2 (en) 2006-11-06 2006-11-06 Spherical porous alloy, method for producing spherical porous alloy composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300921A JP4911593B2 (en) 2006-11-06 2006-11-06 Spherical porous alloy, method for producing spherical porous alloy composite

Publications (2)

Publication Number Publication Date
JP2008115439A JP2008115439A (en) 2008-05-22
JP4911593B2 true JP4911593B2 (en) 2012-04-04

Family

ID=39501631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300921A Expired - Fee Related JP4911593B2 (en) 2006-11-06 2006-11-06 Spherical porous alloy, method for producing spherical porous alloy composite

Country Status (1)

Country Link
JP (1) JP4911593B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445991B2 (en) * 2007-08-09 2014-03-19 独立行政法人物質・材料研究機構 Nano-flaked metal composite material, method for producing the same, and surface-enhanced Raman scattering active substrate
JP5468321B2 (en) * 2009-07-06 2014-04-09 三井金属鉱業株式会社 Particulate combustion catalyst
JP5848711B2 (en) * 2010-11-08 2016-01-27 ナミックス株式会社 Method for producing silver particles
WO2012063591A1 (en) * 2010-11-09 2012-05-18 国立大学法人大阪大学 Processes for producing porous metal body and porous metal-containing body, and porous metal body and porous metal-containing body
JP5924807B2 (en) 2012-02-14 2016-05-25 日本フイルコン株式会社 Gel-like metal adsorbent and gel-like metal adsorbent-carrying adsorbent
CN111421133B (en) * 2020-03-30 2022-01-21 扬州大学 Silver nanosheet cluster array and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429657A (en) * 1994-01-05 1995-07-04 E. I. Du Pont De Nemours And Company Method for making silver-palladium alloy powders by aerosol decomposition
JP2004143497A (en) * 2002-10-23 2004-05-20 Asahi Kasei Corp Porous metal particle

Also Published As

Publication number Publication date
JP2008115439A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4911593B2 (en) Spherical porous alloy, method for producing spherical porous alloy composite
Zhao et al. 1D N-doped hierarchically porous hollow carbon tubes derived from a supramolecular template as metal-free electrocatalysts for a highly efficient oxygen reduction reaction
Li et al. MOF derived Co 3 O 4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR
KR102144419B1 (en) Highly sinter-stable metal nanoparticles supported on mesoporous graphitic particles and their use
Fu et al. Low Pt-content ternary PdCuPt nanodendrites: an efficient electrocatalyst for oxygen reduction reaction
WO2014181873A1 (en) Fuel cell electrode catalyst and method for activating catalyst
CA3041625A1 (en) Electrocatalyst composition comprising noble metal oxide supported on tin oxide
WO2009116157A1 (en) Process for producing catalyst for fuel cell, electrode assembly, and fuel cell
Li et al. Hollow N-doped carbon nanoflowers with nanosheets subunits for electrocatalytic oxygen reduction
JP4715107B2 (en) Catalyst for fuel cell and method for producing platinum-iridium alloy particles
Kim et al. Highly efficient supporting material derived from used cigarette filter for oxygen reduction reaction
Guo et al. Cobalt nanoparticles incorporated into hollow doped porous carbon capsules as a highly efficient oxygen reduction electrocatalyst
KR100574030B1 (en) Electrocatalysts for fuel cell supported by porous carbon structure having regularly 3-dimensionally arranged spherical pores of uniform diameter and their preparation method
Cui et al. Fabrication of a mesoporous Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3− δ perovskite as a low-cost and efficient catalyst for oxygen reduction
Lin et al. Single-precursor design and solvent-free nanocasting synthesis of N/S/O-doped ordered mesoporous carbons with trimodal pores for excellent oxygen reduction
TWI508774B (en) Production method for gold-supported carbon catalyst
JP2011136993A (en) Platinum complex, and production method and application thereof
JP2007090257A (en) Method for preparing noble metal catalyst
JP6993640B2 (en) Nitrogen-containing polycyclic compound
Ejsmont et al. Cobalt-based MOF-derived carbon electrocatalysts with tunable architecture for enhanced oxygen evolution reaction
JP7016108B2 (en) Metal complex
Bitter et al. Preparation of Carbon‐Supported Metal Catalysts
Tang et al. The active ruthenium (101) crystal plane selectively exposed by in situ metal hyperaccumulation on a living plant for overall water splitting
CN114082435A (en) Monodisperse metal type catalyst and general mild super-assembly preparation method thereof
JP2019093324A (en) Hydrazine decomposition catalyst and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees