JP4911220B2 - 衛星信号捕捉方法及び衛星信号受信装置 - Google Patents

衛星信号捕捉方法及び衛星信号受信装置 Download PDF

Info

Publication number
JP4911220B2
JP4911220B2 JP2009271897A JP2009271897A JP4911220B2 JP 4911220 B2 JP4911220 B2 JP 4911220B2 JP 2009271897 A JP2009271897 A JP 2009271897A JP 2009271897 A JP2009271897 A JP 2009271897A JP 4911220 B2 JP4911220 B2 JP 4911220B2
Authority
JP
Japan
Prior art keywords
signal
code
replica
differential
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009271897A
Other languages
English (en)
Other versions
JP2011112616A5 (ja
JP2011112616A (ja
Inventor
整功 山形
則生 照内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009271897A priority Critical patent/JP4911220B2/ja
Priority to US12/955,824 priority patent/US8462833B2/en
Priority to CN201010568318.1A priority patent/CN102081161B/zh
Publication of JP2011112616A publication Critical patent/JP2011112616A/ja
Publication of JP2011112616A5 publication Critical patent/JP2011112616A5/ja
Application granted granted Critical
Publication of JP4911220B2 publication Critical patent/JP4911220B2/ja
Priority to US13/895,232 priority patent/US8750348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、衛星信号捕捉方法及び衛星信号受信装置に関する。
測位用信号を利用した測位システムとしては、GPS(Global Positioning System)が広く知られており、携帯型電話機やカーナビゲーション装置等に内蔵されたGPS受信装置に利用されている。GPS受信装置は、複数のGPS衛星の位置や各GPS衛星から受信装置までの擬似距離等の情報に基づいて受信装置の位置を示す3次元の座標値と時計誤差とを求める位置算出処理を行う。
GPS衛星信号は、スペクトラム拡散変調方式として古くから知られるCDMA(Code Division Multiple Access)方式で拡散変調された通信信号の一種である。GPS衛星がGPS衛星信号を発信する際の周波数(搬送波周波数)は、1.57542[GHz]であるが、GPS衛星や受信装置の移動により生ずるドップラーの影響等に起因して、GPS受信装置が実際に受信する周波数は、必ずしも搬送波周波数とは一致しない。そのため、GPS受信装置は、受信信号の中からGPS衛星信号を捕捉するための周波数サーチを行って、捕捉周波数を決定する。
捕捉周波数は、GPS衛星信号を受信した受信信号と、GPS衛星信号の拡散符号のレプリカであるレプリカ信号との相関演算を、周波数及びコード位相を変化させながら行って(いわゆる周波数方向及び位相方向の相関演算。周波数サーチや位相サーチとも呼ばれる。)決定する手法が一般的である(例えば特許文献1)。
特開2007−256111号公報
周波数方向の相関演算において、GPS衛星は高速で移動しているため、GPS衛星の移動に伴うドップラーの影響は無視し難く、GPS受信装置が実際に受信する周波数には、ドップラー周波数による大きな誤差が含まれ得る。また、GPS受信装置内のローカルクロックの誤差(時計誤差)に起因する周波数誤差も生じ得る。従って、GPS受信装置は、想定される周波数誤差範囲内で周波数を細かく変化させながら、受信信号とレプリカ信号との相関演算を行う。このため、周波数サーチに多くの時間を費やし、GPS衛星信号の捕捉に要する時間が増大するという問題があった。
本発明は、上述した課題に鑑みて為されたものであり、その目的とするところは、衛星信号の捕捉に要する時間を短縮するための新たな手法を提案することにある。
以上の課題を解決するための第1の形態は、測位用衛星からの衛星信号を受信した第1〜第3の受信信号を用いて、前記衛星信号の拡散符号を差動化した差動化符号を生成することと、前記差動化符号と、前記拡散符号のレプリカである拡散符号レプリカとを用いた所定の相関処理を行って相関値を取得することと、前記相関値に基づいて前記衛星信号を捕捉することと、を含む衛星信号捕捉方法である。
また、他の形態として、測位用衛星からの衛星信号を受信する受信部と、前記受信部により受信された受信信号と、当該受信信号を所定の遅延時間分遅延させた遅延信号とを用いて、前記衛星信号の拡散符号を差動化した差動化符号を生成する差動化部と、前記差動化符号と、前記拡散符号のレプリカである拡散符号レプリカとを用いた所定の相関処理を行って相関値を取得する相関処理部と、前記相関値に基づいて前記衛星信号を捕捉する捕捉部と、を備えた衛星信号受信装置を構成してもよい。
この第1の形態等によれば、測位用衛星からの衛星信号を受信した第1〜第3の受信信号を用いて、衛星信号の拡散符号を差動化した差動化符号を生成する。そして、生成した差動化符号と拡散符号レプリカとを用いた所定の相関処理を行って相関値を取得し、当該相関値に基づいて衛星信号を捕捉する。
衛星信号の拡散符号を差動化した差動化符号は、受信信号の周波数に関わらず、第1〜第3の3種類の受信信号を用いて生成可能である。従って、差動化符号と拡散符号レプリカとを用いた相関処理を行い、その相関値に基づいて衛星信号を捕捉することで、周波数方向の相関演算を行うことなく衛星信号の捕捉を行うことが可能となり、衛星信号の捕捉に要する時間を短縮することができる。
また、第2の形態として、第1の形態の衛星信号捕捉方法であって、前記第2の受信信号は、前記第1の受信信号と時間T異なる信号であり、前記第3の受信信号は、前記第1の受信信号と時間2T異なる信号である、衛星信号捕捉方法を構成してもよい。
この第2の形態によれば、第1の受信信号と、第1の受信信号と時間T異なる第2の受信信号と、第1の受信信号と時間2T異なる第3の受信信号とを用いて差動化符号を生成する。例えば、受信信号(第1の受信信号)と、第1の受信信号を遅延させることで得られる2種類の遅延信号(第2,第3の受信信号)とを用いることで、衛星信号の拡散符号を差動化した差動化符号を簡単に生成することができる。
また、第3の形態として、第2の形態の衛星信号捕捉方法であって、前記差動化符号を生成することは、前記第2の受信信号を自乗して複素共役を求めることと、前記第1の受信信号と、前記複素共役の信号と、前記第3の受信信号とを乗算することによって前記差動化符号を求めることと、を含む、衛星信号捕捉方法を構成してもよい。
この第3の形態によれば、第2の受信信号を自乗して複素共役を求める。そして、第1の受信信号と、求めた複素共役の信号と、第3の受信信号とを乗算することによって差動化符号を求める。
また、第4の形態として、第2又は第3の形態の衛星信号捕捉方法であって、前記第1の受信信号と、前記第1の受信信号とは前記時間Tと異なる時間T´異なる第4の受信信号と、前記第1の受信信号とは時間2T´異なる第5の受信信号とを用いて第2の差動化符号を生成することと、前記第2の差動化符号と前記拡散符号レプリカとを用いた所定の相関処理を行って第2の相関値を取得することと、前記相関値及び前記第2の相関値に基づいて前記衛星信号を捕捉することと、を更に含む衛星信号捕捉方法を構成してもよい。
この第4の形態によれば、第1の受信信号と、第1の受信信号とは時間T´異なる第4の受信信号と、第1の受信信号とは時間2T´異なる第5の受信信号とを用いて第2の差動化符号を生成する。そして、第2の差動化符号と拡散符号レプリカとを用いた所定の相関処理を行って第2の相関値を取得し、相関値及び第2の相関値に基づいて衛星信号を捕捉する。第4,第5の受信信号を用いて第2の差動化符号を生成し、第2,第3の受信信号を用いて生成した差動化符号と、第2の差動化符号とを用いて相関処理を行うことで、互いに独立した複数の相関値を取得することができる。そして、取得した複数の相関値に基づいて衛星信号を捕捉することで、衛星信号の捕捉をより精度良く実行できる。
また、第5の形態として、第1〜第4の何れかの形態の衛星信号捕捉方法であって、前記相関値を取得することは、前記拡散符号レプリカを差動化して差動化レプリカを生成することと、前記差動化符号と、前記差動化レプリカとを相関演算することと、を含む、衛星信号捕捉方法を構成してもよい。
この第5の形態によれば、拡散符号レプリカを差動化して差動化レプリカを生成し、差動化符号と差動化レプリカ信号とを相関演算する。衛星信号の拡散符号を差動化して生成した差動化符号と、拡散符号レプリカを差動化して生成した差動化レプリカとの乗算により、衛星信号を捕捉するための相関値を適切に求めることができる。
また、第6の形態として、第2〜第4の何れかの形態の衛星信号捕捉方法であって、前記拡散符号レプリカは、第1の拡散符号レプリカと、前記第1の拡散符号レプリカとは前記時間2T異なる第2の拡散符号レプリカと、を含み、前記相関値を取得することは、前記第1の拡散符号レプリカと、前記第2の拡散符号レプリカとを乗算することによって、前記拡散符号レプリカを差動化した差動化レプリカを生成することと、前記差動化符号と、前記差動化レプリカとを相関演算することと、を含む、衛星信号捕捉方法を構成してもよい。
この第6の形態によれば、第1の拡散符号レプリカと、第1の拡散符号レプリカとは時間2T異なる第2の拡散符号レプリカとを乗算することによって、拡散符号レプリカを差動化した差動化レプリカを生成する。そして、差動化符号と差動化レプリカとを相関演算する。
また、第7の形態として、第1〜第4の何れかの形態の衛星信号捕捉方法であって、前記相関値を取得することは、前記差動化符号に基づいて前記拡散符号を予測することと、前記予測された拡散符号である予測符号と、前記拡散符号レプリカとを相関演算することと、を含む、衛星信号捕捉方法を構成してもよい。
この第7の形態によれば、差動化符号に基づいて拡散符号を予測する。そして、予測された拡散符号である予測符号と拡散符号レプリカとを相関演算する。差動化符号に基づいて拡散符号を適切に予測することで、予測符号と拡散符号レプリカとの相関演算の正確性を高めることができる。
また、第8の形態として、第1〜第7の何れかの形態の衛星信号捕捉方法であって、前記受信信号の位相をずらして前記所定の相関処理を行うことによって、相関ピークをサーチすることを更に含み、前記衛星信号を捕捉することは、前記相関ピークに基づいて前記衛星信号を捕捉することであり、周波数をずらして相関ピークのサーチを行うことを不用として衛星信号を捕捉する、衛星信号捕捉方法を構成してもよい。
この第8の形態によれば、受信信号の位相をずらして所定の相関処理を行うことで、相関ピークをサーチする。そして、相関ピークに基づいて衛星信号を捕捉し、周波数をずらして相関ピークのサーチを行うことを不用として衛星信号を捕捉する。差動化符号と拡散符号レプリカとを用いた相関処理を行うことで取得される相関値は、受信信号に対する周波数方向のサーチを行って得られる相関値に相等する相関値である。そのため、周波数方向のサーチが不用となり、従来において周波数方向のサーチに費やしていた時間を削減することができる。
GPS衛星信号捕捉の原理の説明図。 GPS衛星信号捕捉の原理の説明図。 GPS衛星信号捕捉の原理の説明図。 GPS衛星信号捕捉の原理の説明図。 GPS衛星信号捕捉の原理の説明図。 GPS衛星信号捕捉の原理の説明図。 GPS衛星信号捕捉の原理の説明図。 GPS衛星信号捕捉の原理の説明図。 携帯型電話機の機能構成を示すブロック図。 ベースバンド処理回路部の回路構成の一例を示す図。 受信信号差動化回路部の回路構成の一例を示す図。 レプリカ信号差動化回路部の回路構成の一例を示す図。 ベースバンド処理の流れを示すフローチャート。 コード位相検出処理の流れを示すフローチャート。 変形例における衛星信号捕捉部の回路構成の一例を示す図。 変形例における衛星信号捕捉部の回路構成の一例を示す図。 変形例における衛星信号捕捉部の回路構成の一例を示す図。
以下、図面を参照して、本発明の好適な実施形態について説明する。以下では、GPS(Global Positioning System)衛星から発信されているGPS衛星信号を受信・捕捉するGPS受信装置(衛星信号受信装置)に本発明を適用した場合について説明する。尚、本発明を適用可能な実施形態が以下説明する実施形態に限定されるわけでないことは勿論である。
1.原理
先ず、GPS受信装置が行うGPS衛星信号捕捉処理(衛星信号捕捉方法)の原理について説明する。
GPS衛星は、測位用衛星の一種であり、6つの地球周回軌道面それぞれに4機以上ずつ配置され、原則、地球上のどこからでも常時4機以上の衛星が幾何学的配置のもとで観測できるように運用されている。
GPS衛星は、アルマナックやエフェメリス等の航法メッセージをGPS衛星信号に含めて発信している。GPS衛星信号は、拡散符号の一種であるCA(Coarse and Acquisition)コードによって、スペクトラム拡散方式として知られるCDMA(Code Division Multiple Access)方式によって変調された1.57542[GHz]の通信信号である。CAコードは、コード長1023チップを1PNフレームとする繰返し周期1msの擬似ランダム雑音符号であり、衛星毎に異なる。
GPS衛星がGPS衛星信号を発信する際の周波数(搬送波周波数)は、1.57542[GHz]と予め規定されているが、GPS衛星やGPS受信装置の移動により生ずるドップラーの影響等により、GPS受信装置がGPS衛星信号を受信する際の周波数は、必ずしも搬送波周波数とは一致しない。そのため、従来のGPS受信装置は、受信信号の中からGPS衛星信号を捕捉するための周波数方向の相関演算である周波数サーチ(周波数を変化させて繰り返し相関演算を行うサーチ)及び位相方向の相関演算である位相サーチ(位相を変化させて繰り返し相関演算を行うサーチ)を行って、GPS衛星信号を捕捉する。本実施形態に特に関係のあるのは周波数サーチであるため、以下周波数サーチについて説明する。
例えば、ドップラーの影響により、受信周波数が搬送波周波数を中心として±5[kHz]の範囲内で変化することを想定した場合は、搬送波周波数である1.57542[GHz]を中心として±5[kHz]の範囲内を、例えば100[Hz]といった微小量ずつ周波数を変化させながら周波数サーチを行う。この場合、周波数の想定誤差範囲内で周波数を網羅的にサーチしなければならないため、計算量が増大し、GPS衛星信号の捕捉に要する時間が増大するという問題が生じていた。
本願発明者は、かかる問題に鑑み、上記のような網羅的な周波数サーチを行うことなく、ドップラー周波数が未知のまま、GPS衛星信号の捕捉を短時間で行うための全く新しい手法を考案した。以下の説明では、複数種類の変数を用いて説明するが、ある変数「A」の時刻「t」における値を「A(t)」と表記する。また、位相方向のサーチは通常通り行う必要がある。
GPS受信装置が時刻「t」において受信する受信信号「r(t)」は、次式(1)のように表現することができる。
Figure 0004911220
式(1)において、「I(t)」と「Q(t)」はそれぞれ受信信号「r(t)」のIQ成分を示している。すなわち「I(t)」は受信信号「r(t)」の同相成分(実部)を示し、「Q(t)」は「r(t)」の直交成分(虚部)を示す。「CA(t)」はGPS衛星信号のCAコードを示しており、「+1」と「−1」の何れかの値である。また、「eiωt」は、GPS衛星信号を搬送する搬送波を表す項である。
式(1)において、「ω」は受信信号の周波数であり、次式(2)で表される。
Figure 0004911220
但し、「ωc」はGPS衛星信号の搬送波周波数であり、「ωd」はドップラー周波数である。
このとき、式(1)の両辺を二乗すると、次式(3)が得られる。
Figure 0004911220
但し、「CA(t)」は「+1」か「−1」であるため、「CA(t)2=1」となる性質を利用している。
次に、式(3)の複素共役(複素数の虚部の符号を反転させたもの)を演算すると、次式(4)が導かれる。
Figure 0004911220
但し、複素共役を上付きの「*」で表している。
一方、受信信号「r(t)」から所定時間Tだけ遅れた信号「r(t−T)」と、同じ所定時間Tだけ進んだ信号「r(t+T)」を考え、これらの信号を乗算すると、次式(5)が導かれる。
Figure 0004911220
本実施形態では、1023チップで構成されるCAコードをサンプリングする場合のサンプリング時間間隔のことを「クロック」と称し、1クロックの経過時間を「T」で表す。サンプリングの時間間隔(すなわち、時間T)は1チップ分の時間間隔としてもよいし、1チップをより細かく細分化した時間間隔としてもよい。
この場合、式(4)と式(5)とを用いて、次式(6)を導くことができる。
Figure 0004911220
式(6)において、「w(t)」は、CAコード「CA(t)」から1クロックだけ遅れたCAコード「CA(t−T)」と、1クロックだけ進んだCAコード「CA(t+T)」との積で表される符号である。本実施形態では、この「w(t)」で表される符号のことを、CAコードの「差動化符号」と称する。
式(6)を見ると、CAコードの差動化符号「w(t)」は、時刻の異なる複数の信号「r(t−T)」、「r(t+T)」及び「{r(t)2」の積で表されている。これは、受信信号(式(6)ではr(t+T))と、受信信号を1クロック(時間T)遅延させた第1の遅延信号(式(6)では{r(t)2)と、受信信号を2クロック(時間2T)遅延させた第2の遅延信号(式(6)ではr(t−T))とを用いるだけで、CAコードの差動化符号の信号が生成可能であることを意味する。
また、特徴的であるのは、受信信号の周波数「ω」を含む項「e−2iωt」が、受信信号の自乗の複素共役の信号「{r(t)2」によって代替されている点である。このことから、差動化符号「w(t)」を利用した相関処理を行うことで、あたかも周波数方向の相関演算を行ったかのような効果を得ることができ、受信信号の周波数「ω」に依存せずにGPS衛星信号を捕捉することが可能となる。言い換えると、ドップラー周波数「ωd」がいかなる値であっても、周波数方向の相関演算は不用となり、位相方向の相関演算を行うだけで済むことになる。
また、「ωd」はドップラー周波数であるとして説明してきたが、ドップラー周波数以外の全ての周波数誤差を含んでいてもよい。例えば、GPS受信装置内のローカルクロックの誤差(時計誤差)に起因する周波数誤差を更に含めてもよい。「ωd」がいかなる値であっても、周波数サーチを行わずに、GPS衛星信号を捕捉できるからである。
本願発明者は、上述した差動化符号「w(t)」を利用した相関処理を行ってGPS衛星信号を捕捉するための2種類の手法を考案した。以下、この2種類の手法について具体例を挙げつつ詳細に説明する。
1−1.CAコードレプリカを差動化する手法
1番目の手法は、CAコードレプリカを差動化して差動化レプリカ符号「wR(t)」を生成し、差動化符号「w(t)」と差動化レプリカ符号「wR(t)」との相関演算を行って相関値を求める手法である。
図1は、この1番目の手法の原理の説明図である。図1には各種の符号の時系列変化を表したテーブルを示している。最上段にはCAコード「CA(t)」を、2段目にはCAコードの差動化符号「w(t)」を、3段目にはCAコードレプリカ「CAR(t)」を、4段目には差動化レプリカ符号「wR(t)」を、最下段にはCAコードの差動化符号「w(t)」とCAコードレプリカの差動化符号「wR(t)」との乗算値「g(t)」をそれぞれ示している。
まず、時刻「t−T」におけるCAコードレプリカ「CAR(t−T)」と、時刻「t+T」におけるCAコードレプリカ「CAR(t+T)」とを用いて、時刻「t」における差動化レプリカ符号「wR(t)」を、次式(7)に従って算出する。
Figure 0004911220
そして、差動化レプリカ符号「wR(t)」の位相「Δt」をずらしながら、差動化符号「w(t)」と差動化レプリカ符号「wR(t+Δt)」との相関演算を行う。本実施形態では、CAコードレプリカの位相を「Δt」で表す。正確には、CAコードレプリカの位相を時間に換算した値が「Δt」である。
具体的には、次式(8)に従って相関値「P(Δt)」を算出する。
Figure 0004911220
但し、「g(t)」は、時刻「t」における差動化符号「w(t)」と差動化レプリカ符号「wR(t+Δt)」との乗算値である。また、位相「Δt」について算出した相関値を「P(Δt)」で表す。
差動化レプリカ符号「wR(t)」の位相「Δt」を変化させながら相関値「P(Δt)」を算出する。そして、相関値「P(Δt)」が最大となった位相「Δt」を検出する。そして、検出した位相「Δt」を、当該GPS衛星信号のコード位相に決定する。
この1番目の手法の具体例を、図2及び図3を参照して説明する。ここでは、受信信号のCAコードの時系列変化が「CA(t)=1,−1,−1,1,−1,1,・・・」として表される場合を例に挙げて説明する。また、捕捉対象とするGPS衛星信号のCAコードが既知であり、CAコードレプリカの時系列変化も「CAR(t)=1,−1,−1,1,−1,1,・・・」で表されるものとして説明する。
(i)CAコードレプリカの位相「Δt=0」の場合
図2は、CAコードレプリカの位相「Δt=0」とした場合の算出結果の一例を示す図である。「CA(t−1)」及び「CA(t+1)」を用いて式(6)に従って差動化符号「w(t)」を算出すると、「w(t)=(N/A),−1,−1,1,1,(N/A),・・・」が得られる。「(N/A)」の部分は、前後のCAコードの値が図からは不明であるため、記載していない部分である。
また、「CAR(t−1)」及び「CAR(t+1)」を用いて式(7)に従って差動化レプリカ符号「wR(t)」を算出すると、「wR(t)=(N/A),−1,−1,1,1,(N/A),・・・」が得られる。
次いで、CAコードの差動化符号「w(t)」と、差動化レプリカ符号「wR(t)」とを乗算することで、乗算値「g(t)=(N/A),1,1,1,1,(N/A),・・・」が得られる。この場合、例えば「g(2)」〜「g(5)」の部分のみを取り出して相関値「P(Δt=0)」を算出すると、相関値「P(Δt=0)=(1+1+1+1)2=16」となり、大きな値が得られる。これは、図2からわかるように、CAコード「CA(t)」の位相とCAコードレプリカ「CAR(t−1)」の位相とがぴったり一致しており、乗算値「g(t)」が全て「1」となるためである。
(ii)CAコードレプリカの位相「Δt=1」の場合
図3は、CAコードレプリカの位相「Δt=1」とした場合の算出結果を示す図である。(i)の場合と同様に差動化レプリカ符号「wR(t)」を算出すると、「wR(t)=(N/A),1,−1,−1,1,(N/A),・・・」が得られる。この場合も、例えば「g(2)」〜「g(5)」の部分のみに着目して相関値「P(Δt=1)」を算出すると、相関値「P(Δt=1)=(−1+1−1+1)2=0」となり、小さな値が得られる。これは、図3からわかるように、CAコード「CA(t)」の位相とCAコードレプリカ「CAR(t−1)」の位相とがずれているため、乗算値「g(t)」は「−1」と「1」を繰り返し、和を計算すると互いに相殺し合うためである。
ここでは(i)Δt=0及び(ii)Δt=1の2つの場合の結果しか図示していないが、位相「Δt」をどのように変化させて計算を行っても、(i)Δt=0の場合の相関値「P(Δt=0)」よりも大きくなることはない。位相がぴったり一致していなければ、乗算値「g(t)」に「−1」と「1」とが混在し、値を打ち消し合うためである。このことから、位相「Δt」を変化させながら相関値「P(Δt)」を算出し、相関値「P(Δt)」が最大となった位相「Δt」を検出することで、コード位相を正しく求めることができる。
1−2.差動化符号「w(t)」から元のCAコードを予測する手法
2番目の手法は、差動化符号「w(t)」から受信信号のCAコード「CA(t)」を予測(推測)し、予測したCAコード「CAP(t)」(以下、「予測CAコード」と称す。)を用いた相関演算を行って相関値を求める手法である。
図4は、この2番目の手法の説明図である。図4のテーブルにおいて、最上段には受信信号のCAコード「CA(t)」を示しており、2段目にはCAコードの差動化符号「w(t)」を示している。また、3段目には予測CAコード「CAP(t)」を示しており、4段目にはCAコードのレプリカであるCAコードレプリカ「CAR(t)」を示している。また、最下段には、予測CAコードとCAコードレプリカとの乗算値「f(t)=CAP(t)・CAR(t)」を示している。
最初に、差動化符号「w(t)」の時系列変化を利用した予測処理を行って、受信信号のCAコードを予測する。具体的には、時刻「1」における予測CAコード「CAP(1)」と時刻「2」における予測CAコード「CAP(2)」の組合せとして、{(CAP(1),CAP(2))=(1,1),(1,−1),(−1,1),(−1,−1)}の4通りの組合せを設定する。
そして、設定した4通りの組合せそれぞれについて、予測CAコード「CAP(t)」と差動化符号「w(t+1)=CA(t)×CA(t+2)」とを乗算した値を予測CAコード「CAP(t+2)」とする演算を時刻「1」から順次に行って、各時刻「t」における予測CAコード「CAP(t)」を求める。具体的には、「CAP(3)=CAP(1)・w(2)」,「CAP(4)=CAP(2)・w(3)」,「CAP(5)=CAP(3)・w(4)」,・・・といったように逐次的に予測CAコード「CAP(t)」を演算する。
CAコードの予測は、「CAP(t+2)=CAP(t)・w(t+1)=CAP(t)・CA(t)・CA(t+2)」の演算式に従って行うことにしている。これは、CAコードの予測が正しい場合は「CAP(t)=CA(t)」、「CAP(t)×CA(t)=1」が成立するため、上記の演算式は「CAP(t+2)=CA(t+2)」となり、CAコードと予測CAコードとが等しくなることに基づくものである。
この場合、4通りの組合せそれぞれについて予測CAコード「CAP(t)」を演算すると、4通りの組合せのうちの何れか1つの組合せについて演算された予測CAコード「CAP(t)」は、受信信号のCAコード「CA(t)」とぴったり一致する。しかし、CAコード「CA(t)」が不明であるため、何れの組合せが正解であるかはわからない。
そこで、4通りの各組合せについて演算された予測CAコード「CAP(t)」に対して、CAコードレプリカ「CAR(t)」との相関演算を行う。すなわち、予測CAコード「CAP(t)」に対して、CAコードレプリカ「CAR(t)」の位相「Δt」を変化させながら相関演算を行って相関値を算出する。
具体的には、次式(9)に従って相関値「P(Δt)」を算出する。
Figure 0004911220
式(9)において、「f(t)」は、予測CAコード「CA(t)」とCAコードレプリカ「CAR(t+Δt)」とを乗算することで得られる乗算値である。
CAコードレプリカ「CAR(t)」の位相「Δt」を変化させながら相関値「P(Δt)」を算出したら、相関値「P(Δt)」が最大となった位相「Δt」を検出する。そして、検出した位相「Δt」を、当該GPS衛星信号のコード位相に決定する。
この2番目の手法の具体例を、図5〜図8を参照して説明する。ここでは、受信信号のCAコードの時系列変化が「CA(t)=1,−1,−1,1,−1,1,・・・」で表される場合を例に挙げて説明する。また、説明を簡単にするため、CAコードレプリカ「CAR(t)」の位相「Δt=0」であり、CAコードレプリカの時系列変化が「CAR(t)=1,−1,−1,1,−1,1,・・・」で表されるものとして説明する。
(A)(CAP(1),CAP(2))=(1,1)の組合せ
図5は、(CAP(1),CAP(2))=(1,1)の組合せを用いた算出結果を示す図である。最初に、受信信号「r(t)」に基づいて、式(6)に従って差動化符号「w(t)」を算出する。その結果、「w(t)=(N/A),−1,−1,1,1,(N/A),・・・」が得られる。
次いで、「(CAP(1),CAP(2))=(1,1)」を用いて、予測CAコード「CAP(t)」を算出する。具体的には、「CAP(3)=CAP(1)×w(2)=−1」、「CAP(4)=CAP(2)×w(3)=−1」,「CAP(5)=CAP(3)×w(4)=−1」、「CAP(6)=CAP(4)×w(5)=−1」というように予測CAコード「CAP(t)」を逐次的に算出する。これにより、「CAP(t)=1,1,−1,−1,−1,−1,・・・」が得られる。
次いで、予測CAコード「CAP(t)」と「CAR(t)」との相関演算を行う。具体的には、「f(1)=CAP(1)×CAR(1)=1」,「f(2)=CAP(2)×CAR(2)=−1」,「f(3)=CAP(3)×CAR(3)=1」,「f(4)=CAP(4)×CAR(4)=−1」,「f(5)=CAP(5)×CAR(5)=1」,「f(6)=CAP(6)×CAR(6)=−1」というように乗算値「f(t)」を逐次的に算出する。これにより、「f(t)=1,−1,1,−1,1,−1,・・・」が得られる。
この結果を用いて、式(9)に従って相関値「P(Δt=0)」を算出する。この場合、例えば「f(1)」〜「f(6)」の部分のみを取り出して相関値「P(Δt=0)」を算出してみると、相関値「P(Δt=0)=(1−1+1−1+1−1)2=0」が得られる。乗算値「f(t)」が「1」と「−1」とを相互に繰り返しているため、互いに値が相殺され、相関値は小さな値となる。
相関値「P(Δt=0)」が小さな値になったということは、CAコード「CAP(t)」の予測が正しく行われなかったことを意味する。実際、図5において、予測CAコード「CAP(t)」と実際のCAコード「CA(t)」とを比較すると、CAコードが正しく予測されていないことがわかる。
(B)(CAP(1),CAP(2))=(1,−1)の組合せ
図6は、(CAP(1),CAP(2))=(1,−1)の組合せを用いた算出結果を示す図である。「(CAP(1),CAP(2))=(1,−1)」の組合せを用いて、(A)の場合と同様に予測CAコード「CAP(t)」を算出する。これにより、「CAP(t)=1,−1,−1,1,−1,1,・・・」が得られる。
次いで、予測CAコード「CAP(t)」とCAコードレプリカ「CAR(t)」とを用いて乗算値「f(t)」を算出すると、「f(t)=1,1,1,1,1,1,・・・」が得られる。この場合も、例えば「f(1)」〜「f(6)」の部分のみを取り出して相関値「P(Δt=0)」を算出してみると、相関値「P(Δt=0)=(1+1+1+1+1+1)2=36」となる。この場合は、乗算値「f(t)」が全て「1」となっているため、相関値「P(Δt=0)」は大きな値となる。
相関値「P(Δt=0)」が大きな値になったということは、CAコード「CAP(t)」の予測が正しく行われたことを意味する。実際、図6において、予測CAコード「CAP(t)」と実際のCAコード「CA(t)」とを比較すると、CAコードが正しく予測されていることがわかる。
(C)(CAP(1),CAP(2))=(−1,1)の組合せ
図7は、(CAP(1),CAP(2))=(−1,1)の組合せを用いた算出結果を示す図である。「(CAP(1),CAP(2))=(−1,1)」の組合せを用いて予測CAコード「CAP(t)」を算出すると、「CAP(t)=−1,1,1,−1,1,−1,・・・」が得られる。
次いで、予測CAコード「CAP(t)」とCAコードレプリカ「CAR(t)」とを用いて乗算値「f(t)」を算出すると、「f(t)=−1,−1,−1,−1,−1,−1,・・・」が得られる。この場合も、例えば「f(1)」〜「f(6)」の部分のみを取り出して相関値を算出してみると、「P(Δt=0)=(−1−1−1−1−1−1)2=36」となる。この場合は、乗算値「f(t)」が全て「−1」となっているため、相関値「P(Δt=0)」は大きな値となる。
相関値が大きな値となったため、CAコード「CAP(t)」の予測が正しく行われたことを意味する。図7において、CAコード「CA(t)」と予測CAコード「CAP(t)」とを比較すると、符号がちょうど逆転した関係となっている。GPS衛星信号に重畳されている航法メッセージは、20ミリ秒毎に極性が反転し得ることが知られている。そのため、受信信号のCAコードは、航法メッセージの極性反転に起因して20ミリ秒毎に符号が反転する可能性がある。従って、CAコード「CA(t)」と予測CAコード「CAP(t)」との相違が符号の逆転の違いであれば、CAコードの予測が正しく行われたと考えることが適切である。
(D)(CAP(1),CAP(2))=(−1,−1)の組合せ
図8は、(CAP(1),CAP(2))=(−1,−1)の組合せを用いた算出結果を示す図である。「(CAP(1),CAP(2))=(−1,−1)」の組合せを用いて予測CAコード「CAP(t)」を算出すると「CAP(t)=−1,−1,1,1,1,1,・・・」が得られる。
次いで、予測CAコード「CAP(t)」とCAコードレプリカ「CAR(t)」とを用いて乗算値「f(t)」を算出すると、「f(t)=−1,1,−1,1,−1,1,・・・」が得られる。この場合も、例えば「f(1)」〜「f(6)」の部分のみを取り出して相関値を算出すると、「P(Δt=0)=(−1+1−1+1−1+1)2=0」となる。この場合は、乗算値「f(t)」が「−1」と「1」とを相互に繰り返すため、相関値「P(Δt=0)」を算出すると小さな値となる。
これは差動化符号「w(t)」を用いたCAコード「CAP(t)」の予測が正しく行われなかったことを意味する。実際、図8において、予測CAコード「CAP(t)」と実際のCAコード「CA(t)」とを比較すると、CAコードの予測が正しく行われていないことがわかる。
以上の結果から、(B)の場合か(C)の場合において相関値が最大となった位相を検出することで、コード位相を正しく求めることができる。従って、(A)〜(D)の各組合せについて、CAコードレプリカの位相「Δt」を変化させながら相関値「P(Δt)」を計算し、相関値「P(Δt)」が最大となった位相「Δt」を検出する処理を行う。
但し、上記の結果から明らかなように、符号の相違こそあれ、(A)の組合せと(D)の組合せとは同じ結果を与え、(B)の組合せと(C)の組合せとは同じ結果を与えることがわかる。そのため、4通りの組合せの全てについて計算を行う必要はない。実際には、(A)及び(B)の2通りの組合せか、(C)及び(D)の2通りの組合せの何れか一方についてのみ計算を行うだけで済む。
2.実施例
次に、上述した原理を適用した、GPS受信装置の実施例について説明する。ここでは、GPS受信装置を搭載した電子機器の一種である携帯型電話機1を具体例として説明する。
2−1.第1実施例
第1実施例は、上述した原理の「1−1.CAコードレプリカを差動化する手法」を適用した実施例である。
(1)構成
図9は、第1実施例における携帯型電話機1の機能構成を示すブロック図である。携帯型電話機1は、GPSアンテナ9と、GPS受信部10と、ホストCPU(Central Processing Unit)30と、操作部40と、表示部50と、携帯電話用アンテナ60と、携帯電話用無線通信回路部70と、記憶部80とを備えて構成される。
GPSアンテナ9は、GPS衛星から発信されているGPS衛星信号を含むRF(Radio Frequency)信号を受信するアンテナであり、受信した信号をGPS受信部10に出力する。
GPS受信部10は、GPSアンテナ9から出力された信号に基づいて携帯型電話機1の位置を計測する位置算出回路であり、いわゆるGPS受信装置に相当する機能ブロックである。GPS受信部10は、RF(Radio Frequency)受信回路部11と、ベースバンド処理回路部20とを備えて構成される。尚、RF受信回路部11と、ベースバンド処理回路部20とは、それぞれ別のLSI(Large Scale Integration)として製造することも、1チップとして製造することも可能である。
RF受信回路部11(受信部に相当)は、RF信号の処理回路ブロックであり、所定の発振信号を分周或いは逓倍することで、RF信号乗算用の発振信号を生成する。そして、生成した発振信号を、GPSアンテナ9から出力されたRF信号に乗算することで、RF信号を中間周波数の信号(以下、「IF(Intermediate Frequency)信号」と称す。)にダウンコンバートし、IF信号を増幅等した後、A/D変換器でデジタル信号に変換して、ベースバンド処理回路部20に出力する。以下、「GPS衛星信号を受信する」とは、GPSアンテナ9でRF信号を受信する処理から、ダウンコンバートされたIF信号を生成する処理までを意味し、「受信信号」とはIF信号を意味する。
ベースバンド処理回路部20は、RF受信回路部11から出力されたIF信号に対して相関演算処理等を行ってGPS衛星信号を捕捉・抽出し、データを復号して航法メッセージや時刻情報等を取り出す回路部である。
図10は、ベースバンド処理回路部20の回路構成の一例を示す図である。ベースバンド処理回路部20は、衛星信号捕捉部21と、CPU25と、記憶部27とを備えて構成される。
衛星信号捕捉部21は、RF受信回路部11から出力されたIF信号である受信信号からGPS衛星信号を捕捉する回路部であり、受信信号差動化回路部211(差動化部に相当)と、レプリカ信号発生部213と、レプリカ信号差動化回路部215と、相関処理部217とを備えて構成される。
図11は、受信信号差動化回路部211の回路構成の一例を示す図である。受信信号差動化回路部211は、RF受信回路部11から入力した受信信号「r(t)」を差動化して差動化符号信号「w(t−T)」を生成する回路部であり、式(6)を実現する回路部である。但し、差動化符号信号とは、原理で説明した差動化符号に相当する信号である。
受信信号差動化回路部211において、図中の「T」で示したブロックは遅延回路部DCであり、入力した信号を時間「T」だけ遅延させて遅延信号を出力する。複素共役演算部PSは、入力した信号の複素共役を演算する回路部であり、例えば移相回路を備えて構成される。受信信号「r(t)」(第1の受信信号)と、受信信号を時間Tだけ遅延させた第1の遅延信号(第2の受信信号)の自乗の複素共役の信号「{r(t−T)2」と、受信信号を時間2Tだけ遅延させた第2の遅延信号(第3の受信信号)「r(t−2T)」とが乗算部Mにおいて乗算されることで、差動化符号信号「w(t−T)=r(t−2T)・r(t)・{r(t−T)2」が生成されて、相関処理部217に出力される。
レプリカ信号発生部213は、GPS衛星信号のCAコードの拡散符号レプリカの発生信号であるレプリカ信号を生成する回路部である。レプリカ信号発生部213は、CPU25から出力されるCAコード指示信号(捕捉対象衛星の指示信号)に従ったレプリカ信号「CAR(t)」を生成して、レプリカ信号差動化回路部215に出力する。
図12は、レプリカ信号差動化回路部215の回路構成の一例を示す図である。レプリカ信号差動化回路部215は、レプリカ信号発生部213から入力したレプリカ信号「CAR(t)」を差動化して差動化レプリカ信号「wR(t−T)」を生成する回路部であり、式(7)を実現する回路部である。但し、差動化レプリカ信号とは、原理で説明した差動化レプリカ符号に相当する信号である。
レプリカ信号差動化回路部215において、図中の「T」で示したブロックは遅延回路部DCである。図11の遅延回路部DCと同じ時間Tだけ信号を遅延させる。入力されたレプリカ信号「CAR(t)」と、レプリカ信号を時間2Tだけ遅延させた信号「CAR(t−2T)」とが乗算部Mにおいて乗算されることで、差動化レプリカ信号「wR(t−T)=CAR(t−2T)・CAR(t)」が生成されて、相関処理部217に出力される。
図10の説明に戻り、相関処理部217は、受信信号差動化回路部211から入力した差動化符号信号「w(t)」と、レプリカ信号差動化回路部215から入力した差動化レプリカ信号「wR(t)」との相関処理を行う回路部である。相関処理部217は、CPU25から入力した位相指示信号に従って、差動化レプリカ信号の位相「Δt」を変化させながら「w(t)」と「wR(t+Δt)」との相関を計算し、相関値「P(Δt)」をCPU25に出力する。
CPU25は、記憶部27に記憶されているシステムプログラム等の各種プログラムに従ってベースバンド処理回路部20の各部を統括的に制御するプロセッサーである。CPU25(捕捉部に相当)は、各捕捉対象衛星について、相関処理部217から出力される相関値「P(Δt)」に基づいてコード位相を検出する処理を行う。そして、検出したコード位相を用いて当該捕捉対象衛星と携帯型電話機1間の擬似距離を算出し、算出した擬似距離を利用した位置算出計算を行って、携帯型電話機1の位置を算出する。
CPU25は、捕捉対象衛星のCAコード(捕捉対象衛星のPRN番号)を指示するためのCAコード指示信号をレプリカ信号発生部213に出力し、捕捉対象衛星のレプリカ信号「CAR(t)」をレプリカ信号発生部213に生成させる。また、差動化レプリカ信号「wR(t)」の位相「Δt」を指示するための位相指示信号を相関処理部217に出力し、相関処理部217に、差動化レプリカ信号「wR(t)」の位相「Δt」を変化させながら相関処理を実行させる。
記憶部27は、ROM(Read Only Memory)やフラッシュROM、RAM(Random Access Memory)等の記憶装置によって構成され、CPU25がベースバンド処理回路部20を制御するためのシステムプログラムや、位置算出機能を実現するための各種プログラムやデータ等を記憶している。また、CPU25により実行されるシステムプログラム、各種処理プログラム、各種処理の処理中データ、処理結果などを一時的に記憶するワークエリアを形成している。
図9の説明に戻り、ホストCPU30は、記憶部80に記憶されているシステムプログラム等の各種プログラムに従って携帯型電話機1の各部を統括的に制御するプロセッサーである。ホストCPU30は、ベースバンド処理回路部20から入力した位置情報を表示部50に表示させる処理を行ったり、当該位置情報を利用した各種のアプリケーション処理を行う。
操作部40は、例えばタッチパネルやボタンスイッチ等により構成される入力装置であり、押下されたキーやボタンの信号をホストCPU30に出力する。この操作部40の操作により、通話要求やメール送受信要求、位置算出要求等の各種指示入力がなされる。
表示部50は、LCD(Liquid Crystal Display)等により構成され、ホストCPU30から入力される表示信号に基づいた各種表示を行う表示装置である。表示部50には、位置表示画面や時刻情報等が表示される。
携帯電話用アンテナ60は、携帯型電話機1の通信サービス事業者が設置した無線基地局との間で携帯電話用無線信号の送受信を行うアンテナである。
携帯電話用無線通信回路部70は、RF変換回路、ベースバンド処理回路等によって構成される携帯電話の通信回路部であり、携帯電話用無線信号の変調・復調等を行うことで、通話やメールの送受信等を実現する。
記憶部80は、ホストCPU30が携帯型電話機1を制御するためのシステムプログラムや、位置算出機能を実現するための各種プログラムやデータ等を記憶する記憶装置である。
(2)処理の流れ
図13は、ベースバンド処理回路部20のCPU25が実行するベースバンド処理の流れを示すフローチャートである。特に説明しないが、以下のベースバンド処理の実行中は、GPSアンテナ9によるRF信号の受信や、RF受信回路部11によるRF信号のIF信号へのダウンコンバージョンが行われ、IF信号がベースバンド処理回路部20に随時出力される状態にあるものとする。
先ず、CPU25は、捕捉対象衛星判定処理を行う(ステップA1)。具体的には、不図示の時計部で計時されている現在時刻において、所与の基準位置の天空に位置するGPS衛星を、アルマナックやエフェメリス等の衛星軌道データを用いて判定して、捕捉対象衛星とする。基準位置は、例えば、電源投入後の初回の位置算出の場合は、いわゆるサーバーアシストによって携帯型電話機1の基地局から取得した位置とし、2回目以降の位置算出の場合は、前回の位置算出で求めた最新のGPS算出位置とする等の方法で設定できる。
次いで、CPU25は、ステップA1で判定した各捕捉対象衛星について、ループAの処理を実行する(ステップA3〜A11)。ループAの処理では、CPU25は、当該衛星軌道データに基づいて、当該捕捉対象衛星の衛星位置、衛星移動速度及び衛星移動方向等の衛星情報を算出する(ステップA5)。そして、CPU25は、コード位相検出処理を行う(ステップA7)。
図14は、コード位相検出処理の流れを示すフローチャートである。
先ず、CPU25は、当該捕捉対象衛星のCAコードの指示信号をレプリカ信号発生部213に出力する(ステップB1)。そして、CPU25は、位相のサーチ範囲及び位相のサーチ幅を設定する(ステップB3,B5)。そして、CPU25は、設定した位相のサーチ範囲及びサーチ幅に基づいて、サーチの対象とする位相(以下、「サーチ位相」と称す。)を決定する(ステップB7)。
次いで、CPU25は、ステップB7で設定した各サーチ位相について、ループBの処理を実行する(ステップB9〜B15)。ループBの処理では、CPU25は、当該サーチ位相「Δt」の指示信号を相関処理部217に出力する(ステップB11)。ステップB11が実行されると相関処理部217が図1〜図3で説明した原理に基づいて相関処理を行って、相関値「P(Δt)」をCPU25に出力する。そして、CPU25は、相関処理部217から相関値「P(Δt)」を入力すると、当該相関値「P(Δt)」を記憶部27に記憶させる(ステップB13)。そして、CPU25は、次のサーチ位相へと処理を移行する。
全てのサーチ位相についてステップB11及びB13の処理を行った後、CPU25は、ループBの処理を終了する(ステップB15)。そして、CPU25は、記憶部27に記憶されている相関値「P(Δt)」が最大となったサーチ位相「Δt」をコード位相に決定する(ステップB17)。そして、CPU25は、コード位相検出処理を終了する。
図13のベースバンド処理に戻って、コード位相検出処理を終了した後、CPU25は、ステップA5で算出した衛星情報と、ステップA7で検出したコード位相とを用いて、当該捕捉対象衛星と携帯型電話機1間の擬似距離を算出する(ステップA9)。擬似距離の整数部分は、例えば最新のGPS算出位置と衛星位置とを用いて算出することができ、擬似距離の端数部分は、コード位相を用いて算出することができる。擬似距離を算出した後、CPU25は、次の捕捉対象衛星へと処理を移行する。
全ての捕捉対象衛星についてステップA5〜A9の処理を行った後、CPU25は、ループAの処理を終了する(ステップA11)。その後、CPU25は、ステップA9で各捕捉対象衛星について算出された擬似距離を利用したGPS位置算出処理を行って携帯型電話機1の位置を算出する(ステップA13)。尚、擬似距離を利用した位置算出計算の詳細については従来公知であるため、詳細な説明を省略する。
次いで、CPU25は、GPS位置算出処理で算出した位置をホストCPU30に出力する(ステップA15)。そして、CPU25は、位置算出を終了するか否かを判定し(ステップA17)、まだ終了しないと判定した場合は(ステップA17;No)、ステップA1に戻る。また、位置算出を終了すると判定した場合は(ステップA17;Yes)、ベースバンド処理を終了する。
(3)作用効果
ベースバンド処理回路部20の衛星信号捕捉部21において、GPS衛星から発信されているGPS衛星信号を受信した受信信号r(t)が受信信号差動化回路部211において差動化されて、CAコードの差動化符号信号w(t−T)が生成される。また、レプリカ信号発生部213により生成されたレプリカ信号CAR(t)がレプリカ信号差動化回路部215において差動化されて、差動化レプリカ信号wR(t−T)が生成される。そして、差動化符号信号w(t−T)と差動化レプリカ信号wR(t−T)との相関処理が相関処理部217において行われ、相関値P(Δt)がCPU25に出力される。そして、CPU25により、相関値P(Δt)に基づいたGPS衛星信号の捕捉が行われる。
GPS衛星信号の拡散符号であるCAコードを差動化した差動化符号信号は、受信信号の周波数に依存せずに、受信信号と、当該受信信号を所定の遅延時間分遅延させた遅延信号とを用いて生成可能な信号である。従って、差動化符号信号と差動化レプリカ信号とを用いた相関処理を行い、その相関値に基づいてGPS衛星信号を捕捉することで、周波数方向の相関演算を行う必要なく、短時間でGPS衛星信号を捕捉することができる。
すなわち、差動化符号信号と差動化レプリカ信号とを用いた相関処理を行うことで取得される相関値は、受信信号に対する周波数方向のサーチを行って得られる相関値に相等する相関値である。そのため、衛星信号の捕捉を行う場合、周波数方向のサーチが不用となり、従来において周波数方向のサーチに費やしていた時間を削減することができるため、位相方向のサーチに要する時間だけで済むことになる。
本願発明者は、従来の手法で20個の周波数について周波数サーチ(周波数方向の相関演算)を行ってGPS衛星信号を捕捉する場合と、本願発明の手法でGPS衛星信号を捕捉する場合とで、GPS衛星信号の捕捉に要する時間をそれぞれ調べる実験を行った。その結果、従来の手法では「2.8秒」の時間を要したのに対し、本願発明の手法では「0.12秒」の時間で済んだ。この時間は、従来の手法の約「1/20」の時間となっていることから、20個の周波数について周波数サーチを行う必要なく、GPS衛星信号の捕捉が可能であることがわかる。また、本願発明の手法で検出されるコード位相の正確性も調べたが、従来の手法よりも高い正確性でコード位相が検出されることを確認した。
2−2.第2実施例
第2実施例は、上述した原理の「1−2.差動化符号を用いてCAコードを予測する手法」を適用した実施例である。尚、第1実施例の携帯型電話機1と衛星信号捕捉部以外の機能ブロック及び処理の流れは共通であるため、異なる部分である衛星信号捕捉部について説明する。
(1)構成
図15は、第2実施例における衛星信号捕捉部22の回路構成の一例を示す図である。尚、図10の衛星信号捕捉部21と同一の構成要素については同一の符号を付して説明を省略する。
衛星信号捕捉部22は、受信信号差動化回路部211と、CAコード予測処理部221と、レプリカ信号発生部213と、相関処理部217と、遅延回路部DCとを備えて構成されている。
CAコード予測処理部221は、受信信号差動化回路部211から出力された差動化符号信号「w(t−T)」を用いて、図4〜図8で説明した原理に基づいてCAコードを予測する処理を行う。そして、予測したCAコードの信号である予測CAコード信号(予測符号に相当)を生成して、相関処理部217に出力する。
レプリカ信号発生部213により生成されたレプリカ信号「CAR(t)」は、遅延回路部DCによって1クロック遅延されて、相関処理部217に出力される。そして、相関処理部217は、CAコード予測処理部221から入力した予測CAコード信号「CAP(t−T)」と、レプリカ信号発生部213から入力したレプリカ信号「CAR(t−T)」との相関処理を行う。この際、CPU25からの位相指示信号に従って、レプリカ信号「CAR(t−T)」の位相「Δt」を変化させながら、「CAP(t−T)」と「CAR(t−T+Δt)」との相関演算を行う。そして、得られた相関値「P(Δt)」をCPU25に出力する。
(2)作用効果
第2実施例では、CAコード予測処理部221において受信信号のCAコード「CA(t)」を予測する処理が行われ、相関処理部217において、予測CAコード信号「CAP(t−T)」とレプリカ信号「CAR(t−T)」との相関処理が行われる。上述した原理に従った予測処理を行うことで、CAコード「CA(t)」を正しく予測することができる。従って、相関処理で得られる相関値は信頼性の高いものとなり、GPS衛星信号の捕捉の確実性を高めることができる。
3.変形例
3−1.適用システム
上述した実施形態では、GPS衛星信号の捕捉を例に挙げて説明したが、GPS衛星信号以外の信号を受信する受信装置についても、本発明を同様に適用可能である。すなわち、所定の拡散符号で拡散変調された信号を受信する受信装置であれば本発明を適用可能である。信号捕捉において周波数サーチが必要となっていた受信装置であれば、本発明を適用する効果が高い。
3−2.電子機器
また、上述した実施形態では、電子機器の一種である携帯型電話機に本発明を適用した場合を例に挙げて説明したが、本発明を適用可能な電子機器はこれに限られるわけではない。例えば、カーナビゲーション装置や携帯型ナビゲーション装置、パソコン、PDA(Personal Digital AssistanT)、腕時計といった他の電子機器についても同様に適用することが可能である。
3−3.衛星測位システム
上述した実施形態では、衛星測位システムとしてGPSを例に挙げて説明したが、WAAS(Wide Area Augmentation System)、QZSS(Quasi Zenith Satellite System)、GLONASS(GLObal NAvigation Satellite System)、GALILEO等の他の衛星測位システムであってもよい。
3−4.相関部の並列化
第1実施例では、相関処理部217がCPU25からの位相指示信号に従って、差動化レプリカ信号「wR(t)」の位相「Δt」を変化させながら直列的に相関処理を実行するものとして説明した。しかし、差動化符号信号「w(t)」と差動化レプリカ信号「wR(t)」との相関演算を並列的に行う回路構成としてもよい。
図16は、この変形例における衛星信号捕捉部23の回路構成の一例を示す図である。尚、図10の衛星信号捕捉部21と同一の構成要素については同一の符号を付して説明を省略し、衛星信号捕捉部21とは異なる部分を中心に説明する。
衛星信号捕捉部23では、レプリカ信号発生部213により生成されたレプリカ信号「CAR(t)」が遅延回路部DCによって位相「Δt」ずつ複数段に遅延されるように構成されている。そして、遅延回路部DCによって「n段(n=1,2,・・・N)」に遅延されたレプリカ信号「CAR(t−n・Δt)」が、第n衛星信号処理回路部231−nに入力されるように、第1衛星信号処理回路部231−1〜第N衛星信号処理回路部231−NのN個の衛星信号処理回路部231が構成されている。
各々の衛星信号処理回路部231は、レプリカ信号差動化回路部215と、相関部233とを備えて構成されている。第n衛星信号処理回路部231−nに入力されたレプリカ信号「CAR(t−n・Δt)」は、レプリカ信号差動化回路部215によって差動化レプリカ信号「wR(t−T−n・Δt)」に変換される。そして、相関部233によって、差動化符号信号「w(t−T)」と差動化レプリカ信号「wR(t−T−n・Δt)」とが相関演算され、相関値「P(n・Δt)」がCPU25に出力される。
3−5.差動化符号信号の生成
上述した実施例では、時刻「t」を基準として、受信信号「r(t)」と、受信信号を1クロック遅延させた第1の遅延信号「r(t−T)」と、受信信号を2クロック遅延させた第2の遅延信号「r(t−2T)」を用いて差動化符号信号「w(t)」を生成するものとして説明したが、遅延させるクロック「T」を可変にして、複数の差動化符号信号「w(t)」を生成することも可能である。
原理的には、「m」を整数とした場合に、受信信号「r(t)」と、第1の信号「r(t−m・T)」と、第2の信号「r(t+m・T)」とを用いて、次式(10)及び(11)に従って差動化符号「w(t,m)」を算出する。
Figure 0004911220
Figure 0004911220
また、CAコードレプリカについても同様に、CAコードレプリカの差動化符号「wR(t,m)」を次式(12)に従って算出する。
Figure 0004911220
この場合、CAコードの差動化符号「w(t,m)」と、CAコードレプリカの差動化符号「wR(t+Δt,m)」とを用いて、次式(13)に従って相関値「P(Δt,m)」を算出する。
Figure 0004911220
複数の「m」について相関値「P(Δt,m)」を算出したら、次式(14)に従って合算相関値「PA(Δt)」を算出する。
Figure 0004911220
CAコードレプリカの差動化符号「wR(t,m)」の位相「Δt」を変化させながら式(14)に従って合算相関値「PA(Δt)」を算出し、合算相関値「PA(Δt)」が最大となった位相「Δt」を検出することで、コード位相を求める。
図17は、この変形例における衛星信号捕捉部24の回路構成の一例を示す図である。尚、図10の衛星信号捕捉部21と同一の構成要素については同一の符号を付して説明を省略する。また、図面を見易くするために、CPU25からレプリカ信号発生部213へのCAコード指示信号及び相関処理部217への位相指示信号は図示を省略している。
衛星信号捕捉部24では、N個の受信信号差動化回路部211−1〜211−Nが設けられている。受信信号差動化回路部211−1〜211−Nは、それぞれ上述した整数「m=1〜N」に対応する差動化回路部であり、遅延回路部DCの遅延時間は、それぞれ「T〜NT」である。また、レプリカ信号差動化回路部についても同様に、N個のレプリカ信号差動化回路部215−1〜215−Nが設けられている。また、それぞれの差動化回路部に対応する相関処理部217−1〜217−Nが設けられている。
受信信号「r(t)」が受信信号差動化回路部211−1〜211−Nに入力されることでN個の差動化符号信号「w(t−T,1)」〜「w(t−T,N)」が生成され、対応する相関処理部217−1〜217−Nに出力される。また、レプリカ信号「CAR(t)」がレプリカ信号差動化回路部215−1〜215−Nに入力されることでN個の差動化レプリカ信号「wR(t−T,1)」〜「wR(t−T,N)」が生成され、対応する相関処理部217−1〜217−Nに出力される。
各々の相関処理部217−1〜217−Nでは、相関値「P(Δt,1)」〜「P(Δt,N)」が算出され、合算部241に出力される。そして、合算部241において、相関値「P(Δt,1)」〜「P(Δt,N)」を合算した合算相関値「PA(Δt)」が算出されて、CPU25に出力される。
このように異なる時間で遅延させた複数種類の遅延信号を用いて複数の差動化符号信号「w(t−T,m)」を生成し、これら複数の差動化符号信号それぞれを用いて相関処理を行うことで、互いに独立した複数の相関値「P(Δt,m)」を取得することができる。そして、これらを合算することで得られる合算相関値「PA(Δt)」に基づいてコード位相を検出することで、GPS衛星信号の捕捉の正確性が向上し得る。
尚、クロック「T」を「m=1〜N」倍した時間「m・T」ずつ受信信号を遅延させて複数の差動化符号信号「w(t,m)」を生成するものとして説明したが、各差動化回路部の遅延時間は任意に設定可能である。すなわち、受信信号差動化回路部211−1〜211−Nにおいて、それぞれの遅延回路DCに任意の遅延時間「T1」〜「TN」を設定して差動化符号信号「w(t,Tm)」を生成してもよい。レプリカ信号差動化回路部215−1〜215−Nについても同様である。
3−6.信号の差動化(1)
上述した実施例では、受信信号を受信信号差動化回路部211に入力することで、受信信号の差動化を回路的に行うものとして説明したが、デジタル信号処理としてソフトウェア的に行うことも可能である。また、レプリカ信号の差動化についても同様に、ソフトウェア的に行うことが可能である。
3−7.信号の差動化(2)
上述した実施例では、受信信号差動化回路部211で受信信号を遅延させることによって差動化を行うものとして説明した。しかし、RF受信回路部11から入力した受信信号を一旦サンプルメモリに保存しておき、サンプルメモリから「r(t)」(第1の受信信号)と、第1の受信信号から時間T異なる「r(t−T)」(第2の受信信号)と、第1の受信信号から時間2T異なる「r(t−2T)」(第3の受信信号)とを読み出して、当該読み出した各受信信号を用いて差動化を行うようにしてもよい。なお、この他にも、「r(t)」と、この受信信号から時間T分異なる「r(t−T)」と、この受信信号から時間2T分異なる「r(t−2T)」とを得られる様々な手法を適用可能である。
1 携帯型電話機、 10 GPS受信部、 11 RF受信回路部、 20 ベースバンド処理回路部、 21 衛星信号捕捉部、 25 CPU、 27 記憶部、 30 ホストCPU、 40 操作部、 50 表示部、 60 携帯電話用アンテナ、 70 携帯電話用無線通信回路部、 80 記憶部、 211 受信信号差動化回路部、 213 レプリカ信号発生部、 215 レプリカ信号差動化回路部、 217 相関処理部、 DC 遅延回路部、 PS 複素共役演算部、 M 乗算部

Claims (6)

  1. 測位用衛星からの衛星信号を受信した第1の受信信号と、前記第1の受信信号と時間T異なる第2の受信信号を自乗した複素共役の信号と、前記第1の受信信号と時間2T異なる第3の受信信号とを乗算して前記衛星信号の拡散符号を差動化した差動化符号を生成することと、
    前記差動化符号と、前記拡散符号のレプリカである拡散符号レプリカとを用いた所定の相関処理を行って相関値を取得することと、
    前記相関値に基づいて前記衛星信号を捕捉することと、
    を含む衛星信号捕捉方法。
  2. 前記第1の受信信号と、前記第1の受信信号とは前記時間Tと異なる時間T´異なる第4の受信信号と、前記第1の受信信号とは時間2T´異なる第5の受信信号とを用いて第2の差動化符号を生成することと、
    前記第2の差動化符号と前記拡散符号レプリカとを用いた所定の相関処理を行って第2の相関値を取得することと、
    前記相関値及び前記第2の相関値に基づいて前記衛星信号を捕捉することと、
    を更に含む請求項に記載の衛星信号捕捉方法。
  3. 前記相関値を取得することは、
    前記拡散符号レプリカを差動化して差動化レプリカを生成することと、
    前記差動化符号と、前記差動化レプリカとを相関演算することと、
    を含む、
    請求項1又は2の何れか一項に記載の衛星信号捕捉方法。
  4. 前記拡散符号レプリカは、第1の拡散符号レプリカと、前記第1の拡散符号レプリカとは前記時間2T異なる第2の拡散符号レプリカと、を含み、
    前記相関値を取得することは、
    前記第1の拡散符号レプリカと、前記第2の拡散符号レプリカとを乗算することによって、前記拡散符号レプリカを差動化した差動化レプリカを生成することと、
    前記差動化符号と、前記差動化レプリカとを相関演算することと、
    を含む、
    請求項の何れか一項に記載の衛星信号捕捉方法。
  5. 前記受信信号の位相をずらして前記所定の相関処理を行うことによって、相関ピークをサーチすることを更に含み、
    前記衛星信号を捕捉することは、前記相関ピークに基づいて前記衛星信号を捕捉することであり、
    周波数をずらして相関ピークのサーチを行うことを不用として衛星信号を捕捉する、
    請求項1〜の何れか一項に記載の衛星信号捕捉方法。
  6. 測位用衛星からの衛星信号を受信する受信部と、
    前記受信部により受信された第1の受信信号と、前記第1の受信信号と時間T異なる第2の受信信号を自乗した複素共役の信号と、前記第1の受信信号と時間2T異なる第3の受信信号とを乗算して前記衛星信号の拡散符号を差動化した差動化符号を生成する差動化部と、
    前記差動化符号と、前記拡散符号のレプリカである拡散符号レプリカとを用いた所定の相関処理を行って相関値を取得する相関処理部と、
    前記相関値に基づいて前記衛星信号を捕捉する捕捉部と、
    を備えた衛星信号受信装置。
JP2009271897A 2009-11-30 2009-11-30 衛星信号捕捉方法及び衛星信号受信装置 Expired - Fee Related JP4911220B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009271897A JP4911220B2 (ja) 2009-11-30 2009-11-30 衛星信号捕捉方法及び衛星信号受信装置
US12/955,824 US8462833B2 (en) 2009-11-30 2010-11-29 Method for acquiring satellite signal and satellite signal receiving device
CN201010568318.1A CN102081161B (zh) 2009-11-30 2010-11-30 卫星信号捕获方法及卫星信号接收装置
US13/895,232 US8750348B2 (en) 2009-11-30 2013-05-15 Method for acquiring satellite signal and satellite signal receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271897A JP4911220B2 (ja) 2009-11-30 2009-11-30 衛星信号捕捉方法及び衛星信号受信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010220169A Division JP5488380B2 (ja) 2010-09-30 2010-09-30 衛星信号捕捉方法及び衛星信号受信装置

Publications (3)

Publication Number Publication Date
JP2011112616A JP2011112616A (ja) 2011-06-09
JP2011112616A5 JP2011112616A5 (ja) 2011-09-22
JP4911220B2 true JP4911220B2 (ja) 2012-04-04

Family

ID=44068893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271897A Expired - Fee Related JP4911220B2 (ja) 2009-11-30 2009-11-30 衛星信号捕捉方法及び衛星信号受信装置

Country Status (3)

Country Link
US (2) US8462833B2 (ja)
JP (1) JP4911220B2 (ja)
CN (1) CN102081161B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419444B (zh) * 2011-09-06 2013-09-04 厦门大学 基于统计的捕获判别方法
FR3003357B1 (fr) * 2013-03-15 2015-03-20 Thales Sa Procede et dispositif de compression d'un signal de radio-navigation large bande, procede et dispositif associes de calcul de la fonction de correlation du code d'etalement dudit signal compresse
GB201401237D0 (en) * 2014-01-24 2014-03-12 Qinetiq Ltd Improvements to satellite positioning methods
FR3060245B1 (fr) * 2016-12-12 2019-05-17 Uwinloc Procede et dispositif pour la detection d’une impulsion d’un signal

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721474B2 (ja) * 1992-06-29 1998-03-04 三菱電機株式会社 スペクトル拡散通信用受信装置
JP3298597B2 (ja) * 1993-08-03 2002-07-02 日本無線株式会社 Gps受信装置
US6289041B1 (en) * 1997-02-11 2001-09-11 Snaptrack, Inc. Fast Acquisition, high sensitivity GPS receiver
US7006583B2 (en) * 2002-08-30 2006-02-28 Intel Corporation Method and apparatus for receiving differential ultra wideband signals
JP2005011977A (ja) * 2003-06-18 2005-01-13 Ebara Corp 基板研磨装置および基板研磨方法
EP1545019A1 (en) * 2003-12-19 2005-06-22 Telefonaktiebolaget LM Ericsson (publ) GPS receiver using differential correlation
ATE489646T1 (de) * 2004-12-21 2010-12-15 Nokia Corp Erfassen eines codemodulierten signals
JP4595855B2 (ja) 2006-03-23 2010-12-08 セイコーエプソン株式会社 測位装置、測位装置の制御方法、測位装置の制御プログラム、測位装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2007256110A (ja) * 2006-03-23 2007-10-04 Seiko Epson Corp 測位装置、測位装置の制御方法、測位装置の制御プログラム、測位装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体
US7570206B2 (en) 2006-03-23 2009-08-04 Seiko Epson Corporation Positioning device, positioning control method, positioning control program, and computer-readable recording medium having positioning control program recorded thereon
US8149897B2 (en) * 2006-05-26 2012-04-03 Global Locate, Inc. Method and apparatus for performing signal correlation for signals received from satellites in multiple satellite systems
CA2669065A1 (en) * 2006-11-07 2008-05-15 Meadwestvaco Packaging Systems, Llc Integrated secondary and tertiary packaging machine
US7773034B2 (en) * 2006-12-27 2010-08-10 Intel Corporation Method for acquisition of GPS signals and GPS receiver with sample time error and frequency offset compensation
JP4359638B2 (ja) * 2007-08-24 2009-11-04 Okiセミコンダクタ株式会社 相関演算器及び相関演算装置
JP5526492B2 (ja) * 2008-04-22 2014-06-18 セイコーエプソン株式会社 擬似距離算出方法、測位方法、プログラム及び測位装置

Also Published As

Publication number Publication date
US8750348B2 (en) 2014-06-10
JP2011112616A (ja) 2011-06-09
US20130251005A1 (en) 2013-09-26
CN102081161B (zh) 2015-01-14
US8462833B2 (en) 2013-06-11
CN102081161A (zh) 2011-06-01
US20110129003A1 (en) 2011-06-02

Similar Documents

Publication Publication Date Title
US9065549B2 (en) Correlation calculating method, satellite signal capturing method, and correlation calculating circuit
JP6060483B2 (ja) 衛星信号捕捉方法及び衛星信号捕捉装置
US8362953B2 (en) Sequential chip correlation array
EP2006706B1 (en) Coherent integration enhancement method, positioning method, storage medium, coherent integration enhancement circuit, positioning circuit, and electronic instrument
JP5974487B2 (ja) 衛星信号捕捉方法及び衛星信号捕捉装置
JP4911220B2 (ja) 衛星信号捕捉方法及び衛星信号受信装置
JP5321500B2 (ja) 信号捕捉方法
JP6047944B2 (ja) 受信装置及び相関積算処理方法
JP5321499B2 (ja) 信号捕捉方法
US20110235687A1 (en) Signal acquisition method, signal acquisition apparatus and electronic device
JP5488380B2 (ja) 衛星信号捕捉方法及び衛星信号受信装置
JP2011203234A (ja) 信号捕捉方法、信号捕捉装置及び電子機器
US7839918B2 (en) Method and device for estimating a frequency in the acquisition of a spread-spectrum code signal
JP2011112363A (ja) 捕捉周波数決定方法及び受信装置
US8767891B2 (en) Reception signal integrating method and receiver
JP2011137802A (ja) 受信信号積算方法及び受信装置
JP6074917B2 (ja) 受信装置及びコード位相判定方法
US8761232B2 (en) Bit change determination method and bit change determination device
Akopian et al. Feasibility Study of a Labview-based GNSS Receiver
JP2011174912A (ja) 信号捕捉方法及び信号捕捉装置
JP2011174913A (ja) 信号捕捉方法及び信号捕捉装置
JP2011114862A (ja) 捕捉周波数決定方法及び受信装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110808

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees