JP4908853B2 - Optical system - Google Patents

Optical system Download PDF

Info

Publication number
JP4908853B2
JP4908853B2 JP2006009523A JP2006009523A JP4908853B2 JP 4908853 B2 JP4908853 B2 JP 4908853B2 JP 2006009523 A JP2006009523 A JP 2006009523A JP 2006009523 A JP2006009523 A JP 2006009523A JP 4908853 B2 JP4908853 B2 JP 4908853B2
Authority
JP
Japan
Prior art keywords
image
optical system
axis
reflecting surface
rotationally symmetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006009523A
Other languages
Japanese (ja)
Other versions
JP2007192966A (en
Inventor
孝吉 研野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006009523A priority Critical patent/JP4908853B2/en
Publication of JP2007192966A publication Critical patent/JP2007192966A/en
Application granted granted Critical
Publication of JP4908853B2 publication Critical patent/JP4908853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

従来、360°のスクリーンに映像を投影する場合には、複数台のプロジェクターからの映像をスクリーン上で繋ぎ合わせるか、魚眼レンズ等の広角な光学系により投影していた。そのような従来技術としては、特許文献1〜7に記載のものがある。
米国特許出願公開第2004/8423号明細書 特公平6−85019号公報 米国特許第5473474号明細書 米国特許第3283653号明細書 米国特許第3552820号明細書 米国特許第6611282号明細書 米国特許第6597520号明細書
Conventionally, when images are projected onto a 360 ° screen, images from a plurality of projectors are connected on the screen or projected by a wide-angle optical system such as a fisheye lens. As such a prior art, there exists a thing of patent documents 1-7.
US Patent Application Publication No. 2004/8423 Japanese Patent Publication No. 6-85019 US Pat. No. 5,473,474 US Pat. No. 3,283,653 US Pat. No. 3,552,820 US Pat. No. 6,611,282 US Pat. No. 6,597,520

しかしながら、従来の360°全方位へ投影する場合あるはその逆の場合、単数又は複数の平面から円筒面あるいは球面上に投影したりその逆の結像を行わせるものであり、例えば円筒、球、円錐状の面から円筒面あるいは球面上に投影したりその逆の結像を行わせるものはなかった。   However, the conventional 360 ° omnidirectional projection and vice versa may be performed by projecting from one or more planes onto a cylindrical surface or spherical surface and vice versa. None of them projected from a conical surface onto a cylindrical surface or spherical surface, or vice versa.

ところで、有機EL表示素子を取り上げると明らかなように、今後の表示素子や撮像素子は、円筒面、球面、円錐面等の回転対称な曲面を表示面としたり撮像面とする表示素子、撮像素子が十分可能である。   By the way, as will be apparent from the organic EL display element, future display elements and imaging elements will be display elements or imaging elements that have a rotationally symmetric curved surface such as a cylindrical surface, spherical surface, or conical surface as a display surface or an imaging surface. Is possible enough.

本発明は従来技術のこのような状況に鑑みてなされたものであり、その目的は、全方位からの映像を例えば円筒、球、円錐状の立体撮像面に撮像したり、そのような立体形状の表示面を遠方の全方位に投影するための良好に収差補正され高精細な像を撮像したり投影できる光学系を提供することである。   The present invention has been made in view of such a situation in the prior art, and an object of the present invention is to image an image from all directions on, for example, a cylindrical, spherical, or conical stereoscopic imaging surface, or such a stereoscopic shape. It is an object of the present invention to provide an optical system capable of capturing and projecting a high-definition image with good aberration correction for projecting the display surface in all distant directions.

上記目的を達成する本発明の光学系は、360°全方位方向からの映像を回転対称な立体形状の像面に結像させる光学系であって、前記360°全方位からの映像が入射する順に、第1の反射面と第2の反射面を備え、前記第1の反射面と前記第2の反射面はいずれも回転対称な反射面であって、前記第1の反射面は、前記360°全方位から入射した映像を反射して中間像を形成し、前記第2の反射面は、前記第1の反射面で反射した映像を反射して前記立体形状の像面に結像させることを特徴とする。 The optical system of the present invention that achieves the above object is an optical system that forms an image from 360 ° omnidirectional direction on a rotationally symmetric solid image surface, and the image from 360 ° omnidirectional incidence is incident thereon. The first reflecting surface and the second reflecting surface are provided in order, and the first reflecting surface and the second reflecting surface are both rotationally symmetric reflecting surfaces, and the first reflecting surface is An image incident from 360 ° in all directions is reflected to form an intermediate image, and the second reflecting surface reflects the image reflected by the first reflecting surface to form an image on the three-dimensional image surface. It is characterized by that.

この場合、前記回転対称な立体形状の像面と前記第1の反射面と前記第2の反射面は同軸であることが望ましい。 In this case, it is desirable that the rotationally symmetrical three-dimensional image surface, the first reflection surface, and the second reflection surface are coaxial.

また、サジタル断面の入射瞳とサジタル断面の射出瞳は前記第1の反射面と前記第2の反射面の回転対称軸上の異なる位置に配置されていることが望ましい。 Further, it is desirable that the entrance pupil of the sagittal section and the exit pupil of the sagittal section are arranged at different positions on the rotational symmetry axis of the first reflecting surface and the second reflecting surface .

また、前記第1の反射面と前記第2の反射面は回転対称軸を含む断面内の対称面を持たない任意形状の線分を回転対称軸の周りで回転させて形成される回転対称な形状を有するもの、回転対称軸を含む断面内の奇数次項を含む任意形状の線分を回転対称軸の周りで回転させて形成される回転対称な形状を有するものとすることができる。もちろん、球面でもよい。

The first reflecting surface and the second reflecting surface are rotationally symmetric formed by rotating a line segment having an arbitrary shape having no symmetry plane in a cross section including a rotational symmetry axis around the rotational symmetry axis. It may have a rotationally symmetric shape formed by rotating a line segment having an arbitrary shape including an odd-order term in a cross section including a rotational symmetry axis around the rotational symmetry axis. Of course, it may be spherical.

また、前記像面は前記回転対称な立体形状の内面であっても、外面であってもよい。   The image plane may be the rotationally symmetrical three-dimensional inner surface or the outer surface.

また、前記光学系の物体面と像面を逆にして投影光学系に用いることもできる。   Further, the object plane and the image plane of the optical system can be reversed and used in a projection optical system.

以上の本発明によると、全方位からの映像を例えば円筒状、円錐状、球状の立体撮像面に撮像したり、そのような立体形状の表示面を遠方の全方位に投影する光学系であって、良好に収差補正され高精細な像を撮像したり投影できる撮像光学系、投影光学系を得ることができる。   According to the present invention described above, the optical system projects an image from all directions on, for example, a cylindrical, conical, or spherical stereoscopic imaging surface, or projects such a stereoscopic display surface in all distant directions. Thus, it is possible to obtain an imaging optical system and a projection optical system capable of capturing and projecting a high-definition image with good aberration correction.

以下、実施例に基づいて本発明の光学系について説明する。原則として、撮像系の場合は順光線追跡での説明であり、投影系の場合は逆光線追跡の順番で説明する。なお、実施例2及び実施例3は、参考例である。

The optical system of the present invention will be described below based on examples. In principle, the description is based on forward ray tracing in the case of an imaging system, and in the order of backward ray tracing in the case of a projection system. In addition, Example 2 and Example 3 are reference examples.

遠方の360°全方位方向からの映像を円筒状、円錐状、球状等の回転対称な立体形状の像面に結像させるようにすることにより、全周の映像を撮像する光学系をシンプルで小型にすることが可能となる。従来の透過レンズで構成する場合には、円筒状の撮像面の周囲に複数の透過レンズ系を放射上に配置し、全周からの映像を撮影する方法が考えられるが、この方法では、各透過レンズ系同士の位置調整を厳密に行わないと、撮像された映像が繋がらない。   A simple optical system that captures images of the entire circumference by imaging images from 360 ° omnidirectional distant images onto a cylindrical, conical, spherical, or other rotationally symmetric three-dimensional image surface. It becomes possible to reduce the size. In the case of a conventional transmissive lens, a method can be considered in which a plurality of transmissive lens systems are arranged on the radiation around the cylindrical imaging surface and images are taken from the entire circumference. Unless the position adjustment between the transmission lens systems is strictly performed, captured images are not connected.

投影系の場合は、円筒状、円錐状、球状等の回転対称な立体形状の表示面を持つ表示素子に表示された映像を、その周りの遠方の360°全周に投影するようにすることにより投影系をシンプルで小型にすることが可能となる。従来の透過レンズで構成する場合には、円筒状の表示面の周囲に複数の透過レンズ系を放射上に配置し、全周に投影する方法が考えられるが、この方法では、各透過レンズ系同士の位置調整を厳密に行わないと、投影された映像が繋がらない。   In the case of a projection system, an image displayed on a display element having a rotationally symmetric three-dimensional display surface such as a cylindrical shape, a conical shape, or a spherical shape is projected on the entire 360 ° circumference in the distance. This makes it possible to make the projection system simple and small. In the case of a conventional transmissive lens, a method may be considered in which a plurality of transmissive lens systems are arranged on the radiation around the cylindrical display surface and projected onto the entire circumference. If the positions of the two are not strictly adjusted, the projected images are not connected.

また、各光学系(撮像系の場合は撮影レンズ系、投影系の場合は投影レンズ系)の像面は一方向についてのみ湾曲するシリンドリカル面になるので、これを補正するためには回転非対称な光学面を用いる必要があり、製作が難しくなる。   In addition, since the image plane of each optical system (imaging lens system in the case of an imaging system, projection lens system in the case of a projection system) is a cylindrical surface that is curved only in one direction, it is rotationally asymmetric in order to correct this. It is necessary to use an optical surface, which makes it difficult to manufacture.

また、先行技術のような光学系では、360°の全方位の映像は平面上の円環状の映像として結像される(投影系の場合はそのような表示像を形成する)ために、観察するときにはそのように歪んだ映像を電子的に正しい像に変換することが必要である。また、投影系の場合は正しい像をそのように円環状に歪んだ映像に電子的に変換する必要がある。   In addition, in an optical system such as the prior art, a 360-degree omnidirectional image is formed as a circular image on a plane (in the case of a projection system, such a display image is formed), so that observation is performed. When doing so, it is necessary to electronically convert such a distorted image into a correct image. In the case of a projection system, it is necessary to electronically convert a correct image into an image distorted in an annular shape.

そこで、本発明では、以上のような回転対称な立体形状の像面に360°全周からの映像を結像させるために、中間像を1回以上結像するように構成し、かつ、2つの群を備えるようにして、前群及び後群はそれぞれ少なくとも1つの回転対称な反射面を有するように構成したものである。   Therefore, in the present invention, in order to form an image from the entire 360 ° circumference on the rotationally symmetrical solid image surface as described above, an intermediate image is formed at least once, and 2 The front group and the rear group are each configured to have at least one rotationally symmetric reflecting surface so as to include one group.

図1は、後記の実施例1の光学系の回転中心軸(回転対称軸)1を含む断面図であり、遠方の360°全方位方向からの映像を回転中心軸1の周りで回転対称な立体形状、この実施例では円筒面の像面2に結像する光学系であり、360°全方位側の群を前群10、像面2側の群を後群20とするとき、前群及び後群はそれぞれ像面2の回転中心軸1を回転対称軸とする回転対称な少なくとも1つの反射面11、21を有する(実施例1ではそれぞれ1面の反射面11、21を有する。)。そして、この光学系は、像面2に360°全方位方向からの映像を結像する前に少なくとも1回中間像を結像する構成になっている(実施例1では反射面11と反射面21の間の位置3に1回の中間像を結像する。)。   FIG. 1 is a cross-sectional view including a rotation center axis (rotation symmetry axis) 1 of the optical system of Example 1 to be described later, and images from a distant 360 ° omnidirectional direction are rotationally symmetric around the rotation center axis 1. A three-dimensional shape, which is an optical system that forms an image on the image plane 2 of the cylindrical surface in this embodiment. When the 360 ° omnidirectional group is the front group 10 and the group on the image plane 2 side is the rear group 20, the front group The rear group includes at least one reflecting surface 11 and 21 that is rotationally symmetric with the rotational center axis 1 of the image plane 2 as a rotational symmetry axis (the first embodiment has one reflecting surface 11 and 21 respectively). . This optical system is configured to form an intermediate image at least once before forming an image from 360 ° in all directions on the image surface 2 (in the first embodiment, the reflecting surface 11 and the reflecting surface). An intermediate image is formed once at a position 3 between 21.)

360°全方位方向に連続している映像を円筒面等の立体形状の像面2に結像するためには、光学系構成する光学面(反射面、屈折面)は回転対称である必要があるが、屈折光学素子のみで光学系を構成すると、全ての屈折面が回転対称軸1に対して回転対称になってしまい、サジタル断面(回転中心軸1を含む断面がメリジオナル断面(図1)であり、そのメリジオナル断面における軸上主光線を含み、メリジオナル断面に垂直な断面)での結像に必要な正のパワーを光学系に持たせることが非常に困難になる。そこで、本発明では、360°全方位側の群を前群10、像面2側の群を後群20とするとき、前群10及び後群20に、回転対称な円環状の反射面11、21をそれぞれ少なくとも1面有するようにする。   In order to form an image continuous in 360 ° in all directions on a three-dimensional image surface 2 such as a cylindrical surface, the optical surfaces (reflective surfaces and refractive surfaces) constituting the optical system must be rotationally symmetric. However, if the optical system is composed of only refractive optical elements, all refractive surfaces are rotationally symmetric with respect to the rotationally symmetric axis 1, and the sagittal section (the section including the rotational center axis 1 is the meridional section (FIG. 1)). It is very difficult to give the optical system the positive power necessary for image formation on an axial principal ray in the meridional section and a section perpendicular to the meridional section. Therefore, in the present invention, when the 360 ° omnidirectional group is the front group 10 and the group on the image plane 2 side is the rear group 20, the front group 10 and the rear group 20 are rotationally symmetric annular reflecting surfaces 11 respectively. 21 have at least one surface.

先行技術においては回転対称な光学系により360°の全方位の映像を平面上の円環状の映像として結像する構成になっているが、入射側の前群の光学系は像面中心に至る光束を偏心させる偏心光学系になっているので、前群では大きな偏心収差が発生する。特に物体面の傾きに対する偏心収差の補正は非常に難しく、前群だけこれを補正することは難しくなる。   In the prior art, a 360 ° omnidirectional image is formed as a circular image on a plane by a rotationally symmetric optical system, but the front-side optical system on the incident side reaches the center of the image plane. Since the decentration optical system decenters the light beam, large decentration aberration occurs in the front group. In particular, it is very difficult to correct decentration aberrations with respect to the tilt of the object surface, and it is difficult to correct only the front group.

そこで、本発明では、この物体面の傾きを相補うために、円筒状等の立体形状の像面2に結像させるようにするものである。さらに、それでも補正不足になる偏心収差を良好に補正するために、1回以上の中間像を結像するようにし、かつ、光学系が2つの群を備えるようにし、各々の群に少なくとも1面の回転対称な円環状の反射面11、21を有するようにするにして、その前群10と後群20とで偏心収差を相補う構成にすることにより、良好な収差補正が実現することに成功したものである。   Therefore, in the present invention, in order to complement the inclination of the object plane, an image is formed on the image plane 2 having a cylindrical shape or the like. Further, in order to satisfactorily correct decentration aberrations that are still undercorrected, one or more intermediate images are formed, and the optical system includes two groups, and at least one surface is provided in each group. In order to achieve good aberration correction, the front group 10 and the rear group 20 complement each other with decentration aberrations. It is a success.

さらに好ましくは、円筒面等の回転対称な立体形状の像面2とその回転対称な反射面11、21は同軸にすることが好ましい。この配置にすることにより、360°全方位の等距離からの映像を撮像することが可能となる。回転対称軸が一致していないと物体距離に偏りが生じてしまい、高解像な映像を撮像することができなくなってしまう。   More preferably, the rotationally symmetric three-dimensional image surface 2 such as a cylindrical surface and the rotationally symmetric reflecting surfaces 11 and 21 are preferably coaxial. With this arrangement, it is possible to capture images from equidistant distances in all 360 ° directions. If the rotational symmetry axes do not match, the object distance will be biased and a high-resolution image cannot be captured.

さらに、サジタル断面の入射瞳4s(実施例1では、メリジオナル断面の入射瞳4mとサジタル断面の入射瞳4sは同じ位置に存在する。)とサジタル断面の射出瞳5sは回転対称軸1上の離れた配置されていることが好ましい。本発明の光学系のように、360°全方位方向からの映像を像面2に結像させる場合、立体形状の像面2に結像する光線はあたかも回転対称軸1上のサジタル断面の入射瞳4sから発せられたように前群10の円環状の反射面11に到達し、前群10、後群20の反射面11、21で反射された後にサジタル断面の射出瞳5s(回転対称軸1上)を通るように像面2に向かって進み像面2に結像される。そのとき、サジタル断面の入射瞳4sとサジタル断面の射出瞳5sが一致又は非常に近くに配置されていると、像面2自体で光線がケラレて(遮断されて)しまい、映像を結像することができない。   Further, the entrance pupil 4s of the sagittal section (in the first embodiment, the entrance pupil 4m of the meridional section and the entrance pupil 4s of the sagittal section exist at the same position) and the exit pupil 5s of the sagittal section are separated on the rotational symmetry axis 1. It is preferable that they are arranged. When an image from 360 ° in all directions is formed on the image plane 2 as in the optical system of the present invention, the light beam formed on the solid image plane 2 is incident on the sagittal section on the rotational symmetry axis 1. As it is emitted from the pupil 4s, it reaches the annular reflecting surface 11 of the front group 10 and is reflected by the reflecting surfaces 11 and 21 of the front group 10 and the rear group 20, and then the exit pupil 5s (rotation symmetry axis) of the sagittal section. The image travels toward the image plane 2 so as to pass through the image plane 2 and is imaged on the image plane 2. At this time, if the entrance pupil 4s of the sagittal section and the exit pupil 5s of the sagittal section are coincident or arranged very close to each other, light rays are vignetted (blocked) on the image plane 2 and an image is formed. I can't.

さらに好ましくは、反射面11、21は回転中心軸1を含む断面内で対称面を持たない任意形状の線分を回転対称軸1の周りで回転させて形成される回転対称な形状にすることが好ましい。この形状により、反射面11、21の回転対称軸1方向の上下で部分的な曲率半径を異ならせることが可能となり、偏心のコマ収差と、偏心の像面湾曲を補正することが可能となる。   More preferably, the reflecting surfaces 11 and 21 have a rotationally symmetric shape formed by rotating an arbitrary-shaped line segment having no symmetry plane in the cross section including the rotation center axis 1 around the rotation symmetry axis 1. Is preferred. With this shape, it is possible to vary the partial radius of curvature up and down in the direction of the rotational symmetry axis 1 of the reflecting surfaces 11 and 21, and it is possible to correct eccentric coma and eccentric curvature of field. .

さらに好ましくは、反射面11、21は回転中心軸1を含む断面内で奇数次項を含む任意形状の線分を回転対称軸1の周りで回転させて形成される回転対称な形状にすることにより、さらに自由度の高い補正を行うことが可能となり、収差補正上好ましい。   More preferably, the reflecting surfaces 11 and 21 have a rotationally symmetric shape formed by rotating an arbitrary-shaped line segment including an odd-order term within the section including the rotation center axis 1 around the rotation symmetry axis 1. Further, correction with a higher degree of freedom can be performed, which is preferable in terms of aberration correction.

さらに好ましくは、像面2としては円筒面等の立体形状の内面を使うことにより(実施例3)、後群20の大きさを小さくすることが可能となる。   More preferably, by using a solid inner surface such as a cylindrical surface as the image surface 2 (Example 3), the size of the rear group 20 can be reduced.

さらに好ましくは、特に投影系において、表示素子が自家発光型ではない場合に、立体形状の画像を表示する表示素子の外面を使うことにより(実施例1、2)、照明光源部分の構成を簡略化することが可能となる。   More preferably, in the projection system, particularly when the display element is not a self-luminous type, the configuration of the illumination light source part is simplified by using the outer surface of the display element that displays a three-dimensional image (Examples 1 and 2). Can be realized.

撮像光学系に使う場合には、不要な光線を遮蔽する角度制限手段を有することが望ましく、例えば回転対称軸1上に配置された開口等で制限することも可能である。   When used in an imaging optical system, it is desirable to have an angle limiting means for shielding unnecessary light, and for example, it can be limited by an aperture arranged on the rotational symmetry axis 1.

また、投影光学系の場合は、表示素子の表示面2を射出する光線の角度を制限するために、表示素子の表示面2を照明する照明手段として角度特性を有するものを用いるとよい。   Further, in the case of a projection optical system, in order to limit the angle of light rays emitted from the display surface 2 of the display element, it is preferable to use an illuminating means that illuminates the display surface 2 of the display element having an angle characteristic.

以上説明したように、本発明は、360°全方位方向からの映像を諸収差なく結像するか、360度の全方位に映像を諸収差なく投影することが可能な光学系でありながら、回転中心軸1に対して回転対称な形状の反射面11、21で光学系を構成することが可能である。回転対称な素子は一般的な回転対称非球面と同様な加工法で加工できるので、安価に製作することが可能である。   As described above, the present invention is an optical system capable of forming an image from 360 ° omnidirectional image without various aberrations or projecting an image to 360 ° omnidirectional without any aberrations. It is possible to configure an optical system with the reflecting surfaces 11 and 21 having a rotationally symmetric shape with respect to the rotation center axis 1. Since the rotationally symmetric element can be processed by the same processing method as a general rotationally symmetric aspherical surface, it can be manufactured at low cost.

以下に、本発明の光学系の実施例1〜3を説明する。これら光学系の構成パラメータは後記する。これら実施例の構成パラメータは、例えば図1に示すように、遠方の物体面(像面2と共役な遠方の物点を意味する。)から回転中心軸1を含むように設定された基準面(座標(X,Y,Z)の原点)を通り、入射瞳4sに向かい、反射面11、12を経て像面2に至る順光線追跡の結果に基づくものである。   Examples 1 to 3 of the optical system according to the present invention will be described below. The configuration parameters of these optical systems will be described later. The configuration parameters of these embodiments are, for example, as shown in FIG. 1, a reference plane set so as to include the rotation center axis 1 from a distant object plane (meaning a distant object point conjugate with the image plane 2). This is based on the result of forward ray tracing through (the origin of coordinates (X, Y, Z)), toward the entrance pupil 4 s, and through the reflecting surfaces 11 and 12 to the image plane 2.

座標系は、順光線追跡において、例えば図1に示すように、メリジオナル面における入射瞳4mを回転中心軸1に投影した基準面位置を偏心光学系の偏心光学面の原点とし、回転中心軸1の像面2から離れる方向をY軸正方向とし、図1の紙面内をY−Z平面とする。そして、図1の紙面内のいま考えている遠方の物体側と反対側の方向をZ軸正方向とし、Y軸、Z軸と右手直交座標系を構成する軸をX軸正方向とする。   In forward ray tracing, for example, as shown in FIG. 1, the coordinate system uses the reference plane position obtained by projecting the entrance pupil 4m on the meridional surface on the rotation center axis 1 as the origin of the decentered optical surface of the decentered optical system, and the rotation center axis 1 The direction away from the image plane 2 is the Y-axis positive direction, and the plane of the paper in FIG. 1 is the YZ plane. The direction opposite to the far object side currently considered in the plane of FIG. 1 is the Z axis positive direction, and the Y axis, the Z axis, and the axis constituting the right-handed orthogonal coordinate system are the X axis positive direction.

偏心面については、その面が定義される座標系の上記光学系の原点の中心からの偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、光学系の原点に定義される座標系のX軸、Y軸、Z軸それぞれを中心とする各面を定義する座標系の傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、各面を定義する座標系を光学系の原点に定義される座標系のまずX軸の回りで反時計回りにα回転させ、次に、その回転した新たな座標系のY軸の回りで反時計回りにβ回転させ、次いで、その回転した別の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。   For the decentered surface, the amount of decentering from the center of the origin of the optical system in the coordinate system in which the surface is defined (X-axis direction, Y-axis direction, and Z-axis direction are X, Y, and Z, respectively) and the optical system The inclination angles (α, β, γ (°), respectively) of the coordinate system defining each surface centered on the X axis, Y axis, and Z axis of the coordinate system defined at the origin are given. In this case, positive α and β mean counterclockwise rotation with respect to the positive direction of each axis, and positive γ means clockwise rotation with respect to the positive direction of the Z axis. Note that the α, β, and γ rotations of the central axis of the surface are performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Then rotate it around the Y axis of the new rotated coordinate system by β and then rotate it around the Z axis of another rotated new coordinate system by γ. It is.

また、各実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には面間隔が与えられており、その他、面の曲率半径、媒質の屈折率、アッベ数が慣用法に従って与えられている。   Further, among the optical action surfaces constituting the optical system of each embodiment, when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given, in addition, the curvature radius of the surface, The refractive index and Abbe number of the medium are given according to conventional methods.

なお、非球面は、以下の定義式で与えられる回転対称非球面である。   The aspheric surface is a rotationally symmetric aspheric surface given by the following definition.

Z=(Y2 /R)/[1+{1−(1+k)Y2 /R2 1 /2
+aY4 +bY6 +cY8 +dY10+・・・
・・・(a)
ただし、Zを光の進行方向を正とした光軸(軸上主光線)とし、Yを光軸と垂直な方向にとる。ここで、Rは近軸曲率半径、kは円錐定数、a、b、c、d、…はそれぞれ4次、6次、8次、10次の非球面係数である。この定義式のZ軸が回転対称非球面の軸となる。
Z = (Y 2 / R) / [1+ {1- (1 + k) Y 2 / R 2} 1/2]
+ AY 4 + bY 6 + cY 8 + dY 10 +...
... (a)
However, Z is an optical axis (axial principal ray) with the light traveling direction being positive, and Y is a direction perpendicular to the optical axis. Here, R is a paraxial radius of curvature, k is a conic constant, a, b, c, d,... Are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively. The Z axis of this defining formula is the axis of a rotationally symmetric aspherical surface.

また、トーリック面にはXトーリック面とYトーリック面があり、それぞれ以下の式により定義する。なお、面形状の原点を通り、光学面に垂直な直線がトーリック面の軸となる。面形状の原点に対してXYZ直交座標系をとると、
Xトーリック面は、
F(X)=Cx・X2 /[1+{1−(1+k)Cx2 ・X2 1/2 ] +aX4 +bX6 +cX8 +dX10・・・
Z=F(X)+(1/2)Cy{Y2 +Z2 −F(X)2 } ・・・(b)
Z軸方向のY軸方向曲率Cyの中心を通ってX軸に平行な軸の周りで曲線F(X)を回転する。その結果、その面はX−Z面内で非球面になり、Y−Z面内で円になる。
The toric surface includes an X toric surface and a Y toric surface, which are defined by the following equations, respectively. A straight line passing through the origin of the surface shape and perpendicular to the optical surface is the axis of the toric surface. Taking the XYZ Cartesian coordinate system with respect to the origin of the surface shape,
X toric surface
F (X) = Cx · X 2 / [1+ {1− (1 + k) Cx 2 · X 2 } 1/2 ] + aX 4 + bX 6 + cX 8 + dX 10.
Z = F (X) + (1/2) Cy {Y 2 + Z 2 −F (X) 2 } (b)
The curve F (X) is rotated around an axis parallel to the X axis through the center of the Y axis direction curvature Cy in the Z axis direction. As a result, the surface is aspheric in the XZ plane and circular in the YZ plane.

Yトーリック面は、
F(Y)=Cy・Y2 /[1+{1−(1+k)Cy2 ・Y2 1/2 ] +aY4 +bY6 +cY8 +dY10・・・
Z=F(Y)+(1/2)Cx{X2 +Z2 −F(Y)2 } ・・・(c)
Z軸方向のX軸方向曲率Cxの中心を通ってY軸に平行な軸の周りで曲線F(Y)を回転する。その結果、その面はY−Z面内で非球面になり、X−Z面内で円になる。
Y toric surface
F (Y) = Cy · Y 2 / [1+ {1− (1 + k) Cy 2 · Y 2 } 1/2 ] + aY 4 + bY 6 + cY 8 + dY 10.
Z = F (Y) + (1/2) Cx {X 2 + Z 2 −F (Y) 2 } (c)
The curve F (Y) is rotated around an axis parallel to the Y axis through the center of the X axis direction curvature Cx in the Z axis direction. As a result, the surface is aspheric in the YZ plane and circular in the XZ plane.

ただし、Zは面形状の原点に対する接平面からのズレ量、CxはX軸方向曲率、CyはY軸方向曲率、kは円錐係数、a、b、c、dは非球面係数である。なお、X軸方向曲率半径Rx、Y軸方向曲率半径Ryと曲率Cx、Cyとの間には、
Rx=1/Cx,Ry=1/Cy
の関係にある。
Here, Z is the amount of deviation from the tangent plane with respect to the origin of the surface shape, Cx is the X-axis direction curvature, Cy is the Y-axis direction curvature, k is the conic coefficient, and a, b, c, and d are aspherical coefficients. In addition, between the X-axis direction radius of curvature Rx, the Y-axis direction radius of curvature Ry, and the curvatures Cx, Cy,
Rx = 1 / Cx, Ry = 1 / Cy
Are in a relationship.

また、拡張回転自由曲面は、以下の定義で与えられる回転対称面である。   The extended rotation free-form surface is a rotationally symmetric surface given by the following definition.

まず、Y−Z座標面上で原点を通る下記の曲線(d)が定められる。   First, the following curve (d) passing through the origin on the YZ coordinate plane is determined.

Z=(Y2 /RY)/[1+{1−(C1 +1)Y2 /RY2 1 /2
2 Y+C3 2 +C4 3 +C5 4 +C6 5 +C7 6
+・・・・+C2120+・・・・+Cn+1 n +・・・・
・・・(d)
次いで、この曲線(d)をX軸正方向を向いて左回りを正として角度θ(°)回転した曲線F(Y)が定められる。この曲線F(Y)もY−Z座標面上で原点を通る。
Z = (Y 2 / RY) / [1+ {1- (C 1 +1) Y 2 / RY 2} 1/2]
C 2 Y + C 3 Y 2 + C 4 Y 3 + C 5 Y 4 + C 6 Y 5 + C 7 Y 6
+ ··· + C 21 Y 20 + ··· + C n + 1 Y n + ····
... (d)
Next, a curve F (Y) obtained by rotating the curve (d) in the positive direction of the X axis and rotating counterclockwise to the positive angle θ (°) is determined. This curve F (Y) also passes through the origin on the YZ coordinate plane.

その曲線F(Y)をZ正方向に距離R(負のときはZ負方向)だけ平行移動し、その後にY軸の周りでその平行移動した曲線を回転させてできる回転対称面を拡張回転自由曲面とする。   The curve F (Y) is translated in the positive Z direction by a distance R (or negative Z direction if negative), and then the rotationally symmetric surface formed by rotating the translated curve around the Y axis is expanded and rotated. Let it be a free-form surface.

その結果、拡張回転自由曲面はY−Z面内で自由曲面(自由曲線)になり、X−Z面内で半径|R|の円になる。   As a result, the extended rotation free-form surface becomes a free-form surface (free-form curve) in the YZ plane and a circle with a radius | R | in the XZ plane.

この定義からY軸が拡張回転自由曲面の軸(回転対称軸)となる。   From this definition, the Y-axis becomes the axis of the extended rotation free-form surface (rotation symmetry axis).

ここで、RYはY−Z断面での球面項の曲率半径、C1 は円錐定数、C2 、C3 、C4 、C5 …はそれぞれ1次、2次、3次、4次…の非球面係数である。 Where RY is the radius of curvature of the spherical term in the YZ section, C 1 is the conic constant, C 2 , C 3 , C 4 , C 5 . Aspheric coefficient.

なお、Y軸に平行な軸を中心軸に持つ円筒面(Yシリンドリカル面)は、Yトーリック面の1つとして与えられ、Ry=∞,k,a,b,c,d,…=0とし、Rx=(円筒面の半径)のYトーリック面として与えられる。   A cylindrical surface (Y cylindrical surface) having an axis parallel to the Y axis as a central axis is given as one of the Y toric surfaces, and Ry = ∞, k, a, b, c, d,. , Rx = (radius of cylindrical surface) is given as a Y toric surface.

また、Y軸に平行な軸を中心軸に持つ円錐面は拡張回転自由曲面の1つとして与えられ、RY=∞,C1 ,C2 ,C3 ,C4 ,C5 ,…=0とし、θ=(円錐面の傾き角)、R=(X−Z面内での底面の半径)として与えられる。 A conical surface having an axis parallel to the Y axis as a central axis is given as one of the extended rotation free-form surfaces, and RY = ∞, C 1 , C 2 , C 3 , C 4 , C 5 ,. , Θ = (conical surface inclination angle), R = (radius of bottom surface in XZ plane).

また、後記の構成パラメータ中にデータの記載されていない非球面に関する項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、基準面からの偏心量で表わす。   In addition, a term relating to an aspheric surface for which no data is described in the constituent parameters described later is zero. The refractive index and the Abbe number are shown for the d-line (wavelength 587.56 nm). The unit of length is mm. As described above, the eccentricity of each surface is expressed by the amount of eccentricity from the reference surface.

実施例1の光学系の回転中心軸1に沿ってとった断面図を図1に、その光学系内の光路を示す回転中心軸1に沿う方向に見た平面図を図2に示す。また、この実施例の光学系全体の無限遠物点の場合の横収差図を図3に示す。この横収差図において、中央に示された角度は、垂直方向の画角を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。なお、マイナスの画角は、X軸正方向を向いて右回りの角度を意味する。以下、同じ。   A sectional view taken along the rotation center axis 1 of the optical system of Example 1 is shown in FIG. 1, and a plan view seen in a direction along the rotation center axis 1 showing the optical path in the optical system is shown in FIG. Further, FIG. 3 shows a lateral aberration diagram in the case of an object point at infinity of the entire optical system of this example. In this lateral aberration diagram, the angle shown in the center indicates the vertical angle of view, and the lateral aberration in the Y direction (meridional direction) and X direction (sagittal direction) at that angle of view. Note that a negative angle of view means a clockwise angle facing the positive direction of the X axis. same as below.

本実施例は、それぞれ回転対称な1つの反射面11、21からなる前群10と後群20からなり、反射面11と反射面21の間の位置3に1回の中間像を結像し、円筒面の像面(表示面)2の外面に360°全方位方向からの映像を結像する撮像光学系であり、2つの回転対称な反射面11、21で構成され、反射面11、21は何れも像面2の回転中心軸1を回転対称軸とする回転対称面からなり、反射面11、反射面21は何れも拡張回転自由曲面で構成されている。そして、回転対称軸(回転中心軸)1のY軸上にサジタル面における入射瞳4sと射出瞳5sが距離をおいて配置されており、メリジオナル面における入射瞳4mはサジタル面における入射瞳4sと一致し、メリジオナル面における射出瞳5mは後群20の反射面21近傍に配置されている。   This embodiment is composed of a front group 10 and a rear group 20 each consisting of a single reflecting surface 11, 21 that is rotationally symmetric, and forms an intermediate image once at a position 3 between the reflecting surface 11 and the reflecting surface 21. , An imaging optical system that forms an image from 360 ° omnidirectional directions on the outer surface of the cylindrical image surface (display surface) 2, which is composed of two rotationally symmetric reflective surfaces 11, 21, Reference numeral 21 denotes a rotationally symmetric surface having the rotational center axis 1 of the image plane 2 as a rotationally symmetric axis, and both the reflecting surface 11 and the reflecting surface 21 are formed of an extended rotation free-form surface. The entrance pupil 4s and exit pupil 5s on the sagittal plane are arranged at a distance on the Y axis of the rotational symmetry axis (rotation center axis) 1, and the entrance pupil 4m on the meridional plane and the entrance pupil 4s on the sagittal plane. The exit pupil 5m on the meridional surface is arranged in the vicinity of the reflecting surface 21 of the rear group 20.

この構成で、順光線追跡で、無限遠の物点(逆光線追跡では投影面)からの光は、回転中心軸1上の入射瞳4s、4mを通って前群10の反射面11にY軸に対して斜めに偏心光路で入射し、そこで反射されて反射面11と反射面21の間の位置3に中間像を結像し、その中間像結像後回転中心軸1に対して反射面11の反射位置と反対側の後群20の偏心配置の反射面21にY軸に対して斜めに偏心光路で入射し、そこで反射されてY軸上の入射瞳4sから離れたサジタル面における射出瞳5sに向かって進み、射出瞳5sの入射側の円筒状の像面(表示面)2の外面に入射して物点の像を結像する。   With this configuration, in forward ray tracking, light from an object point at infinity (projection plane in reverse ray tracing) passes through the entrance pupils 4s and 4m on the rotation center axis 1 to the reflecting surface 11 of the front group 10 on the Y axis. Is incident on the decentered optical path obliquely, and is reflected there to form an intermediate image at a position 3 between the reflecting surface 11 and the reflecting surface 21, and after the intermediate image is formed, the reflecting surface with respect to the rotation center axis 1 is formed. 11 is incident on the reflecting surface 21 in the eccentric arrangement of the rear group 20 on the opposite side to the reflecting position of 11 at an oblique optical path obliquely with respect to the Y axis, and is reflected there and exited on the sagittal plane away from the entrance pupil 4s on the Y axis. Advancing toward the pupil 5s, the light enters the outer surface of the cylindrical image surface (display surface) 2 on the incident side of the exit pupil 5s to form an image of the object point.

このような偏心配置であるので、360°全方位方向からの光は、2つの反射面11、21で順に反射され、像面2と干渉せずに、上下画角10°〜30°の20°の範囲で、高精細な像を結像することができる。   Because of such an eccentric arrangement, light from 360.degree. Omnidirectional directions is sequentially reflected by the two reflecting surfaces 11 and 21, and does not interfere with the image plane 2. The vertical angle of view of 20.degree. A high-definition image can be formed in the range of °.

この実施例1の仕様は、
水平画角 360°
垂直画角 20°
入射瞳径 2.00mm
像の大きさ φ9.60mm、高さ3.07mmの円筒面
である。
The specification of this Example 1 is
Horizontal field of view 360 °
Vertical angle of view 20 °
Entrance pupil diameter 2.00mm
The size of the image is a cylindrical surface with a diameter of 9.60 mm and a height of 3.07 mm.

実施例2の光学系の回転中心軸1に沿ってとった断面図を図4に、その光学系内の光路を示す回転中心軸1に沿う方向に見た平面図を図5に示す。また、この実施例の光学系全体の無限遠物点の場合の横収差図を図6に示す。   FIG. 4 shows a cross-sectional view taken along the rotation center axis 1 of the optical system of Example 2, and FIG. 5 shows a plan view seen in the direction along the rotation center axis 1 showing the optical path in the optical system. FIG. 6 shows a lateral aberration diagram in the case of an object point at infinity of the entire optical system of this example.

本実施例は、円環状であって内面反射面11と入射屈折面13を持ち、回転中心軸1を回転対称軸とする断面反射プリズム状の屈折率が1より大きな透明媒質15からなる前群10と、円環状であって内面反射面21と射出屈折面24を持ち、回転中心軸1を回転対称軸とする断面反射プリズム状の屈折率が1より大きな透明媒質25からなる後群20とからなり、透明媒質15と透明媒質25は連続していて、その連続した透明媒質15、25中の反射面11と反射面21の間の位置3に1回の中間像を結像し、円筒面の像面(表示面)2の外面に360°全方位方向からの映像を結像する撮像光学系であり、2つの回転対称な反射面11、21と2つの回転対称な屈折面13、24とで構成され、反射面11、21と屈折面13、24は何れも像面2の回転中心軸1を回転対称軸とする回転対称面からなり、反射面11、反射面21は何れも拡張回転自由曲面で構成されており、屈折面13、24は何れもトーリック面で構成されている。そして、回転対称軸(回転中心軸)1のY軸上にサジタル面における入射瞳4sと射出瞳5sが距離をおいて配置されており、メリジオナル面における入射瞳4mはサジタル面における入射瞳4sと一致し、メリジオナル面における射出瞳5mは後群20の反射面21近傍に配置されている。   In this embodiment, the front group is made of a transparent medium 15 having an annular shape, having an inner reflection surface 11 and an incident refracting surface 13, and having a cross-sectional reflection prism-like refractive index larger than 1 with the rotation center axis 1 as a rotational symmetry axis. 10 and a rear group 20 made of a transparent medium 25 that is annular and has an internal reflection surface 21 and an exit refracting surface 24 and has a cross-sectional reflection prism-like refractive index larger than 1 with the rotation center axis 1 as a rotational symmetry axis. The transparent medium 15 and the transparent medium 25 are continuous, and an intermediate image is formed once at a position 3 between the reflecting surface 11 and the reflecting surface 21 in the continuous transparent media 15 and 25, and the cylinder is formed. An imaging optical system that forms images from 360 ° omnidirectional directions on the outer surface of the image surface (display surface) 2 of the surface, two rotationally symmetric reflecting surfaces 11 and 21, and two rotationally symmetric refracting surfaces 13; 24, the reflecting surfaces 11, 21 and the refracting surfaces 13, 24 are This is also composed of a rotationally symmetric surface with the rotational center axis 1 of the image plane 2 as the rotational symmetry axis, and the reflecting surface 11 and the reflecting surface 21 are both composed of extended rotation free-form surfaces, and the refracting surfaces 13 and 24 are both. It consists of a toric surface. The entrance pupil 4s and exit pupil 5s on the sagittal plane are arranged at a distance on the Y axis of the rotational symmetry axis (rotation center axis) 1, and the entrance pupil 4m on the meridional plane and the entrance pupil 4s on the sagittal plane. The exit pupil 5m on the meridional surface is arranged in the vicinity of the reflecting surface 21 of the rear group 20.

この構成で、順光線追跡で、無限遠の物点(逆光線追跡では投影面)からの光は、回転中心軸1上の入射瞳4s、4mを通って前群10の入射屈折面13を経て透明媒質15内に入り、反射面11にY軸に対して斜めに偏心光路で入射し、そこで反射されて反射面11と反射面21の間の位置3に中間像を結像し、その中間像結像後回転中心軸1に対して反射面11の反射位置と反対側の後群20の偏心配置の反射面21にY軸に対して斜めに偏心光路で入射し、そこで反射され後群20の射出屈折面24を経て透明媒質25から出て、Y軸上の入射瞳4sから離れたサジタル面における射出瞳5sに向かって進み、射出瞳5sの入射側の円筒状の像面(表示面)2の外面に入射して物点の像を結像する。   With this configuration, in forward ray tracking, light from an object point at infinity (projection plane in reverse ray tracking) passes through the entrance pupils 4 s and 4 m on the rotation center axis 1 and passes through the entrance refracting surface 13 of the front group 10. The light enters the transparent medium 15 and is incident on the reflecting surface 11 with an eccentric optical path obliquely with respect to the Y axis, and is reflected there to form an intermediate image at a position 3 between the reflecting surface 11 and the reflecting surface 21. After image formation, the light is incident on the reflecting surface 21 of the eccentric arrangement of the rear group 20 opposite to the reflection position of the reflecting surface 11 with respect to the rotation center axis 1 obliquely with respect to the Y axis through the eccentric optical path, and is reflected there. 20 exits the transparent medium 25 through the exit refracting surface 24, proceeds toward the exit pupil 5s on the sagittal plane away from the entrance pupil 4s on the Y axis, and is a cylindrical image surface (display) on the entrance side of the exit pupil 5s. Surface) is incident on the outer surface of 2 and forms an image of an object point.

このような偏心配置であるので、360°全方位方向からの光は、入射屈折面13を経て2つの反射面11、21で順に反射され、射出屈折面24を経て像面2と干渉せずに、上下画角10°〜30°の20°の範囲で、高精細な像を結像することができる。   Because of such an eccentric arrangement, light from all 360 ° directions is reflected in order by the two reflecting surfaces 11 and 21 through the incident refracting surface 13, and does not interfere with the image surface 2 through the exit refracting surface 24. In addition, a high-definition image can be formed in a range of 20 ° in the vertical angle of view of 10 ° to 30 °.

この実施例2の仕様は、
水平画角 360°
垂直画角 20°
入射瞳径 2.00mm
像の大きさ φ7.41mm、高さ1.75mmの円筒面
である。
The specification of Example 2 is
Horizontal field of view 360 °
Vertical angle of view 20 °
Entrance pupil diameter 2.00mm
The size of the image is a cylindrical surface with a diameter of 7.41 mm and a height of 1.75 mm.

本実施例は、反射面11の物体側、及び、反射面21と像面2の間に屈折面13、24を追加して、メリジオナル断面(図4)方向の画角を大きくとりつつ、像面2側のテレセントリック性を向上させたものである。   In this embodiment, the object side of the reflecting surface 11 and the refracting surfaces 13 and 24 are added between the reflecting surface 21 and the image surface 2 to increase the angle of view in the meridional section (FIG. 4) direction, The telecentricity on the surface 2 side is improved.

実施例3の光学系の回転中心軸1に沿ってとった断面図を図7に、その光学系内の光路を示す回転中心軸1に沿う方向に見た平面図を図8に示す。また、この実施例の光学系全体の無限遠物点の場合の横収差図を図9に示す。   FIG. 7 shows a cross-sectional view taken along the rotation center axis 1 of the optical system of Example 3, and FIG. 8 shows a plan view seen in the direction along the rotation center axis 1 showing the optical path in the optical system. Further, FIG. 9 shows a lateral aberration diagram in the case of an object point at infinity of the entire optical system of this example.

本実施例は、円環状であって入射屈折面13、内面反射面11、12、射出屈折面14を持ち、回転中心軸1を回転対称軸とする断面反射プリズム状の屈折率が1より大きな透明媒質15からなる前群10と、円環状であって入射屈折面23、内面反射面21、22、射出屈折面24を持ち、回転中心軸1を回転対称軸とする断面反射プリズム状の屈折率が1より大きな透明媒質25からなる後群20とからなり、前群10と後群20の間の回転中心軸1と同軸に絞り6を有するものである。この光学系は、前群10の入射屈折面13と内面反射面11の間の位置31 と、後群20の入射屈折面23と内面反射面21の間の位置32 の2か所の中間像を結像し、円筒面の像面(表示面)2の内面に360°全方位方向からの映像を結像する撮像光学系であり、4つの回転対称な反射面11、12、21、22と4つの回転対称な屈折面12、14、23、24とで構成され、これらの面は像面2の回転中心軸1を回転対称軸とする回転対称面からなり、その中、屈折面13はトーリック面で構成されており、反射面11、12、21、22は何れも拡張回転自由曲面で構成されており、屈折面14、23は球面で構成されており、屈折面24は拡張回転自由曲面で構成されている。そして、前群10の入射屈折面13近傍にメリジオナル面における入射瞳4mが位置し、回転対称軸(回転中心軸)1のY軸上にサジタル面における入射瞳4sと射出瞳5sが距離をおいて配置されており、メリジオナル面における射出瞳5mは後群20の反射面22と屈折面24との間に配置されている。 This embodiment is annular, has an entrance refracting surface 13, inner reflecting surfaces 11 and 12, and an exit refracting surface 14, and has a cross-sectional reflecting prism-like refractive index larger than 1 with the rotation center axis 1 as a rotational symmetry axis. Refraction in the form of a cross-section reflecting prism having a front group 10 made of a transparent medium 15, an annular shape having an entrance refracting surface 23, inner reflecting surfaces 21 and 22, and an exit refracting surface 24, with the rotation center axis 1 as a rotational symmetry axis. The rear group 20 is made of a transparent medium 25 having a ratio larger than 1, and has a diaphragm 6 coaxially with the rotation center axis 1 between the front group 10 and the rear group 20. The optical system includes a position 3 1 between the incident refracting surface 13 and the internal reflecting surface 11 of the front unit 10, position 3 2 of two between the incident refracting surface 23 and internal reflecting surface 21 of the rear unit 20 An imaging optical system that forms an intermediate image and forms an image from 360 ° in all directions on the inner surface of a cylindrical image surface (display surface) 2, and includes four rotationally symmetric reflective surfaces 11, 12, and 21. , 22 and four rotationally symmetric refracting surfaces 12, 14, 23, 24, which are composed of rotationally symmetric surfaces with the rotational center axis 1 of the image plane 2 as the rotationally symmetric axis. The surface 13 is composed of a toric surface, the reflecting surfaces 11, 12, 21, and 22 are all composed of extended rotation free-form surfaces, the refracting surfaces 14 and 23 are composed of spherical surfaces, and the refracting surface 24 is composed of It consists of an extended rotation free-form surface. The entrance pupil 4m on the meridional plane is positioned near the entrance refracting surface 13 of the front group 10, and the entrance pupil 4s and the exit pupil 5s on the sagittal plane have a distance on the Y axis of the rotational symmetry axis (rotation center axis) 1. The exit pupil 5 m on the meridional surface is disposed between the reflecting surface 22 and the refracting surface 24 of the rear group 20.

この構成で、順光線追跡で、無限遠の物点(逆光線追跡では投影面)からの光は、メリジオナル面における入射瞳4mを通り、前群10の入射屈折面13を経て透明媒質15内に入り、回転中心軸1に対して屈折面13の入射位置と反対側の反射面11、12で順に偏心光路を経て反射し、回転中心軸1近傍の射出屈折面14を経て透明媒質15を出て、絞り6を経て後群20の入射屈折面23に入射することで透明媒質25内に入り、回転中心軸1に対して反射面11、12の反射位置と反対側の反射面21、22で順に偏心光路を経て反射し、反射面21、22の反射位置と反対側の射出屈折面24を経て透明媒質25を出て、Y軸上の入射瞳4sから離れたサジタル面における射出瞳5sに向かって進み、射出瞳5sの入射側の円筒状の像面(表示面)2の内面に入射して物点の像を結像する。   With this configuration, in forward ray tracking, light from an object point at infinity (projection plane in reverse ray tracing) passes through the entrance pupil 4m on the meridional plane, enters the transparent medium 15 through the entrance refracting surface 13 of the front group 10. Then, the light is reflected by the reflecting surfaces 11 and 12 on the opposite side to the incident position of the refracting surface 13 with respect to the rotation center axis 1 in order through the eccentric optical path, and exits the transparent medium 15 via the exit refracting surface 14 near the rotation center axis 1 Then, it enters the transparent medium 25 by entering the incident refracting surface 23 of the rear group 20 through the diaphragm 6, and the reflecting surfaces 21, 22 on the opposite side to the reflecting positions of the reflecting surfaces 11, 12 with respect to the rotation center axis 1. Are sequentially reflected through the decentered optical path, exit the transparent medium 25 through the exit refracting surface 24 opposite to the reflection position of the reflecting surfaces 21 and 22, and exit the exit pupil 5s on the sagittal plane away from the entrance pupil 4s on the Y axis. Toward the entrance, cylindrical shape on the entrance side of the exit pupil 5s It is incident on the inner surface of the image surface (display surface) 2 to form an image of the object point.

このような偏心配置であるので、360°全方位方向からの光は、4つの反射面11、12、21、22と4つの屈折面12、14、23、24を経て像面2と干渉せずに、上下画角−20°〜+20°の40°の範囲で、高精細な像を結像することができる。   Because of such an eccentric arrangement, light from 360 ° omnidirectional direction interferes with the image plane 2 via the four reflecting surfaces 11, 12, 21, 22 and the four refracting surfaces 12, 14, 23, 24. In addition, a high-definition image can be formed in a range of 40 ° in the vertical angle of view from −20 ° to + 20 °.

この実施例3の仕様は、
水平画角 360°
垂直画角 40°
入射瞳径 1.00mm
像の大きさ φ42.64mm、高さ4.62mmの円筒面
である。
The specification of this Example 3 is
Horizontal field of view 360 °
Vertical angle of view 40 °
Entrance pupil diameter 1.00mm
The size of the image is a cylindrical surface with a diameter of 42.64 mm and a height of 4.62 mm.

以下に、上記実施例1〜3の構成パラメータを示す。なお、以下の表中の“YTR”はYトーリック面、“ERFS”は拡張回転自由曲面を示す。また、“RE”は反射面をそれぞれ示す。   The configuration parameters of Examples 1 to 3 are shown below. In the table below, “YTR” indicates a Y toric surface, and “ERFS” indicates an extended rotation free-form surface. “RE” indicates a reflective surface.


実施例1
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳)
2 ERFS[1] (RE) 偏心(1)
3 ERFS[2] (RE) 偏心(2)
像 面 YTR[1] 偏心(3)
ERFS[1]
RY -31.95
θ 0.00
R -19.57
4 1.7241 ×10-4
5 1.0141 ×10-6
ERFS[2]
RY 20.23
θ 11.42
R 20.49
4 -4.3235 ×10-5
5 -1.8018 ×10-5
YTR[1]
Rx 4.80
Ry ∞
偏心(1)
X 0.00 Y -7.12 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y -21.70 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(3)
X 0.00 Y -20.92 Z 0.00 。
α 0.00 β 0.00 γ 0.00

実施例2
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳)
2 ERFS[1] 偏心(1) 1.5163 64.1
3 ERFS[2] (RE) 偏心(2) 1.5163 64.1
4 ERFS[3] (RE) 偏心(3) 1.5163 64.1
5 ERFS[4] 偏心(4)
像 面 YTR[1] 偏心(5)
ERFS[1]
RY -7.23
θ -17.71
R -10.00
ERFS[2]
RY -25.38
θ 4.12
R -18.46
4 6.3491 ×10-5
5 5.8712 ×10-6
ERFS[3]
RY 16.07
θ 17.45
R 15.69
C4 7.2941 ×10-5
C5 -2.6769 ×10-5
ERFS[4]
RY -3.73
θ 0.00
R 5.00
YTR[1]
Rx 3.70
Ry ∞
偏心(1)
X 0.00 Y -3.64 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y -6.59 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(3)
X 0.00 Y -24.33 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(4)
X 0.00 Y -22.93 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(5)
X 0.00 Y -22.67 Z 0.00
α 0.00 β 0.00 γ 0.00 。

Example 1
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ (entrance pupil)
2 ERFS [1] (RE) Eccentricity (1)
3 ERFS [2] (RE) Eccentricity (2)
Image surface YTR [1] Eccentricity (3)
ERFS [1]
RY -31.95
θ 0.00
R -19.57
C 4 1.7241 × 10 -4
C 5 1.0141 × 10 -6
ERFS [2]
RY 20.23
θ 11.42
R 20.49
C 4 -4.3235 × 10 -5
C 5 -1.8018 × 10 -5
YTR [1]
Rx 4.80
Ry ∞
Eccentricity (1)
X 0.00 Y -7.12 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (2)
X 0.00 Y -21.70 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (3)
X0.00 Y-20.92 Z0.00.
α 0.00 β 0.00 γ 0.00

Example 2
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ (entrance pupil)
2 ERFS [1] Eccentricity (1) 1.5163 64.1
3 ERFS [2] (RE) Eccentricity (2) 1.5163 64.1
4 ERFS [3] (RE) Eccentricity (3) 1.5163 64.1
5 ERFS [4] Eccentricity (4)
Image surface YTR [1] Eccentricity (5)
ERFS [1]
RY -7.23
θ -17.71
R -10.00
ERFS [2]
RY -25.38
θ 4.12
R -18.46
C 4 6.3491 × 10 -5
C 5 5.8712 × 10 -6
ERFS [3]
RY 16.07
θ 17.45
R 15.69
C4 7.2941 × 10 -5
C5 -2.6769 × 10 -5
ERFS [4]
RY -3.73
θ 0.00
R 5.00
YTR [1]
Rx 3.70
Ry ∞
Eccentricity (1)
X 0.00 Y -3.64 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (2)
X 0.00 Y -6.59 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (3)
X 0.00 Y -24.33 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (4)
X 0.00 Y -22.93 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (5)
X 0.00 Y -22.67 Z 0.00
α 0.00 β 0.00 γ 0.00.


実施例3
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳)
2 ERFS[1] 偏心(1) 1.5163 64.1
2 ERFS[2] (RE) 偏心(2) 1.5163 64.1
3 ERFS[3] (RE) 偏心(3) 1.5163 64.1
4 -12.88 偏心(4)
5 ∞(絞り面) 偏心(5)
6 14.40 偏心(6) 1.5163 64.1
7 ERFS[4] (RE) 偏心(7) 1.5163 64.1
8 ERFS[5] (RE) 偏心(8) 1.5163 64.1
9 ERFS[6] 偏心(9)
像 面 YTR[1] 偏心(10)
ERFS[1]
RY 6.92
θ -37.24
R 38.64
ERFS[2]
RY -56.93
θ -30.73
R -32.14
4 -1.2781 ×10-5
ERFS[3]
RY -52.66
θ -78.35
R -12.58
4 2.1075 ×10-4
ERFS[4]
RY -40.70
θ -92.41
R 8.11
4 -1.8706 ×10-4
ERFS[5]
RY 45.82
θ -44.86
R 12.99
4 4.7910 ×10-4
ERFS[6]
RY -8.96
θ -36.50
R -18.32
5 5.9339 ×10-4
YTR[1]
Rx -21.32
Ry ∞
偏心(1)
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y -17.32 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(3)
X 0.00 Y 4.19 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(4)
X 0.00 Y -30.72 Z 0.00
α -90.00 β 0.00 γ 0.00
偏心(5)
X 0.00 Y -31.66 Z 0.00
α -90.00 β 0.00 γ 0.00
偏心(6)
X 0.00 Y -32.60 Z 0.00
α -90.00 β 0.00 γ 0.00
偏心(7)
X 0.00 Y -54.38 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(8)
X 0.00 Y -35.22 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(9)
X 0.00 Y -43.03 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(10)
X 0.00 Y -43.08 Z 21.32
α 0.00 β 0.00 γ 0.00 。

Example 3
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ (entrance pupil)
2 ERFS [1] Eccentricity (1) 1.5163 64.1
2 ERFS [2] (RE) Eccentricity (2) 1.5163 64.1
3 ERFS [3] (RE) Eccentricity (3) 1.5163 64.1
4 -12.88 Eccentricity (4)
5 ∞ (diaphragm surface) Eccentricity (5)
6 14.40 Eccentricity (6) 1.5163 64.1
7 ERFS [4] (RE) Eccentricity (7) 1.5163 64.1
8 ERFS [5] (RE) Eccentricity (8) 1.5163 64.1
9 ERFS [6] Eccentricity (9)
Image surface YTR [1] Eccentricity (10)
ERFS [1]
RY 6.92
θ -37.24
R 38.64
ERFS [2]
RY -56.93
θ -30.73
R -32.14
C 4 -1.2781 × 10 -5
ERFS [3]
RY -52.66
θ -78.35
R -12.58
C 4 2.1075 × 10 -4
ERFS [4]
RY -40.70
θ -92.41
R 8.11
C 4 -1.8706 × 10 -4
ERFS [5]
RY 45.82
θ -44.86
R 12.99
C 4 4.7910 × 10 -4
ERFS [6]
RY -8.96
θ -36.50
R -18.32
C 5 5.9339 × 10 -4
YTR [1]
Rx -21.32
Ry ∞
Eccentricity (1)
X 0.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (2)
X 0.00 Y -17.32 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (3)
X 0.00 Y 4.19 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (4)
X 0.00 Y -30.72 Z 0.00
α -90.00 β 0.00 γ 0.00
Eccentricity (5)
X 0.00 Y -31.66 Z 0.00
α -90.00 β 0.00 γ 0.00
Eccentricity (6)
X 0.00 Y -32.60 Z 0.00
α -90.00 β 0.00 γ 0.00
Eccentricity (7)
X 0.00 Y -54.38 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (8)
X 0.00 Y -35.22 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentric (9)
X 0.00 Y -43.03 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentricity (10)
X 0.00 Y -43.08 Z 21.32
α 0.00 β 0.00 γ 0.00.

以上、実施例1〜3に基づいて本発明の光学系を説明してきたが、以上の実施例の光学系で、入射瞳4m、4sから離れて物体側に回転中心軸1と同心にYトーリックレンズを付加し、このYトーリックレンズもY軸(回転中心軸1)に対して回転対称な面で構成されたレンズにし、このトーリックレンズはX方向にはパワーを持たせないで、一方、Y方向(図1の断面内等)には負のパワーを持たせることにより、回転対称軸1を含む断面方向の画角をより大きくとることが可能となる。さらに好ましくは、このトーリックレンズはY−Z断面内では物体側に凸面を向け負のメニスカスレンズ形状に構成することにより、像歪の発生を最小にすることが可能となり、良好な収差補正が可能となる。   Although the optical system of the present invention has been described based on the first to third embodiments, the Y toric is concentric with the rotation center axis 1 on the object side away from the entrance pupils 4m and 4s. A lens is added, and this Y toric lens is also a lens composed of a rotationally symmetric surface with respect to the Y axis (rotation center axis 1). This toric lens has no power in the X direction, while Y By giving a negative power in the direction (in the cross section of FIG. 1 and the like), it becomes possible to take a larger angle of view in the cross section direction including the rotational symmetry axis 1. More preferably, the toric lens has a negative meniscus lens shape with a convex surface facing the object side in the YZ section, thereby minimizing the occurrence of image distortion and enabling good aberration correction. It becomes.

さらに、入射瞳4m、4sの物体側には、断面が負メニスカスレンズ形状の1つのYトーリックレンズに限らず、2枚又は3枚のメニスカス形状のレンズで構成することにより、より像歪の発生を小さくすることが可能である。また、レンズに限らず、回転中心軸1に対して回転対称な反射面やプリズムにより光線を反射屈折させて任意の方向を投影あるいは撮像させることも容易である。   Furthermore, on the object side of the entrance pupils 4m and 4s, not only one Y toric lens having a negative meniscus lens cross section but also two or three meniscus lenses can be used to generate more image distortion. Can be reduced. In addition to the lens, it is also easy to project or image an arbitrary direction by reflecting and refracting the light beam with a reflection surface or prism that is rotationally symmetric with respect to the rotation center axis 1.

また、本発明の光学系の回転中心軸1の周りで回転対称な反射面11〜12、21〜22、透明媒質15、25はそのまま用いることにより、360°全方位の画角を有する映像を撮影したり投影できるが、その反射面11〜12、21〜22、透明媒質15、25を回転中心軸1を含む断面で切断して2分の1、3分の1、3分の2等にすることにより、中心軸1の周りの画角が180°、120°、240°等の映像を撮影したり投影するようにしてもよい。   Further, by using the reflection surfaces 11 to 12, 21 to 22 and the transparent media 15 and 25 that are rotationally symmetric around the rotation center axis 1 of the optical system of the present invention as they are, an image having an angle of view of 360 ° in all directions can be obtained. Although it can be photographed or projected, its reflecting surfaces 11-12, 21-22, and transparent media 15 and 25 are cut by a cross section including the rotation center axis 1 to one half, one third, two thirds, etc. By doing so, an image with an angle of view around the central axis 1 of 180 °, 120 °, 240 °, etc. may be taken or projected.

以上、本発明の光学系を回転中心軸(回転対称軸)1を垂直方向に向けて360°全方位(全周)遠方からの映像を円筒状の像面に結像させる撮像光学系として説明してきたが、光路を逆にとって、回転中心軸(回転対称軸)1を垂直方向に向けて360°全方位(全周)の遠方の円筒状あるいは半球状のスクリーン等の上に、円筒状、円錐状等の立体形状の表示面の像を投影する投影光学系としても使用可能である。   As described above, the optical system of the present invention is described as an imaging optical system that forms an image on a cylindrical image plane from 360 ° in all directions (all circumferences) with the rotation center axis (rotation symmetry axis) 1 in the vertical direction. However, with the optical path reversed, the central axis of rotation (rotation symmetry axis) 1 is oriented in the vertical direction, 360 ° in all directions (all circumferences), on a far cylindrical or hemispherical screen, etc. It can also be used as a projection optical system that projects an image of a three-dimensional display surface such as a cone.

さらに、像面2は円筒面に限らず、円錐面、球面等の回転対称な曲面形状でもよい。   Furthermore, the image surface 2 is not limited to a cylindrical surface, and may be a rotationally symmetric curved surface such as a conical surface or a spherical surface.

また、トーリック面、拡張回転自由曲面をフレネル面で構成することもできる。また、本発明の光学系は、内視鏡等の管内観察装置の全周観察光学系として用いることもできる。また、反射面は、円周方向に溝を切ったリニアフレネル反射面を筒状にしても構成可能である。   Further, the toric surface and the extended rotation free-form surface can be constituted by a Fresnel surface. Moreover, the optical system of the present invention can also be used as a full-circumference observation optical system of an in-tube observation device such as an endoscope. Further, the reflection surface can be configured by forming a linear Fresnel reflection surface having a groove in the circumferential direction into a cylindrical shape.

また、物点距離は無限遠に限らず所定の有限距離とし、その物点距離に対応した像位置を選択するようにすることも可能である。   Further, the object point distance is not limited to infinity, but may be a predetermined finite distance, and an image position corresponding to the object point distance may be selected.

図10に本発明の光学系をパノラマ撮影光学系として使用する場合の概略の光路(a)と、パノラマ投影光学系として使用する場合の概略の光路(b)を示す。パノラマ撮影光学系として使用する場合、図10(a)に示すように、本発明の光学系30の回転対称軸1と同心に円筒面、円錐面等の回転対称な立体形状の撮像面2を持つ撮像素子31を配置し、その光学系30に360°全方位物体からの光33を入射させることで、撮像面2にそのパノラマ像を結像させることができ、撮像することができる。   FIG. 10 shows a schematic optical path (a) when the optical system of the present invention is used as a panoramic photographing optical system and a schematic optical path (b) when used as a panoramic projection optical system. When used as a panoramic imaging optical system, as shown in FIG. 10 (a), a rotationally symmetrical three-dimensional imaging surface 2 such as a cylindrical surface or a conical surface is concentric with the rotational symmetry axis 1 of the optical system 30 of the present invention. The image pickup device 31 is arranged, and the light 33 from the 360 ° omnidirectional object is incident on the optical system 30, so that the panoramic image can be formed on the image pickup surface 2 and can be picked up.

パノラマ投影光学系として使用する場合、図10(b)に示すように、本発明の光学系30の回転対称軸1と同心に円筒面、円錐面等の回転対称な立体形状の表示面2を持つ表示素子35を配置し、その表示面2に投影すべき全方位画像を表示させ、表示素子35の表示面2の背後に配置した照明光源36を点灯すると、その表示面2からの投影光37は光学系30を経て遠方の円筒状あるいは半球状のスクリーン等の上に全方位画像を投影することができる。   When used as a panoramic projection optical system, as shown in FIG. 10B, a rotationally symmetrical three-dimensional display surface 2 such as a cylindrical surface or a conical surface is concentric with the rotational symmetry axis 1 of the optical system 30 of the present invention. When the display element 35 is arranged, an omnidirectional image to be projected on the display surface 2 is displayed, and the illumination light source 36 disposed behind the display surface 2 of the display element 35 is turned on, projection light from the display surface 2 is displayed. 37 can project an omnidirectional image on a distant cylindrical or hemispherical screen through the optical system 30.

本発明の実施例1の光学系の回転中心軸に沿ってとった断面図である。It is sectional drawing taken along the rotation center axis | shaft of the optical system of Example 1 of this invention. 実施例1の光学系内の光路を示す回転中心軸に沿う方向に見た平面図である。FIG. 3 is a plan view of the optical path in the optical system of Example 1 as viewed in the direction along the rotation center axis. 実施例1の光学系全体の無限遠物点の場合の横収差図である。FIG. 6 is a lateral aberration diagram in the case of an infinite object point in the entire optical system of Example 1. 本発明の実施例2の光学系の回転中心軸に沿ってとった断面図である。It is sectional drawing taken along the rotation center axis | shaft of the optical system of Example 2 of this invention. 実施例2の光学系内の光路を示す回転中心軸に沿う方向に見た平面図である。FIG. 6 is a plan view seen in a direction along a rotation center axis showing an optical path in the optical system of Example 2. 実施例2の光学系全体の無限遠物点の場合の横収差図である。FIG. 6 is a transverse aberration diagram for an object point at infinity of the entire optical system according to Example 2. 本発明の実施例3の光学系の回転中心軸に沿ってとった断面図である。It is sectional drawing taken along the rotation center axis | shaft of the optical system of Example 3 of this invention. 実施例3の光学系内の光路を示す回転中心軸に沿う方向に見た平面図である。FIG. 6 is a plan view seen in a direction along a rotation center axis showing an optical path in the optical system of Example 3. 実施例3の光学系全体の無限遠物点の場合の横収差図である。FIG. 10 is a transverse aberration diagram for an object point at infinity of the entire optical system according to Example 3. 本発明の光学系をパノラマ撮影光学系として使用する場合の概略の光路(a)とパノラマ投影光学系として使用する場合の概略の光路(b)を示す図である。It is a figure which shows the schematic optical path (a) when using the optical system of this invention as a panoramic imaging optical system, and the schematic optical path (b) when using as a panorama projection optical system.

符号の説明Explanation of symbols

1…回転中心軸(回転対称軸)
2…像面(表示面)
3、31 、32 …中間像位置
4s…サジタル面の入射瞳
4m…メリジオナル面の入射瞳
5s…サジタル面の射出瞳
5m…メリジオナル面の射出瞳
6…絞り
10…前群
11、12…反射面
13…入射屈折面
14…射出屈折面
15…透明媒質
20…後群
21、22…反射面
23…入射屈折面
24…射出屈折面
25…透明媒質
30…光学系(本発明)
31…撮像素子
33…物体からの光
35…表示素子
36…照明光源
37…投影光
1 ... Center of rotation (axis of rotational symmetry)
2 ... Image surface (display surface)
3, 3 1 , 3 2 ... Intermediate image position 4 s. Sagittal plane entrance pupil 4 m... Meridional plane entrance pupil 5 s. Reflective surface 13 ... Incident refracting surface 14 ... Ejecting refracting surface 15 ... Transparent medium 20 ... Rear group 21, 22 ... Reflecting surface 23 ... Incident refracting surface 24 ... Ejecting refracting surface 25 ... Transparent medium 30 ... Optical system (present invention)
31 ... Image sensor 33 ... Light from object 35 ... Display element 36 ... Illumination light source 37 ... Projection light

Claims (8)

360°全方位方向からの映像を回転対称な立体形状の像面に結像させる光学系であって、
前記360°全方位からの映像が入射する順に、第1の反射面と第2の反射面を備え、
前記第1の反射面と前記第2の反射面はいずれも回転対称な反射面であって、
前記第1の反射面は、前記360°全方位から入射した映像を反射して中間像を形成し、
前記第2の反射面は、前記第1の反射面で反射した映像を反射して前記立体形状の像面に結像させ、
前記中間像は、前記第1の反射面と前記第2の反射面の間にある
ことを特徴とする光学系。
An optical system that forms an image from a 360 ° omnidirectional direction on a rotationally symmetric solid image surface,
The first reflective surface and the second reflective surface are provided in the order in which the images from all 360 ° directions are incident,
The first reflecting surface and the second reflecting surface are both rotationally symmetric reflecting surfaces,
The first reflecting surface reflects an image incident from all directions of the 360 ° to form an intermediate image,
The second reflecting surface reflects the image reflected by the first reflecting surface to form an image on the three-dimensional image surface,
The optical system according to claim 1, wherein the intermediate image is between the first reflecting surface and the second reflecting surface .
前記回転対称な立体形状の像面と前記第1の反射面と前記第2の反射面は同軸であることを特徴とする請求項1項記載の光学系。 The optical system according to claim 1, wherein the rotationally symmetric three-dimensional image surface, the first reflecting surface, and the second reflecting surface are coaxial. サジタル断面の入射瞳とサジタル断面の射出瞳は前記第1の反射面と前記第2の反射面の回転対称軸上の異なる位置に配置されていることを特徴とする請求項2記載の光学系。 3. The optical system according to claim 2, wherein the entrance pupil of the sagittal section and the exit pupil of the sagittal section are arranged at different positions on the rotational symmetry axis of the first reflecting surface and the second reflecting surface. . 前記第1の反射面と前記第2の反射面は回転対称軸を含む断面内の対称面を持たない任意形状の線分を回転対称軸の周りで回転させて形成される回転対称な形状を有することを特徴とする請求項1から3の何れか1項記載の光学系。 The first reflecting surface and the second reflecting surface have a rotationally symmetric shape formed by rotating a line segment having an arbitrary shape not having a symmetric surface in a cross section including a rotationally symmetric axis around the rotationally symmetric axis. The optical system according to claim 1, further comprising: an optical system according to claim 1. 前記第1の反射面と前記第2の反射面は回転対称軸を含む断面内の奇数次項を含む任意形状の線分を回転対称軸の周りで回転させて形成される回転対称な形状を有することを特徴とする請求項1から3の何れか1項記載の光学系。 The first reflection surface and the second reflection surface have a rotationally symmetric shape formed by rotating an arbitrary line segment including an odd-order term in a cross section including a rotational symmetry axis around the rotational symmetry axis. The optical system according to any one of claims 1 to 3, wherein: 前記像面は前記回転対称な立体形状の内面であることを特徴とする請求項1から5の何れか1項記載の光学系。   The optical system according to claim 1, wherein the image plane is the rotationally symmetrical three-dimensional inner surface. 前記像面は前記回転対称な立体形状の外面であることを特徴とする請求項1から5の何れか1項記載の光学系。   6. The optical system according to claim 1, wherein the image plane is the rotationally symmetric solid outer surface. 前記光学系の物体面と像面を逆にして投影光学系に用いることを特徴とする請求項1から5の何れか1項記載の光学系。   6. The optical system according to claim 1, wherein an object plane and an image plane of the optical system are reversed and used in a projection optical system.
JP2006009523A 2006-01-18 2006-01-18 Optical system Expired - Fee Related JP4908853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009523A JP4908853B2 (en) 2006-01-18 2006-01-18 Optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009523A JP4908853B2 (en) 2006-01-18 2006-01-18 Optical system

Publications (2)

Publication Number Publication Date
JP2007192966A JP2007192966A (en) 2007-08-02
JP4908853B2 true JP4908853B2 (en) 2012-04-04

Family

ID=38448733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009523A Expired - Fee Related JP4908853B2 (en) 2006-01-18 2006-01-18 Optical system

Country Status (1)

Country Link
JP (1) JP4908853B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080410A (en) * 2007-09-27 2009-04-16 Olympus Corp Optical system and endoscope using the same
JP2010085962A (en) * 2008-09-03 2010-04-15 Olympus Corp Visual display device
JP7086572B2 (en) 2017-11-17 2022-06-20 キヤノン株式会社 Optical systems, imaging devices, ranging devices, in-vehicle systems, and mobile devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2964997A (en) * 1956-06-29 1960-12-20 Tno Horizon camera objective lens system

Also Published As

Publication number Publication date
JP2007192966A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP4780713B2 (en) Optical system
JP4728034B2 (en) Rotationally asymmetric optical system
JP4884085B2 (en) Optical system
JP4611115B2 (en) Optical system
JP5030675B2 (en) Optical system and endoscope using the same
JP2008152073A (en) Optical system
JP4648758B2 (en) Optical system
JP2008309860A (en) Optical system and endoscope using the same
JP4847133B2 (en) Optical system
JP4508775B2 (en) Panorama attachment optics
JP4873927B2 (en) Optical system
JP4908853B2 (en) Optical system
JP2011257630A (en) Attachment optical system
JP4855076B2 (en) Optical system
JP2011186480A (en) Optical system
JP4869712B2 (en) Optical system
JP2009080410A (en) Optical system and endoscope using the same
JP4839013B2 (en) Optical system
WO2009041332A1 (en) Optical system and endoscope using same
JP4585352B2 (en) Optical system
JP4849591B2 (en) Optical system
JP2006126322A (en) Optical system
JP4648757B2 (en) Optical system
JP4451271B2 (en) Optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4908853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees