JP4908640B1 - Molded coil manufacturing method - Google Patents

Molded coil manufacturing method Download PDF

Info

Publication number
JP4908640B1
JP4908640B1 JP2011035884A JP2011035884A JP4908640B1 JP 4908640 B1 JP4908640 B1 JP 4908640B1 JP 2011035884 A JP2011035884 A JP 2011035884A JP 2011035884 A JP2011035884 A JP 2011035884A JP 4908640 B1 JP4908640 B1 JP 4908640B1
Authority
JP
Japan
Prior art keywords
mold
coil
embedding
resin
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011035884A
Other languages
Japanese (ja)
Other versions
JP2012174903A (en
Inventor
義純 福井
Original Assignee
義純 福井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義純 福井 filed Critical 義純 福井
Priority to JP2011035884A priority Critical patent/JP4908640B1/en
Application granted granted Critical
Publication of JP4908640B1 publication Critical patent/JP4908640B1/en
Publication of JP2012174903A publication Critical patent/JP2012174903A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】金型構造が複雑でなく、モールド工程が簡略化でき、巻き線のモールド位置や寸法ばらつきが少なく、特に厚み方向に規格に厳しい面実装部品において、低コストで特性や信頼性の高いモールドコイルの製造方法を提供することを目的とする。
【解決手段】
本発明のモールドコイルの製造方法は、プラスチック圧縮成形法を用いて樹脂と磁性体粉末等を混練させたモールド樹脂でコイルを封止したモールドコイルの製造方法において、空芯コイルの少なくとも一部を溶融したモールド材料の中に埋設し後、埋設方向とは異なる面方向から流動加圧することにより、簡単に埋設位置を固定し、金型で埋設方向の厚みを規定し、精度の良い厚み形状のコイル一体型モールドコイルを製することを特徴とする。
【選択図】図3
The mold structure is not complicated, the molding process can be simplified, the winding mold position and dimensional variation are small, and the characteristics and reliability are high at low cost, especially in surface mount parts that are strict in the thickness direction. It aims at providing the manufacturing method of a mold coil.
[Solution]
The method for producing a molded coil according to the present invention is a method for producing a molded coil in which a coil is sealed with a mold resin obtained by kneading a resin and a magnetic powder using a plastic compression molding method. After embedding in the molten mold material, fluid pressure is applied from a surface direction different from the embedding direction, so that the embedding position is easily fixed, the thickness in the embedding direction is defined by a mold, and a precise thickness shape is obtained. A coil-integrated mold coil is manufactured.
[Selection] Figure 3

Description

本発明はプラスチック圧縮成形法を用いたモールドコイルの製造方法に関するものである。   The present invention relates to a method for manufacturing a molded coil using a plastic compression molding method.

従来から、フェライトコアなどの巻芯にコイルを巻き、磁性体モールド成形材料で封止してなるモールドコイルは広く利用されている。従来のモールドコイルのモールド方法は、移送成形(トランスファ成形)や射出成型(インジェクション成形)を用いて成型される。   Conventionally, a molded coil in which a coil is wound around a core such as a ferrite core and sealed with a magnetic molding material has been widely used. Conventional mold coil molding methods are performed using transfer molding (transfer molding) or injection molding (injection molding).

従来の移送成形や射出成型を用いるモールド材料は、流動性を保ちつつ比透磁率が十分高い材料ができなかったため、巻芯である磁性体を使わない一体成型モールドコイルはインダクタンスを得るためにたくさんの巻き数が必要になり直流抵抗が非常に高くなる上、巻き線体積も増える傾向なるにため磁性体の断面積が制限され直流重畳特性も非常に低下しパワーインダクタとしては特性を満足できるものはできなかった。   Conventional molding materials using transfer molding and injection molding have not been able to produce a material with sufficiently high relative permeability while maintaining fluidity, so there are a lot of monolithic molding coils that do not use a magnetic material as a core to obtain inductance. The number of windings is required and the DC resistance becomes very high, and the winding volume tends to increase, so the cross-sectional area of the magnetic material is limited and the DC superimposition characteristics are also very low, which satisfies the characteristics as a power inductor I couldn't.

一方、バインダーと磁性体粉末等の造粒粉末と巻き線を粉末圧縮成形により一体化したインダクタは開示されている(例えば特許文献1参照)。 さらに、この手法を用いた金属鉄系磁性体パワーインダクタは高い評価を得られている。 On the other hand, an inductor in which a granulated powder such as a binder, a magnetic powder, and a winding are integrated by powder compression molding is disclosed (for example, see Patent Document 1). Furthermore, a metal iron-based magnetic power inductor using this method has been highly evaluated.

しかし、圧粉成形法は粉末を加圧により一体化するため大きな圧力が必要となり、一体化成形する巻き線に大きなダメージを与えてしまう。また、充填した粉末は圧縮により体積が大きく変化するため、内部の巻き線の有無によって成形密度のばらつき等が発生してしまう。通常、それを緩和するために巻き線のない部分の体積を磁気回路上必要以上に要する。   However, since the powder compaction method integrates the powder by pressurization, a large pressure is required, which causes a large damage to the wound winding. Further, since the volume of the filled powder is greatly changed by compression, a variation in molding density or the like occurs depending on the presence or absence of an internal winding. Usually, in order to alleviate this, the volume of the portion without winding is more than necessary on the magnetic circuit.

そこで、出願人は先に出願した特願2008−4005において、プラスチック成形法により高精度に巻き線を埋設し、材料ロスが少なく、低コストの高性能モールドコイルの製造方法成形を提案した。   Therefore, the applicant proposed in Japanese Patent Application No. 2008-4005 filed earlier that a winding method is embedded with high accuracy by a plastic molding method, a material loss is small, and a low-cost production method for a high-performance molded coil is proposed.

また、出願人は先に出願した特2009−267350において、供給材料を分離することなく、さらに高精度に巻き線を埋設でき、材料ロスが少なく、低コストの高性能モールドコイルの製造方法成形を提案した。 Further, the applicant Japanese Open 2009-267350 has filed previously, without separating the feed material, can be further embedded winding with high precision, less material loss method forming a low-cost high-performance molded coil Proposed.

特開2007−49073号公報JP 2007-49073 A 特願2008−4005号公報Japanese Patent Application No. 2008-4005 特開2009−267350号公報JP 2009-267350 A

先に出願した特願2008−4005は巻き線位置の規定方法が金型であるので金型が複雑化している上、粉末形式の材料供給の場合は成型体内部に気泡の巻きこみが発生しやすかった。   In Japanese Patent Application No. 2008-4005 filed earlier, the method for defining the winding position is a mold, so that the mold is complicated, and in the case of supplying powder-type material, it is easy for air bubbles to be entrained inside the molded body. It was.

また、先に出願した特2009−267350では、プラスチック圧縮成形法を用いた巻き線一体型モールドコイルの製造方法であり、図1比較型キャビティ1と摺動するパンチ、それぞれ単独に摺動可能な位置出しピン2、支持ピン3等によって構成された金型を使用し巻き線を位置出しピン2と支持ピン3により指定した位置に保持した後、モールド樹脂を段階的に加圧成形する手法である。 Further, in JP-open 2009-267350 filed previously, a winding method for producing an integrated molded coil using a plastic compression molding, Figure 1 compares cavity 1 and the sliding punch, slidable alone respectively A method in which the mold resin is formed in stages after holding the winding at the position specified by the positioning pin 2 and the support pin 3 using a mold constituted by the positioning pin 2 and the support pin 3. It is.

モールド樹脂は数段階に分けて加圧され、通常1段階の加圧の後、位置出しピン2を所定の位置に移動し、2段階目の加圧をする。最後に支持ピン3を所定の位置に移動し3段階目の加圧を実施する。 The mold resin is pressurized in several stages, and usually after one stage of pressurization, the positioning pin 2 is moved to a predetermined position, and the second stage of pressurization is performed. Finally, the support pin 3 is moved to a predetermined position, and the third stage pressurization is performed.

このように数度に分ける加圧は工程を複雑にするため、装置コストや工数がかかる上、支持ピンや、位置出しピンは直接モールド樹脂に接触しながら摺動するため、ピンとガイドの摩耗が激しく型寿命に問題がある。   In this way, the pressurization divided into several degrees complicates the process, which increases the equipment cost and man-hours.Since the support pins and positioning pins slide while in direct contact with the mold resin, the pins and guides wear. There is a severe problem with mold life.

また、各ピンとピンガイドとの隙間には樹脂や、混練材料が流れ込み固着するので、剥がす工程や異物の洗浄除去等に工数がかかる上、型の消耗やガタが発生するため型構造が大型になり、消耗の少ない高硬度な材質等を用いる必要がありコスト高なっている。 In addition, since resin and kneaded material flow into and adhere to the gap between each pin and the pin guide, man-hours are required for the peeling process, cleaning and removal of foreign matter, etc., and the mold structure becomes large due to mold wear and backlash. Therefore, it is necessary to use a high-hardness material with little wear and the cost is high.

さらに、従来の方法は、圧縮方向が厚み方向であり、圧力がつりあった点で圧縮方向の終点が決まっていたので、厚みが投入した材料の量によって変わり、厚み方向のスペックが厳しい面実装部品では不良が発生しやすかった。 Furthermore, in the conventional method, the compression direction is the thickness direction, and the end point of the compression direction is determined at the point where the pressure is applied, so the thickness varies depending on the amount of material input, and the surface mount part has strict specifications in the thickness direction. Then it was easy for defects to occur.

また、従来の方法は成型体の面全部での加圧でであったので、大きさの不良には面全体を削る等の対策が必要になり、コスト的に不利であった。 In addition, since the conventional method is pressurization on the entire surface of the molded body, it is disadvantageous in terms of cost because measures such as cutting the entire surface are required for a defective size.

樹脂と磁性体粉末等を混練させた磁性体モールド樹脂で空芯コイルを封止するモールドコイルの製造方法において、溶融したモールド材料に該空芯コイルの少なくとも一部を埋設する工程と、埋設方向とは異なる方向よりキャビテイ内モールド樹脂を流動加圧させることによりモールドすることを特徴とする一体型モールドコイルを製造することを目的とする。 In a method of manufacturing a mold coil in which an air core coil is sealed with a magnetic mold resin in which a resin and a magnetic powder are kneaded, a step of embedding at least a part of the air core coil in a molten mold material, and an embedding direction An object of the present invention is to manufacture an integral mold coil that is molded by flowing and pressurizing mold resin in a cavity from a different direction.

金型内に選択的に樹脂が多く排出される隙間5を故意に設けたことを特徴とするモールドコイルの製造方法。 A mold coil manufacturing method, wherein a gap 5 through which a large amount of resin is selectively discharged is intentionally provided in a mold.

成形金型に付随した抜きパンチ15と適当な抜き金型治具18によりバリを打ち抜くことを特徴とするモールドコイルの製造方法。 A method for producing a mold coil, characterized in that burrs are punched out by a punch 15 attached to a molding die and a suitable die jig 18.

本発明のモールドコイルの製造方法は、モールド材料を2以上にわけて供給し、埋設材料7は予め粉末圧縮成形法等により埋設材料キャビティ9より小さく、形状が近似させて成形する。該埋設材料7を溶融後空芯コイル10を埋設することにより埋設位置を規定させる。次に、埋設方向とは異なる方向からのモールド樹脂の流動加圧により完全に空芯コイルをモールドすることにより、埋設方向の厚みが金型等の規定位置で決めることができる。このことは、特に厚み方向にスペックが厳しい面実装型モールドコイルの特性改善や、良品率の向上に効果的である。   In the method for producing a molded coil according to the present invention, the molding material is supplied in two or more, and the embedding material 7 is smaller than the embedding material cavity 9 in advance by a powder compression molding method or the like, and the shape is approximated. After the burying material 7 is melted, the burying position is defined by burying the air-core coil 10. Next, by completely molding the air-core coil by flow pressurization of mold resin from a direction different from the embedding direction, the thickness in the embedding direction can be determined at a specified position such as a mold. This is particularly effective for improving the characteristics of surface mount mold coils whose specifications in the thickness direction are strict and for improving the yield rate.

本製造方法では、複数個の加圧を一か所で制御することが可能であり、装置、金型コスト、生産性を改善できる。 In this manufacturing method, it is possible to control a plurality of pressurizations in one place, and the apparatus, mold cost, and productivity can be improved.

本製造方法では、モールドコイル規定大きさから一部分からの流動加圧であるので、抜きパンチ15と適当な形状の抜き金型治具18を使用することにより、過剰になった部分(本製法ではバリ16)の除去が容易で形状不良を軽減することができる。 In this manufacturing method, since the pressurization is performed from a part from the prescribed size of the mold coil, an excess portion (in this manufacturing method, by using the punching punch 15 and the punching die jig 18 having an appropriate shape) is used. The burr 16) can be easily removed and the shape defects can be reduced.

図1は従来工法を説明するために用いる金型の位置出しピン支持ピン構造を示した斜視図である。FIG. 1 is a perspective view showing a positioning pin support pin structure of a mold used for explaining a conventional construction method. 図2は本発明の製造法を説明するためのイメージを示した透過斜視図である。FIG. 2 is a transparent perspective view showing an image for explaining the manufacturing method of the present invention. 図3は本発明の製造法および実施例1を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining the manufacturing method of the present invention and the first embodiment.

本発明のモールドコイルの製造方法は、磁性粉末と熱硬化性樹脂などからなる磁性体モールド材料混練物であるモールド材料を、粉砕した後粉末圧縮成形等により、目的とするコイル成型体17の形状に近似し、該コイル成型体17より小さく、空芯コイル10加圧埋設時に埋設加圧上面より過剰にならず、空芯コイル加圧埋設面以外の部分がほぼ埋設材料7の中に入る形状の埋設材料7を成形するのが良い。   The method for producing a molded coil according to the present invention is such that the mold material, which is a magnetic material kneaded material composed of magnetic powder and thermosetting resin, is pulverized and then subjected to powder compression molding or the like to form the desired shape of the coil molded body 17. The shape is smaller than the coil molded body 17 and does not become excessive from the upper surface of the embedding pressure when the air core coil 10 is buried under pressure, and the portion other than the air core coil pressure embedding surface enters the embedding material 7. It is preferable to mold the embedded material 7.

なぜなら、過剰になる材料は、空芯コイル10の埋設治具等に付着し、治具を汚染してしまう可能性と治具付着による材料量の変動、埋設する空芯コイル10へのストレス等の問題が発生しやすい。また、加圧埋設面以外の部分が完全に埋設していない場合、埋設方向に直交する様な樹脂流動によって、巻き線位置がずれる場合や、巻き線自体が変形する可能性がある。 This is because the excess material adheres to the embedded jig or the like of the air-core coil 10 and may contaminate the jig, fluctuation of the material amount due to the attachment of the jig, stress on the embedded air-core coil 10, etc. The problem is likely to occur. Moreover, when parts other than a pressure embedding surface are not embed | buried completely, there exists a possibility that a winding position may shift | deviate by the resin flow orthogonal to an embedding direction, or winding itself may deform | transform.

空芯コイル10は、埋設材料7が溶融後巻き芯方向から埋設する。こうすることにより巻き芯部分に埋設材料7を充填し、空芯コイル10位置のずれや変形が防止できる。溶融温度は、埋設時のストレスが少なく、埋設位置が維持できる粘度になるよう決定する。一般に、溶融温度が高いと、粘度が下がり埋設ストレスは軽減されるが、埋設位置が動きやすい。また、磁性体粉末の容積率が熱硬化性樹脂に比べ高いと粘度が上がり、前記と逆の現象になる。 The air core coil 10 is embedded from the winding core direction after the embedded material 7 is melted. By doing so, the embedding material 7 is filled in the winding core portion, and displacement and deformation of the air core coil 10 can be prevented. The melting temperature is determined so that the viscosity is such that there is little stress during embedding and the embedding position can be maintained. In general, when the melting temperature is high, the viscosity decreases and the embedding stress is reduced, but the embedding position is easy to move. Further, when the volume ratio of the magnetic powder is higher than that of the thermosetting resin, the viscosity increases, and the phenomenon reverse to the above occurs.

空芯コイル10は、埋設時ストレスにより変形しないよう融着線を用い、特に平角線を使ったエッジワイズ巻きや外外巻きは緻密な巻き線ができ特性的にも有効である。 The air-core coil 10 uses a fused wire so that it will not be deformed by stress during embedment, and in particular, edgewise winding using a rectangular wire and outer and outer windings can be densely wound and are effective in terms of characteristics.

巻き線端末11は、適当な形状に加工し、埋設材料キャビティ9と埋設材料7の隙間に入れ込んだ後、埋設材料7に空芯コイル10を埋設すると、巻き線端末11が埋設材料キャビティ9と埋設材料7に挟まれ、端末の露出がしやすい。また、端末面の埋設材料キャビティ側面を可動式にし、巻き線端末を露出させて空芯コイル10を埋設後、可動式のキャビティ側面を移動しキャビティ側面と埋設材料7の間に巻き線端末11を挟み、露出しやすいようにしても良い。 The winding terminal 11 is processed into an appropriate shape, inserted into the gap between the embedded material cavity 9 and the embedded material 7, and then embedded with the air core coil 10 in the embedded material 7, the winding terminal 11 becomes embedded in the embedded material cavity 9. Between the embedded material 7 and the terminal is easily exposed. Further, the side of the buried material cavity on the terminal surface is made movable, the winding terminal is exposed and the air-core coil 10 is buried, and then the movable cavity side surface is moved to move the winding terminal 11 between the cavity side surface and the buried material 7. You may make it easy to expose.

空芯コイルを埋設する工程は、一旦冷やして取り出した後、モールド金型に再度セットしてもよい。金型温度条件が埋設温度と硬化温度で大きく異なる場合等、溶融した樹脂を固化して後取り出し、高温のモールド型に図2(b)の状態に再度セットした方が効率的なケースもある。 The step of embedding the air-core coil may be once cooled and taken out, and then set again in the mold. In some cases, such as when the mold temperature conditions differ greatly between the embedding temperature and the curing temperature, it may be more efficient to solidify the molten resin and then take it out and set it again in the hot mold as shown in FIG. .

封止材料12は、図3(c´)封止材料セットのように、埋設面を覆うようにセットしても良いし、加圧パンチ14の雌型部分に入る適当な量を投入してもよい。図3(c´)のように埋設面を覆う場合、図3(d´)上型型締時に加圧パンチ14雌型部分に押し出されるようなキャビティより過剰な量でも良いし、少なくても良い。 The sealing material 12 may be set so as to cover the embedded surface as shown in FIG. 3 (c ′) sealing material set, or an appropriate amount that enters the female part of the pressure punch 14 is introduced. Also good. When the embedded surface is covered as shown in FIG. 3 (c ′), the amount may be excessive or less than the cavity that is pushed out to the female part of the pressure punch 14 when the upper die is clamped in FIG. 3 (d ′) . good.

図3(d´)の上型型締により、コイル成型体の厚みが規定される。図3(d´)のようにコイル成型体の厚み方向を規定するのが、厚み方向の規格が厳しい場合に有効である。厚み方向が金型の精度で決めることができるので、設計上有効な厚みが厚くすることができるので、特性スペックを上げることができる。 The upper die clamping in FIG 3 (d'), the thickness of the coil molded product is defined. Defining the thickness direction of the coil molded body as shown in FIG. 3D 'is effective when the standard of the thickness direction is strict. Since the thickness direction can be determined by the accuracy of the mold, the effective design thickness can be increased, and the characteristic specifications can be increased.

図2(e)の側面流動加圧は、図2のように封止材料が隣の成型体とつながっている場合は、加圧装置は共有することができ、個別の場合は個々に一定の加圧力をあたえる必要がある。個々に制御する場合、装置や金型が複雑になるのでコスト的に不利となる。 The side surface flow pressurization in FIG. 2 (e) can be shared when the sealing material is connected to an adjacent molded body as shown in FIG. It is necessary to apply pressure. When controlling individually, since an apparatus and a metal mold become complicated, it becomes disadvantageous in cost.

図2(e)側面流動加圧時の金型温度は、樹脂が十分流動し硬化が早いよう、ダメージや不具合のない範囲で高温がよい。 Fig. 2 (e) The mold temperature at the time of side surface flow pressurization is preferably high as long as there is no damage or malfunction so that the resin flows sufficiently and cures quickly.

図2(e)側面流動加圧は、コイル成型体17を規定の形に成形する目的と、加圧により隙間5から樹脂成分を選択的に多く含むモールド材料を排出し、磁性体容積比率を上げる目的で加圧する。図3(d´)の様に過剰の封止材料12を入れた場合、図3(d´)上型型締によりおよその形状に成形することは可能であるが、形状不良が発生しやすい上、樹脂成分を選択的に多く含む材料の排出による特性向上が望めない。 FIG. 2 (e) Side flow pressurization aims to mold the coil molded body 17 into a prescribed shape, and the mold material containing a large amount of the resin component is discharged from the gap 5 by pressurization, and the volume ratio of the magnetic body is set. Pressurize to raise. When an excessive sealing material 12 is added as shown in FIG. 3 (d ′), it is possible to form an approximate shape by the upper mold clamping shown in FIG. 3 (d ′), but shape defects tend to occur. In addition, it is not possible to improve the characteristics by discharging a material that selectively contains a large amount of resin components.

所定の時間加熱硬化後、コイル成型体17を取り出し、所定の切削工具で除去しても良いが、上型13と加圧パンチ14を除去後、抜き金型治具18をセットしコイル成型体17を押し出し、バリ16を除去すると、一度に精度良くバリ16を除去することができ有効である。図3(f´)では、モールド金型に予め製作した抜きパンチ15を押し出している。抜き金型治具はモールド金型とは別部品でも良いが、上型に細工しても良い。 After heating and curing for a predetermined time, the coil molded body 17 may be taken out and removed with a predetermined cutting tool. However, after removing the upper mold 13 and the pressure punch 14, the die mold 18 is set and the coil molded body is set. It is effective to extrude 17 and remove the burrs 16 because the burrs 16 can be accurately removed at a time. In FIG. 3 (f ′), the punch 15 that has been manufactured in advance is extruded into the mold. The punching die jig may be a separate part from the molding die, but may be crafted into an upper die.

アモルファス磁性粉を92wt%、ノボラック型エポキシ樹脂とフェノールノボラック型樹脂が当量混合されたエポキシ樹脂混合物8wt%をニーダーにて110度40分混合後、TPPをエポキシ樹脂混合物に対し0.05wt%添加しさらに3分混練後、材料をニーダーより取り出し冷却し直径8cm前後の混練物の塊を複数個得た。 After mixing 8 wt% of epoxy resin mixture of 92 wt% amorphous magnetic powder and novolak type epoxy resin and phenol novolak type resin at 110 degrees 40 minutes in a kneader, add 0.05 wt% of TPP to the epoxy resin mixture. Further, after kneading for 3 minutes, the material was taken out from the kneader and cooled to obtain a plurality of kneaded masses having a diameter of about 8 cm.

混練物塊をクラッシャーミルで粒径2mm程度に粗粉砕しハンマーミル(2mmΦメッシュ使用)にて微粉砕後目開き0.5mmの篩を通過させ該原料粉体を得た。 The kneaded mass was coarsely pulverized to a particle size of about 2 mm with a crusher mill, finely pulverized with a hammer mill (using a 2 mmφ mesh), and passed through a sieve with an opening of 0.5 mm to obtain the raw material powder.

該混合粉体は、2.2mm*1.9mm角のダイスを使い、約20mgの材料を粉末圧縮成形し埋設材料7を作成し、同様に約5mm*2.4mm*0.5mmの封止材料12を作成した。 The mixed powder uses a 2.2 mm * 1.9 mm square die, and about 20 mg of material is powder compression molded to create an embedded material 7, which is similarly sealed at about 5 mm * 2.4 mm * 0.5 mm. Material 12 was made.

予め高さが0.5mm、長手*幅が2.3*1.8mmで巻き芯が楕円の自己融着型平角線で外外巻きした空芯コイル10を作り、巻き線端末11の端末面を70度程度に曲げた。 The terminal surface of the winding terminal 11 is made by making an air core coil 10 wound in front and outside with a self-bonding rectangular wire having a height of 0.5 mm, a length * width of 2.3 * 1.8 mm and an elliptical winding core. Was bent to about 70 degrees.

2.5mm*2.0mm*0.9mmのキャビティ形状(埋設材料キャビティ9)となる中型6を使用し、下型との間のキャビティの全辺から直角に伸びる面に隙間5 40μmを金型で形成した。図3(a´)の状態に組んだ金型を100度に予熱し、中型6キャビティのほぼ中央に位置するよう埋設材料7をセットした。 Use a middle mold 6 that has a cavity shape (embedded material cavity 9) of 2.5 mm * 2.0 mm * 0.9 mm, and mold a gap of 540 μm on the surface that extends perpendicularly from all sides of the cavity to the lower mold. Formed with. The mold assembled in the state of FIG. 3 (a ′) was preheated to 100 ° C., and the embedding material 7 was set so as to be positioned substantially at the center of the middle mold 6 cavity.

埋設材料溶融後、空芯コイル10をセットした。巻き線端末11は埋設材料7と埋設材料キャビティの隙間に入るよう少し斜めから挿入し最終的に所定の位置まで金型面と直角になる様加圧した。     After the embedded material was melted, the air-core coil 10 was set. The winding terminal 11 was inserted from a slight angle so as to enter the gap between the embedded material 7 and the embedded material cavity, and finally pressed to a predetermined position so as to be perpendicular to the mold surface.

7mm*2.5mm*0.3mmの埋設材料キャビティ9に、該埋設材料12がほぼ中央に入る様に載置した。金型温度を150度に上げ、図3(d´)の様に上型13を押しつけ固定した。 The embedded material 12 was placed in the embedded material cavity 9 having a size of 7 mm * 2.5 mm * 0.3 mm so that the embedded material 12 substantially entered the center. The mold temperature was raised to 150 degrees, and the upper die 13 pressed and fixed as in FIG. 3 (d').

150度に予熱してある加圧パンチ14をセットし、30kgで5分間加圧し、加重を加えたまま5分保持することにより樹脂を硬化させた。 The pressure punch 14 preheated to 150 ° C. was set, pressurized with 30 kg for 5 minutes, and held for 5 minutes with the load applied to cure the resin.

上型13と加圧パンチ14を除去後、埋設キャビティ形状同様2.5mm*2.0mm角の窓があいた抜き金型治具18をセットし、固定した後、抜きパンチ15を摺動することによりバリ16とコイル成型体17を分離し、コイル成型体17を得た。 After removing the upper die 13 and the pressure punch 14, set the punching die jig 18 with a 2.5mm * 2.0mm square window as well as the shape of the buried cavity, and then slide the punching punch 15 after fixing. Thus, the burr 16 and the coil molded body 17 were separated, and the coil molded body 17 was obtained.

巻き線端末11の被覆をカッターで除去後、導電性樹脂を塗布し150度で30分硬化してモールドコイルを得た。 After removing the coating of the winding terminal 11 with a cutter, a conductive resin was applied and cured at 150 degrees for 30 minutes to obtain a molded coil.

1 比較型キャビティ
2 位置出しピン
3 支持ピン
4 下型
5 隙間
6 中型
7 埋設材料
8 封止材料キャビティ
9 埋設材料キャビティ
10 空芯コイル
11 巻き線端末
12 封止材料
13 上型
14 加圧パンチ
15 抜きパンチ
16 バリ
17 コイル成型体
18 抜き金型治具
DESCRIPTION OF SYMBOLS 1 Comparison type | mold cavity 2 Positioning pin 3 Support pin 4 Lower mold | type 5 Crevice 6 Medium mold | type 7 Embedded material 8 Sealing material cavity 9 Embedded material cavity 10 Air core coil 11 Winding terminal 12 Sealing material 13 Upper mold | type 14 Pressure punch 15 Punch 16 Burr 17 Coil molded body 18 Die tool

Claims (1)

樹脂と磁性体粉末等を混練させた磁性体モールド樹脂で空芯コイルを封止するモールドコイルの製造方法において、モールド材料を2つ以上に分け、1つのモールド材料をキャビティ内にセットし、該1つのモールド材料が溶融した状態で該空芯コイルの少なくとも一部を埋設する工程と、埋設工程後、他方のモールド材料を封止材料キャビティおよび埋設材料キャビティに供給し、型締めによりコイル成形体厚みを規定した状態で、該他方のモールド材料の少なくとも一部を加圧パンチにより加圧することにより埋設方向とは異なる方向よりキャビティ内磁性体モールド樹脂を流動加圧させることにより封止することを特徴とする一体型モールドコイルの製造方法。
In a method of manufacturing a mold coil in which an air-core coil is sealed with a magnetic mold resin in which a resin and magnetic powder are kneaded, the mold material is divided into two or more, one mold material is set in a cavity, A step of embedding at least a part of the air-core coil in a state where one mold material is melted, and after the embedding step, the other mold material is supplied to the sealing material cavity and the embedding material cavity, and the coil molded body is clamped Sealing is performed by fluidly pressing the magnetic mold resin in the cavity from a direction different from the embedding direction by pressing at least a part of the other mold material with a pressure punch in a state where the thickness is specified. A method for producing an integral mold coil, which is characterized.
JP2011035884A 2011-02-22 2011-02-22 Molded coil manufacturing method Expired - Fee Related JP4908640B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035884A JP4908640B1 (en) 2011-02-22 2011-02-22 Molded coil manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035884A JP4908640B1 (en) 2011-02-22 2011-02-22 Molded coil manufacturing method

Publications (2)

Publication Number Publication Date
JP4908640B1 true JP4908640B1 (en) 2012-04-04
JP2012174903A JP2012174903A (en) 2012-09-10

Family

ID=46170909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035884A Expired - Fee Related JP4908640B1 (en) 2011-02-22 2011-02-22 Molded coil manufacturing method

Country Status (1)

Country Link
JP (1) JP4908640B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033037A (en) * 2012-08-02 2014-02-20 Denso Corp Reactor and manufacturing method of coil used in the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141048A1 (en) 2012-03-21 2013-09-26 日立化成株式会社 Inorganic phosphor-containing polymer particles, method for producing inorganic phosphor-containing polymer particles, and solar cell module
KR101481413B1 (en) * 2013-08-29 2015-01-14 주식회사 코일마스터 Method of manufacturing air-core type inductor mold coil
KR101450789B1 (en) 2013-08-29 2014-10-15 주식회사 코일마스터 Method of manufacturing air-core type inductor mold coil
KR101512306B1 (en) 2013-08-29 2015-04-15 주식회사 코일마스터 Method of manufacturing air-core type inductor mold coil
KR101460132B1 (en) * 2013-09-06 2014-11-10 주식회사 코일마스터 Method of manufacturing air-core type inductor mold coil
DE102015105591A1 (en) 2015-04-13 2016-10-13 Rolf Prettl Production of a magnetic coil, magnetic coil for a magnetic actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161312A (en) * 1982-03-18 1983-09-24 Toshiba Corp Preparation of molded coil
JP2010040969A (en) * 2008-08-08 2010-02-18 Yoshizumi Fukui Method of manufacturing molded coil
JP2011003761A (en) * 2009-06-19 2011-01-06 Yoshizumi Fukui Winding integrated type molded coil, and method of manufacturing winding integrated type molded coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161312A (en) * 1982-03-18 1983-09-24 Toshiba Corp Preparation of molded coil
JP2010040969A (en) * 2008-08-08 2010-02-18 Yoshizumi Fukui Method of manufacturing molded coil
JP2011003761A (en) * 2009-06-19 2011-01-06 Yoshizumi Fukui Winding integrated type molded coil, and method of manufacturing winding integrated type molded coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033037A (en) * 2012-08-02 2014-02-20 Denso Corp Reactor and manufacturing method of coil used in the same

Also Published As

Publication number Publication date
JP2012174903A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP4908640B1 (en) Molded coil manufacturing method
JP4755321B1 (en) Molded coil manufacturing method
JP4944261B1 (en) Molded coil manufacturing method
CN102844826B (en) The one-piece type binding magnet of shell and manufacture method thereof
JP4685952B2 (en) Winding integrated mold coil and method for manufacturing winding integrated mold coil
US20090250836A1 (en) Production Method for Molded Coil
JP5422191B2 (en) Molded coil manufacturing method
CN108320898B (en) Inductance element and method for manufacturing inductance element
JP4730847B2 (en) Molded coil manufacturing method
US20100134233A1 (en) Inductor and method for making the same
US7617590B2 (en) Method of manufacturing an embedded inductor
KR20120018338A (en) Substantially cylindrical powder compact and powder die device
KR101807785B1 (en) Method for producing electronic component, and electronic component
KR101044607B1 (en) Method of the preparation of surface molded inductors
JP4705191B1 (en) Molded coil manufacturing method
JP2009152340A (en) Manufacturing method of coil molding, and coil molding
JP3873357B2 (en) Compression molding apparatus and compression molding method
CN106329854A (en) Manufacturing method of rotor and rotor
KR101807786B1 (en) Method for producing electronic component, and electronic component
JP5256010B2 (en) Molded coil manufacturing method
JP3888078B2 (en) Coil component manufacturing method and apparatus
JP2006228825A (en) Inductor and its manufacturing method
JP5979583B2 (en) Molding method of powder magnetic core for split magnetic core
JP4718591B2 (en) Molded coil manufacturing method
JP2010131768A (en) Method for manufacturing insert molding, and apparatus for manufacturing insert molding

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20210120

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees