JP4908275B2 - Substrate having zinc oxide fine crystal bonded thereto, and manufacturing method thereof - Google Patents

Substrate having zinc oxide fine crystal bonded thereto, and manufacturing method thereof Download PDF

Info

Publication number
JP4908275B2
JP4908275B2 JP2007068500A JP2007068500A JP4908275B2 JP 4908275 B2 JP4908275 B2 JP 4908275B2 JP 2007068500 A JP2007068500 A JP 2007068500A JP 2007068500 A JP2007068500 A JP 2007068500A JP 4908275 B2 JP4908275 B2 JP 4908275B2
Authority
JP
Japan
Prior art keywords
zinc oxide
substrate
zinc
complex
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007068500A
Other languages
Japanese (ja)
Other versions
JP2008229412A (en
Inventor
浩一 羽賀
巧 角田
千尋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007068500A priority Critical patent/JP4908275B2/en
Publication of JP2008229412A publication Critical patent/JP2008229412A/en
Application granted granted Critical
Publication of JP4908275B2 publication Critical patent/JP4908275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光触媒である細線状の酸化亜鉛微細結晶を接着した基板、およびその製造方法に関する。   The present invention relates to a substrate to which fine wire-like zinc oxide fine crystals as photocatalysts are bonded, and a method for producing the same.

近年、有害物質により地球環境の悪化が懸念され、環境を改善させる材料として光触媒の研究が積極的に進められている。光触媒の原料としては、主に多孔性構造を有する酸化チタン微結晶が使用されている。しかし、酸化チタン微結晶には、近紫外線には応答するが太陽光や室内光などの可視光線には応答しない;高温生成を必要とする;高価である;といった欠点があるため、新たな触媒が求められている。そしてこのような欠点を有しない触媒として、酸化亜鉛(ZnO)光触媒が実用化されつつある。酸化亜鉛光触媒は、可視光線応答型であり、低温でかつ比較的短い工程で生成することができ、安価であり、また接触面積が大きいため高い活性が期待できるため、広範囲での用途を期待することができる。このような酸化亜鉛光触媒のうち、特定の配位子を含む亜鉛錯体を加熱昇華させた後冷却することにより細線状の析出物を得;それを高温水蒸気分解し;熱処理することにより得られるウルツ鉱型構造を有する細線状の酸化亜鉛微細結晶が特に優れた光触媒活性を有することが認められている(特許文献1および非特許文献1)。   In recent years, there are concerns about the deterioration of the global environment due to harmful substances, and research on photocatalysts as materials for improving the environment has been actively promoted. As a raw material for the photocatalyst, titanium oxide microcrystals having a porous structure are mainly used. However, titanium oxide microcrystals respond to near-ultraviolet rays but do not respond to visible light such as sunlight and room light; require high-temperature generation; are expensive; Is required. And as a catalyst which does not have such a fault, the zinc oxide (ZnO) photocatalyst is being put into practical use. Zinc oxide photocatalyst is a visible light responsive type, can be produced at a low temperature and in a relatively short process, is inexpensive, and can be expected to have high activity due to its large contact area. be able to. Among such zinc oxide photocatalysts, a zinc complex containing a specific ligand is heated and sublimated, and then cooled to obtain a fine wire-like precipitate; it is subjected to high-temperature steam decomposition; and wurtz obtained by heat treatment It has been recognized that fine zinc oxide fine crystals having an ore structure have particularly excellent photocatalytic activity (Patent Document 1 and Non-Patent Document 1).

このような細線状の酸化亜鉛微細結晶を幅広い分野で光触媒として実用化するためには、基板に接着して安定化する必要があるが、細線状の酸化亜鉛微細結晶を通常の接着剤を用いて基板に接着しようとすると、細線状の酸化亜鉛微細結晶が接着剤層に沈んでしまう、または細線状の酸化亜鉛微細結晶が接着剤によってコーティングされてしまい、光触媒活性が低下してしまうといった問題があった。このため、接着剤を使用せずに細線状の酸化亜鉛微細結晶を基板に安定に接着する方法および細線状の酸化亜鉛微細結晶を安定に接着した基板の開発が求められていた。   In order to put these fine wire-like zinc oxide fine crystals into practical use as photocatalysts in a wide range of fields, it is necessary to stabilize them by bonding them to the substrate. When trying to adhere to the substrate, the fine zinc oxide fine crystals sink into the adhesive layer, or the fine zinc oxide fine crystals are coated with the adhesive, and the photocatalytic activity decreases. was there. For this reason, there has been a demand for the development of a method for stably adhering fine wire-shaped zinc oxide fine crystals to a substrate without using an adhesive and a substrate in which fine wire-like zinc oxide fine crystals are stably adhered.

一方、低い融点を有し、水分、空気および熱に対して優れた安定性を有するために薄膜形成に適した、亜鉛などの金属錯体としては、各種の錯体が開発されている(特許文献2)が、これらはCVD法による金属薄膜形成に適した金属錯体として開発されたものである。   On the other hand, various complexes have been developed as metal complexes such as zinc, which have a low melting point and have excellent stability against moisture, air and heat, and are suitable for thin film formation (Patent Document 2). However, these were developed as metal complexes suitable for forming a metal thin film by the CVD method.

特開2003−238119号公報JP 2003-238119 A WO2005/087697号パンフレットWO2005 / 087697 pamphlet 応用部物理学会発表予稿集2006年3月「ナノ単結晶ZnO集合体によるマイクロワイヤを用いた可視光動作光触媒」Proceedings of the Physics Society of Applied Sciences March 2006 “Visible light-activated photocatalyst using nanowires with nano-single crystal ZnO aggregates”

本発明者らは、上記の問題を解決すべく鋭意研究を行った結果、その表面に液状の亜鉛錯体の薄膜を介してウルツ鉱構造の細線状の酸化亜鉛微細結晶を有する基板を高温水蒸気分解し;そして熱処理することにより、接着剤を使用しなくても細線状の酸化亜鉛微細結晶が酸化亜鉛薄膜を介して基板に一体化して安定に接着されるとともに、基板に接着された細線状の酸化亜鉛微細結晶が、酸化亜鉛微細結晶単独と同等またはそれ以上の光触媒活性を有していることを見出して、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have conducted a high-temperature steam decomposition of a substrate having fine wrinkled zinc oxide fine crystals of a wurtzite structure on its surface through a thin film of a liquid zinc complex. And by heat treatment, the fine zinc oxide fine crystals are integrated and stably bonded to the substrate through the zinc oxide thin film without using an adhesive, and the fine wire The present inventors have found that zinc oxide fine crystals have a photocatalytic activity equivalent to or higher than that of zinc oxide fine crystals alone, and have completed the present invention.

本発明は、細線状の酸化亜鉛微細結晶を、酸化亜鉛薄膜を介して接着した基板に関する。本発明は、また当該基板の製造方法であって、その表面に液状の亜鉛錯体の薄膜を介して細線状の酸化亜鉛微細結晶を有する基板を高温水蒸気分解する工程;および熱処理する工程を含む方法に関する。   The present invention relates to a substrate in which fine zinc oxide fine crystals are bonded via a zinc oxide thin film. The present invention is also a method for producing the substrate, comprising a step of subjecting a substrate having fine zinc oxide fine crystals on its surface to a high temperature steam decomposition through a thin film of a liquid zinc complex; About.

本発明により、接着剤を使用しなくても細線状の酸化亜鉛微細結晶が酸化亜鉛薄膜を介して一体となって安定に接着されており、酸化亜鉛微細結晶単独と同等またはそれ以上の光触媒活性を有している基板を得ることができる。   According to the present invention, fine zinc oxide fine crystals are integrally and stably bonded through a zinc oxide thin film without using an adhesive, and have a photocatalytic activity equivalent to or higher than that of zinc oxide fine crystals alone. Can be obtained.

細線状の酸化亜鉛微細結晶を、酸化亜鉛薄膜を介して接着した基板について
本発明の細線状の酸化亜鉛微細結晶を、酸化亜鉛薄膜を介して接着した基板において、細線状の酸化亜鉛微細結晶とは、ウルツ鉱型構造を有する細線状の酸化亜鉛の微細結晶である。
Substrate with fine wire-like zinc oxide fine crystal bonded via a zinc oxide thin film In a substrate with the fine wire-like zinc oxide fine crystal of the present invention bonded via a zinc oxide thin film, Is a fine crystalline zinc oxide having a wurtzite structure.

このウルツ鉱型構造を有する細線状の酸化亜鉛の微細結晶は、以降に記載する方法によって得ることができる。   Fine wire-like zinc oxide fine crystals having this wurtzite structure can be obtained by the method described below.

本発明の基板において、基板とは、通常、光触媒を固定するために使用される基板であれば、任意の基板であることができる。具体的には、ガラス基板、シリコン基板、GaAs基板、MgO基板、サファイア基板、ZnO基板、CdS基板などを用いることができる。これらの基板としては、アモルファス、多結晶、単結晶のものがあるが、目的に応じて選択することができる。   In the substrate of the present invention, the substrate can be any substrate as long as it is usually used for fixing a photocatalyst. Specifically, a glass substrate, a silicon substrate, a GaAs substrate, an MgO substrate, a sapphire substrate, a ZnO substrate, a CdS substrate, or the like can be used. These substrates include amorphous, polycrystalline, and single crystal substrates, and can be selected according to the purpose.

本発明の基板において、上記の細線状の酸化亜鉛微細結晶は、上記基板に、酸化亜鉛薄膜を介して一体化して接着している。この酸化亜鉛薄膜は、細線状の酸化亜鉛微細結晶と同等のウルツ鉱型構造を有する微細結晶である。この酸化亜鉛薄膜も、以降に記載する方法によって基板上に形成することができる。   In the substrate of the present invention, the fine zinc oxide fine crystals are integrally bonded to the substrate via a zinc oxide thin film. This zinc oxide thin film is a fine crystal having a wurtzite structure equivalent to a fine zinc oxide fine crystal. This zinc oxide thin film can also be formed on the substrate by the method described below.

細線状の酸化亜鉛微細結晶を接着した基板の製造方法について
本発明の細線状の酸化亜鉛微細結晶を、酸化亜鉛薄膜を介して接着した基板は、その表面に液状の亜鉛錯体の薄膜を介して細線状の酸化亜鉛微細結晶を有する基板を高温水蒸気分解する工程;および熱処理する工程を含む方法によって製造することができる。
About the manufacturing method of the board | substrate which adhere | attached the fine zinc oxide fine crystal The board | substrate which adhere | attached the fine zinc oxide fine crystal of this invention through the zinc oxide thin film was carried out through the thin film of a liquid zinc complex on the surface. It can be manufactured by a method including a step of subjecting a substrate having fine zinc oxide fine crystals to high-temperature steam decomposition; and a step of heat treatment.

1)細線状の酸化亜鉛微細結晶
本方法において用いる細線状の酸化亜鉛微細結晶は、ウルツ鉱型構造を有する細線状の酸化亜鉛の結晶であれば、いかなる方法を用いて製造したものも使用することができるが、例えば上述の特許文献1に記載された方法により製造することができる。
1) Fine zinc oxide fine crystals Fine zinc oxide fine crystals used in the present method may be produced by any method as long as they are fine zinc oxide crystals having a wurtzite structure. For example, it can be manufactured by the method described in Patent Document 1 described above.

具体的には、昇華性を有する有機亜鉛錯体、例えばAcac(アセチルアセトン基)、DPM(ジピバロイルメタネート基)、HFA(ヘキサフルオロ基)、i−PrCp(イソプロピルシクロペンタジエニル基)がその価数の数だけ亜鉛イオンに配位結合した錯体を、酸化ガスまたは酸素元素を含む雰囲気ガス中、減圧、常圧又は加圧下、亜鉛錯体が昇華する温度、例えば約120℃〜150℃、好ましくは130℃で加熱昇華させた後、有機亜鉛錯体がその昇華点以下の温度となるまで雰囲気を冷却して細線状の析出物を得る。ついで得られた細線状の析出物を水蒸気を含む雰囲気ガス中、約100℃〜220℃で酸化処理することにより高温水蒸気分解させる。ついで、酸素ガスまたは酸素元素を含むガスのうち少なくとも一種類のガスが含まれた雰囲気ガス中、減圧、常圧又は加圧下、例えば100Pa〜100kPaの圧力下、約400〜1000℃、好ましくは800℃で、1〜2時間、細線状の析出物を再加熱処理する。再加熱することにより、析出物が結晶化して、ウルツ鉱型構造を有する細線状の酸化亜鉛微細結晶が得られる。   Specifically, sublimable organozinc complexes such as Acac (acetylacetone group), DPM (dipivaloylmethanate group), HFA (hexafluoro group), i-PrCp (isopropylcyclopentadienyl group) The temperature at which the zinc complex sublimates under reduced pressure, normal pressure, or increased pressure in an atmosphere containing an oxidizing gas or an oxygen element, for example, about 120 ° C. to 150 ° C. Preferably, after heating and sublimation at 130 ° C., the atmosphere is cooled until the organozinc complex has a temperature lower than its sublimation point to obtain a fine-line precipitate. Subsequently, the thin wire-like precipitate obtained is subjected to high-temperature steam decomposition by oxidizing at about 100 ° C. to 220 ° C. in an atmosphere gas containing steam. Next, in an atmospheric gas containing at least one kind of gas containing oxygen gas or oxygen element, under reduced pressure, normal pressure or increased pressure, for example, at a pressure of 100 Pa to 100 kPa, about 400 to 1000 ° C., preferably 800 The fine wire-like precipitate is reheated at 1 ° C. for 1 to 2 hours. By reheating, the precipitate crystallizes, and fine zinc oxide fine crystals having a wurtzite structure are obtained.

ここで用いる昇華性を有する有機亜鉛錯体のなかでは、式:   Among the organozinc complexes having sublimation properties used here, the formula:

で示される、アセチルアセトナト基(Acac)と亜鉛とが形成する錯体を好ましく用いることができる。 The complex which an acetylacetonato group (Acac) and zinc which are shown by these forms can be used preferably.

2)液状の亜鉛錯体
本発明の方法において用いる液状の亜鉛錯体は、少なくとも炭素原子、水素原子および酸素原子を含んでなる、亜鉛原子と錯体を形成しうる配位子と、亜鉛原子とが形成した錯体であって、常温、常圧で液状である錯体である。低い融点を有するため常温、常圧で液状であって、水分、空気及び熱に対して優れた安定性を有するため、取り扱いも容易であり、基板への塗布も容易に行うことができる。このような配位子としては、アルコキシアルキルメチル基を有するβ−ジケトナト配位子を好ましく用いることができる。このアルコキシアルキルメチル基を有するβ−ジケトナト配位子は、式:
2) Liquid zinc complex The liquid zinc complex used in the method of the present invention is formed of a zinc atom and a ligand capable of forming a complex with a zinc atom, comprising at least a carbon atom, a hydrogen atom and an oxygen atom. A complex which is liquid at normal temperature and pressure. Since it has a low melting point, it is liquid at normal temperature and pressure, and has excellent stability against moisture, air and heat, so it is easy to handle and can be easily applied to a substrate. As such a ligand, a β-diketonato ligand having an alkoxyalkylmethyl group can be preferably used. This β-diketonato ligand having an alkoxyalkylmethyl group has the formula:

(式中、Xは、式: (Where X is the formula:

(式中、RaおよびRbは、それぞれ独立に炭素原子数1〜5の直鎖もしくは分岐鎖状のアルキル基を表す)で表されるアルコキシアルキルメチル基または炭素原子数1〜5の直鎖もしくは分岐鎖状のアルキル基を表し;
Yは、式:
(Wherein, Ra and Rb each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms) or a straight chain having 1 to 5 carbon atoms or Represents a branched alkyl group;
Y is the formula:

(式中、Ra′およびRb′は、それぞれ独立に炭素原子数1〜5の直鎖もしくは分岐鎖状のアルキル基を表す)で表されるアルコキシアルキルメチル基を表し;
Zは、水素原子または炭素原子数1〜4の直鎖もしくは分岐鎖状のアルキル基を表す)
で示される配位子である。
(Wherein, Ra ′ and Rb ′ each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms);
Z represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms)
It is a ligand shown by.

このようなジケトナト配位子が亜鉛原子と形成する亜鉛錯体は、下記式:   A zinc complex formed by such a diketonato ligand with a zinc atom has the following formula:

(式中、Xは、式: (Where X is the formula:

(式中、RaおよびRbは、それぞれ独立に炭素原子数1〜5の直鎖もしくは分岐鎖状のアルキル基を表す)で表されるアルコキシアルキルメチル基または炭素原子数1〜5の直鎖もしくは分岐鎖状のアルキル基を表し;
Yは、式:
(Wherein, Ra and Rb each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms) or a straight chain having 1 to 5 carbon atoms or Represents a branched alkyl group;
Y is the formula:

(式中、Ra′およびRb′は、それぞれ独立に炭素原子数1〜5の直鎖もしくは分岐鎖状のアルキル基を表す)で表されるアルコキシアルキルメチル基を表し;
Zは、水素原子または炭素原子数1〜4の直鎖もしくは分岐鎖状のアルキル基を表す)
で示される亜鉛錯体である。
(Wherein, Ra ′ and Rb ′ each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms);
Z represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms)
It is a zinc complex shown by these.

このような亜鉛錯体としては、具体的には以下の亜鉛錯体を好ましく用いることができる。   Specifically, as such a zinc complex, the following zinc complexes can be preferably used.

上記の亜鉛錯体は、WO2005/087697号に具体的に記載されており、WO2005/087697号に記載の方法で製造することができる。   The above zinc complex is specifically described in WO2005 / 087697, and can be produced by the method described in WO2005 / 087697.

3)細線状の酸化亜鉛微細結晶を、酸化亜鉛薄膜を介して接着した基板の製造方法
i)酸化亜鉛微細結晶の基板への接着
本発明の細線状の酸化亜鉛微細結晶を、酸化亜鉛薄膜を介して接着した基板を製造するには、まず基板上に、上記の液状の亜鉛錯体を塗布するなどの方法により基板上に液状の亜鉛錯体の薄膜を形成する。液状の亜鉛錯体は、それ自体が液状であるため、溶媒を使用せずにそのまま用いることができる。しかしながら、溶媒を使用する場合、溶媒としては、通常のあらゆる有機溶剤が使用でき、例えば、ヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン等の脂肪族炭化水素類;トルエン等の芳香族炭化水素類;テトラヒドロフラン、ジブチルエーテル等のエーテル類;アセトニトリル等のニトリル類;酢酸エチル等のエステル類;アセトン、メチルエチルケトン等のケトン類等が挙げられる。またその際、溶媒を用いる溶液濃度は、0.01モル/L以上が好ましい。使用基板上に形成する液状の酸化亜鉛錯体の薄膜の厚さは、好ましくは0.5〜500μm、特に好ましくは10〜100μmである。また、塗布する際の温度は、常温〜60℃の間であるのが望ましい。塗布に際しては、任意の塗布方法を用いることができるが、例えば少量の液状亜鉛錯体を基板上に置き、ローラーなどで伸ばすことによって塗布することができる。次いで上記の酸化亜鉛微細結晶を散布または飛散させ、乾燥させる。酸化亜鉛微細結晶の量は、目的に応じて適宜選択することができるが、好ましくは基板表面1cm2当り0.01〜1g/cm2、より好ましくは基板表面1cm2当り0.01〜0.5g/cm2である。このようにすることによって、基板表面に液状の亜鉛錯体の薄膜を介して細線状の酸化亜鉛微細結晶を有する基板を得ることができる。
3) Substrate manufacturing method in which fine zinc oxide fine crystals are bonded via a zinc oxide thin film i) Adhesion of zinc oxide fine crystals to a substrate The fine zinc oxide fine crystals of the present invention are bonded to a zinc oxide thin film. In order to manufacture a substrate bonded via the above method, a thin film of a liquid zinc complex is first formed on the substrate by a method such as coating the liquid zinc complex. Since the liquid zinc complex itself is liquid, it can be used as it is without using a solvent. However, when a solvent is used, any ordinary organic solvent can be used as the solvent, for example, aliphatic hydrocarbons such as hexane, methylcyclohexane, ethylcyclohexane, and octane; aromatic hydrocarbons such as toluene; tetrahydrofuran And ethers such as dibutyl ether; nitriles such as acetonitrile; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone. At that time, the concentration of the solution using the solvent is preferably 0.01 mol / L or more. The thickness of the liquid zinc oxide complex thin film formed on the substrate used is preferably 0.5 to 500 μm, particularly preferably 10 to 100 μm. Moreover, as for the temperature at the time of application | coating, it is desirable that it is between normal temperature-60 degreeC. For coating, any coating method can be used. For example, the coating can be performed by placing a small amount of a liquid zinc complex on a substrate and stretching it with a roller or the like. Next, the zinc oxide fine crystals are sprayed or scattered and dried. The amount of the zinc oxide fine crystals can be appropriately selected depending on the intended purpose, preferably the substrate surface 1 cm 2 per 0.01 to 1 g / cm 2, more preferably the substrate surface 1 cm 2 per 0.01 to 0. 5 g / cm 2 . By doing in this way, the board | substrate which has a thin zinc oxide fine crystal on the surface of a board | substrate through the thin film of a liquid zinc complex can be obtained.

ii)高温水蒸気分解
ついで、上記で得られた基板を、高温水蒸気分解する工程に付す。具体的には、その表面に酸化亜鉛微細結晶を有する基板を、水蒸気を含む雰囲気ガス中、約100℃〜220℃で酸化処理することにより、亜鉛錯体を高温水蒸気分解させる。
ii) High-temperature steam decomposition Next, the substrate obtained above is subjected to a process of high-temperature steam decomposition. Specifically, the zinc complex is subjected to high-temperature steam decomposition by oxidizing a substrate having zinc oxide fine crystals on the surface thereof in an atmosphere gas containing steam at about 100 ° C. to 220 ° C.

iii)熱処理
ついで、高温水蒸気分解後の基板を、酸素ガスまたは酸素元素を含むガスのうち少なくとも一種類のガスが含まれた雰囲気ガス中、減圧、常圧または加圧下、例えば100Pa〜100kPaの圧力下、約400〜1000℃、好ましくは約800℃で、1〜2時間加熱処理する。加熱処理することにより、亜鉛錯体が、酸化亜鉛微細結晶に変化して、細線状の酸化亜鉛結晶と一体となって基板に固定される。
iii) Heat treatment Next, the substrate after the high-temperature steam decomposition is performed under reduced pressure, normal pressure or increased pressure in an atmospheric gas containing at least one kind of gas including oxygen gas or oxygen element, for example, a pressure of 100 Pa to 100 kPa. Then, heat treatment is performed at about 400 to 1000 ° C., preferably about 800 ° C. for 1 to 2 hours. By performing the heat treatment, the zinc complex changes into zinc oxide fine crystals, and is fixed to the substrate together with the fine zinc oxide crystals.

上記の方法で製造することができる本発明の細線状の酸化亜鉛微細結晶を、酸化亜鉛薄膜を介して接着した基板では、接着剤を使用しなくても細線状の酸化亜鉛微細結晶が酸化亜鉛薄膜を介して一体となって安定に接着されており、また酸化亜鉛微細結晶単独と同等またはそれ以上の光触媒活性が示される。そして可視光線に応答して高い光触媒活性を示す本発明の基板は、空気浄化フィルター、高速道路の壁面、建築物の外壁、光源の周囲に用いる笠などの材料、内装材など広い範囲の用途に用いることができる。   In the substrate in which the fine zinc oxide fine crystals of the present invention that can be produced by the above-described method are bonded via a zinc oxide thin film, the fine zinc oxide fine crystals are zinc oxide without using an adhesive. It is stably bonded together through a thin film, and exhibits photocatalytic activity equivalent to or higher than that of zinc oxide fine crystals alone. The substrate of the present invention exhibiting high photocatalytic activity in response to visible light is used in a wide range of applications such as air purification filters, highway wall surfaces, building outer walls, shades used around light sources, interior materials, etc. Can be used.

以下に本発明を実施例により説明する。   Hereinafter, the present invention will be described by way of examples.

〔製造例1〕
酸化亜鉛微細結晶の製造
製造例1では、図1に示す酸化亜鉛結晶体作成装置および図2に示す高温酸化炉を用いて、酸化亜鉛微細結晶を製造した。
[Production Example 1]
Production of Fine Zinc Oxide Crystal In Production Example 1, zinc oxide fine crystals were produced using the zinc oxide crystal production apparatus shown in FIG. 1 and the high-temperature oxidation furnace shown in FIG.

図1に示す酸化亜鉛結晶体作成装置は、ヒーターで加熱した原料を冷却ファンで冷却する構造になっており、シリンダー内がバキュームポンプで減圧されるため、原料が昇華しやすい。   The zinc oxide crystal production apparatus shown in FIG. 1 has a structure in which a raw material heated by a heater is cooled by a cooling fan, and since the inside of the cylinder is decompressed by a vacuum pump, the raw material is easily sublimated.

市販のビス(アセチルアセトナト)亜鉛(Zn(C5722)0.4g(日本化学産業株式会社)を酸化亜鉛結晶体作成装置のシリンダー内に置き、酸素雰囲気下、減圧下、ヒーターを用いて130℃に加熱することにより、アセチルアセトン亜鉛を昇華させた。ついで窒素ガスを200ml/分の流量で導入することにより、昇華したアセチルアセトン亜鉛を、冷却ファンにより冷却された冷却部へ導き、そこで、昇華したアセチルアセトン亜鉛を析出させた。この工程を1時間連続することにより、アセチルアセトン亜鉛全量を昇華させることができ、冷却部には、針状の析出物が生成していた。 0.4 g of commercially available bis (acetylacetonato) zinc (Zn (C 5 H 7 O 2 ) 2 ) (Nippon Chemical Industry Co., Ltd.) is placed in the cylinder of the zinc oxide crystal production apparatus, and the pressure is reduced under reduced pressure in an oxygen atmosphere. The zinc acetylacetone was sublimated by heating to 130 ° C. using a heater. Next, nitrogen gas was introduced at a flow rate of 200 ml / min to introduce sublimated acetylacetone zinc to a cooling section cooled by a cooling fan, where sublimated acetylacetone zinc was deposited. By continuing this process for 1 hour, the total amount of acetylacetone zinc can be sublimated, and needle-like precipitates were generated in the cooling section.

次にヒーターを冷却部に取り付け、水蒸気を含む雰囲気ガス中、220℃で1時間加熱した。   Next, a heater was attached to the cooling part and heated at 220 ° C. for 1 hour in an atmospheric gas containing water vapor.

シリンダーの内部温度が室温、常圧に戻ってから、シリンダー内の試料を、石英製のボートに盛り、高温酸化炉へ移した。酸素雰囲気下、常圧のまま800℃で1時間加熱した。   After the internal temperature of the cylinder returned to room temperature and normal pressure, the sample in the cylinder was placed in a quartz boat and transferred to a high temperature oxidation furnace. It heated at 800 degreeC with the normal pressure in oxygen atmosphere for 1 hour.

その結果、長さ5〜10mmほどの針状の微細結晶0.05〜0.2gが得られた。その拡大写真を図3に示す。   As a result, 0.05 to 0.2 g of acicular fine crystals having a length of about 5 to 10 mm was obtained. The enlarged photograph is shown in FIG.

得られた微細結晶について、Cu−KαのX線源を用いたXRD測定により結晶体の構造解析を行った。測定には、Philips社製粉末X線回折装置を使用した。その測定結果を図4に示す。   About the obtained fine crystal, the structure analysis of the crystal body was performed by the XRD measurement using the X-ray source of Cu-K (alpha). For the measurement, a powder X-ray diffractometer manufactured by Philips was used. The measurement results are shown in FIG.

図4から明らかなように、(1010)、(0002)、(1011)、(1012)、(1120)に回折ピークが認められたので、得られた結晶体が酸化亜鉛(ZnO)微細結晶であることが確認された。   As is clear from FIG. 4, since diffraction peaks were observed in (1010), (0002), (1011), (1012), and (1120), the obtained crystal was a zinc oxide (ZnO) fine crystal. It was confirmed that there was.

〔製造例2〕
製造例2では、液状の亜鉛錯体であるビス(2−メトキシ−6−メチル−3,5−ヘプタンジオナト)亜鉛(II)を製造した。
[Production Example 2]
In Production Example 2, bis (2-methoxy-6-methyl-3,5-heptanedionato) zinc (II), which is a liquid zinc complex, was produced.

撹拌装置、温度計および滴下漏斗を備えた内容積500mlのフラスコに、ナトリウムメトキシド100.6g(1862mmol)およびヘキサン300mlを加えた。次いで、氷冷下、2−ブロモプロピオン酸メチル300.3g(1798mmol)を緩やかに滴下した後、撹拌しながら2時間反応させた。反応終了後、氷冷下、水300mlを添加し、有機層を分液した。その後、有機層を水で洗浄した後、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を減圧蒸留(74℃、12236Pa)し、無色液体として2−メトキシプロピオン酸メチル97.0gを得た(単離収率:46%)。   Sodium methoxide (100.6 g, 1862 mmol) and hexane (300 ml) were added to a 500-ml flask equipped with a stirrer, thermometer and dropping funnel. Next, 300.3 g (1798 mmol) of methyl 2-bromopropionate was slowly added dropwise under ice cooling, and the mixture was reacted for 2 hours with stirring. After completion of the reaction, 300 ml of water was added under ice cooling, and the organic layer was separated. Thereafter, the organic layer was washed with water and then dried over anhydrous sodium sulfate. After filtration, the filtrate was distilled under reduced pressure (74 ° C., 12236 Pa) to obtain 97.0 g of methyl 2-methoxypropionate as a colorless liquid (isolation yield: 46%).

撹拌装置、温度計および滴下漏斗を備えた内容積200mlのフラスコに、ナトリウムアミド5.15g(132mmol)を加え、反応系内をアルゴンで置換した後、トルエン80mlを加えた。次いで、冷却下、3−メチル−2−ブタノン12.0g(139.3mmol)を緩やかに滴下して15分間撹拌した後、上記で調製した2−メトキシプロピオン酸メチル5.65g(47.8mmol)を滴下して、撹拌しながら30分間反応させた。反応終了後、氷冷下、水50mlを加えた後、水層を分液し、酢酸で中和した。水層をエーテルで抽出した後、エーテル抽出液を水で洗浄し、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を濃縮した後、濃縮物を減圧蒸留(41℃、27Pa)し、無色液体として、2−メトキシ−6−メチル−3,5−ヘプタンジオン4.25gを得た(単離収率:52%)。   Sodium amide (5.15 g, 132 mmol) was added to a 200-ml flask equipped with a stirrer, thermometer and dropping funnel, and the reaction system was purged with argon, and then 80 ml of toluene was added. Then, under cooling, 12.0 g (139.3 mmol) of 3-methyl-2-butanone was slowly added dropwise and stirred for 15 minutes, and then 5.65 g (47.8 mmol) of methyl 2-methoxypropionate prepared above. Was added dropwise and reacted for 30 minutes with stirring. After completion of the reaction, 50 ml of water was added under ice cooling, and the aqueous layer was separated and neutralized with acetic acid. After the aqueous layer was extracted with ether, the ether extract was washed with water and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the concentrate was distilled under reduced pressure (41 ° C., 27 Pa) to obtain 4.25 g of 2-methoxy-6-methyl-3,5-heptanedione as a colorless liquid (isolated product). (Rate: 52%).

撹拌装置、温度計および滴下漏斗を備えた内容積50mlのフラスコに、28%ナトリウムメトキシドのメタノール溶液6.56g(34.0mmol)を加え、氷冷下、上記で合成した2−メトキシ−6−メチル−3,5−ヘプタンジオン6.00g(34.8mmol)を緩やかに滴下し、5分間撹拌した。次いで、塩化亜鉛(II)2.26g(16.6mmol)をメタノール20mlに溶解させた溶液を緩やかに滴下し、氷冷下、撹拌しながら30分間反応させた。反応終了後、反応液から減圧下でメタノールを留去した。その後、ヘキサン20mlおよび水20mlを加え、有機層を分液した後、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を濃縮した後、濃縮物を減圧蒸留(160℃、27Pa)し、粘性のある黄色液体として、ビス(2−メトキシ−6−メチル−3,5−ヘプタンジオナト)亜鉛(II)4.91gを得た(単離収率:73%)。   To a 50-ml flask equipped with a stirrer, a thermometer and a dropping funnel was added 6.56 g (34.0 mmol) of a 28% sodium methoxide methanol solution, and the above synthesized 2-methoxy-6 under ice-cooling. -6.03 g (34.8 mmol) of methyl-3,5-heptanedione was slowly added dropwise and stirred for 5 minutes. Next, a solution prepared by dissolving 2.26 g (16.6 mmol) of zinc (II) in 20 ml of methanol was slowly added dropwise and reacted for 30 minutes with stirring under ice cooling. After completion of the reaction, methanol was distilled off from the reaction solution under reduced pressure. Thereafter, 20 ml of hexane and 20 ml of water were added, and the organic layer was separated and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and then the concentrate was distilled under reduced pressure (160 ° C., 27 Pa) to give bis (2-methoxy-6-methyl-3,5-heptanedionato) zinc (II) 4 as a viscous yellow liquid. .91 g was obtained (isolation yield: 73%).

ビス(2−メトキシ−6−メチル−3,5−ヘプタンジオナト)亜鉛(II)は、以下の物性値を示した。
IR(neat(cm-1)): 2972, 2932, 1582, 1513, 1432, 1333, 1211, 1118, 912, 805, 558(β−ジケトン特有のピーク(1607cm-1)が消失し、β−ジケトナト特有のピーク(1582cm-1)が観察された。)
元素分析(C18306Zn):炭素53.1%、水素7.45%、亜鉛16%(理論値:炭素53.0%、水素7.41%、亜鉛16.6%)
MS(m/e):641, 406
Bis (2-methoxy-6-methyl-3,5-heptanedionato) zinc (II) showed the following physical properties.
IR (neat (cm -1 )): 2972, 2932, 1582, 1513, 1432, 1333, 1211, 1118, 912, 805, 558 (β-diketone-specific peak (1607 cm -1 ) disappears, A unique peak (1582 cm -1 ) was observed.)
Elemental analysis (C 18 H 30 O 6 Zn ): Carbon 53.1%, hydrogen 7.45%, zinc 16% (theoretical: carbon 53.0%, hydrogen 7.41%, 16.6% zinc)
MS (m / e): 641, 406

MSの結果より、この亜鉛錯体が、二量体構造であることが推定された。   From the result of MS, it was estimated that this zinc complex has a dimer structure.

〔実施例1〕
実施例1では、製造例1で得た酸化亜鉛微細結晶を、製造例2で得た液状の亜鉛錯体を用いてガラス基板に接着して、本発明の基板を製造した。また比較例としては、酸化亜鉛微細結晶を、無機接着剤を使用して基板に接着させた。
[Example 1]
In Example 1, the zinc oxide fine crystal obtained in Production Example 1 was bonded to a glass substrate using the liquid zinc complex obtained in Production Example 2 to produce a substrate of the present invention. As a comparative example, zinc oxide fine crystals were bonded to a substrate using an inorganic adhesive.

製造例2で製造した、液状の亜鉛錯体である(ビス(2−メトキシ−6−メチル−3,5−ヘプタンジオナト)亜鉛(II)を原液のまま、Pyrexガラス基板上に、2種類の膜厚、0.01mmおよび0.1mmとなるように、ローラーで塗布した。ついで、製造例1で得た酸化亜鉛微細結晶を基板表面1cm2当たり0.5g散布し、乾燥させた。この基板を、水蒸気を含む雰囲気ガス中、約220℃で酸化処理した。次に酸素ガス中、常圧、800℃で、1時間加熱処理して、本発明の細線状の酸化亜鉛微細結晶を接着した基板を得た。 The liquid zinc complex (bis (2-methoxy-6-methyl-3,5-heptanedionato) zinc (II)) produced in Production Example 2 was used as a stock solution on a Pyrex glass substrate with two kinds of film thicknesses. The zinc oxide fine crystals obtained in Production Example 1 were sprayed in an amount of 0.5 g per 1 cm 2 of the substrate surface and dried. Oxidation treatment was performed at about 220 ° C. in an atmospheric gas containing water vapor, and then the substrate bonded with the fine zinc oxide fine crystals of the present invention by heat treatment in oxygen gas at normal pressure and 800 ° C. for 1 hour. Obtained.

〔比較例1〕
比較例として、Pyrexガラス基板上に、無機アルミナ系接着剤Al23(ニラコ社製)を、膜厚0.01mmまたは0.1mmでローラーにより塗布し、製造例1で得た酸化亜鉛微細結晶を基板表面1cm2当たり0.1g散布し、乾燥させて、酸化亜鉛微細結晶を接着させた基板を得た。
[Comparative Example 1]
As a comparative example, an inorganic alumina adhesive Al 2 O 3 (manufactured by Niraco) was applied on a Pyrex glass substrate with a roller with a film thickness of 0.01 mm or 0.1 mm, and the fine zinc oxide obtained in Production Example 1 was used. Crystals were dispersed in an amount of 0.1 g per 1 cm 2 of the substrate surface and dried to obtain a substrate on which fine zinc oxide crystals were adhered.

〔試験例1〕
試験例1では、実施例1および比較例1で製造した基板について、光触媒活性を検討した。
[Test Example 1]
In Test Example 1, the photocatalytic activity of the substrates produced in Example 1 and Comparative Example 1 was examined.

実施例1および比較例1で製造した基板、ならびに基板に接着していない酸化亜鉛微細結晶のみについても、Cu−KαのX線源を用いて、XRD強度を測定した。その結果を図5および図6に示す。また、本発明の細線状の酸化亜鉛微細結晶を接着した基板については、20kV100mAの電子線源を用いて、その接着面のSEM図を撮影した。SEM図を図7に示す。   The XRD intensity was also measured using the Cu-Kα X-ray source for only the substrate manufactured in Example 1 and Comparative Example 1 and only the zinc oxide fine crystals not bonded to the substrate. The results are shown in FIG. 5 and FIG. Moreover, about the board | substrate which adhere | attached the fine zinc oxide fine crystal of this invention, the SEM figure of the adhesion surface was image | photographed using the electron beam source of 20 kV100mA. An SEM diagram is shown in FIG.

図5から明らかなように、本発明の細線状の酸化亜鉛微細結晶を接着した基板は、酸化亜鉛微細結晶体のみについてと同一の回折角(1010)、(0002)、(1011)、(1012)においてピークを示したので、本発明の基板において用いた液状の亜鉛錯体もまた酸化亜鉛に変化したことが示された。また、試験したいずれの濃度(図5中の表記H:亜鉛錯体原液、表記L:有機溶媒に希釈した亜鉛錯体溶液)、膜厚の亜鉛錯体を用いた場合であっても、本発明の細線状の酸化亜鉛微細結晶を接着した基板は、優れた光触媒活性を示した。特に亜鉛錯体を原液のまま0.01mmまたは0.1mmの膜厚で塗布して酸化亜鉛微細結晶を接着した場合では、酸化亜鉛微細結晶のみを用いた場合よりも優れた光触媒活性が示された。このことは、液状の亜鉛錯体を用いて酸化亜鉛微細結晶を接着することにより、液状の亜鉛錯体が酸化亜鉛微細結晶に変化すると共に、細線状の酸化亜鉛微細結晶と一体化し、一体化した酸化亜鉛が優れた光触媒活性を有することを示している。   As is clear from FIG. 5, the substrate to which the fine zinc oxide fine crystal of the present invention is bonded has the same diffraction angles (1010), (0002), (1011), (1012) as those of the zinc oxide fine crystal alone. ), The liquid zinc complex used in the substrate of the present invention was also changed to zinc oxide. Further, the thin wire of the present invention can be used in any of the tested concentrations (notation H in FIG. 5: zinc complex stock solution, notation L: zinc complex solution diluted in an organic solvent) and a zinc complex having a film thickness. The substrate to which the zinc oxide fine crystals were adhered showed excellent photocatalytic activity. In particular, when the zinc complex was applied as a stock solution in a thickness of 0.01 mm or 0.1 mm and the zinc oxide fine crystals were adhered, the photocatalytic activity superior to the case of using only the zinc oxide fine crystals was shown. . This means that by bonding the zinc oxide fine crystals using a liquid zinc complex, the liquid zinc complex is changed to zinc oxide fine crystals and integrated with the fine zinc oxide fine crystals. It shows that zinc has excellent photocatalytic activity.

一方、図6から明らかなように、Al23接着剤を用いた場合では、0.1mmの膜厚で接着剤を塗布した場合に、0.01mmの膜厚で塗布した場合に比べて、酸化亜鉛微細結晶の光触媒活性が低下していた。このことは、酸化亜鉛微細結晶が、厚い接着剤層に埋もれてしまい、光触媒活性を示すことができないことを示している。 On the other hand, as is apparent from FIG. 6, in the case of using the Al 2 O 3 adhesive, when the adhesive is applied with a film thickness of 0.1 mm, compared with the case where the adhesive is applied with a film thickness of 0.01 mm. The photocatalytic activity of the zinc oxide fine crystals was reduced. This indicates that the zinc oxide fine crystals are buried in the thick adhesive layer and cannot exhibit photocatalytic activity.

図7の、本発明の細線状の酸化亜鉛微細結晶を接着した基板の接着面のSEM図からは、酸化亜鉛微細結晶が基板に接着していることが認められ、接着剤を使用しなくても、酸化亜鉛微細結晶を基板に接着することができることを示している。   From the SEM diagram of the bonded surface of the substrate to which the fine zinc oxide fine crystals of the present invention are bonded in FIG. 7, it is recognized that the zinc oxide fine crystals are bonded to the substrate, and no adhesive is used. Also shows that the zinc oxide fine crystals can be bonded to the substrate.

本発明により、接着剤を使用しなくても細線状の酸化亜鉛微細結晶が酸化亜鉛薄膜を介して一体となって安定に接着されており、酸化亜鉛微細結晶単独と同等またはそれ以上の光触媒活性を有している基板を得ることができる。そしてこのような基板は、空気浄化フィルター、空気浄化フィルター、高速道路の壁面、建築物の外壁、光源の周囲に用いる笠などの材料、内装材など広い範囲の用途に用いることができる。   According to the present invention, fine zinc oxide fine crystals are integrally and stably bonded through a zinc oxide thin film without using an adhesive, and have a photocatalytic activity equivalent to or higher than that of zinc oxide fine crystals alone. Can be obtained. Such a substrate can be used in a wide range of applications such as air purification filters, air purification filters, highway wall surfaces, building outer walls, materials such as shade used around light sources, and interior materials.

酸化亜鉛微細結晶を製造するための酸化亜鉛結晶体作成装置である。It is a zinc oxide crystal production apparatus for producing zinc oxide fine crystals. 酸化亜鉛微細結晶を製造するための高温酸化炉である。It is a high-temperature oxidation furnace for producing zinc oxide fine crystals. 酸化亜鉛微細結晶の拡大写真である。It is an enlarged photograph of a zinc oxide fine crystal. 酸化亜鉛微細結晶のXRD強度の測定結果である。It is a measurement result of the XRD intensity | strength of a zinc oxide fine crystal. 本発明の細線状の酸化亜鉛微細結晶を接着した基板および酸化亜鉛微細結晶のXRD強度の測定結果である。It is a measurement result of the XRD intensity | strength of the board | substrate which adhere | attached the fine zinc oxide fine crystal of this invention, and a zinc oxide fine crystal. Al23接着剤を用いて酸化亜鉛微細結晶を接着した基板のXRD強度の測定結果である。With Al 2 O 3 bonding agent is a measurement result of the XRD intensity of the substrate to adhere the zinc oxide fine crystal. 本発明の細線状の酸化亜鉛微細結晶を接着した基板の接着面のSEM図である。It is a SEM figure of the adhesion surface of the board | substrate which adhere | attached the fine zinc oxide fine crystal of this invention.

Claims (6)

細線状の酸化亜鉛微細結晶を、酸化亜鉛薄膜を介して接着した基板の製造方法であって、その表面に液状の亜鉛錯体の薄膜を介して細線状の酸化亜鉛微細結晶を有する基板を高温水蒸気分解する工程;および熱処理する工程を含む方法。 A method for producing a substrate in which fine wire-like zinc oxide fine crystals are bonded via a zinc oxide thin film, and a substrate having fine wire-like zinc oxide fine crystals on a surface thereof via a thin film of a liquid zinc complex Decomposing; and heat treating. 液状の亜鉛錯体が、少なくとも炭素原子、水素原子および酸素原子を含んでなる、亜鉛原子と錯体を形成しうる配位子と、亜鉛原子とが形成した錯体であって、常温、常圧で液状である錯体である、請求項記載の方法。 A liquid zinc complex is a complex formed of a zinc atom and a ligand capable of forming a complex with a zinc atom, which contains at least a carbon atom, a hydrogen atom and an oxygen atom, and is liquid at normal temperature and normal pressure. The method of claim 1 , wherein the complex is 液状の亜鉛錯体が、式:

(式中、Xは、式:

(式中、RaおよびRbは、それぞれ独立に炭素原子数1〜5の直鎖もしくは分岐鎖状のアルキル基を表す)で表されるアルコキシアルキルメチル基または炭素原子数1〜5の直鎖もしくは分岐鎖状のアルキル基を表し;
Yは、式:

(式中、Ra′およびRb′は、それぞれ独立に炭素原子数1〜5の直鎖もしくは分岐鎖状のアルキル基を表す)で表されるアルコキシアルキルメチル基を表し;
Zは、水素原子または炭素原子数1〜4の直鎖もしくは分岐鎖状のアルキル基を表す)
で示される、アルコキシアルキルメチル基を有するβ−ジケトナトを配位子とする亜鉛錯体である、請求項記載の方法。
The liquid zinc complex has the formula:

(Where X is the formula:

(Wherein, Ra and Rb each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms) or a straight chain having 1 to 5 carbon atoms or Represents a branched alkyl group;
Y is the formula:

(Wherein, Ra ′ and Rb ′ each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms);
Z represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms)
The method according to claim 2 , which is a zinc complex having a β-diketonate having an alkoxyalkylmethyl group as a ligand.
液状の亜鉛錯体が、下記:

より選択される少なくとも1種の亜鉛錯体である、請求項記載の方法。
The liquid zinc complex is:

The method according to claim 3 , wherein the method is at least one zinc complex selected from the group consisting of more than one.
その表面に液状の亜鉛錯体の薄膜を介して細線状の酸化亜鉛微細結晶を有する基板を高温水蒸気分解する工程が、該基板を、水蒸気を含む雰囲気ガス中、100℃〜220℃で酸化処理する工程である、請求項のいずれか1項記載の方法。 The step of high-temperature steam decomposition of a substrate having fine zinc oxide fine crystals through a thin film of a zinc complex on the surface thereof is oxidized at 100 ° C. to 220 ° C. in an atmospheric gas containing water vapor. it is a process, any one method according to claim 1-4. 熱処理する工程が、高温水蒸気分解後の基板を、酸素ガスまたは酸素元素を含むガスのうち少なくとも一種類のガスが含まれた雰囲気ガス中、400〜1000℃で、加熱処理する工程である、請求項のいずれか1項記載の方法。 The step of heat-treating is a step of heat-treating the substrate after high-temperature steam decomposition at 400 to 1000 ° C. in an atmosphere gas containing at least one kind of gas containing oxygen gas or oxygen element. Item 6. The method according to any one of Items 1 to 5 .
JP2007068500A 2007-03-16 2007-03-16 Substrate having zinc oxide fine crystal bonded thereto, and manufacturing method thereof Expired - Fee Related JP4908275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068500A JP4908275B2 (en) 2007-03-16 2007-03-16 Substrate having zinc oxide fine crystal bonded thereto, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068500A JP4908275B2 (en) 2007-03-16 2007-03-16 Substrate having zinc oxide fine crystal bonded thereto, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008229412A JP2008229412A (en) 2008-10-02
JP4908275B2 true JP4908275B2 (en) 2012-04-04

Family

ID=39902849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068500A Expired - Fee Related JP4908275B2 (en) 2007-03-16 2007-03-16 Substrate having zinc oxide fine crystal bonded thereto, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4908275B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150404A (en) * 1988-11-30 1990-06-08 Nippon Paint Co Ltd Curing accelerating catalyst
JP2004149367A (en) * 2002-10-31 2004-05-27 Japan Science & Technology Agency Aqueous solution for producing zinc oxide particle or film, and method for producing zinc oxide particle or film
JP4449731B2 (en) * 2003-12-19 2010-04-14 東洋インキ製造株式会社 Treated metal oxide semiconductor paste, method of manufacturing metal oxide semiconductor electrode using the paste, and method of manufacturing cell
TW200535138A (en) * 2004-03-15 2005-11-01 Ube Industries Metal complex comprising β-diketonato as ligand
JP4565897B2 (en) * 2004-06-14 2010-10-20 株式会社Adeka Thin film forming raw material and thin film manufacturing method
JP4649577B2 (en) * 2005-04-07 2011-03-09 独立行政法人国立高等専門学校機構 Zinc oxide fine crystal photocatalytic unit and method for producing the same

Also Published As

Publication number Publication date
JP2008229412A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5877832B2 (en) Indium oxoalkoxide for producing an indium oxide-containing layer, its production method and its use
JP5933540B2 (en) Indium oxoalkoxides for producing indium oxide containing layers
Ehsan et al. Fabrication of CoTiO 3–TiO 2 composite films from a heterobimetallic single source precursor for electrochemical sensing of dopamine
US9422165B2 (en) Graphene compositions and methods of making the same
TWI519510B (en) Process for the preparation of indium chlordialkoxides
Singh et al. Effect of heat and time-period on the growth of ZnO nanorods by sol–gel technique
US20130221352A1 (en) Process for producing indium oxide-containing layers
JP2015212213A (en) INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET
Piszczek et al. CVD of TiO2 and TiO2/Ag antimicrobial layers: Deposition from the hexanuclear μ-oxo Ti (IV) complex as a precursor, and the characterization
Szłyk et al. AuI and AgI complexes with tertiary phosphines and perfluorinated carboxylates as precursors for CVD of gold and silver
Matias et al. based nanoplatforms for multifunctional applications
Narayanan et al. Role of hexamethylenetetramine concentration on structural, morphological, optical and electrical properties of hydrothermally grown zinc oxide nanorods
JP2015522509A (en) Method for producing indium oxide-containing layer
JP3455653B2 (en) Material having titanium dioxide crystal orientation film and method for producing the same
Suehiro et al. Synthesis of highly c-axis-oriented ZnO thin films using novel laser-enhanced electrospray CVD under atmospheric pressure
Piszczek et al. Characterization of silver trimethylacetate complexes with tertiary phosphines as CVD precursors of thin silver films
JP4908275B2 (en) Substrate having zinc oxide fine crystal bonded thereto, and manufacturing method thereof
JP2011119454A (en) Manufacturing method of copper-oxide (i) film having performance of p-type semiconductor and method of manufacturing solution for creating the film
Silva et al. Structural and optical properties of ZnO films produced by a modified ultrasonic spray pyrolysis technique
Su et al. Synthesis of β-ketoiminate and β-iminoesterate tungsten (VI) oxo-alkoxide complexes as AACVD precursors for growth of WOx thin films
Parkhomenko et al. Deposition of pure gold thin films from organometallic precursors
Hayami et al. ZnO formation through decomposition of zinc bis (ethyl acetoacetate) by steaming treatment
Mayén-Hernández et al. CdTiO3 thin films prepared by sol–gel method using a simpler route
US9802964B2 (en) Process for preparing indium alkoxide compounds, the indium alkoxide compounds preparable by the process and the use thereof
US20120040099A1 (en) Sol and method for producing a delafossite mixed oxide layer structure on a substrate and also a substrate coated with a mixed oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees