JP4906175B2 - Gas-liquid separator - Google Patents

Gas-liquid separator Download PDF

Info

Publication number
JP4906175B2
JP4906175B2 JP2000085275A JP2000085275A JP4906175B2 JP 4906175 B2 JP4906175 B2 JP 4906175B2 JP 2000085275 A JP2000085275 A JP 2000085275A JP 2000085275 A JP2000085275 A JP 2000085275A JP 4906175 B2 JP4906175 B2 JP 4906175B2
Authority
JP
Japan
Prior art keywords
cylindrical container
gas
wall surface
liquid separation
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000085275A
Other languages
Japanese (ja)
Other versions
JP2001269524A (en
Inventor
崇裕 鎌田
Original Assignee
株式会社カマタテクナス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カマタテクナス filed Critical 株式会社カマタテクナス
Priority to JP2000085275A priority Critical patent/JP4906175B2/en
Priority to KR10-2001-0014498A priority patent/KR100449398B1/en
Publication of JP2001269524A publication Critical patent/JP2001269524A/en
Application granted granted Critical
Publication of JP4906175B2 publication Critical patent/JP4906175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Description

【0001】
【発明の属する技術分野】
本発明は、高圧空気などの気体中に含まれる水分などの液体を除去する気液分離装置、特に、エアモータ、エアブレーカなどの空気作動機械、粉塵吹き飛ばし用の空気吹出装置、乾燥冷却用空気吹出装置などへ供給される空気の除湿用として好適に用いることができる気液分離装置に関する。
【0002】
【従来の技術】
従来、気液分離装置の一つとして、フロンガスなどの冷媒を用いた高圧空気中の除湿装置が知られている。この除湿装置は、冷媒で高圧空気を冷却することによって空気中の水蒸気を凝縮して除去するものであるが、フロンガスなどの冷媒が必要であるため、環境上の問題があり、また、冷媒を圧縮するためのコンプレッサやコンデンサ、高圧空気を冷却するための熱交換器などの各種装置が必要である。また、この除湿装置を作動させるには電源などの動力源が必要であるため、ランニングコストも高いなどの問題がある。
【0003】
その他の除湿装置として、装置内に設けられたフィルタに高圧空気を通過させて高圧空気中の水分を除去するものが知られている。この装置では、使用によってフィルタが湿ってしまうと、フィルタを通過する高圧空気と共にフィルタに付着した水分がフィルタの裏面に押し出され、除湿した高圧空気が再び湿ってしまうという問題がある。フィルタが水分で飽和状態になると、この問題はさらに顕著となり、除湿効果が低下するため、定期的なフィルタの清掃および交換を行わなければならない。
【0004】
このような問題を解消するものとして本発明者は、特開平8−290028号公報において圧縮空気の除湿装置を開示した。この除湿装置は、中空室を有する円筒状容器の側面下部に空気導入路を設け、同円筒状容器の上部に排出路を設け、空気導入路の前面位置に、空気を衝突させるための衝突面と、衝突した空気の流れを変えるガイド部を備えたもので、中空室内には、中央を開口した円錐状の受け板を配置し、さらに、この受け板の上部に空気孔を有する邪魔板が設けられている。
【0005】
この除湿装置によれば、空気導入路を通って中空室に導入された圧縮空気は衝突面で激しく衝突して、圧縮空気に含まれた水分が粒滴化し、直角に近い角度に向きが変えられ中空室の内面に沿うように中空室内に放出される。放出された空気は円筒状容器の内壁面の曲率で曲げられた周速度をもって螺旋状に高速回転しながら、円筒状容器の上方の排出口方向へ上昇していく。そして、空気流の高速回転で生じる遠心力によって比重の大きい水分と比重の小さい空気とに分離され、分離された水分は落下してドレンに収容され、除湿された空気のみが排出路から排出される。この除湿装置を使用することにより、従来のコンプレッサなどで必要な動力源や、定期的な交換が必要なエアフィルタなどを用いることなく、空気中の水分を効率的に除去することができる。
【0006】
【発明が解決しようとする課題】
特開平8−290028号公報において開示した除湿装置は、空気導入路を通って中空室に導入された水分含有空気は衝突面に衝突して中空室内に放出された後、回転する気流の遠心力によって水分と空気とに分離され、除湿された空気のみが排出路から排出される構造であるが、分離された水分が完全に落下しないうちにその一部が空気流ととも上昇して排出路から排出される除湿空気に混入するおそれがある。
【0007】
本発明が解決しようとする課題は、特開平8−290028号公報に開示した除湿装置をさらに発展させ、さらに気液分離効果の高い気液分離装置を提供することにある。
【0008】
【課題を解決するための手段】
特開平8−290028号公報に開示した除湿装置の基本原理は、水分を含む気体を衝突面に激しく衝突させて水分を粒滴化させることと、さらに、この衝突させた気体を高速で回転させて気体と液体とを遠心分離することにある。したがって、この効果を高めるには、導入された気体の衝突時におけるエネルギロスをを出来る限り少なくして、円筒状容器内で高速回転させることと、円筒状容器内の滞留時間をある程度長くして円筒状容器内での遠心分離を確実に行うようにすることが肝要である。
【0009】
本発明の気液分離装置は、中心軸が鉛直をなすように保持された内部が中空な円筒状容器と、円筒状容器内を区画するように配置された擂り鉢状の受け板と、受け板の底部に設けられた通気口と、円筒状容器の側面に設けられた気体流入口と、円筒状容器の上部に設けられた気体排出口と、円筒状容器の底部に設けられた液体回収口と、円筒状容器の内壁に位置する気体流入口の開口部に対向して配置され気体流入口から流入した気体を円筒状容器の内壁面に沿う方向へ放出するガイド部とを備えた気液分離装置であって、ガイド部から放出された気体流を円筒状容器の内壁面に沿って下降する方向に誘導する気流誘導手段を設けたことを特徴とする。
【0010】
液体を含む高圧空気を衝突面に衝突させることで、気体中に分散している液体がどのように凝集し液滴化するのかという点について、そのメカニズムは必ずしも明らかではないが、ミスト状の液体を含む気体が衝突面に衝突すると、気体成分は直ちに方向を変えて出口から放出されるのに対し、液体成分は瞬時に方向変換できず気体成分の流速より遅くなり、衝突面の近傍に瞬間的に滞留した状態となるため、この滞留したミスト状の液体粒子に次のミスト状液体粒子が結合し、順次、これが繰り返されて液滴化するものと推察される。
【0011】
したがって、気液分離機能を高めるには、液体を含む気体を適度な運動エネルギーを持った状態で衝突面に衝突させることと、円筒状容器内における空気流の滞留時間をある程度長くして円筒状容器内での遠心分離を確実に行うようにすることが必要である。
【0012】
そこで、本発明の気液分離装置は、気体流入口から円筒状容器内に流入しガイド部から放出された気体流を、円筒状容器の内壁面に沿って下降する方向に誘導する気流誘導手段を設けることによって、前記課題を解決したものである。すなわち、ガイド部から円筒状容器内に放出された気体流は、前記気流誘導手段で円筒状容器の内壁面に沿って下降する方向に誘導されながら円筒状容器内で高速回転した後上昇し、受け板の底部に設けられた通気口を通過し、円筒状容器上部の気体排出口から排出されるので、円筒状容器内の滞留時間が長くなる結果、遠心分離が確実かつ十分に行われて、気液分離効果が高まる。また、気液分離効果の向上により、従来、擂り鉢状の受け板の上部に対向配置されていた仕切り板が不要となるため、構造が簡略化され、部品点数を低減することができる。
【0013】
また、ガイド部から円筒状容器内に放出された気体流の一部が液体成分を含んだ状態で直ちに上昇することがないので、円筒状容器の軸方向の長さを従来より短くしても気体排出口から排出される気体に液体成分が混入することがなく、これによって、装置の小型化を図ることが可能である。
【0014】
円筒状容器内において気体から遠心分離された液体成分は、円筒状容器の内壁と接触して液滴化し、また、一部は受け板下面と接触して液滴化し、それぞれ円筒状容器の下方へ流下して、円筒状容器の底部に設けられた液体回収口から回収される。なお、液体回収口にはオートドレンなどの回収器具を取り付けることが望ましい。
【0015】
気流誘導手段として、ガイド部の一部から円筒状容器の内壁面に沿って螺旋状に下降するように配置された気流誘導部材を設けることにより、ガイド部から円筒状容器内に放出された気体流は、気流誘導部材に沿って螺旋状に下降しながら高速回転するので、円筒状容器内の滞留時間が長くなる結果、遠心分離が確実に行われ、気液分離効果が高まる。
【0016】
前記気流誘導部材の長さを、円筒状容器の内壁面を少なくとも1周する長さとすることにより、ガイド部から円筒状容器内に放出された気体流を効率良く螺旋状に下降させることができ、液体成分が除去された気体の上昇、排出を妨げることもない。
【0017】
前記気流誘導部材として、円筒状容器の内壁面から中心軸方向へ突出した気流誘導板を設けることにより、円筒状容器内に放出された気体流を効率よく螺旋状に下降させるとともに高速回転させることが可能となるので、気液分離効果をさらに高めることができる。
【0018】
前記気流誘導板の突出幅を、円筒状容器の内径の20〜30%とすることにより、ガイド部から円筒状容器内に放出された気体流の高速回転運動を妨げることなく、効率良く螺旋状に下降させることができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は実施の形態である気液分離装置を示す正面図、図2は前記気液分離装置の縦断面図、図3は前記気液分離装置の一部切欠斜視図、図4は前記気液分離装置を構成する気流誘導板の斜視図、図5は図1におけるA−A線断面図である。
【0020】
本実施形態の気液分離装置10においては、中心軸が鉛直をなすように直立状態に保持された内部が中空な円筒状容器11と、円筒状容器11内を区画するように円筒状容器11の上部に配置された擂り鉢状の受け板12と、受け板12の底部に設けられた通気口13と、円筒状容器11の下部側面に設けられた気体流入口14と、円筒状容器11の上部に設けられた気体排出口15と、円筒状容器11の底部に設けられた液体回収口16と、円筒状容器11の内壁面18に位置する気体流入口14の開口部17に対向して配置され気体流入口14から流入した気体を円筒状容器11の内壁面18に沿う方向へ放出するガイド部19とを備えている。
【0021】
気体流入口14には高圧空気供給管20が連結され、気体排出口15には高圧空気吐出管21が連結され、液体回収口16の下側にはオートドレン22が取り付けられている。高圧空気供給管20、高圧空気吐出管21およびオートドレン22は、それぞれネジ機構によって取り付けられているため、必要に応じて着脱可能である。
【0022】
ガイド部19は縦断面がコ字形状で、気体流入口14から円筒状容器11内へ流入した気体流を衝突させる衝突面19aを有し、衝突面19aに衝突した気体流は、その流れ方向が円筒状容器11の内壁面18に沿った方向へ変換される。また、ガイド部19の天井部分には、ガイド部19から放出された気体流を円筒状容器11の内壁面18に沿って下降する方向に誘導するため螺旋状に配置された気流誘導板23が連設されている。
【0023】
水分を含む高圧空気を衝突面19aに衝突させることで、空気成分は直ちに方向を変えて出口19bから放出されるのに対し、高圧空気中の水分は瞬時に方向変換できず空気成分の流速より遅くなり、衝突面19aの近傍に瞬間的に滞留した状態となるため、この滞留したミスト状の水粒子に次のミスト状の水粒子が結合し、順次、これが繰り返されて水滴化するものと推察される。
【0024】
本実施形態の気液分離装置10では、気体流入口14から円筒状容器11内に流入し、ガイド部19から放出された空気流を、円筒状容器11の内壁面18に沿って下降する方向に誘導する螺旋状の気流誘導板23を設けているため、ガイド部19から円筒状容器11内に放出された空気流は、気流誘導板23で円筒状容器11の内壁面18に沿って下降する方向に誘導されながら円筒状容器11内で高速回転した後上昇し、受け板12の底部に設けられた通気口13を通過し、円筒状容器11上部の気体排出口15から排出される。
【0025】
したがって、円筒状容器11内における空気流の滞留時間が従来の気液分離装置より長くなり、遠心分離が確実かつ十分に行われる結果、気液分離効果が高まるので、気体排出口15から排出される空気中の水分を殆ど完全に除去することができる。また、気液分離効果の向上により、従来、擂り鉢状の受け板12の上部に対向配置されていた仕切り板が不要となるため、構造が簡略化され、部品点数を低減することができる。
【0026】
また、気流誘導板23を設けたことにより、ガイド部19から円筒状容器11内に放出された空気流の一部が水分を含んだ状態で直ちに上昇することがないので、円筒状容器11の軸方向の長さを比較的短くしても気体排出口21から排出される高圧空気に水分が混入することがなくなり、これによって、装置の小型化を図ることが可能である。
【0027】
円筒状容器11内において空気から遠心分離された水分は、円筒状容器11の内壁18と接触して水滴化し、また、一部は受け板12の下面と接触して水滴化し、それぞれ円筒状容器11の下方へ流下して、円筒状容器11の底部に設けられた液体回収口16からオートドレン22へ回収される。
【0028】
気流誘導板23の長さを、円筒状容器11の内壁面18を1周する長さとしているため、ガイド部19から円筒状容器11内に放出された空気流を効率良く螺旋状に下降させることができ、水分が除去された空気の上昇、排出を妨げることもない。
【0029】
本実施形態では、気流誘導板23の突出幅24を円筒状容器11の内径25の約28%としており、これにより、ガイド部19から円筒状容器11内に放出された空気流の高速回転運動を妨げることなく、効率良く螺旋状に下降させることができる。
【0030】
【発明の効果】
本発明により、以下に示す効果を奏する。
【0031】
(1)本発明の気液分離装置によれば、ガイド部から円筒状容器内に放出された気体流は、気流誘導手段で円筒状容器の内壁面に沿って下降する方向に誘導されながら円筒状容器内で高速回転した後上昇し、受け板の底部に設けられた通気口を通過して気体排出口から排出されるので、円筒状容器内の滞留時間が長くなり、遠心分離が確実かつ十分に行われ気液分離効果が高まる。気液分離効果の向上により、従来、擂り鉢状の受け板の上部に対向配置されていた仕切り板が不要となるため、構造が簡略化され、部品点数を低減することができる。また、ガイド部から円筒状容器内に放出された気体流の一部が液体成分を含んだ状態で直ちに上昇することがないので、円筒状容器の軸方向の長さを従来より短くしても気体排出口から排出される気体に液体成分が混入することがなくなり、装置の小型化を図ることが可能となる。
【0032】
(2)気流誘導手段として、ガイド部の一部から円筒状容器の内壁面に沿って螺旋状に下降するように配置された気流誘導部材を設けることにより、ガイド部から円筒状容器内に放出された気体流は、気流誘導部材に沿って螺旋状に下降しながら高速回転するので、円筒状容器内の滞留時間が長くなり、遠心分離が確実に行われ、気液分離効果が高まる。
【0033】
(3)気流誘導部材の長さを、円筒状容器の内壁面を少なくとも1周する長さとすることにより、ガイド部から円筒状容器内に放出された気体流を効率良く螺旋状に下降させることができ、液体成分が除去された気体の上昇、排出を妨げることもない。
【0034】
(4)気流誘導部材として、円筒状容器の内壁面から中心軸方向へ突出した気流誘導板を設けることにより、円筒状容器内に放出された気体流を効率よく螺旋状に下降させるとともに高速回転させることが可能となり、気液分離効果をさらに高めることができる。
【0035】
(5)気流誘導板の突出幅を、円筒状容器の内径の20〜30%とすることにより、ガイド部から円筒状容器内に放出された気体流の高速回転運動を妨げることなく、効率良く螺旋状に下降させることができる。
【図面の簡単な説明】
【図1】 実施の形態である気液分離装置を示す正面図である。
【図2】 図1の気液分離装置の縦断面図である。
【図3】 図1の気液分離装置の一部切欠斜視図である。
【図4】 図1の気液分離装置を構成する気流誘導板の斜視図である。
【図5】 図1のA−A線断面図である。
【符号の説明】
10 気液分離装置
11 円筒状容器
12 受け板
13 通気口
14 気体流入口
15 気体排出口
16 液体回収口
17 開口部
18 円筒状容器の内壁面
19 ガイド部
19a 衝突面
19b 出口
20 高圧空気供給管
21 高圧空気吐出管
22 オートドレン
23 気流誘導板
24 気流誘導板の突出幅
25 円筒状容器の内径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-liquid separator that removes liquid such as moisture contained in a gas such as high-pressure air, in particular, an air operating machine such as an air motor or an air breaker, an air blowing device for blowing dust, and an air blowing for drying and cooling. The present invention relates to a gas-liquid separator that can be suitably used for dehumidification of air supplied to an apparatus or the like.
[0002]
[Prior art]
Conventionally, a dehumidifier in high-pressure air using a refrigerant such as chlorofluorocarbon is known as one of gas-liquid separators. This dehumidifying device condenses and removes water vapor in the air by cooling high-pressure air with a refrigerant. However, since a refrigerant such as chlorofluorocarbon is required, there is an environmental problem, and the refrigerant is removed. Various devices such as a compressor and a condenser for compressing and a heat exchanger for cooling high-pressure air are necessary. In addition, since a power source such as a power source is required to operate the dehumidifying device, there is a problem that the running cost is high.
[0003]
As another dehumidifying device, one that passes high-pressure air through a filter provided in the device to remove moisture in the high-pressure air is known. In this apparatus, when the filter gets wet with use, there is a problem that moisture attached to the filter is pushed out to the back surface of the filter together with the high-pressure air passing through the filter, and the dehumidified high-pressure air gets wet again. This problem becomes more pronounced when the filter is saturated with moisture, and the dehumidifying effect is reduced, so the filter must be periodically cleaned and replaced.
[0004]
In order to solve such a problem, the present inventor disclosed a dehumidifier for compressed air in Japanese Patent Application Laid-Open No. 8-290028. This dehumidifier is provided with an air introduction path at the lower side of a cylindrical container having a hollow chamber, a discharge path at the upper part of the cylindrical container, and a collision surface for causing air to collide with the front position of the air introduction path. And a guide portion that changes the flow of the air that has collided.In the hollow chamber, a conical receiving plate having an opening at the center is arranged, and a baffle plate having an air hole at the upper portion of the receiving plate is provided. Is provided.
[0005]
According to this dehumidifier, the compressed air introduced into the hollow chamber through the air introduction path collides violently at the collision surface, and the moisture contained in the compressed air is granulated, changing its direction to an angle close to a right angle. And is discharged into the hollow chamber along the inner surface of the hollow chamber. The released air rises in the direction of the discharge port above the cylindrical container while rotating at high speed in a spiral manner with a peripheral speed bent by the curvature of the inner wall surface of the cylindrical container. Then, the centrifugal force generated by the high-speed rotation of the air flow separates the water with a high specific gravity and the air with a low specific gravity, the separated water falls and is stored in the drain, and only the dehumidified air is discharged from the discharge path. The By using this dehumidifier, moisture in the air can be efficiently removed without using a power source necessary for a conventional compressor or an air filter that requires periodic replacement.
[0006]
[Problems to be solved by the invention]
In the dehumidifying device disclosed in Japanese Patent Laid-Open No. 8-290028, the water-containing air introduced into the hollow chamber through the air introduction path collides with the collision surface and is released into the hollow chamber, and then the centrifugal force of the rotating airflow However, only the dehumidified air is discharged from the discharge path, but before the separated water is completely dropped, part of it rises with the air flow and the discharge path There is a risk of mixing with dehumidified air discharged from the air.
[0007]
The problem to be solved by the present invention is to further develop the dehumidifying device disclosed in JP-A-8-290028 and to provide a gas-liquid separation device having a high gas-liquid separation effect.
[0008]
[Means for Solving the Problems]
The basic principle of the dehumidifying device disclosed in Japanese Patent Application Laid-Open No. 8-290028 is that a gas containing water is violently collided with a collision surface to form water droplets, and further, the collided gas is rotated at high speed. The purpose is to centrifuge the gas and the liquid. Therefore, in order to enhance this effect, the energy loss at the time of collision of the introduced gas is reduced as much as possible, it is rotated at a high speed in the cylindrical container, and the residence time in the cylindrical container is increased to some extent. It is important to ensure that the centrifuge in the cylindrical container is performed.
[0009]
The gas-liquid separation device of the present invention comprises a cylindrical container having a hollow inside, the center axis of which is vertical, a bowl-shaped receiving plate disposed so as to partition the inside of the cylindrical container, A vent provided in the bottom of the plate, a gas inlet provided in the side surface of the cylindrical container, a gas outlet provided in the upper part of the cylindrical container, and a liquid recovery provided in the bottom of the cylindrical container A gas provided with an opening, and a guide part disposed opposite to the opening of the gas inlet located on the inner wall of the cylindrical container and for discharging the gas flowing in from the gas inlet in a direction along the inner wall surface of the cylindrical container. The liquid separation device is characterized in that airflow guiding means for guiding the gas flow discharged from the guide portion in a direction of descending along the inner wall surface of the cylindrical container is provided.
[0010]
The mechanism of how the liquid dispersed in the gas is agglomerated and formed into droplets by colliding the high-pressure air containing the liquid with the collision surface is not always clear, but the mist-like liquid When the gas containing the gas collides with the collision surface, the gas component immediately changes direction and is discharged from the outlet, whereas the liquid component cannot be instantaneously changed direction and becomes slower than the flow velocity of the gas component, and instantaneously near the collision surface. Therefore, it is presumed that the next mist-like liquid particles are combined with the staying mist-like liquid particles, and this is sequentially repeated to form droplets.
[0011]
Therefore, in order to improve the gas-liquid separation function, the gas containing the liquid is allowed to collide with the collision surface with a suitable kinetic energy, and the residence time of the air flow in the cylindrical container is increased to some extent to form a cylindrical shape. It is necessary to ensure that the centrifuge in the container is performed.
[0012]
Therefore, the gas-liquid separation device of the present invention is a gas flow guiding means for guiding the gas flow that flows into the cylindrical container from the gas inlet and is discharged from the guide portion in the direction of descending along the inner wall surface of the cylindrical container. By providing the above, the above-mentioned problems are solved. That is, the gas flow released from the guide portion into the cylindrical container rises after rotating at a high speed in the cylindrical container while being guided in the direction of descending along the inner wall surface of the cylindrical container by the airflow guiding means, Since it passes through the vent provided at the bottom of the backing plate and is exhausted from the gas outlet at the top of the cylindrical container, the residence time in the cylindrical container is increased, resulting in reliable and sufficient centrifugation. The gas-liquid separation effect is enhanced. Further, the improvement of the gas-liquid separation effect eliminates the need for a partition plate that has been conventionally disposed on the upper portion of the bowl-shaped receiving plate, thereby simplifying the structure and reducing the number of components.
[0013]
In addition, since a part of the gas flow discharged from the guide portion into the cylindrical container does not immediately rise in a state containing the liquid component, the axial length of the cylindrical container can be made shorter than before. The liquid component is not mixed in the gas discharged from the gas discharge port, and thus the apparatus can be downsized.
[0014]
The liquid component centrifuged from the gas in the cylindrical container contacts with the inner wall of the cylindrical container to form droplets, and part of the liquid component contacts with the lower surface of the receiving plate to form droplets. And is collected from a liquid recovery port provided at the bottom of the cylindrical container. Note that it is desirable to attach a collection device such as an auto drain to the liquid collection port.
[0015]
Gas discharged from the guide portion into the cylindrical container by providing an air flow guide member arranged to spirally descend from the part of the guide portion along the inner wall surface of the cylindrical container as the air flow guiding means Since the flow rotates at a high speed while descending spirally along the airflow guide member, the residence time in the cylindrical container becomes longer, so that the centrifugal separation is reliably performed and the gas-liquid separation effect is enhanced.
[0016]
By setting the length of the airflow guiding member to a length that makes at least one round of the inner wall surface of the cylindrical container, the gas flow released from the guide portion into the cylindrical container can be efficiently spirally lowered. The rise and discharge of the gas from which the liquid component has been removed is not hindered.
[0017]
By providing an airflow guide plate protruding from the inner wall surface of the cylindrical container in the direction of the central axis as the airflow guide member, the gas flow discharged into the cylindrical container can be efficiently spirally lowered and rotated at high speed. Therefore, the gas-liquid separation effect can be further enhanced.
[0018]
By setting the projecting width of the airflow guide plate to 20 to 30% of the inner diameter of the cylindrical container, it can be efficiently spiraled without hindering the high-speed rotational movement of the gas flow discharged from the guide portion into the cylindrical container. Can be lowered.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a front view showing a gas-liquid separator according to an embodiment, FIG. 2 is a longitudinal sectional view of the gas-liquid separator, FIG. 3 is a partially cutaway perspective view of the gas-liquid separator, and FIG. FIG. 5 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 5 is a perspective view of an airflow guide plate constituting the liquid separation device.
[0020]
In the gas-liquid separation device 10 of the present embodiment, the cylindrical container 11 is defined so as to partition the inside of the cylindrical container 11 and the hollow cylindrical container 11 that is held upright so that the central axis is vertical. A bowl-shaped receiving plate 12 disposed at the top of the container, a vent 13 provided at the bottom of the receiving plate 12, a gas inlet 14 provided on the lower side surface of the cylindrical container 11, and the cylindrical container 11 Facing the opening 17 of the gas inlet 14 located on the inner wall surface 18 of the cylindrical container 11 and the gas recovery port 16 provided at the bottom of the cylindrical container 11. And a guide portion 19 that discharges the gas flowing in from the gas inlet 14 in a direction along the inner wall surface 18 of the cylindrical container 11.
[0021]
A high pressure air supply pipe 20 is connected to the gas inlet 14, a high pressure air discharge pipe 21 is connected to the gas outlet 15, and an auto drain 22 is attached below the liquid recovery port 16. Since the high-pressure air supply pipe 20, the high-pressure air discharge pipe 21, and the auto drain 22 are each attached by a screw mechanism, they can be attached and detached as necessary.
[0022]
The guide portion 19 has a U-shaped longitudinal section, and has a collision surface 19a that collides the gas flow that flows into the cylindrical container 11 from the gas inlet port 14, and the gas flow that collides with the collision surface 19a has its flow direction. Is converted in a direction along the inner wall surface 18 of the cylindrical container 11. In addition, an airflow guide plate 23 arranged in a spiral shape is provided on the ceiling portion of the guide portion 19 in order to guide the gas flow discharged from the guide portion 19 in the direction of descending along the inner wall surface 18 of the cylindrical container 11. It is connected continuously.
[0023]
By causing high-pressure air containing moisture to collide with the collision surface 19a, the air component immediately changes direction and is released from the outlet 19b, whereas moisture in the high-pressure air cannot be instantaneously changed, and the flow rate of the air component Since it becomes slow and becomes a state where it stays instantaneously in the vicinity of the collision surface 19a, the next mist-like water particles are combined with the staying mist-like water particles, and this is repeated sequentially to form water droplets. Inferred.
[0024]
In the gas-liquid separation device 10 of the present embodiment, the airflow that flows into the cylindrical container 11 from the gas inlet 14 and is released from the guide portion 19 descends along the inner wall surface 18 of the cylindrical container 11. Since the spiral air flow guide plate 23 is provided to guide the air flow, the air flow discharged from the guide portion 19 into the cylindrical container 11 descends along the inner wall surface 18 of the cylindrical container 11 by the air flow guide plate 23. Ascending after being rotated in the cylindrical container 11 at a high speed while being guided in the direction, the gas passes through the vent 13 provided at the bottom of the receiving plate 12 and is discharged from the gas outlet 15 at the top of the cylindrical container 11.
[0025]
Therefore, the residence time of the air flow in the cylindrical container 11 is longer than that of the conventional gas-liquid separator, and the centrifugal separation is performed reliably and sufficiently. As a result, the gas-liquid separation effect is enhanced, so that the gas is discharged from the gas outlet 15. Water in the air can be removed almost completely. Further, the improvement of the gas-liquid separation effect eliminates the need for a partition plate that is conventionally disposed on the upper portion of the bowl-shaped receiving plate 12, thereby simplifying the structure and reducing the number of components.
[0026]
Further, since the air flow guide plate 23 is provided, a part of the air flow discharged from the guide portion 19 into the cylindrical container 11 does not immediately rise in a state containing moisture. Even if the axial length is relatively short, moisture is not mixed into the high-pressure air discharged from the gas discharge port 21, and this makes it possible to reduce the size of the apparatus.
[0027]
The water centrifuged from the air in the cylindrical container 11 contacts the inner wall 18 of the cylindrical container 11 to form water droplets, and part of the water contacts the lower surface of the receiving plate 12 to form water droplets. 11 flows down to the auto drain 22 from the liquid recovery port 16 provided at the bottom of the cylindrical container 11.
[0028]
Since the length of the airflow guide plate 23 is set to a length that goes around the inner wall surface 18 of the cylindrical container 11, the airflow discharged from the guide portion 19 into the cylindrical container 11 is efficiently lowered spirally. It is possible to prevent the rise and discharge of air from which moisture has been removed.
[0029]
In the present embodiment, the protrusion width 24 of the airflow guide plate 23 is set to about 28% of the inner diameter 25 of the cylindrical container 11, and thereby, high-speed rotational motion of the airflow discharged from the guide portion 19 into the cylindrical container 11. Without being disturbed, it can be efficiently lowered in a spiral.
[0030]
【Effect of the invention】
The present invention has the following effects.
[0031]
(1) According to the gas-liquid separation device of the present invention, the gas flow discharged from the guide portion into the cylindrical container is guided to the cylinder while being guided in the direction of descending along the inner wall surface of the cylindrical container by the airflow guiding means. Since it rises after rotating at high speed in the cylindrical container and passes through the vent provided at the bottom of the receiving plate and is discharged from the gas outlet, the residence time in the cylindrical container is increased, and the centrifugal separation is ensured. Fully performed, the gas-liquid separation effect is enhanced. The improvement of the gas-liquid separation effect eliminates the need for a partition plate that has conventionally been disposed opposite to the upper portion of the bowl-shaped receiving plate, thereby simplifying the structure and reducing the number of components. In addition, since a part of the gas flow discharged from the guide portion into the cylindrical container does not immediately rise in a state containing the liquid component, the axial length of the cylindrical container can be made shorter than before. The liquid component is not mixed in the gas discharged from the gas discharge port, and the apparatus can be downsized.
[0032]
(2) As an airflow guiding means, an airflow guiding member arranged so as to descend spirally from a part of the guide portion along the inner wall surface of the cylindrical container is provided, thereby discharging from the guide portion into the cylindrical container. Since the gas flow is rotated at high speed while descending spirally along the air flow guide member, the residence time in the cylindrical container is lengthened, the centrifugal separation is reliably performed, and the gas-liquid separation effect is enhanced.
[0033]
(3) By making the length of the airflow guide member at least one round the inner wall surface of the cylindrical container, the gas flow released from the guide portion into the cylindrical container can be efficiently lowered spirally. It is possible to prevent the rise and discharge of the gas from which the liquid component has been removed.
[0034]
(4) By providing an airflow guide plate protruding in the direction of the central axis from the inner wall surface of the cylindrical container as the airflow guiding member, the gas flow released into the cylindrical container can be efficiently spirally lowered and rotated at high speed The gas-liquid separation effect can be further enhanced.
[0035]
(5) By setting the projecting width of the airflow guide plate to 20 to 30% of the inner diameter of the cylindrical container, it is efficient without hindering the high-speed rotational movement of the gas flow discharged from the guide portion into the cylindrical container. It can be lowered spirally.
[Brief description of the drawings]
FIG. 1 is a front view showing a gas-liquid separator according to an embodiment.
FIG. 2 is a longitudinal sectional view of the gas-liquid separator in FIG.
3 is a partially cutaway perspective view of the gas-liquid separation device of FIG. 1. FIG.
4 is a perspective view of an airflow guide plate constituting the gas-liquid separation device of FIG. 1. FIG.
FIG. 5 is a cross-sectional view taken along line AA in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Gas-liquid separator 11 Cylindrical container 12 Receiving plate 13 Vent port 14 Gas inlet 15 Gas outlet 16 Liquid recovery port 17 Opening part 18 Inner wall surface 19 of cylindrical container 19a Colliding surface 19b Outlet 20 High pressure air supply pipe 21 High-pressure air discharge pipe 22 Auto drain 23 Airflow guide plate 24 Projection width 25 of airflow guide plate Inner diameter of cylindrical container

Claims (5)

中心軸が鉛直をなすように保持された内部が中空な円筒状容器と、前記円筒状容器内を区画するように配置された擂り鉢状の受け板と、前記受け板の底部に設けられた通気口と、前記円筒状容器の側面に設けられた気体流入口と、前記円筒状容器の上部に設けられた気体排出口と、前記円筒状容器の底部に設けられた液体回収口と、前記円筒状容器の内壁に位置する前記気体流入口の開口部に対向して配置され前記気体流入口から流入した気体を前記円筒状容器の内壁面に沿う方向へ放出するガイド部とを備えた気液分離装置であって、前記円筒状容器の内壁面から中心軸方向へ突出した気流誘導部材からなり、前記ガイド部から放出された気体流を前記円筒状容器の内壁面に沿って螺旋状に下降する方向に誘導する気流誘導手段を備え、かつ、前記気流誘導手段の前記円筒状容器の中心軸側の空間および前記気流誘導手段と前記受け板との間の空間には何も備えていないことを特徴とする気液分離装置。Provided at the bottom of the receiving plate, a cylindrical container having a hollow interior held so that the central axis is vertical, a bowl-shaped receiving plate arranged so as to partition the inside of the cylindrical container, and A vent, a gas inlet provided in a side surface of the cylindrical container, a gas outlet provided in an upper part of the cylindrical container, a liquid recovery port provided in a bottom of the cylindrical container, A gas provided with a guide part disposed opposite to the opening of the gas inlet located on the inner wall of the cylindrical container and discharging the gas flowing in from the gas inlet in a direction along the inner wall surface of the cylindrical container; A liquid separation device comprising an airflow guiding member protruding in a central axis direction from an inner wall surface of the cylindrical container, wherein a gas flow discharged from the guide portion is spirally formed along the inner wall surface of the cylindrical container comprising an airflow guide means for guiding in the direction of lowering, or , Gas-liquid separation device, characterized in that the space does not include any between space and the air flow inducing means and said receiving plate of the center axis side of the cylindrical container of the air flow guide means. 前記気流誘導部材は、前記ガイド部の一部から前記円筒状容器の内壁面に沿って螺旋状に下降するように配置されたものである請求項1記載の気液分離装置。The air flow guide member, the guide portion gas-liquid separation device according to claim 1 wherein in the part along the inner wall surface of the cylindrical vessel in which are arranged so as to descend the spiral. 前記気流誘導部材の長さが、前記円筒状容器の内壁面を少なくとも1周する長さである請求項2記載の気液分離装置。  The gas-liquid separator according to claim 2, wherein the length of the airflow guiding member is a length that makes at least one round of the inner wall surface of the cylindrical container. 前記気流誘導部材として、前記円筒状容器の内壁面から中心軸方向へ突出した気流誘導板を設けた請求項2または3記載の気液分離装置。  The gas-liquid separation device according to claim 2 or 3, wherein an airflow guide plate that protrudes from the inner wall surface of the cylindrical container toward the central axis is provided as the airflow guide member. 前記気流誘導板の突出幅が、前記円筒状容器の内径の20〜30%である請求項4記載の気液分離装置。  The gas-liquid separation device according to claim 4, wherein a protruding width of the airflow guide plate is 20 to 30% of an inner diameter of the cylindrical container.
JP2000085275A 2000-03-24 2000-03-24 Gas-liquid separator Expired - Fee Related JP4906175B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000085275A JP4906175B2 (en) 2000-03-24 2000-03-24 Gas-liquid separator
KR10-2001-0014498A KR100449398B1 (en) 2000-03-24 2001-03-21 Gas-liquid separating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000085275A JP4906175B2 (en) 2000-03-24 2000-03-24 Gas-liquid separator

Publications (2)

Publication Number Publication Date
JP2001269524A JP2001269524A (en) 2001-10-02
JP4906175B2 true JP4906175B2 (en) 2012-03-28

Family

ID=18601636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000085275A Expired - Fee Related JP4906175B2 (en) 2000-03-24 2000-03-24 Gas-liquid separator

Country Status (2)

Country Link
JP (1) JP4906175B2 (en)
KR (1) KR100449398B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615040B2 (en) * 2008-07-04 2011-01-19 東京エレクトロン株式会社 Trap device and vacuum drying device
JP5193151B2 (en) * 2009-09-30 2013-05-08 積水化学工業株式会社 Solid-liquid separation device and water treatment device
JP4695215B1 (en) * 2010-03-05 2011-06-08 独立行政法人石油天然ガス・金属鉱物資源機構 Gas-liquid separator and flow rate measuring device
JP4688974B1 (en) * 2010-12-13 2011-05-25 独立行政法人石油天然ガス・金属鉱物資源機構 Batch type multiphase flow rate measuring apparatus and flow rate measuring method
JP5216148B1 (en) * 2012-01-17 2013-06-19 孝雄 本橋 Gas-liquid separation device for air blowing means
WO2013094161A1 (en) * 2011-12-21 2013-06-27 Motohashi Takao Gas-liquid separation device
JP5070356B1 (en) * 2011-12-21 2012-11-14 孝雄 本橋 Gas-liquid separation device for air blowing means
KR101342157B1 (en) 2012-01-06 2013-12-13 지에스칼텍스 주식회사 Gas-liquid separator for fuel cell having inclined operating condition
US20130206391A1 (en) * 2012-02-10 2013-08-15 Cameron International Corporation Apparatus and System for a Vortex Three Port Container
CN106215656A (en) * 2016-09-09 2016-12-14 成都九十度工业产品设计有限公司 A kind of ozone mixing reactor
CN106178882B (en) * 2016-09-09 2019-11-19 成都九十度工业产品设计有限公司 The liquid collector of ozone and exhaust gas mixing reactor
CN106742891B (en) * 2017-01-10 2019-08-16 克拉玛依胜利高原机械有限公司 Tank mouth catches oily collection device
KR102244456B1 (en) * 2018-09-03 2021-04-23 웨이하이 디엠에스 주식회사 Gas-Liquid Separator
CN112340802A (en) * 2019-08-09 2021-02-09 中国石油化工股份有限公司 Method and device for removing harmful gas in hot water system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022571U (en) * 1973-06-25 1975-03-13
JPS53135880U (en) * 1977-04-01 1978-10-27
US4187088A (en) * 1979-01-18 1980-02-05 Maloney-Crawford Corporation Down flow centrifugal separator
JPS55139851A (en) * 1979-04-17 1980-11-01 Katsumi Miyake Centrifugal spiral separator
JPH0499201U (en) * 1991-01-08 1992-08-27
JPH0663453A (en) * 1992-08-12 1994-03-08 Kurosaki Refract Co Ltd Cyclone separator having closure preventing mechanism
JP3268298B2 (en) * 1997-07-07 2002-03-25 株式会社カマタテクナス High pressure air dehumidifier
JP4125822B2 (en) * 1998-06-18 2008-07-30 株式会社カマタテクナス Gas-liquid separator

Also Published As

Publication number Publication date
JP2001269524A (en) 2001-10-02
KR20010093058A (en) 2001-10-27
KR100449398B1 (en) 2004-09-18

Similar Documents

Publication Publication Date Title
JP4906175B2 (en) Gas-liquid separator
JP3268298B2 (en) High pressure air dehumidifier
US6391100B1 (en) Method and apparatus for cleaning a gas
US6468321B2 (en) Blade and skirt assembly for directional gas cleaning and drying system
CN110787597A (en) Gas-liquid separation apparatus
JP2009262027A (en) Gas-liquid separator
JP2017503989A (en) External separator
JPH11300135A (en) Fine water droplet generator
JP4125822B2 (en) Gas-liquid separator
KR20140056813A (en) Cyclone separator
JP2011500320A (en) Droplet separation device in airflow
JP2805138B2 (en) Compressed air dehumidifier
JP4679589B2 (en) Horizontal dust remover
US4734030A (en) Apparatus for the treatment of flue gases
CN211706363U (en) Gas-liquid separation apparatus
JP4769164B2 (en) Machine tool and gas-liquid separator
JP2004202392A (en) Dust removing apparatus
JP4115426B2 (en) Horizontal dust remover
JPH06346855A (en) Compressed air dehumidifying device
KR20110010182U (en) Water Separation Filter for Pneumatic
JPS6168113A (en) Method and apparatus for washing gas
RU2756745C1 (en) Gas purification device
JP2005349099A (en) Vacuum cleaner
JP2005349339A (en) Dust-removal device
JP2000070643A (en) Method for cleaning air and its apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4906175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees