JP4905921B2 - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP4905921B2
JP4905921B2 JP2006098604A JP2006098604A JP4905921B2 JP 4905921 B2 JP4905921 B2 JP 4905921B2 JP 2006098604 A JP2006098604 A JP 2006098604A JP 2006098604 A JP2006098604 A JP 2006098604A JP 4905921 B2 JP4905921 B2 JP 4905921B2
Authority
JP
Japan
Prior art keywords
excitation
detection
legs
acceleration sensor
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006098604A
Other languages
Japanese (ja)
Other versions
JP2007271498A (en
Inventor
義朗 富川
良太 河合
克英 指宿
修一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2006098604A priority Critical patent/JP4905921B2/en
Publication of JP2007271498A publication Critical patent/JP2007271498A/en
Application granted granted Critical
Publication of JP4905921B2 publication Critical patent/JP4905921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加速度センサに関するものである。   The present invention relates to an acceleration sensor.

従来より、圧電材料の変位等を利用して加速度を検出する加速度センサが提案されている(例えば特許文献1参照)。図22(A)は特許文献1に開示された加速度センサの構成を示す斜視図、図22(B)は図22(A)の加速度センサのI−I線断面図である。加速度センサ1000は、水晶等の圧電材料により形成された四角柱状の検出体1001を備えており、検出体1001の一端(図22(A)では下端)が固定されている。図22(B)に示すように、検出体1001の各外面には、それぞれ検出電極1002〜1005が形成されており、検出電極1002と1004とを接続し、また検出電極1003と1005とを接続して、検出端子1006と1007の電位差を取り出すようにしている。   2. Description of the Related Art Conventionally, an acceleration sensor that detects acceleration by using displacement of a piezoelectric material has been proposed (see, for example, Patent Document 1). 22A is a perspective view showing the configuration of the acceleration sensor disclosed in Patent Document 1, and FIG. 22B is a cross-sectional view taken along the line II of the acceleration sensor of FIG. The acceleration sensor 1000 includes a quadrangular columnar detection body 1001 formed of a piezoelectric material such as quartz, and one end (the lower end in FIG. 22A) of the detection body 1001 is fixed. As shown in FIG. 22B, detection electrodes 1002 to 1005 are formed on the outer surfaces of the detection body 1001, respectively. The detection electrodes 1002 and 1004 are connected, and the detection electrodes 1003 and 1005 are connected. Thus, the potential difference between the detection terminals 1006 and 1007 is taken out.

図22(A)、図22(B)に示した加速度センサ1000に対して、図23(A)に示すように例えばGの方向に加速度が加わると、この加速度と逆方向にF=ma(mは検出体1001の質量、aは加速度)の力が加わり、検出体1001は図23(A)のように変形する。この検出体1001の変形により、図23(A)のI−I線断面図である図23(B)に示すように、検出体1001の外面の各電極1002〜1005間には、矢印で示すような電界が圧電効果によって生じる。この電界は、検出端子1006と1007間の電位差として取り出すことができ、これにより加速度を検出することができる。   When acceleration is applied to the acceleration sensor 1000 shown in FIGS. 22A and 22B, for example, in the G direction as shown in FIG. 23A, F = ma ( m is the mass of the detection body 1001, and a is the acceleration), and the detection body 1001 is deformed as shown in FIG. Due to the deformation of the detection body 1001, an arrow is provided between the electrodes 1002 to 1005 on the outer surface of the detection body 1001, as shown in FIG. Such an electric field is generated by the piezoelectric effect. This electric field can be taken out as a potential difference between the detection terminals 1006 and 1007, whereby acceleration can be detected.

特開2004−085237号公報JP 2004-085237 A

特許文献1に開示された従来の加速度センサでは、検出体1001に加わる力Fは前述のとおりF=maで表されるが、水晶等の圧電材料の場合、質量mが小さく、また電気機械結合係数が小さいために、十分な検出感度が得られないという問題点があった。
また、従来の加速度センサでは、一定の加速度aが継続して加わる状況の場合、検出体1001に同一の力Fが継続して加わり、電荷の発生がなくなってしまうため、継続して加わる加速度aを検出するためには積分回路等が必要になるという問題点があった。
In the conventional acceleration sensor disclosed in Patent Document 1, the force F applied to the detection body 1001 is expressed by F = ma as described above. However, in the case of a piezoelectric material such as quartz, the mass m is small and the electromechanical coupling is performed. Since the coefficient is small, there is a problem that sufficient detection sensitivity cannot be obtained.
Further, in the conventional acceleration sensor, in a situation where a constant acceleration a is continuously applied, the same force F is continuously applied to the detection body 1001 and generation of electric charge is eliminated. There is a problem that an integration circuit or the like is required to detect.

本発明は、上記課題を解決するためになされたもので、継続して加わる加速度も検出することができる高感度な加速度センサを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a highly sensitive acceleration sensor capable of detecting continuously applied acceleration.

本発明の加速度センサは、板状の基部と、この基部から第1の方向に延びるように形成された第1、第2の励振脚部と、前記基部から前記第1の方向と反対方向に延びるように形成された第3、第4の励振脚部と、前記第1、第2の励振脚部の真中に配置され、前記基部から前記第1の方向に延びるように形成された第1の検出脚部と、前記第3、第4の励振脚部の真中に配置され、前記基部から前記第1の方向と反対方向に延びるように形成された第2の検出脚部と、前記第1の方向と直交する第2の方向の前記基部の両端部を固定する第1、第2の固定部と、前記第1、第2の検出脚部の中心線を通り前記第1の方向と平行かつ前記第2の方向に対して垂直な平面に対して、前記第1、第2の励振脚部を対称に屈曲振動させると同時に前記第3、第4の励振脚部を対称に屈曲振動させる励振手段と、前記第1、第2の方向と直交する第3の方向に沿った前記第1、第2の検出脚部の屈曲振動による電圧信号を取り出して、前記第3の方向から加わった加速度を前記電圧信号に基づいて検出する検出手段とを有し、前記励振手段は、前記第1、第2、第3、第4の励振脚部に形成された第1、第2、第3、第4の励振電極と、この第1、第2、第3、第4の励振電極に電圧を印加し、前記平面に対して前記第1、第2の励振脚部を対称に屈曲振動させると同時に前記第3、第4の励振脚部を対称に屈曲振動させる励振回路とからなり、前記検出手段は、前記第1の検出脚部に形成され、前記第3の方向に沿った前記第1の検出脚部の屈曲振動による電圧信号を取り出す第1の検出電極と、前記第2の検出脚部に形成され、前記第3の方向に沿った前記第2の検出脚部の屈曲振動による電圧信号を取り出す第2の検出電極と、前記第1、第2、第3、第4の励振脚部の屈曲振動と前記加速度による力とに応じて発生した前記第1、第2の検出脚部の屈曲振動による前記電圧信号を前記第1、第2の検出電極から受けて、この電圧信号を基に前記加速度を検出する検出回路とからなるものである。 The acceleration sensor of the present invention includes a plate-like base, first and second excitation legs formed so as to extend from the base in the first direction, and the base in a direction opposite to the first direction. A third and a fourth excitation leg formed to extend; and a first that is arranged in the middle of the first and second excitation legs and extends from the base in the first direction. Detection legs, a second detection leg disposed in the middle of the third and fourth excitation legs and extending from the base in a direction opposite to the first direction, and the second First and second fixing portions for fixing both ends of the base portion in a second direction orthogonal to the first direction, and the first direction through the center line of the first and second detection leg portions. The first and second excitation legs are flexibly oscillated symmetrically with respect to a plane parallel and perpendicular to the second direction. Excitation means for bending and vibrating the third and fourth excitation legs symmetrically, and bending vibration of the first and second detection legs along a third direction orthogonal to the first and second directions Remove the voltage signal by the third acceleration applied from the direction of have a detecting means for detecting, based on said voltage signal, prior Symbol excitation means, the first, second, third, fourth A voltage is applied to the first, second, third, and fourth excitation electrodes formed on the excitation legs, and the first, second, third, and fourth excitation electrodes. The first and second excitation legs are bent and oscillated symmetrically, and at the same time the third and fourth excitation legs are bent and oscillated symmetrically, and the detection means is the first detection A first detection for extracting a voltage signal formed by bending vibration of the first detection leg along the third direction, formed on the leg; A second detection electrode formed on the second detection leg and configured to extract a voltage signal generated by bending vibration of the second detection leg along the third direction; and the first and second The first and second detections of the voltage signal generated by the bending vibrations of the first and second detection legs generated according to the bending vibration of the third and fourth excitation legs and the force caused by the acceleration are performed. It comprises a detection circuit that receives from the electrodes and detects the acceleration based on this voltage signal.

また、本発明の加速度センサの1構成例は、前記基部と反対側の前記第1、第2、第3、第4の励振脚部の端部にそれぞれ重りを設けたことを特徴とするものである。 Also , one configuration example of the acceleration sensor according to the present invention is characterized in that a weight is provided at each end of the first, second, third, and fourth excitation legs on the side opposite to the base. It is.

本発明によれば、基部から第1の方向に延びるように形成された第1、第2の励振脚部と、基部から第1の方向と反対方向に延びるように形成された第3、第4の励振脚部と、第1、第2の励振脚部の真中に配置され、基部から第1の方向に延びるように形成された第1の検出脚部と、第3、第4の励振脚部の真中に配置され、基部から第1の方向と反対方向に延びるように形成された第2の検出脚部とを設け、励振手段により第1、第2の検出脚部の中心線を通り第1の方向と平行かつ第2の方向に対して垂直な平面に対して、第1、第2の励振脚部を対称に屈曲振動させると同時に第3、第4の励振脚部を対称に屈曲振動させて、検出手段が第1、第2の方向と直交する第3の方向に沿った第1、第2の検出脚部の屈曲振動による電圧信号を取り出すことにより、第3の方向から加わった加速度を検出することができる。本発明では、第2の方向に沿った第1、第2、第3、第4の励振脚部の励振振動と加速度に応じた第3の方向の振動とを結合させることにより、従来の加速度センサに比べて高い検出感度を実現することができる。また、本発明では、加速度が第3の方向に沿って継続して加わる場合、第1、第2、第3、第4の励振脚部の第3の方向の振動と第1、第2の検出脚部の第3の方向の振動とが継続して発生するため、加速度に応じた電圧信号を取り出すことができ、継続して加わる加速度を検出することができる。   According to the present invention, the first and second excitation legs formed to extend in the first direction from the base, and the third and second formed to extend in the direction opposite to the first direction from the base. Four excitation legs, a first detection leg arranged in the middle of the first and second excitation legs and extending in the first direction from the base, and third and fourth excitations A second detection leg disposed in the middle of the leg and extending from the base in a direction opposite to the first direction, and the excitation means defines the center lines of the first and second detection legs. The first and second excitation legs are flexibly oscillated symmetrically with respect to a plane parallel to the first direction and perpendicular to the second direction. At the same time, the third and fourth excitation legs are symmetrical. Voltage signal due to the bending vibration of the first and second detection legs along the third direction orthogonal to the first and second directions. By taking out, it is possible to detect the acceleration applied from the third direction. In the present invention, the conventional acceleration is obtained by combining the excitation vibration of the first, second, third, and fourth excitation legs along the second direction and the vibration in the third direction according to the acceleration. High detection sensitivity can be realized compared to the sensor. In the present invention, when acceleration is continuously applied along the third direction, vibrations in the third direction of the first, second, third, and fourth excitation legs and the first and second Since the vibration in the third direction of the detection leg is continuously generated, a voltage signal corresponding to the acceleration can be taken out, and the continuously applied acceleration can be detected.

また、本発明では、基部と反対側の第1、第2、第3、第4の励振脚部の端部にそれぞれ重りを設けることにより、第1、第2、第3、第4の励振脚部の励振振動の振幅を増大させることができ、また第1、第2、第3、第4の励振脚部の質量が増加するので、加速度の検出感度を更に向上させることができる。   In the present invention, the first, second, third, and fourth excitations are provided by providing weights at the ends of the first, second, third, and fourth excitation legs on the side opposite to the base. The amplitude of the excitation vibration of the leg can be increased, and the mass of the first, second, third, and fourth excitation legs is increased, so that the acceleration detection sensitivity can be further improved.

また、本発明では、基部から第1の方向に延びるように形成された第1、第2の励振脚部と、第1、第2の励振脚部の真中に配置され、基部から第1の方向に延びるように形成された第1の検出脚部とを設け、励振手段により第1の検出脚部の中心線を通り第1の方向と平行かつ第2の方向に対して垂直な平面に対して、第1、第2の励振脚部を対称に屈曲振動させて、検出手段が第1、第2の方向と直交する第3の方向に沿った第1の検出脚部の屈曲振動による電圧信号を取り出すことにより、第3の方向から加わった加速度を検出することができる。本発明では、第2の方向に沿った第1、第2の励振脚部の励振振動と加速度に応じた第3の方向の振動とを結合させることにより、従来の加速度センサに比べて高い検出感度を実現することができる。また、本発明では、加速度が第3の方向に沿って継続して加わる場合、第1、第2の励振脚部の第3の方向の振動と第1の検出脚部の第3の方向の振動とが継続して発生するため、加速度に応じた電圧信号を取り出すことができ、継続して加わる加速度を検出することができる。   In the present invention, the first and second excitation legs formed so as to extend in the first direction from the base, and the first and second excitation legs are arranged in the middle, and the first to second A first detection leg portion extending in a direction, and passing through the center line of the first detection leg portion by the excitation means in a plane parallel to the first direction and perpendicular to the second direction. On the other hand, the first and second excitation legs are bent and oscillated symmetrically, and the detection means is caused by the bending vibration of the first detection legs along the third direction orthogonal to the first and second directions. By taking out the voltage signal, the acceleration applied from the third direction can be detected. In the present invention, by combining the excitation vibration of the first and second excitation legs along the second direction and the vibration in the third direction according to the acceleration, the detection is higher than that of the conventional acceleration sensor. Sensitivity can be realized. In the present invention, when the acceleration is continuously applied along the third direction, the vibration in the third direction of the first and second excitation legs and the third direction of the first detection leg are detected. Since vibration continuously occurs, a voltage signal corresponding to the acceleration can be taken out, and the continuously applied acceleration can be detected.

また、本発明では、基部と反対側の第1、第2の励振脚部の端部にそれぞれ重りを設けることにより、第1、第2の励振脚部の励振振動の振幅を増大させることができ、また第1、第2の励振脚部の質量が増加するので、加速度の検出感度を更に向上させることができる。   In the present invention, the amplitudes of the excitation vibrations of the first and second excitation legs can be increased by providing weights at the ends of the first and second excitation legs opposite to the base. In addition, since the mass of the first and second excitation legs increases, the acceleration detection sensitivity can be further improved.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係る加速度センサの構成を示す平面図、図2は図1の加速度センサの斜視図、図3(A)は図1の加速度センサのA−A線断面図、図3(B)は図1の加速度センサのB−B線断面図である。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a plan view showing the configuration of the acceleration sensor according to the first embodiment of the present invention, FIG. 2 is a perspective view of the acceleration sensor of FIG. 1, and FIG. 3A is AA of the acceleration sensor of FIG. FIG. 3B is a sectional view taken along line B-B of the acceleration sensor of FIG.

加速度センサ1は、基部2と、基部2から互いに平行に第1の方向(図1では上方向)に延びるように形成された第1、第2の励振脚部3,4と、基部2から互いに平行に前記第1の方向と反対の方向(図1では下方向)に延びるように形成された第3、第4の励振脚部5,6と、励振脚部3と4の真中に配置され、基部2から前記第1の方向に延びるように形成された第1の検出脚部7と、励振脚部5と6の真中に配置され、基部2から前記第1の方向と反対の方向に延びるように形成された第2の検出脚部8と、前記第1の方向と直交する第2の方向(図1では左右方向)の基部2の両端部を固定する第1、第2の固定部9,10と、励振脚部3,4,5,6の各々の先端に設けられた重り11,12,13,14とを備えている。なお、図1〜図3では、前記第2の方向と平行な方向をX軸方向、前記第1の方向と平行な方向をY軸方向、XY平面と直交する方向をZ軸方向としている。   The acceleration sensor 1 includes a base 2, first and second excitation legs 3 and 4 formed so as to extend from the base 2 in parallel to each other in a first direction (upward in FIG. 1), and the base 2. Arranged in the middle of the third and fourth excitation legs 5 and 6 and the excitation legs 3 and 4 formed so as to extend in parallel to each other in the direction opposite to the first direction (downward in FIG. 1). The first detection leg 7 formed to extend from the base 2 in the first direction and the excitation legs 5 and 6 are disposed in the middle, and the direction opposite to the first direction from the base 2 The first and second detection legs 8 are formed so as to extend in the first direction, and both ends of the base 2 in the second direction (left-right direction in FIG. 1) orthogonal to the first direction are fixed. Fixed portions 9 and 10 and weights 11, 12, 13 and 14 provided at the tips of the excitation leg portions 3, 4, 5 and 6 are provided. 1 to 3, the direction parallel to the second direction is the X-axis direction, the direction parallel to the first direction is the Y-axis direction, and the direction orthogonal to the XY plane is the Z-axis direction.

基部2と励振脚部3〜6と検出脚部7,8と固定部9,10と重り11〜14とは、例えば厚さ0.1〜0.3mm程度の水晶等の圧電材料により一体成形されている。このような加速度センサ1を製造するには、水晶板を例えばエッチングなどにより加工すればよい。各脚部3〜8の幅(X軸方向の寸法)は0.05〜0.3mm程度、長さ(Y軸方向の寸法)は1.0〜5.0mm程度に形成されていればよい。励振脚部3及び重り11の質量と励振脚部4及び重り12の質量とは等しいことが好ましく、同様に励振脚部5及び重り13の質量と励振脚部6及び重り14の質量とは等しいことが好ましい。   The base 2, the excitation legs 3 to 6, the detection legs 7 and 8, the fixing parts 9 and 10, and the weights 11 to 14 are integrally formed by a piezoelectric material such as quartz having a thickness of about 0.1 to 0.3 mm, for example. Has been. In order to manufacture such an acceleration sensor 1, the quartz plate may be processed by, for example, etching. The leg portions 3 to 8 should have a width (dimension in the X-axis direction) of about 0.05 to 0.3 mm and a length (dimension in the Y-axis direction) of about 1.0 to 5.0 mm. . The mass of the excitation leg 3 and the weight 11 is preferably equal to the mass of the excitation leg 4 and the weight 12. Similarly, the mass of the excitation leg 5 and the weight 13 and the mass of the excitation leg 6 and the weight 14 are equal. It is preferable.

固定部9,10は、例えば図示しない基台上に搭載される。これにより、基部2と励振脚部3〜6と検出脚部7,8と重り11〜14とが基台から浮くようにして加速度センサ1が基台に固定される。   The fixing portions 9 and 10 are mounted on a base (not shown), for example. Thereby, the acceleration sensor 1 is fixed to the base so that the base 2, the excitation legs 3 to 6, the detection legs 7 and 8, and the weights 11 to 14 float from the base.

図3(A)に示すように、励振脚部3の4面にはそれぞれ励振電極101〜104が形成され、励振脚部4の4面にはそれぞれ励振電極109〜112が形成され、検出脚部7の4面にはそれぞれ検出電極105〜108が形成されている。また、図3(B)に示すように、励振脚部5の4面にはそれぞれ励振電極113〜116が形成され、励振脚部6の4面にはそれぞれ励振電極121〜124が形成され、検出脚部8の4面にはそれぞれ検出電極117〜120が形成されている。   As shown in FIG. 3A, excitation electrodes 101 to 104 are formed on the four surfaces of the excitation leg 3, respectively, and excitation electrodes 109 to 112 are formed on the four surfaces of the excitation leg 4, respectively. Detection electrodes 105 to 108 are respectively formed on the four surfaces of the portion 7. Further, as shown in FIG. 3B, excitation electrodes 113 to 116 are formed on the four surfaces of the excitation leg portion 5, respectively, and excitation electrodes 121 to 124 are formed on the four surfaces of the excitation leg portion 6, respectively. Detection electrodes 117 to 120 are formed on the four surfaces of the detection leg 8 respectively.

図4は加速度センサ1の各電極の接続関係を示す回路図である。励振脚部3の励振電極101と103とが接続され、励振脚部4の励振電極110と112とが接続され、励振脚部5の励振電極113と115とが接続され、励振脚部6の励振電極122と124とが接続され、さらにこれらの励振電極101,103,110,112,113,115,122,124は励振回路200の第1の出力端子D1に接続されている。また、励振脚部3の励振電極102と104とが接続され、励振脚部4の励振電極109と111とが接続され、励振脚部5の励振電極114と116とが接続され、励振脚部6の励振電極121と123とが接続され、さらにこれらの励振電極102,104,109,111,114,116,121,123が励振回路200の第2の出力端子D2に接続されている。   FIG. 4 is a circuit diagram showing the connection relationship between the electrodes of the acceleration sensor 1. The excitation electrodes 101 and 103 of the excitation leg 3 are connected, the excitation electrodes 110 and 112 of the excitation leg 4 are connected, the excitation electrodes 113 and 115 of the excitation leg 5 are connected, and the excitation leg 6 Excitation electrodes 122 and 124 are connected, and further, these excitation electrodes 101, 103, 110, 112, 113, 115, 122, 124 are connected to a first output terminal D 1 of the excitation circuit 200. Further, the excitation electrodes 102 and 104 of the excitation leg 3 are connected, the excitation electrodes 109 and 111 of the excitation leg 4 are connected, and the excitation electrodes 114 and 116 of the excitation leg 5 are connected to each other. 6 excitation electrodes 121 and 123 are connected, and these excitation electrodes 102, 104, 109, 111, 114, 116, 121, 123 are connected to the second output terminal D 2 of the excitation circuit 200.

検出脚部7の検出電極106と108とが接続され、検出脚部8の検出電極118と120とが接続され、さらにこれらの検出電極106,108,118,120が検出回路201の第1の入力端子P1に接続されている。また、検出脚部7の検出電極105と107とが接続され、検出脚部8の検出電極117と119とが接続され、さらにこれらの検出電極105,107,117,119が検出回路201の第2の入力端子P2に接続されている。   The detection electrodes 106 and 108 of the detection leg 7 are connected, the detection electrodes 118 and 120 of the detection leg 8 are connected, and these detection electrodes 106, 108, 118, 120 are connected to the first detection circuit 201. It is connected to the input terminal P1. The detection electrodes 105 and 107 of the detection leg 7 are connected, the detection electrodes 117 and 119 of the detection leg 8 are connected, and the detection electrodes 105, 107, 117, and 119 are connected to the detection circuit 201. 2 input terminals P2.

次に、本実施の形態の加速度センサ1の動作を説明する。励振回路200は、出力端子D1とD2の間に例えば正弦波状の交流電圧(励振信号)を印加する。このため、あるときは励振脚部3〜6にそれぞれ図5の矢印で示すような電界が発生し、次には図5の矢印と逆方向の電界が発生する。これにより、励振脚部3〜6とその先端に設けられた重り11〜14とは、X軸方向に沿って屈曲変位を繰り返す屈曲振動を行う。   Next, the operation of the acceleration sensor 1 of the present embodiment will be described. The excitation circuit 200 applies, for example, a sinusoidal AC voltage (excitation signal) between the output terminals D1 and D2. For this reason, in some cases, an electric field as indicated by an arrow in FIG. 5 is generated in each of the excitation legs 3 to 6, and then an electric field in the direction opposite to the arrow in FIG. 5 is generated. Thereby, the excitation leg parts 3-6 and the weights 11-14 provided at the front-end | tip perform bending vibration which repeats bending displacement along an X-axis direction.

図6は励振脚部3〜6及び重り11〜14の屈曲振動を模式的に示す平面図である。励振脚部3〜6及び重り11〜14は、図6の破線で示すように屈曲振動する。このとき、励振脚部3及び重り11と、励振脚部4及び重り12とは、励振脚部7,8の中心線Lを通り前記第1の方向と平行かつ前記第2の方向に対して垂直なYZ平面に対して、面対称に屈曲振動する。すなわち、励振脚部3及び重り11が左方向に広がると同時に励振脚部4及び重り12が右方向に広がり、続いて励振脚部3及び重り11が右方向に戻ると同時に励振脚部4及び重り12が左方向に戻るという動作を繰り返す。同様に、励振脚部5及び重り13と、励振脚部6及び重り14とは、中心線Lを通るYZ平面に対して面対称に屈曲振動する。すなわち、励振脚部5及び重り13が左方向に広がると同時に励振脚部6及び重り14が右方向に広がり、続いて励振脚部5及び重り13が右方向に戻ると同時に励振脚部6及び重り14が左方向に戻るという動作を繰り返す。   FIG. 6 is a plan view schematically showing bending vibration of the excitation legs 3 to 6 and the weights 11 to 14. The excitation legs 3 to 6 and the weights 11 to 14 bend and vibrate as indicated by broken lines in FIG. At this time, the excitation leg 3 and the weight 11, and the excitation leg 4 and the weight 12 pass through the center line L of the excitation legs 7 and 8 and are parallel to the first direction and with respect to the second direction. Bends and vibrates symmetrically with respect to the vertical YZ plane. That is, the excitation leg 3 and the weight 11 spread in the left direction and simultaneously the excitation leg 4 and the weight 12 spread in the right direction. Subsequently, the excitation leg 3 and the weight 11 return in the right direction and the excitation leg 4 and The operation of the weight 12 returning to the left is repeated. Similarly, the excitation leg portion 5 and the weight 13 and the excitation leg portion 6 and the weight 14 flexurally vibrate with respect to the YZ plane passing through the center line L. That is, the excitation leg 5 and the weight 13 spread in the left direction and simultaneously the excitation leg 6 and the weight 14 spread in the right direction. Subsequently, the excitation leg 5 and the weight 13 return in the right direction and the excitation leg 6 and The operation of the weight 14 returning to the left is repeated.

このように、励振脚部3〜6が屈曲振動している状態で、加速度センサ1の厚み方向に沿って加速度が加わると、加速度センサ1には加速度と反対方向に慣性による力F=ma(mは加速度センサ1の質量、aは加速度)が加わる。図7(A)は加速度センサ1に加速度Gが加わったときの励振脚部3〜6と検出脚部7,8と重り11〜14の動きを模式的に示す斜視図、図7(B)は図7(A)の加速度センサ1をP側から見た側面図、図7(C)は図7(A)の加速度センサ1をQ側から見た側面図である。   In this way, when acceleration is applied along the thickness direction of the acceleration sensor 1 in the state where the excitation legs 3 to 6 are flexibly oscillating, the force F = ma (force due to inertia in the direction opposite to the acceleration is applied to the acceleration sensor 1. m is the mass of the acceleration sensor 1, and a is acceleration). FIG. 7A is a perspective view schematically showing the movement of the excitation legs 3 to 6, the detection legs 7 and 8, and the weights 11 to 14 when the acceleration G is applied to the acceleration sensor 1. FIG. FIG. 7A is a side view of the acceleration sensor 1 of FIG. 7A viewed from the P side, and FIG. 7C is a side view of the acceleration sensor 1 of FIG. 7A viewed from the Q side.

図7(A)〜図7(C)の例では、Z軸方向に沿って下向きに加速度Gが加わった場合を示している。この場合、前述のとおり加速度Gと反対方向、すなわちZ軸方向に沿って上向きの力Fが加速度センサ1に加わる。励振脚部3〜6及び重り11〜14はX軸方向に沿って屈曲振動しており、励振脚部3〜6及び重り11〜14の重心はX軸方向に沿って変位している。このため、励振脚部3〜6及び重り11〜14には、この重心の変位と慣性による力Fにより、図7(B)、図7(C)に示すようにねじれが生じ、励振によるX軸方向成分に加えて、ねじれによるZ軸方向成分を持った屈曲振動が発生する。   In the example of FIGS. 7A to 7C, a case is shown in which acceleration G is applied downward along the Z-axis direction. In this case, as described above, the upward force F is applied to the acceleration sensor 1 along the direction opposite to the acceleration G, that is, along the Z-axis direction. The excitation legs 3 to 6 and the weights 11 to 14 are bent and vibrated along the X-axis direction, and the centers of gravity of the excitation legs 3 to 6 and the weights 11 to 14 are displaced along the X-axis direction. For this reason, the excitation legs 3 to 6 and the weights 11 to 14 are twisted as shown in FIG. 7B and FIG. In addition to the axial component, bending vibration having a Z-axis direction component due to torsion occurs.

一方、検出脚部7,8には、励振脚部3〜6及び重り11〜14のZ軸方向成分を持った屈曲振動により、図7(B)、図7(C)に示すようにZ軸方向に沿った屈曲振動が発生する。この検出脚部7,8の変形により、検出脚部7の外面の検出電極105〜108間、及び検出脚部8の外面の検出電極117〜120間には、図8の矢印で示すような電界が圧電効果によって生じる。この電界は、検出回路201の入力端子P1とP2間の電圧信号として取り出すことができる。この電圧信号は加速度Gに応じた大きさを持つ。よって、検出回路201は、電圧信号の大きさによってZ軸方向へ作用する加速度Gの大きさを検出することができる。また、検出回路201は、電圧信号の位相と励振回路200が出力する励振信号の位相とを比較することにより、加速度Gの方向を検出することができる。   On the other hand, as shown in FIGS. 7B and 7C, the detection legs 7 and 8 are bent by the bending vibrations having the Z-axis direction components of the excitation legs 3 to 6 and the weights 11 to 14 as shown in FIGS. Bending vibration occurs along the axial direction. Due to the deformation of the detection legs 7 and 8, the gap between the detection electrodes 105 to 108 on the outer surface of the detection leg 7 and the detection electrodes 117 to 120 on the outer surface of the detection leg 8 are indicated by arrows in FIG. 8. An electric field is generated by the piezoelectric effect. This electric field can be extracted as a voltage signal between the input terminals P1 and P2 of the detection circuit 201. This voltage signal has a magnitude corresponding to the acceleration G. Therefore, the detection circuit 201 can detect the magnitude of the acceleration G acting in the Z-axis direction based on the magnitude of the voltage signal. Further, the detection circuit 201 can detect the direction of the acceleration G by comparing the phase of the voltage signal with the phase of the excitation signal output from the excitation circuit 200.

以上のように、本実施の形態では、励振脚部3〜6及び重り11〜14のX軸方向の励振振動と加速度に応じたZ軸方向の振動とを結合させることにより、特許文献1に開示された従来の加速度センサに比べて高い検出感度を実現することができる。本実施の形態の加速度センサ1を設計する際に、X軸方向の励振振動の周波数Fsdと加速度に応じたZ軸方向の検出振動の周波数Fspとの比である離調度を例えば1〜3%程度に設計すれば、励振振動と加速度に応じた検出振動とを容易に結合させることができ、高い検出感度を得ることができる。励振振動の周波数Fsdは励振脚部3〜6の幅と長さに依存し、検出振動の周波数Fspは励振脚部3〜6及び検出脚部7,8の厚みと長さに依存するので、周波数FsdとFspが略同一となるようにそれぞれの寸法を適宜決定すればよい。   As described above, in the present embodiment, by combining the excitation vibration in the X-axis direction of the excitation legs 3 to 6 and the weights 11 to 14 with the vibration in the Z-axis direction according to the acceleration, Patent Document 1 High detection sensitivity can be realized as compared with the disclosed conventional acceleration sensor. When designing the acceleration sensor 1 of the present embodiment, the degree of detuning, which is the ratio between the frequency Fsd of the excitation vibration in the X-axis direction and the frequency Fsp of the detected vibration in the Z-axis direction according to the acceleration, is set to 1 to 3%, for example. If designed to the extent, excitation vibration and detection vibration corresponding to acceleration can be easily combined, and high detection sensitivity can be obtained. Since the frequency Fsd of the excitation vibration depends on the width and length of the excitation legs 3 to 6, and the frequency Fsp of the detection vibration depends on the thickness and length of the excitation legs 3 to 6 and the detection legs 7 and 8, Each dimension may be appropriately determined so that the frequencies Fsd and Fsp are substantially the same.

また、本実施の形態では、加速度がZ軸方向に沿って継続して加わる場合、励振脚部3〜6及び重り11〜14のZ軸方向の振動と検出脚部7,8のZ軸方向の振動とが継続して発生するため、加速度に応じた電圧信号を検出電極105〜108,117〜120から取り出すことができ、継続して加わる加速度を検出することができる。   In the present embodiment, when acceleration is continuously applied along the Z-axis direction, vibrations in the Z-axis direction of the excitation legs 3 to 6 and the weights 11 to 14 and the Z-axis direction of the detection legs 7 and 8 are detected. Therefore, a voltage signal corresponding to the acceleration can be taken out from the detection electrodes 105 to 108 and 117 to 120, and the continuously applied acceleration can be detected.

なお、本実施の形態では、励振脚部3〜6の先端に重り11〜14を設けている。重り11〜14を設けることで、励振脚部3〜6の励振振動の振幅を増大させることができ、また励振脚部3〜6の質量が増加するので、加速度の検出感度を向上させることができるが、重り11〜14は本発明の必須要件ではない。   In the present embodiment, weights 11 to 14 are provided at the tips of the excitation leg portions 3 to 6. By providing the weights 11 to 14, the amplitude of the excitation vibration of the excitation legs 3 to 6 can be increased, and the mass of the excitation legs 3 to 6 is increased, so that the acceleration detection sensitivity can be improved. However, the weights 11-14 are not essential requirements of the present invention.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図9は本発明の第2の実施の形態に係る加速度センサの構成を示す平面図、図10は図9の加速度センサの斜視図であり、図1〜図3と同様の構成には同一の符号を付してある。
本実施の形態の加速度センサ1aは、基部2と、第1、第2の励振脚部3,4と、第3、第4の励振脚部5,6と、第1、第2の検出脚部7,8と、重り11〜14と、基部2と反対側の検出脚部7,8の端部を固定する第3、第4の固定部15,16とを備えている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. 9 is a plan view showing the configuration of the acceleration sensor according to the second embodiment of the present invention, FIG. 10 is a perspective view of the acceleration sensor of FIG. 9, and the same configuration as in FIGS. The code | symbol is attached | subjected.
The acceleration sensor 1a according to the present embodiment includes a base 2, first and second excitation legs 3 and 4, third and fourth excitation legs 5 and 6, and first and second detection legs. Parts 7 and 8, weights 11 to 14, and third and fourth fixing parts 15 and 16 for fixing the ends of the detection leg parts 7 and 8 on the side opposite to the base 2.

第1の実施の形態と同様に、基部2と励振脚部3〜6と検出脚部7,8と重り11〜14と固定部15,16とは、水晶等の圧電材料により一体成形されている。
本実施の形態は第1の実施の形態の固定部9,10の代わりに固定部15,16を設けて、検出脚部7,8の端部を固定するようにしたものである。固定部15,16は、図示しない基台上に搭載される。これにより、基部2と励振脚部3〜6と検出脚部7,8と重り11〜14とが基台から浮くようにして加速度センサ1aが基台に固定される。
As in the first embodiment, the base 2, the excitation legs 3-6, the detection legs 7, 8, the weights 11-14, and the fixing parts 15, 16 are integrally formed of a piezoelectric material such as quartz. Yes.
In the present embodiment, fixing portions 15 and 16 are provided instead of the fixing portions 9 and 10 of the first embodiment, and the end portions of the detection leg portions 7 and 8 are fixed. The fixing parts 15 and 16 are mounted on a base (not shown). Thereby, the acceleration sensor 1a is fixed to the base so that the base 2, the excitation legs 3 to 6, the detection legs 7 and 8, and the weights 11 to 14 float from the base.

図9の加速度センサ1aのA−A線断面は図3(A)に示したとおりであり、加速度センサ1aのB−B線断面は図3(B)に示したとおりである。また、加速度センサ1aの各電極の接続関係は図4に示したとおりである。   The cross section along line AA of the acceleration sensor 1a in FIG. 9 is as shown in FIG. 3A, and the cross section along line BB of the acceleration sensor 1a is as shown in FIG. 3B. Further, the connection relationship of the electrodes of the acceleration sensor 1a is as shown in FIG.

次に、加速度センサ1aの動作を説明する。本実施の形態においても、励振脚部3〜6及び重り11〜14は、第1の実施の形態と同様に屈曲振動する。
図11(A)は加速度センサ1aに加速度Gが加わったときの励振脚部3〜6と検出脚部7,8と重り11〜14の動きを模式的に示す斜視図、図11(B)は図11(A)の加速度センサ1aをP側から見た側面図、図11(C)は図11(A)の加速度センサ1aをQ側から見た側面図、図11(D)は図11(A)の加速度センサ1aをR側から見た側面図である。
Next, the operation of the acceleration sensor 1a will be described. Also in the present embodiment, the excitation legs 3 to 6 and the weights 11 to 14 bend and vibrate as in the first embodiment.
FIG. 11A is a perspective view schematically showing the movement of the excitation legs 3 to 6, the detection legs 7 and 8, and the weights 11 to 14 when the acceleration G is applied to the acceleration sensor 1a, and FIG. 11A is a side view of the acceleration sensor 1a of FIG. 11A viewed from the P side, FIG. 11C is a side view of the acceleration sensor 1a of FIG. 11A viewed from the Q side, and FIG. It is the side view which looked at the acceleration sensor 1a of 11 (A) from the R side.

図11(A)〜図11(D)の例では、Z軸方向に沿って下向きに加速度Gが加わった場合を示している。この場合、第1の実施の形態と同様にZ軸方向に沿って上向きの力Fが加速度センサ1に加わる。第1の実施の形態で説明した重心の変位と慣性による力Fにより、励振脚部3〜6及び重り11〜14には、図11(B)、図11(C)に示すように励振によるX軸方向成分に加えて、ねじれによるZ軸方向成分を持った屈曲振動が発生する。   In the example of FIGS. 11A to 11D, a case is shown in which acceleration G is applied downward along the Z-axis direction. In this case, as in the first embodiment, an upward force F is applied to the acceleration sensor 1 along the Z-axis direction. Due to the displacement F of the center of gravity and the force F caused by the inertia explained in the first embodiment, the excitation legs 3 to 6 and the weights 11 to 14 are excited by excitation as shown in FIGS. 11 (B) and 11 (C). In addition to the X-axis direction component, bending vibration having a Z-axis direction component due to torsion occurs.

一方、基部2と検出脚部7,8には、励振脚部3〜6及び重り11〜14のZ軸方向成分を持った屈曲振動と力Fにより、図11(B)〜図11(D)に示すようにZ軸方向に沿った屈曲振動が発生する。検出脚部7,8の変形により、検出脚部7の検出電極105〜108,117〜120には、図8の矢印で示したような電界が生じる。検出回路201の動作は第1の実施の形態で説明したとおりである。
以上により、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。
On the other hand, the base 2 and the detection legs 7 and 8 are subjected to flexural vibration and force F having the Z-axis direction components of the excitation legs 3 to 6 and the weights 11 to 14, respectively, as shown in FIGS. ), Bending vibration along the Z-axis direction occurs. Due to the deformation of the detection legs 7 and 8, an electric field as indicated by an arrow in FIG. 8 is generated in the detection electrodes 105 to 108 and 117 to 120 of the detection leg 7. The operation of the detection circuit 201 is as described in the first embodiment.
As described above, also in the present embodiment, the same effect as in the first embodiment can be obtained.

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。図12は本発明の第3の実施の形態に係る加速度センサの構成を示す平面図、図13は図12の加速度センサの斜視図であり、図1〜図3、図9、図10と同様の構成には同一の符号を付してある。
本実施の形態の加速度センサ1bは、基部2と、第1、第2の励振脚部3,4と、第3、第4の励振脚部5,6と、第1、第2の検出脚部7,8と、第1、第2の固定部9,10と、重り11〜14と、基部2と反対側の検出脚部7の端部を固定する第3の固定部15とを備えている。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. 12 is a plan view showing the configuration of the acceleration sensor according to the third embodiment of the present invention, and FIG. 13 is a perspective view of the acceleration sensor of FIG. 12, similar to FIGS. 1 to 3, 9, and 10. The same reference numerals are given to the configurations of.
The acceleration sensor 1b of the present embodiment includes a base 2, first and second excitation legs 3 and 4, third and fourth excitation legs 5 and 6, and first and second detection legs. Parts 7 and 8, first and second fixing parts 9 and 10, weights 11 to 14, and a third fixing part 15 that fixes the end of the detection leg 7 on the side opposite to the base 2. ing.

固定部9,10,15は、図示しない基台上に搭載される。これにより、基部2と励振脚部3〜6と検出脚部7,8と重り11〜14とが基台から浮くようにして加速度センサ1bが基台に固定される。
図12の加速度センサ1bのA−A線断面は図3(A)に示したとおりであり、加速度センサ1bのB−B線断面は図3(B)に示したとおりである。また、加速度センサ1bの各電極の接続関係は図4に示したとおりである。
The fixing parts 9, 10, and 15 are mounted on a base (not shown). Thereby, the acceleration sensor 1b is fixed to the base so that the base 2, the excitation legs 3 to 6, the detection legs 7 and 8, and the weights 11 to 14 float from the base.
The cross section along line AA of the acceleration sensor 1b in FIG. 12 is as shown in FIG. 3A, and the cross section along line BB of the acceleration sensor 1b is as shown in FIG. 3B. Further, the connection relationship of the electrodes of the acceleration sensor 1b is as shown in FIG.

次に、加速度センサ1bの動作を説明する。本実施の形態においても、励振脚部3〜6及び重り11〜14は、第1の実施の形態と同様に屈曲振動する。
図14(A)は加速度センサ1bに加速度Gが加わったときの励振脚部3〜6と検出脚部7,8と重り11〜14の動きを模式的に示す斜視図、図14(B)は図14(A)の加速度センサ1bをP側から見た側面図、図14(C)は図14(A)の加速度センサ1bをQ側から見た側面図、図14(D)は図14(A)の加速度センサ1bをR側から見た側面図である。
Next, the operation of the acceleration sensor 1b will be described. Also in the present embodiment, the excitation legs 3 to 6 and the weights 11 to 14 bend and vibrate as in the first embodiment.
14A is a perspective view schematically showing the movement of the excitation legs 3 to 6, the detection legs 7 and 8, and the weights 11 to 14 when the acceleration G is applied to the acceleration sensor 1b. FIG. 14A is a side view of the acceleration sensor 1b of FIG. 14A viewed from the P side, FIG. 14C is a side view of the acceleration sensor 1b of FIG. 14A viewed from the Q side, and FIG. It is the side view which looked at the acceleration sensor 1b of 14 (A) from the R side.

図14(A)〜図14(D)の例では、Z軸方向に沿って下向きに加速度Gが加わった場合を示している。この場合、第1の実施の形態と同様にZ軸方向に沿って上向きの力Fが加速度センサ1に加わる。第1の実施の形態で説明した重心の変位と慣性による力Fにより、励振脚部3〜6及び重り11〜14には、図14(B)、図14(C)に示すように励振によるX軸方向成分に加えて、ねじれによるZ軸方向成分を持った屈曲振動が発生する。   In the example of FIGS. 14A to 14D, a case is shown in which acceleration G is applied downward along the Z-axis direction. In this case, as in the first embodiment, an upward force F is applied to the acceleration sensor 1 along the Z-axis direction. Due to the displacement of the center of gravity and the inertia force F described in the first embodiment, the excitation legs 3 to 6 and the weights 11 to 14 are excited by excitation as shown in FIGS. 14 (B) and 14 (C). In addition to the X-axis direction component, bending vibration having a Z-axis direction component due to torsion occurs.

一方、基部2と検出脚部7,8には、励振脚部3〜6及び重り11〜14のZ軸方向成分を持った屈曲振動と力Fにより、図14(B)〜図14(D)に示すようにZ軸方向に沿った屈曲振動が発生する。検出脚部7,8の変形により、検出脚部7の検出電極105〜108,117〜120には、図8の矢印で示したような電界が生じる。検出回路201の動作は第1の実施の形態で説明したとおりである。   On the other hand, the base 2 and the detection legs 7 and 8 are subjected to flexural vibration and force F having the Z-axis direction components of the excitation legs 3 to 6 and the weights 11 to 14, respectively, as shown in FIGS. ), Bending vibration along the Z-axis direction occurs. Due to the deformation of the detection legs 7 and 8, an electric field as indicated by an arrow in FIG. 8 is generated in the detection electrodes 105 to 108 and 117 to 120 of the detection leg 7. The operation of the detection circuit 201 is as described in the first embodiment.

以上により、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。なお、本実施の形態では、検出脚部7の端部を固定する第3の固定部15を設けたが、固定部15の代わりに検出脚部8の端部を固定する第4の固定部16を設けてもよいことは言うまでもない。   As described above, also in the present embodiment, the same effect as in the first embodiment can be obtained. In the present embodiment, the third fixing portion 15 for fixing the end portion of the detection leg portion 7 is provided, but the fourth fixing portion for fixing the end portion of the detection leg portion 8 instead of the fixing portion 15 is provided. It goes without saying that 16 may be provided.

[第4の実施の形態]
次に、本発明の第4の実施の形態について説明する。図15は本発明の第4の実施の形態に係る加速度センサの構成を示す平面図であり、図1〜図3、図9、図10、図12、図13と同様の構成には同一の符号を付してある。
本実施の形態の加速度センサ1cは、基部2と、第1、第2の励振脚部3,4と、第3、第4の励振脚部5,6と、第1、第2の検出脚部7,8と、基部2の両端部を固定する第1、第2の固定部9,10と、重り11〜14と、基部2と反対側の検出脚部7,8の端部を固定する第3、第4の固定部15,16とを備えている。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. FIG. 15 is a plan view showing the configuration of the acceleration sensor according to the fourth embodiment of the present invention. The same configurations as those in FIGS. 1 to 3, 9, 10, 12, and 13 are the same. The code | symbol is attached | subjected.
The acceleration sensor 1c according to the present embodiment includes a base 2, first and second excitation legs 3 and 4, third and fourth excitation legs 5 and 6, and first and second detection legs. The first and second fixing parts 9 and 10 for fixing both ends of the parts 7 and 8 and the base 2, the weights 11 to 14, and the ends of the detection leg parts 7 and 8 on the opposite side of the base 2 are fixed. Third and fourth fixing portions 15 and 16 are provided.

図15の加速度センサ1cのA−A線断面は図3(A)に示したとおりであり、加速度センサ1cのB−B線断面は図3(B)に示したとおりである。また、加速度センサ1cの各電極の接続関係は図4に示したとおりである。   The cross section along line AA of the acceleration sensor 1c in FIG. 15 is as shown in FIG. 3A, and the cross section along line BB of the acceleration sensor 1c is as shown in FIG. 3B. Further, the connection relationship of the electrodes of the acceleration sensor 1c is as shown in FIG.

次に、加速度センサ1cの動作を説明する。本実施の形態においても、励振脚部3〜6及び重り11〜14は、第1の実施の形態と同様に屈曲振動する。
図16(A)は加速度センサ1cに加速度Gが加わったときの励振脚部3〜6と検出脚部7,8と重り11〜14の動きを模式的に示す斜視図、図16(B)は図16(A)の加速度センサ1cをP側から見た側面図、図16(C)は図16(A)の加速度センサ1cをQ側から見た側面図、図16(D)は図16(A)の加速度センサ1cをR側から見た側面図である。
Next, the operation of the acceleration sensor 1c will be described. Also in the present embodiment, the excitation legs 3 to 6 and the weights 11 to 14 bend and vibrate as in the first embodiment.
FIG. 16A is a perspective view schematically showing the movement of the excitation legs 3-6, the detection legs 7, 8 and the weights 11-14 when the acceleration G is applied to the acceleration sensor 1c, FIG. 16A is a side view of the acceleration sensor 1c of FIG. 16A viewed from the P side, FIG. 16C is a side view of the acceleration sensor 1c of FIG. 16A viewed from the Q side, and FIG. It is the side view which looked at the acceleration sensor 1c of 16 (A) from the R side.

図16(A)〜図16(D)の例では、Z軸方向に沿って下向きに加速度Gが加わった場合を示している。この場合、第1の実施の形態と同様にZ軸方向に沿って上向きの力Fが加速度センサ1に加わる。第1の実施の形態で説明した重心の変位と慣性による力Fにより、励振脚部3〜6及び重り11〜14には、図16(B)、図16(C)に示すように励振によるX軸方向成分に加えて、ねじれによるZ軸方向成分を持った屈曲振動が発生する。   In the example of FIGS. 16A to 16D, a case is shown in which acceleration G is applied downward along the Z-axis direction. In this case, as in the first embodiment, an upward force F is applied to the acceleration sensor 1 along the Z-axis direction. Due to the displacement of the center of gravity and the force F caused by the inertia explained in the first embodiment, the excitation legs 3 to 6 and the weights 11 to 14 are excited by the excitation as shown in FIGS. 16 (B) and 16 (C). In addition to the X-axis direction component, bending vibration having a Z-axis direction component due to torsion occurs.

一方、基部2と検出脚部7,8には、励振脚部3〜6及び重り11〜14のZ軸方向成分を持った屈曲振動と力Fにより、図16(B)〜図16(D)に示すようにZ軸方向に沿った屈曲振動が発生する。検出脚部7,8の変形により、検出脚部7の外面の検出電極105〜108,117〜120間には、図8の矢印で示したような電界が生じる。検出回路201の動作は第1の実施の形態で説明したとおりである。
以上により、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。
On the other hand, the base 2 and the detection legs 7 and 8 are subjected to flexural vibration and force F having the Z-axis direction components of the excitation legs 3 to 6 and the weights 11 to 14, respectively, as shown in FIGS. ), Bending vibration along the Z-axis direction occurs. Due to the deformation of the detection legs 7 and 8, an electric field as indicated by an arrow in FIG. 8 is generated between the detection electrodes 105 to 108 and 117 to 120 on the outer surface of the detection leg 7. The operation of the detection circuit 201 is as described in the first embodiment.
As described above, also in the present embodiment, the same effect as in the first embodiment can be obtained.

[第5の実施の形態]
次に、本発明の第5の実施の形態について説明する。図17は本発明の第5の実施の形態に係る加速度センサの構成を示す平面図であり、図1〜図3、図9、図10、図12、図13、図15と同様の構成には同一の符号を付してある。
本実施の形態の加速度センサ1dは、基部2と、第1、第2の励振脚部3,4と、第1の検出脚部7と、第1、第2の固定部9,10と、重り11,12と、基部2と反対側の検出脚部7の端部を固定する第3の固定部15とを備えており、第3の実施の形態の加速度センサ1bから第3、第4の励振脚部5,6と第2の検出脚部8と重り13,14とを取り除いたものに相当する。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. FIG. 17 is a plan view showing the configuration of the acceleration sensor according to the fifth embodiment of the present invention. The configuration is the same as that shown in FIGS. 1 to 3, 9, 10, 12, 13, and 15. Are given the same reference numerals.
The acceleration sensor 1d according to the present embodiment includes a base 2, first and second excitation legs 3 and 4, a first detection leg 7, first and second fixing parts 9 and 10, Weights 11 and 12 and a third fixing part 15 for fixing the end of the detection leg 7 opposite to the base 2 are provided, and the third to fourth acceleration sensors 1b of the third embodiment are provided. This corresponds to a structure in which the excitation legs 5 and 6, the second detection leg 8, and the weights 13 and 14 are removed.

図17の加速度センサ1dのA−A線断面は図3(A)に示したとおりである。図18は加速度センサ1dの各電極の接続関係を示す回路図である。加速度センサ1dの各電極の接続関係は、図4から第3、第4の励振脚部5,6と第2の検出脚部8と重り13,14とを取り除いたものに相当する。   The cross section along line AA of the acceleration sensor 1d in FIG. 17 is as shown in FIG. FIG. 18 is a circuit diagram showing the connection relationship between the electrodes of the acceleration sensor 1d. The connection relationship of the electrodes of the acceleration sensor 1d corresponds to that obtained by removing the third and fourth excitation legs 5 and 6, the second detection leg 8 and the weights 13 and 14 from FIG.

次に、加速度センサ1dの動作を説明する。本実施の形態においても、励振脚部3,4及び重り11,12は、第1の実施の形態と同様に屈曲振動する。
図19(A)は加速度センサ1dに加速度Gが加わったときの励振脚部3,4と検出脚部7と重り11,12の動きを模式的に示す斜視図、図19(B)は図19(A)の加速度センサ1dをP側から見た側面図、図19(C)は図19(A)の加速度センサ1dをR側から見た側面図である。
Next, the operation of the acceleration sensor 1d will be described. Also in the present embodiment, the excitation legs 3 and 4 and the weights 11 and 12 bend and vibrate as in the first embodiment.
FIG. 19A is a perspective view schematically showing the movements of the excitation legs 3 and 4, the detection legs 7 and the weights 11 and 12 when the acceleration G is applied to the acceleration sensor 1d, and FIG. 19A is a side view of the acceleration sensor 1d viewed from the P side, and FIG. 19C is a side view of the acceleration sensor 1d of FIG. 19A viewed from the R side.

図19(A)〜図19(C)の例では、Z軸方向に沿って下向きに加速度Gが加わった場合を示している。この場合の基部2と励振脚部3,4と検出脚部7と重り11,12の動きは、図14で説明した第3の実施の形態の場合と同様であるので、詳細な説明は省略する。   In the example of FIGS. 19A to 19C, the acceleration G is applied downward along the Z-axis direction. In this case, the movement of the base 2, the excitation legs 3 and 4, the detection legs 7, and the weights 11 and 12 is the same as that in the third embodiment described with reference to FIG. To do.

検出脚部7の変形により、検出脚部7の検出電極105〜108間には、図20の矢印で示したような電界が生じる。この電界は、検出回路201の入力端子P1とP2間の電圧信号として取り出すことができる。検出回路201は、電圧信号の大きさによってZ軸方向へ作用する加速度Gの大きさを検出することができる。また、検出回路201は、電圧信号の位相と励振回路200が出力する励振信号の位相とを比較することにより、加速度Gの方向を検出することができる。
以上により、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。
Due to the deformation of the detection leg 7, an electric field as indicated by an arrow in FIG. 20 is generated between the detection electrodes 105 to 108 of the detection leg 7. This electric field can be extracted as a voltage signal between the input terminals P1 and P2 of the detection circuit 201. The detection circuit 201 can detect the magnitude of the acceleration G acting in the Z-axis direction based on the magnitude of the voltage signal. Further, the detection circuit 201 can detect the direction of the acceleration G by comparing the phase of the voltage signal with the phase of the excitation signal output from the excitation circuit 200.
As described above, also in the present embodiment, the same effect as in the first embodiment can be obtained.

[第6の実施の形態]
次に、本発明の第6の実施の形態について説明する。図21は本発明の第6の実施の形態に係る加速度センサの構成を示す平面図であり、図1〜図3、図9、図10、図12、図13、図15、図17と同様の構成には同一の符号を付してある。
本実施の形態の加速度センサ1eは、基部2と、第1、第2の励振脚部3,4と、第1の検出脚部7と、重り11,12と、基部2と反対側の検出脚部7の端部を固定する第3の固定部15と、基部2から前記第1の方向と反対の方向(図21では下方向)に延びるように形成された支持用脚部17と、基部2と反対側の支持用脚部17の端部を固定する第5の固定部18とを備えており、第2の実施の形態の加速度センサ1aから第3、第4の励振脚部5,6と第2の検出脚部8と重り13,14と第4の固定部16とを取り除いて、支持用脚部17と固定部18とを追加したものに相当する。
[Sixth Embodiment]
Next, a sixth embodiment of the present invention will be described. FIG. 21 is a plan view showing the configuration of the acceleration sensor according to the sixth embodiment of the present invention, which is the same as FIGS. 1 to 3, 9, 10, 12, 13, 15, and 17. The same reference numerals are given to the configurations of.
The acceleration sensor 1e according to the present embodiment includes a base 2, first and second excitation legs 3, 4, first detection legs 7, weights 11, 12, and detection opposite to the base 2. A third fixing portion 15 for fixing the end portion of the leg portion 7, and a supporting leg portion 17 formed so as to extend from the base portion 2 in a direction opposite to the first direction (downward in FIG. 21); And a fifth fixing portion 18 for fixing the end of the supporting leg 17 on the opposite side of the base 2, and the third and fourth excitation legs 5 from the acceleration sensor 1a of the second embodiment. 6, the second detection leg 8, the weights 13 and 14, and the fourth fixing part 16 are removed, and a supporting leg 17 and a fixing part 18 are added.

図21の加速度センサ1eのA−A線断面は図3(A)に示したとおりであり、加速度センサ1eの各電極の接続関係は図18に示したとおりである。
本実施の形態においても、励振脚部3,4及び重り11,12は、第1の実施の形態と同様に屈曲振動する。加速度センサ1eに加速度Gが加わったときの基部2と励振脚部3,4と検出脚部7と重り11,12と支持用脚部17の動きは、図11で説明した第2の実施の形態の場合と同様であるので、詳細な説明は省略する。支持用脚部17の動きは検出脚部8と同様の動きとなる。
The cross section along line AA of the acceleration sensor 1e in FIG. 21 is as shown in FIG. 3A, and the connection relationship of each electrode of the acceleration sensor 1e is as shown in FIG.
Also in the present embodiment, the excitation legs 3 and 4 and the weights 11 and 12 bend and vibrate as in the first embodiment. The movement of the base 2, the excitation legs 3, 4, the detection legs 7, the weights 11, 12, and the support legs 17 when the acceleration G is applied to the acceleration sensor 1e is the second embodiment described with reference to FIG. Since it is the same as that of the form, detailed description is abbreviate | omitted. The movement of the support leg 17 is the same as that of the detection leg 8.

検出脚部7の変形により、検出脚部7の検出電極105〜108間には、図20の矢印で示したような電界が生じる。検出回路201の動作は第5の実施の形態で説明したとおりである。
以上により、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。
Due to the deformation of the detection leg 7, an electric field as indicated by an arrow in FIG. 20 is generated between the detection electrodes 105 to 108 of the detection leg 7. The operation of the detection circuit 201 is as described in the fifth embodiment.
As described above, also in the present embodiment, the same effect as in the first embodiment can be obtained.

なお、第1〜第6の実施の形態では、加速度センサの圧電材料として水晶を例に挙げて説明したが、これに限るものではなく、圧電セラミックスなどの他の圧電材料を用いるようにしてもよい。   In the first to sixth embodiments, the explanation has been given by taking quartz as an example of the piezoelectric material of the acceleration sensor. However, the present invention is not limited to this, and other piezoelectric materials such as piezoelectric ceramics may be used. Good.

本発明は、加速度センサに適用することができる。   The present invention can be applied to an acceleration sensor.

本発明の第1の実施の形態に係る加速度センサの構成を示す平面図である。It is a top view which shows the structure of the acceleration sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る加速度センサの構成を示す斜視図である。It is a perspective view which shows the structure of the acceleration sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る加速度センサの構成を示す断面図である。It is sectional drawing which shows the structure of the acceleration sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る加速度センサの各電極の接続関係を示す回路図である。It is a circuit diagram which shows the connection relation of each electrode of the acceleration sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態において励振回路からの電圧印加により励振脚部に生じる電界を示す断面図である。It is sectional drawing which shows the electric field which arises in an excitation leg part by the voltage application from an excitation circuit in the 1st Embodiment of this invention. 本発明の第1の実施の形態において励振脚部及び重りの屈曲振動を模式的に示す平面図である。It is a top view which shows typically the bending vibration of an excitation leg part and a weight in the 1st Embodiment of this invention. 本発明の第1の実施の形態において加速度が加わったときの励振脚部と検出脚部と重りの動きを模式的に示す斜視図及び側面図である。It is the perspective view and side view which show typically the motion of an excitation leg part, a detection leg part, and a weight when acceleration is added in the 1st Embodiment of this invention. 本発明の第1の実施の形態において加速度が加わったときに検出脚部に生じる電界を示す断面図である。It is sectional drawing which shows the electric field which arises in a detection leg part when acceleration is added in the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る加速度センサの構成を示す平面図である。It is a top view which shows the structure of the acceleration sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る加速度センサの構成を示す斜視図である。It is a perspective view which shows the structure of the acceleration sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態において加速度が加わったときの励振脚部と検出脚部と重りの動きを模式的に示す斜視図及び側面図である。It is the perspective view and side view which show typically the motion of an excitation leg part, a detection leg part, and a weight when acceleration is added in the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る加速度センサの構成を示す平面図である。It is a top view which shows the structure of the acceleration sensor which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る加速度センサの構成を示す斜視図である。It is a perspective view which shows the structure of the acceleration sensor which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態において加速度が加わったときの励振脚部と検出脚部と重りの動きを模式的に示す斜視図及び側面図である。It is the perspective view and side view which show typically the motion of an excitation leg part, a detection leg part, and a weight when acceleration is added in the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る加速度センサの構成を示す平面図である。It is a top view which shows the structure of the acceleration sensor which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態において加速度が加わったときの励振脚部と検出脚部と重りの動きを模式的に示す斜視図及び側面図である。It is the perspective view and side view which show typically the motion of an excitation leg part and a detection leg part when an acceleration is added in the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る加速度センサの構成を示す平面図である。It is a top view which shows the structure of the acceleration sensor which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る加速度センサの各電極の接続関係を示す回路図である。It is a circuit diagram which shows the connection relation of each electrode of the acceleration sensor which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態において加速度が加わったときの励振脚部と検出脚部と重りの動きを模式的に示す斜視図及び側面図である。It is the perspective view and side view which show typically the motion of an excitation leg part, a detection leg part, and a weight when acceleration is added in the 5th Embodiment of this invention. 本発明の第5の実施の形態において加速度が加わったときに検出脚部に生じる電界を示す断面図である。It is sectional drawing which shows the electric field which arises in a detection leg part when acceleration is added in the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る加速度センサの構成を示す平面図である。It is a top view which shows the structure of the acceleration sensor which concerns on the 6th Embodiment of this invention. 従来の加速度センサの構成を示す斜視図及び断面図である。It is the perspective view and sectional drawing which show the structure of the conventional acceleration sensor. 図22の加速度センサに加速度が加わったときの動作を説明するための図である。It is a figure for demonstrating operation | movement when an acceleration is added to the acceleration sensor of FIG.

符号の説明Explanation of symbols

1,1a,1b,1c,1d,1e…加速度センサ、2…基部、3〜6…励振脚部、7,8…検出脚部、9,10,15,16,18…固定部、11〜14…重り、17…支持用脚部、101〜104,109〜116,121〜124…励振電極、105〜108,117〜120…検出電極、200…励振回路、201…検出回路。
DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1c, 1d, 1e ... Acceleration sensor, 2 ... Base part, 3-6 ... Excitation leg part, 7, 8 ... Detection leg part, 9, 10, 15, 16, 18 ... Fixed part, 11- DESCRIPTION OF SYMBOLS 14 ... Weight, 17 ... Supporting leg part, 101-104, 109-116, 121-124 ... Excitation electrode, 105-108, 117-120 ... Detection electrode, 200 ... Excitation circuit, 201 ... Detection circuit.

Claims (2)

板状の基部と、
この基部から第1の方向に延びるように形成された第1、第2の励振脚部と、
前記基部から前記第1の方向と反対方向に延びるように形成された第3、第4の励振脚部と、
前記第1、第2の励振脚部の真中に配置され、前記基部から前記第1の方向に延びるように形成された第1の検出脚部と、
前記第3、第4の励振脚部の真中に配置され、前記基部から前記第1の方向と反対方向に延びるように形成された第2の検出脚部と、
前記第1の方向と直交する第2の方向の前記基部の両端部を固定する第1、第2の固定部と、
前記第1、第2の検出脚部の中心線を通り前記第1の方向と平行かつ前記第2の方向に対して垂直な平面に対して、前記第1、第2の励振脚部を対称に屈曲振動させると同時に前記第3、第4の励振脚部を対称に屈曲振動させる励振手段と、
前記第1、第2の方向と直交する第3の方向に沿った前記第1、第2の検出脚部の屈曲振動による電圧信号を取り出して、前記第3の方向から加わった加速度を前記電圧信号に基づいて検出する検出手段とを有し、
前記励振手段は、
前記第1、第2、第3、第4の励振脚部に形成された第1、第2、第3、第4の励振電極と、
この第1、第2、第3、第4の励振電極に電圧を印加し、前記平面に対して前記第1、第2の励振脚部を対称に屈曲振動させると同時に前記第3、第4の励振脚部を対称に屈曲振動させる励振回路とからなり、
前記検出手段は、
前記第1の検出脚部に形成され、前記第3の方向に沿った前記第1の検出脚部の屈曲振動による電圧信号を取り出す第1の検出電極と、
前記第2の検出脚部に形成され、前記第3の方向に沿った前記第2の検出脚部の屈曲振動による電圧信号を取り出す第2の検出電極と、
前記第1、第2、第3、第4の励振脚部の屈曲振動と前記加速度による力とに応じて発生した前記第1、第2の検出脚部の屈曲振動による前記電圧信号を前記第1、第2の検出電極から受けて、この電圧信号を基に前記加速度を検出する検出回路とからなることを特徴とする加速度センサ。
A plate-like base;
First and second excitation legs formed to extend from the base in a first direction;
Third and fourth excitation legs formed to extend from the base in a direction opposite to the first direction;
A first detection leg disposed in the middle of the first and second excitation legs and formed to extend from the base in the first direction;
A second detection leg disposed in the middle of the third and fourth excitation legs and extending from the base in a direction opposite to the first direction;
First and second fixing portions for fixing both ends of the base portion in a second direction orthogonal to the first direction;
The first and second excitation legs are symmetric with respect to a plane that passes through the center line of the first and second detection legs and is parallel to the first direction and perpendicular to the second direction. Excitation means for bending and vibrating the third and fourth excitation legs symmetrically at the same time as
A voltage signal generated by bending vibration of the first and second detection legs along a third direction orthogonal to the first and second directions is extracted, and an acceleration applied from the third direction is calculated as the voltage. have a detection means for detecting on the basis of the signal,
The excitation means includes
First, second, third, and fourth excitation electrodes formed on the first, second, third, and fourth excitation legs; and
A voltage is applied to the first, second, third, and fourth excitation electrodes to cause the first and second excitation legs to flexibly vibrate symmetrically with respect to the plane, and at the same time, the third and fourth And an excitation circuit that flexibly vibrates the excitation legs of
The detection means includes
A first detection electrode formed on the first detection leg and for extracting a voltage signal due to bending vibration of the first detection leg along the third direction;
A second detection electrode formed on the second detection leg and for extracting a voltage signal by bending vibration of the second detection leg along the third direction;
The voltage signal generated by the bending vibration of the first and second detection legs generated in response to the bending vibration of the first, second, third, and fourth excitation legs and the force caused by the acceleration is expressed as the first signal. 1. An acceleration sensor comprising: a detection circuit that receives the first detection electrode and detects the acceleration based on the voltage signal .
請求項1記載の加速度センサにおいて、
前記基部と反対側の前記第1、第2、第3、第4の励振脚部の端部にそれぞれ重りを設けたことを特徴とする加速度センサ。
The acceleration sensor according to claim 1,
An acceleration sensor characterized in that a weight is provided at each end of the first, second, third, and fourth excitation legs on the side opposite to the base .
JP2006098604A 2006-03-31 2006-03-31 Acceleration sensor Expired - Fee Related JP4905921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098604A JP4905921B2 (en) 2006-03-31 2006-03-31 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098604A JP4905921B2 (en) 2006-03-31 2006-03-31 Acceleration sensor

Publications (2)

Publication Number Publication Date
JP2007271498A JP2007271498A (en) 2007-10-18
JP4905921B2 true JP4905921B2 (en) 2012-03-28

Family

ID=38674443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098604A Expired - Fee Related JP4905921B2 (en) 2006-03-31 2006-03-31 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP4905921B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250859A (en) * 2008-04-09 2009-10-29 Epson Toyocom Corp Acceleration sensing device
JP2015002548A (en) * 2013-06-18 2015-01-05 セイコーエプソン株式会社 Vibration element, vibrator, oscillator, electronic device, and mobile unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3973742B2 (en) * 1997-07-04 2007-09-12 日本碍子株式会社 Vibrating gyroscope
JP3756668B2 (en) * 1998-05-18 2006-03-15 京セラキンセキ株式会社 Compound sensor
JP3958455B2 (en) * 1998-12-10 2007-08-15 日本碍子株式会社 Vibrator, vibratory gyroscope and linear accelerometer
JP4370432B2 (en) * 2003-05-26 2009-11-25 マイクロストーン株式会社 Angular acceleration sensor
JP2006064397A (en) * 2004-08-24 2006-03-09 Ngk Insulators Ltd Oscillator and acceleration detection element

Also Published As

Publication number Publication date
JP2007271498A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP6260706B2 (en) Gyroscope structure and gyroscope with improved quadrature correction
US7546768B2 (en) Mounting structure of angular rate sensor
JP2008209388A (en) Acceleration sensor
JP2011191304A (en) Force sensor with reduced noise
JP2009250859A (en) Acceleration sensing device
JP6031682B2 (en) Angular velocity sensor and detection element used therefor
JP5024803B2 (en) Detection sensor
JP2010096538A (en) Angular velocity sensor
WO2017007428A1 (en) Motion measurement devices and methods for measuring motion
JPH1054725A (en) Angular velocity detecting device
JP4905921B2 (en) Acceleration sensor
JP2009150815A (en) Angular velocity sensor
JP7166371B2 (en) Angular rate sensor and sensor element
JP6627663B2 (en) Physical quantity sensor
WO2010092806A1 (en) Inertial force sensor and detecting element used for same
JP2010181210A (en) Acceleration sensor
JP4905925B2 (en) Acceleration sensor
JP2001133476A (en) Acceleration sensor
JP2007322200A (en) Inertial sensor element
JP4420038B2 (en) Stress sensitive element
JP5165879B2 (en) Angular velocity sensor
JP4816273B2 (en) Gyro sensor
JP2008145338A (en) Angular velocity sensor
JP2012112819A (en) Vibration gyro
JP2010223666A (en) Force sensor element and force sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees