JP4905841B2 - Composite soft magnetic material and dust core - Google Patents

Composite soft magnetic material and dust core Download PDF

Info

Publication number
JP4905841B2
JP4905841B2 JP2008156227A JP2008156227A JP4905841B2 JP 4905841 B2 JP4905841 B2 JP 4905841B2 JP 2008156227 A JP2008156227 A JP 2008156227A JP 2008156227 A JP2008156227 A JP 2008156227A JP 4905841 B2 JP4905841 B2 JP 4905841B2
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic material
powder
composite soft
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008156227A
Other languages
Japanese (ja)
Other versions
JP2009302359A (en
Inventor
佐藤  淳
和嗣 草別
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008156227A priority Critical patent/JP4905841B2/en
Publication of JP2009302359A publication Critical patent/JP2009302359A/en
Application granted granted Critical
Publication of JP4905841B2 publication Critical patent/JP4905841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複合軟磁性材料、その製造方法、及び圧粉磁心に関する。特に、流動性が高く、成形性に優れる複合軟磁性材料に関する。   The present invention relates to a composite soft magnetic material, a manufacturing method thereof, and a dust core. In particular, the present invention relates to a composite soft magnetic material having high fluidity and excellent moldability.

従来、リアクトルやトランス、或いはチョークコイルなどの電子部品の磁心(コア)として、軟磁性粉末の表面に絶縁被膜が被覆された複合軟磁性材料を加圧成形し、その後熱処理が施された圧粉磁心が使用されている(特許文献1や2を参照)。   Conventionally, as a magnetic core (core) for electronic components such as reactors, transformers, and choke coils, a composite soft magnetic material with a soft magnetic powder coated with an insulating coating is pressed and then heat treated. A magnetic core is used (see Patent Documents 1 and 2).

通常、複合軟磁性材料は、軟磁性粉末と絶縁性の樹脂(例えば、シリコーン樹脂)とを混合した後、約150℃に加熱した炉内で1時間程度保持(硬化処理)することで、製造されている。一般的に、軟磁性粉末とシリコーン樹脂との混合には回転羽根を有するミキサーが利用されるが、混合する際の回転羽根の回転数は通常200rpm以下である。   Normally, composite soft magnetic materials are manufactured by mixing soft magnetic powder and insulating resin (for example, silicone resin) and then holding (curing treatment) for about 1 hour in a furnace heated to about 150 ° C. Has been. Generally, a mixer having rotating blades is used for mixing the soft magnetic powder and the silicone resin, but the rotation speed of the rotating blades during mixing is usually 200 rpm or less.

また、例えば特許文献1には、軟磁性粉末にシリコーン樹脂を混合し、かつ100℃〜200℃の範囲で加熱することで、軟磁性粉末の表面に酸化シリコンの絶縁被膜を被覆することが記載されている。   Further, for example, Patent Document 1 describes that a soft magnetic powder is mixed with a silicone resin and heated in a range of 100 ° C. to 200 ° C. to cover the surface of the soft magnetic powder with a silicon oxide insulating film. Has been.

特開2004−319652号公報JP 2004-319652 A 特開2007−129045号公報JP 2007-129045 A

複合軟磁性材料に求められる特性の一つとして、高い成形性が挙げられる。しかし、従来技術では、その要求に十分に応えることが難しかった。   One of the characteristics required for the composite soft magnetic material is high formability. However, it has been difficult for the prior art to fully meet the demand.

従来のシリコーン樹脂を被覆した複合軟磁性材料は、軟磁性粉末同士が樹脂によりくっついて一部に塊ができることがあり、流動性が低く、成形性が低い。   A conventional composite soft magnetic material coated with a silicone resin has soft magnetic powders that are adhered to each other by resin to form a lump, and has low fluidity and low moldability.

本発明者らが鋭意検討したところ、流動性の低い複合軟磁性材料を用いて圧粉磁心を製造した場合、加圧成形時に軟磁性粉末が再配列する際に、粉末を密に整列させることが難しく、粉末間に空間が形成され易い。この空間にはガスが残存するため、加圧成形後の成形体を熱処理した際に、粉末間の空間からガスが放出し、圧粉磁心にクラックが生じることがある。圧粉磁心にクラックが存在すると、圧粉磁心の強度が低下したり、鉄損が増大するなど、機械的強度や磁気特性の低下が懸念される。   When the present inventors diligently studied, when a powder magnetic core is manufactured using a composite soft magnetic material having low fluidity, the powder is closely aligned when the soft magnetic powder is rearranged during pressure molding. It is difficult to form a space between the powders. Since gas remains in this space, when the molded body after pressure molding is heat-treated, gas may be released from the space between the powders, and cracks may occur in the powder magnetic core. If cracks are present in the dust core, the strength of the dust core may decrease, and the mechanical strength and magnetic properties may decrease, such as an increase in iron loss.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、流動性が高く、成形性に優れる複合軟磁性材料を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a composite soft magnetic material having high fluidity and excellent moldability.

本発明の複合軟磁性材料は、軟磁性粉末の外側に熱硬化性樹脂から成る絶縁被膜が被覆されており、そして絶縁被膜がシリコーン樹脂から成り、安息角が45°未満であることを特徴とする。   The composite soft magnetic material of the present invention is characterized in that an insulating coating made of a thermosetting resin is coated on the outside of the soft magnetic powder, and the insulating coating is made of a silicone resin, and the angle of repose is less than 45 °. To do.

本発明の複合軟磁性材料は、安息角が45°未満であり、流動性が高い。そのため、圧粉磁心の製造時に生じる欠陥、即ち圧粉磁心にクラックが発生することを抑制することができるので、成形性に優れる。より好ましい安息角は40°以下であり、特に好ましくは35°以下、更に好ましくは30°以下である。   The composite soft magnetic material of the present invention has an angle of repose of less than 45 ° and high fluidity. For this reason, it is possible to suppress the occurrence of defects in the dust core, that is, the generation of cracks in the dust core, and the moldability is excellent. A more preferable angle of repose is 40 ° or less, particularly preferably 35 ° or less, and further preferably 30 ° or less.

本発明における軟磁性粉末としては、純鉄や鉄合金の粉末を利用することができる。鉄合金としては、Fe-Si系合金、Fe-Si-Al系合金、Fe-Ni系合金、Fe-B系合金、Fe-C系合金、Fe-N系合金、Fe-Al系合金、Fe-P系合金、Fe-Co系合金、Fe-Ni-Co系合金などが挙げられる。   As the soft magnetic powder in the present invention, pure iron or iron alloy powder can be used. Iron alloys include Fe-Si alloys, Fe-Si-Al alloys, Fe-Ni alloys, Fe-B alloys, Fe-C alloys, Fe-N alloys, Fe-Al alloys, Fe -P-based alloy, Fe-Co-based alloy, Fe-Ni-Co-based alloy and the like.

本発明における軟磁性粉末の平均粒径は、1μm以上70μm以下であることが好ましい。   The average particle size of the soft magnetic powder in the present invention is preferably 1 μm or more and 70 μm or less.

軟磁性粉末の平均粒径が1μm以上である場合、複合軟磁性材料の取り扱いが容易であり、高い密度を有する圧粉磁心を作製し易い。また、平均粒径が70μm以下である場合、1kHz以上の高周波域で圧粉磁心を使用したときの渦電流損の増大を抑制することができ、圧粉磁心の磁気特性を向上させることができる。より好ましい平均粒径は50μm以上70μm以下である。なお、本発明での平均粒径は、粒径のヒストグラム中、粒径の小さい粒子からの質量の和が総質量の50%に達する粒子の粒径であり、いわゆる50%粒径のことである。   When the average particle size of the soft magnetic powder is 1 μm or more, the composite soft magnetic material can be easily handled, and a dust core having a high density can be easily produced. In addition, when the average particle size is 70 μm or less, it is possible to suppress an increase in eddy current loss when using a dust core in a high frequency range of 1 kHz or more, and to improve the magnetic characteristics of the dust core. . A more preferable average particle diameter is 50 μm or more and 70 μm or less. The average particle size in the present invention is a particle size of particles in which the sum of masses from particles having a small particle size reaches 50% of the total mass in the particle size histogram, so-called 50% particle size. is there.

本発明の複合軟磁性材料は、見掛密度が3.0g/cm3以上、或いは流動度が25.0秒/50g以下の少なくとも一方を満たすことが好ましい。 The composite soft magnetic material of the present invention preferably satisfies at least one of an apparent density of 3.0 g / cm 3 or more and a fluidity of 25.0 seconds / 50 g or less.

見掛密度が上記範囲を満たす複合軟磁性材料は、より高い密度を有する圧粉磁心を作製することが容易であり、成形性に優れると共に、圧粉磁心の機械的強度や磁気特性を向上させることができる。また、流動度が上記範囲を満たす複合軟磁性材料は、複合軟磁性材料の取り扱いが容易であり、加圧成形時に金型に配置し易く、かつ成形性に優れる。なお、本発明での見掛密度は、JIS Z 2504:2000に規定される測定方法に基づいて測定した値であり、また流動度は、JIS Z 2502:2000に規定される測定方法に基づいて測定した値である。   A composite soft magnetic material having an apparent density that satisfies the above range is easy to produce a dust core having a higher density, is excellent in moldability, and improves the mechanical strength and magnetic properties of the dust core. be able to. In addition, a composite soft magnetic material having a fluidity satisfying the above range is easy to handle the composite soft magnetic material, easily placed in a mold during pressure molding, and excellent in moldability. The apparent density in the present invention is a value measured based on the measuring method specified in JIS Z 2504: 2000, and the fluidity is based on the measuring method specified in JIS Z 2502: 2000. It is a measured value.

本発明の複合軟磁性材料は、軟磁性粉末と絶縁被膜との間にリン酸塩層を有することが好ましい。   The composite soft magnetic material of the present invention preferably has a phosphate layer between the soft magnetic powder and the insulating coating.

リン酸塩層が存在することで、軟磁性粉末と絶縁被膜との密着性を高めることができる。また、リン酸塩は通常、導電性を有さないので、圧粉磁心の渦電流損を低減する効果も期待できる。リン酸塩としては、リン酸鉄、リン酸アルミニウム、リン酸マンガン、リン酸亜鉛、リン酸カルシウムなどが挙げられる。リン酸塩層は、軟磁性粉末に絶縁被膜を被覆する前に、公知のリン酸塩処理を施して軟磁性粉末の表面に予め形成しておけばよい。   The presence of the phosphate layer can improve the adhesion between the soft magnetic powder and the insulating coating. Moreover, since phosphate usually does not have electrical conductivity, an effect of reducing eddy current loss of the dust core can be expected. Examples of the phosphate include iron phosphate, aluminum phosphate, manganese phosphate, zinc phosphate, and calcium phosphate. The phosphate layer may be formed in advance on the surface of the soft magnetic powder by performing a known phosphate treatment before coating the soft magnetic powder with the insulating coating.

また、本発明の複合軟磁性材料の製造方法は、軟磁性粉末にシリコーン樹脂を配合する配合工程と、軟磁性粉末とシリコーン樹脂との配合体を、100℃超に加熱した状態で、回転数200rpm超で混合する混合工程と、を備えることを特徴とする。   Further, the method for producing a composite soft magnetic material of the present invention includes a blending step of blending a silicone resin into a soft magnetic powder, and a blend of the soft magnetic powder and the silicone resin heated at a temperature exceeding 100 ° C. And a mixing step of mixing at over 200 rpm.

この製造方法によれば、軟磁性粉末を十分に分散させた状態で粉末にシリコーン樹脂が被覆され、またその状態でシリコーン樹脂の硬化処理が行なわれる。そして、個々の軟磁性粉末の外側にシリコーン樹脂から成る絶縁被膜が被覆された複合軟磁性材料を得ることができる。この複合軟磁性材料は、流動性が高く、成形性に優れる。   According to this manufacturing method, the silicone resin is coated on the powder in a state in which the soft magnetic powder is sufficiently dispersed, and the silicone resin is cured in this state. And the composite soft magnetic material by which the insulating film which consists of a silicone resin was coat | covered on the outer side of each soft magnetic powder can be obtained. This composite soft magnetic material has high fluidity and excellent moldability.

上記混合工程において、加熱温度を150℃以上、回転数を400rpm以上とすることが好ましい。   In the mixing step, it is preferable that the heating temperature is 150 ° C. or higher and the rotation speed is 400 rpm or higher.

加熱温度及び回転数を上記範囲とすることで、軟磁性粉末をより十分に分散させることができ、個々の粉末にシリコーン樹脂の絶縁被膜を被覆することが容易となる。また、シリコーン樹脂の硬化処理時間を短縮することができるので、混合工程に要する時間を5〜15分にすることも可能であり、生産性を向上できる。   By setting the heating temperature and the number of rotations in the above ranges, the soft magnetic powder can be more sufficiently dispersed, and it becomes easy to coat the individual powders with an insulating coating of silicone resin. Moreover, since the curing time of the silicone resin can be shortened, the time required for the mixing step can be reduced to 5 to 15 minutes, and productivity can be improved.

一方、上記した本発明の複合軟磁性材料を加圧成形し、その後熱処理を施すことで、本発明の圧粉磁心を作製することができる。   On the other hand, the above-mentioned composite soft magnetic material of the present invention is pressure-molded and then subjected to heat treatment, whereby the dust core of the present invention can be produced.

本発明の圧粉磁心は、上述したように圧粉磁心にクラックが存在しない、或いは少ないため、従来の圧粉磁心と比較して、機械的強度や磁気特性に優れる。例えば、本発明の圧粉磁心は、熱処理前の3点曲げ強度を15MPa以上とでき、熱処理後のロックウェル硬度を85HRF以上とできる。   Since the dust core of the present invention has no or few cracks in the dust core as described above, it is excellent in mechanical strength and magnetic characteristics as compared with the conventional dust core. For example, the dust core of the present invention can have a three-point bending strength before heat treatment of 15 MPa or more and a Rockwell hardness after heat treatment of 85 HRF or more.

本発明の複合軟磁性材料は、流動性が高く、成形性に優れているため、圧粉磁心の製造時に生じる欠陥を防止することができる。したがって、圧粉磁心の材料に用いることで、機械的強度や磁気特性に優れた圧粉磁心を作製することができる。   Since the composite soft magnetic material of the present invention has high fluidity and excellent moldability, it is possible to prevent defects that occur during the production of the dust core. Therefore, a dust core excellent in mechanical strength and magnetic properties can be produced by using the dust core material.

<複合軟磁性材料>
本発明の複合軟磁性材料の製造方法を利用して複合軟磁性材料を作製し、その流動性及び成形性について評価を行なった。
<Composite soft magnetic material>
A composite soft magnetic material was produced using the method for producing a composite soft magnetic material of the present invention, and its fluidity and moldability were evaluated.

軟磁性粉末として純鉄粉末(以下、鉄粉)を用意し、この鉄粉をリン酸塩処理して、鉄粉表面にリン酸鉄から成るリン酸塩層を形成した。このリン酸塩層を有する鉄粉にシリコーン樹脂を0.3質量%配合した後、表1に記載の条件で10分間混合して、各種試料を作製した。鉄粉は、平均粒径が50μmの水アトマイズ粉である。また、1バッチ当たりの製造量は10kgとした。   Pure iron powder (hereinafter referred to as iron powder) was prepared as a soft magnetic powder, and this iron powder was subjected to a phosphate treatment to form a phosphate layer made of iron phosphate on the surface of the iron powder. After blending 0.3% by mass of the silicone resin with the iron powder having the phosphate layer, it was mixed for 10 minutes under the conditions shown in Table 1 to prepare various samples. The iron powder is a water atomized powder having an average particle size of 50 μm. The production amount per batch was 10 kg.

ここでは、鉄粉とシリコーン樹脂とを混合する際に、ヒータ付きのミキサーを使用した。また、表1中の「回転数」は、ミキサーの回転羽根の回転数を示す。表1中の「硬化処理の有無」は、鉄粉とシリコーン樹脂とを混合した後、更に150℃の炉内で1時間保持する硬化処理を実施したか否かを示す。   Here, a mixer with a heater was used when mixing the iron powder and the silicone resin. “Rotation speed” in Table 1 indicates the rotation speed of the rotating blades of the mixer. “Presence / absence of curing treatment” in Table 1 indicates whether or not a curing treatment was further carried out in an oven at 150 ° C. for 1 hour after the iron powder and the silicone resin were mixed.

(流動性の評価)
作製した試料のそれぞれについて、流動性の評価を行なった。この評価には図1に示す漏斗を用いた。漏斗Fは、下方に向かって先細りする円錐状の大径部Flと、その先端に形成された円筒状の細径部Fnとを有する。ここでは、大径部Flの開口径Rlが100mm、細径部Fnの内径Rnが4mm、大径部Fl及び細径部Fnの長さが60mm及び40mmのものを用いた。また、具体的な流動性の評価方法は、試料300gを漏斗Fに入れ、全ての試料が流れ出た場合を○、流れ出ない、或いは途中で流れが止まった場合を×とした。その結果を表1に併せて示す。
(Evaluation of liquidity)
The fluidity of each of the produced samples was evaluated. The funnel shown in FIG. 1 was used for this evaluation. The funnel F has a conical large-diameter portion Fl that tapers downward, and a cylindrical thin-diameter portion Fn formed at the tip thereof. Here, the large diameter portion Fl having an opening diameter Rl of 100 mm, the small diameter portion Fn having an inner diameter Rn of 4 mm, and the large diameter portion Fl and the small diameter portion Fn having lengths of 60 mm and 40 mm were used. Further, as a specific evaluation method for fluidity, 300 g of the sample was put in the funnel F, and ○ was given when all the samples flowed out, and x was given when the flow did not flow out or the flow stopped halfway. The results are also shown in Table 1.

Figure 0004905841
Figure 0004905841

試料No.1(混合条件:加熱温度150℃、回転数400rpm)は、流動性が高い。これに対し、加熱温度が100°以下又は回転数が200rpm以下の混合条件で作製した試料No.101〜No.107は、流動性が低い。また、試料No.1は、従来行なわれていた硬化処理を省略することができるので、生産性が高い。   Sample No. 1 (mixing conditions: heating temperature 150 ° C., rotation speed 400 rpm) has high fluidity. On the other hand, Samples No. 101 to No. 107 produced under a mixing condition where the heating temperature is 100 ° or less or the rotation speed is 200 rpm or less have low fluidity. In addition, sample No. 1 has high productivity because the conventional curing process can be omitted.

(安息角)
試料No.1及びNo.101について、安息角を測定した。この測定には図1に示す漏斗を用いた。但し、ここでは、大径部Flの開口径Rlが100mm、細径部Fnの内径Rnが10mmのものを用い、漏斗Fの細径部先端からテーブルTまでの距離を30mmとした。安息角は、試料300gを漏斗Fに入れ、漏斗Fを通過してテーブルTに堆積した試料の安息角を分度器で測定することにより求めた。その結果を表2に示す。
(Repose angle)
The angle of repose was measured for samples No. 1 and No. 101. The funnel shown in FIG. 1 was used for this measurement. However, here, the large diameter portion Fl having an opening diameter Rl of 100 mm and the small diameter portion Fn having an inner diameter Rn of 10 mm was used, and the distance from the tip of the small diameter portion of the funnel F to the table T was set to 30 mm. The angle of repose was determined by placing 300 g of the sample into the funnel F and measuring the angle of repose of the sample that passed through the funnel F and was deposited on the table T with a protractor. The results are shown in Table 2.

Figure 0004905841
Figure 0004905841

流動性の高い試料No.1は、安息角が45°未満であるのに対し、流動性の低い試料No.101は、安息角が45°以上であった。   Sample No. 1 with high fluidity has an angle of repose of less than 45 °, whereas sample No. 101 with low fluidity has an angle of repose of 45 ° or more.

(見掛密度及び流動度)
試料No.1及びNo.101について、見掛密度及び流動度を測定した。見掛密度及び流動度は、JIS Z 2504:2000及びJIS Z 2502:2000に規定される試験方法に基づいて測定した。いずれの測定にも2.5mmのオリフィス径を持つ漏斗を用いた。その結果を表3に示す。
(Apparent density and fluidity)
For samples No. 1 and No. 101, the apparent density and the fluidity were measured. Apparent density and fluidity were measured based on the test methods specified in JIS Z 2504: 2000 and JIS Z 2502: 2000. A funnel with an orifice diameter of 2.5 mm was used for both measurements. The results are shown in Table 3.

Figure 0004905841
Figure 0004905841

流動性の高い試料No.1は、見掛密度が3.0g/cm3以上であり、また流動度が25.0秒/50g以下であった。これに対し、流動性の低い試料No.101は、漏斗から試料が流れ出なかったため、見掛密度及び流動度を測定することができなかった。 Sample No. 1 with high fluidity had an apparent density of 3.0 g / cm 3 or more and a fluidity of 25.0 seconds / 50 g or less. On the other hand, sample No. 101 with low fluidity could not be measured for apparent density and fluidity because the sample did not flow out of the funnel.

(成形性の評価)
次に、試料No.1及びNo.101を材料に用いた圧粉磁心を作製し、各試料について成形性の評価を行なった。圧粉磁心は、試料を金型に充填し、1100MPaの面圧で加圧成形して成形体を作製した後、この成形体に熱処理を施すことで作製した。ここでは、成形体の形状を、径80mm×高さ40mmの円柱状とし、熱処理条件を、窒素気流雰囲気中、500℃で30分とした。
(Evaluation of formability)
Next, dust cores using Samples No. 1 and No. 101 were produced, and the moldability of each sample was evaluated. The dust core was prepared by filling a sample with a mold and press-molding it with a surface pressure of 1100 MPa to produce a compact, and then subjecting the compact to heat treatment. Here, the shape of the molded body was a cylindrical shape with a diameter of 80 mm and a height of 40 mm, and the heat treatment conditions were set at 500 ° C. for 30 minutes in a nitrogen stream.

得られた圧粉磁心を目視にて確認したところ、試料No.1を材料に用いた圧粉磁心にはクラックが認められなかった。一方、試料No.101を材料に用いた圧粉磁心には多数のクラックが認められた。したがって、流動性の高い試料No.1は、成形性に優れることが分かる。   When the obtained powder magnetic core was visually confirmed, no crack was observed in the powder magnetic core using Sample No. 1 as the material. On the other hand, many cracks were observed in the dust core using Sample No. 101 as a material. Therefore, it can be seen that Sample No. 1 with high fluidity is excellent in moldability.

<圧粉磁心>
本発明の複合軟磁性材料を用いた圧粉磁心を作製し、その機械的強度及び磁気特性について評価を行なった。圧粉磁心の作製方法は、上記の「(成形性の評価)」の項目で述べた作製方法と同じである。但し、ここでは、成形体の形状を、外径34mm‐内径20mm×高さ5mmのリング状とした。
<Dust core>
A dust core using the composite soft magnetic material of the present invention was prepared, and its mechanical strength and magnetic properties were evaluated. The manufacturing method of the dust core is the same as the manufacturing method described in the item “(Evaluation of formability)”. However, here, the shape of the molded body was a ring shape having an outer diameter of 34 mm, an inner diameter of 20 mm, and a height of 5 mm.

(機械的強度)
試料No.1及びNo.101を用いて作製した圧粉磁心について、機械的強度の評価を行なった。具体的には、熱処理前の成形体における3点曲げ強度と、熱処理後の圧粉磁心におけるロックウェル硬度(Fスケール)とを測定した。3点曲げ強度は、室温にて、スパン40mmの条件で測定した。その結果を表4に示す。
(Mechanical strength)
The mechanical strength of the dust cores produced using Samples No. 1 and No. 101 was evaluated. Specifically, the three-point bending strength in the green body before heat treatment and the Rockwell hardness (F scale) in the dust core after heat treatment were measured. The three-point bending strength was measured at room temperature under a span of 40 mm. The results are shown in Table 4.

Figure 0004905841
Figure 0004905841

流動性の高い試料No.1を用いた圧粉磁心は、熱処理前の3点曲げ強度が15MPa以上、かつ熱処理後の硬度が85HRF以上であった。これに対し、流動性の低い試料No.101を用いた圧粉磁心は、試料No.1を用いた圧粉磁心と比較して、熱処理前の強度及び熱処理後の硬度が低い。したがって、流動性の高い試料No.1を用いた圧粉磁心は、機械的強度に優れることが分かる。   The dust core using Sample No. 1 with high fluidity had a three-point bending strength before heat treatment of 15 MPa or more and a hardness after heat treatment of 85 HRF or more. On the other hand, the dust core using Sample No. 101 with low fluidity has lower strength before heat treatment and hardness after heat treatment than the dust core using Sample No. 1. Therefore, it can be seen that the dust core using the sample No. 1 having high fluidity is excellent in mechanical strength.

(磁気特性)
試料No.1及びNo.101を用いて作製した圧粉磁心について、磁気特性の評価を行なった。具体的には、圧粉磁心の鉄損W2/10kを測定し、また、鉄損から渦電流損係数ke2を求めた。鉄損W2/10kは、AC‐BHカーブトレーサー(メトロン技研株式会社製SK300)を用いて50Hz〜10kHzの範囲で周波数を変化させて、励起磁束密度0.2Tにおける鉄損を測定した。また、渦電流損係数ke2は、鉄損の周波数曲線を次の3つの式で最小二乗法によりフィッティングすることで求めた。その結果を表5に示す。
(鉄損)=(ヒステリシス損)+(渦電流損)
(ヒステリシス損)=(ヒステリシス損係数)×(周波数)
(渦電流損)=(渦電流損係数)×(周波数)2
(Magnetic properties)
The magnetic properties of the dust cores produced using Samples No. 1 and No. 101 were evaluated. Specifically, the iron loss W2 / 10k of the dust core was measured, and the eddy current loss coefficient ke2 was obtained from the iron loss. The iron loss W2 / 10k was measured at an excitation magnetic flux density of 0.2 T by changing the frequency in the range of 50 Hz to 10 kHz using an AC-BH curve tracer (SK300 manufactured by Metron Engineering Co., Ltd.). The eddy current loss coefficient ke2 was obtained by fitting a frequency curve of iron loss using the following three equations by the least square method. The results are shown in Table 5.
(Iron loss) = (Hysteresis loss) + (Eddy current loss)
(Hysteresis loss) = (Hysteresis loss coefficient) x (Frequency)
(Eddy current loss) = (Eddy current loss coefficient) x (Frequency) 2

Figure 0004905841
Figure 0004905841

流動性の高い試料No.1を用いた圧粉磁心は、流動性の低い試料No.101を用いた圧粉磁心と比較して、鉄損及び渦電流損が改善されている。したがって、流動性の高い試料No.1を用いた圧粉磁心は、磁気特性に優れることが分かる。   The powder magnetic core using the sample No. 1 with high fluidity has improved iron loss and eddy current loss compared with the powder magnetic core using the sample No. 101 with low fluidity. Therefore, it can be seen that the dust core using Sample No. 1 having high fluidity is excellent in magnetic properties.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、軟磁性粉末として純鉄粉末を用いる他、Fe-Si系合金等の鉄合金粉末を用いてもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, in addition to using pure iron powder as the soft magnetic powder, iron alloy powder such as Fe—Si alloy may be used.

本発明の複合軟磁性材料は、ハイブリッド自動車などの昇圧回路や、発電・変電設備に用いられるリアクトルの他、トランスやチョークコイルのコアの材料に好適に利用することができる。   The composite soft magnetic material of the present invention can be suitably used as a core material for a transformer or a choke coil in addition to a booster circuit for a hybrid vehicle, a reactor used in power generation / transforming equipment, and the like.

流動性を評価するために用いた漏斗を説明する図である。It is a figure explaining the funnel used in order to evaluate fluidity | liquidity.

符号の説明Explanation of symbols

F 漏斗 Fl 大径部 Fn 細径部
T テーブル
F Funnel Fl Large diameter part Fn Small diameter part
T table

Claims (8)

軟磁性粉末の外側に熱硬化性樹脂から成る絶縁被膜が被覆された複合軟磁性材料であって、
前記絶縁被膜がシリコーン樹脂から成り、
安息角が30°以下であることを特徴とする複合軟磁性材料。
A composite soft magnetic material in which an insulating coating made of a thermosetting resin is coated on the outside of a soft magnetic powder,
The insulating coating is made of silicone resin;
A composite soft magnetic material having an angle of repose of 30 ° or less .
前記軟磁性粉末の平均粒径が1μm以上70μm以下であることを特徴とする請求項1に記載の複合軟磁性材料。 2. The composite soft magnetic material according to claim 1, wherein the soft magnetic powder has an average particle size of 1 μm to 70 μm. 見掛密度が3.0g/cm3以上であることを特徴とする請求項1又は2に記載の複合軟磁性材料。 The composite soft magnetic material according to claim 1 or 2 , wherein an apparent density is 3.0 g / cm 3 or more. 流動度が25.0秒/50g以下であることを特徴とする請求項1〜のいずれか一項に記載の複合軟磁性材料。 The fluidity is 25.0 seconds / 50 g or less, The composite soft magnetic material according to any one of claims 1 to 3 . 前記軟磁性粉末と前記絶縁被膜との間にリン酸塩層を有することを特徴とする請求項1〜のいずれか一項に記載の複合軟磁性材料。 The composite soft magnetic material according to any one of claims 1 to 4 , further comprising a phosphate layer between the soft magnetic powder and the insulating coating. 軟磁性粉末の外側に熱硬化性樹脂から成る絶縁被膜が被覆された複合軟磁性材料を加圧成形し、その後熱処理が施された圧粉磁心であって、
前記複合軟磁性材料が請求項1〜のいずれか一項に記載の複合軟磁性材料であることを特徴とする圧粉磁心。
A powder magnetic core obtained by press-molding a composite soft magnetic material in which an insulating coating made of a thermosetting resin is coated on the outside of the soft magnetic powder, and then subjected to heat treatment,
The dust core, wherein the composite soft magnetic material is a composite soft magnetic material according to any one of claims 1-5.
熱処理前の3点曲げ強度が15MPa以上であることを特徴とする請求項に記載の圧粉磁心。 The powder magnetic core according to claim 6 , wherein the three-point bending strength before heat treatment is 15 MPa or more. 熱処理後のロックウェル硬度が85HRF以上であることを特徴とする請求項又はに記載の圧粉磁心。
The powder magnetic core according to claim 6 or 7 , wherein the Rockwell hardness after heat treatment is 85 HRF or more.
JP2008156227A 2008-06-16 2008-06-16 Composite soft magnetic material and dust core Expired - Fee Related JP4905841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156227A JP4905841B2 (en) 2008-06-16 2008-06-16 Composite soft magnetic material and dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156227A JP4905841B2 (en) 2008-06-16 2008-06-16 Composite soft magnetic material and dust core

Publications (2)

Publication Number Publication Date
JP2009302359A JP2009302359A (en) 2009-12-24
JP4905841B2 true JP4905841B2 (en) 2012-03-28

Family

ID=41548941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156227A Expired - Fee Related JP4905841B2 (en) 2008-06-16 2008-06-16 Composite soft magnetic material and dust core

Country Status (1)

Country Link
JP (1) JP4905841B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536381B2 (en) * 2015-11-27 2019-07-03 株式会社オートネットワーク技術研究所 Soft magnetic powder, magnetic core, method of manufacturing soft magnetic powder, and method of manufacturing magnetic core

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328805A (en) * 1991-04-30 1992-11-17 Tokin Corp Anisotropic configuration soft magnet alloy powder and manufacture thereof
JPH04345005A (en) * 1991-05-22 1992-12-01 Matsushita Electric Ind Co Ltd Compound mild magnetic body and manufacture thereof
JP3507836B2 (en) * 2000-09-08 2004-03-15 Tdk株式会社 Dust core
JP2002158482A (en) * 2000-11-16 2002-05-31 Kitagawa Ind Co Ltd Metallic powder for electromagnetic wave absorber, electromagnetic wave absorber, and paint
JP2004319652A (en) * 2003-04-15 2004-11-11 Tamura Seisakusho Co Ltd Core and method of manufacturing the same
JP4400728B2 (en) * 2004-03-16 2010-01-20 戸田工業株式会社 SOFT MAGNETIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP4723442B2 (en) * 2006-09-11 2011-07-13 株式会社神戸製鋼所 Powder cores and iron-based powders for dust cores
JP4810502B2 (en) * 2007-06-08 2011-11-09 株式会社豊田中央研究所 Method for coating metal powder and method for producing dust core

Also Published As

Publication number Publication date
JP2009302359A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
CN100520993C (en) Soft magnetic material and dust core
CN106876077B (en) Magnetic material and coil component using same
JP4723442B2 (en) Powder cores and iron-based powders for dust cores
TWI406305B (en) Iron-based soft magnetic powder and dust core for powder core
EP2993672A1 (en) Powder for magnetic core, method of producing dust core, dust core, and method of producing powder for magnetic core
JP5924480B2 (en) Magnetic powder material, low-loss composite magnetic material including the magnetic powder material, and magnetic element including the low-loss composite magnetic material
JP5374537B2 (en) Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP2009147176A (en) Iron powder for dust core
JP2014060183A (en) Soft magnetic material and method for manufacturing the same
JPWO2010073590A1 (en) Composite soft magnetic material and manufacturing method thereof
CN104028762B (en) A kind of preparation method of soft-magnetic composite material
WO2013051229A1 (en) Powder magnetic core and production method for same
JP6667727B2 (en) Manufacturing method of dust core, manufacturing method of electromagnetic parts
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP5439888B2 (en) Composite magnetic material and method for producing the same
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP6615850B2 (en) Composite magnetic material and core manufacturing method
JP2011216571A (en) High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
JP4905841B2 (en) Composite soft magnetic material and dust core
JP2007048902A (en) Powder magnetic core and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees