JP4905758B2 - Heat storage material - Google Patents

Heat storage material Download PDF

Info

Publication number
JP4905758B2
JP4905758B2 JP2005141347A JP2005141347A JP4905758B2 JP 4905758 B2 JP4905758 B2 JP 4905758B2 JP 2005141347 A JP2005141347 A JP 2005141347A JP 2005141347 A JP2005141347 A JP 2005141347A JP 4905758 B2 JP4905758 B2 JP 4905758B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
gelling agent
weight
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005141347A
Other languages
Japanese (ja)
Other versions
JP2006316194A (en
Inventor
勝久 徳満
皓 田中
泰行 清水
勇 岡
Original Assignee
株式会社 ハセック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ハセック filed Critical 株式会社 ハセック
Priority to JP2005141347A priority Critical patent/JP4905758B2/en
Publication of JP2006316194A publication Critical patent/JP2006316194A/en
Application granted granted Critical
Publication of JP4905758B2 publication Critical patent/JP4905758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Description

本発明は、物質の相変化にともなう吸発熱を利用する蓄熱材に関する。   The present invention relates to a heat storage material that utilizes endothermic heat accompanying a phase change of a substance.

頭部全体等の身体部分を冷却状態に保つことを目的として蓄熱材が用いられる(例えば、特許文献1参照)。また、ケーキ、肉等の食品を蓄熱材とともに食品保冷箱容器に収納して保冷することが行われる(例えば、特許文献2参照)。   A heat storage material is used for the purpose of keeping a body part such as the entire head in a cooled state (see, for example, Patent Document 1). Moreover, food, such as a cake and meat, is stored in a food cold box container together with a heat storage material to cool the food (for example, see Patent Document 2).

これら蓄熱材としてはエチレングリコール(例えば、特許文献1参照)、エチレングリコール、塩等の寒剤を混入したゲル状またはプリン状の吸水性樹脂を詰めたもの(例えば、特許文献2参照)が開示されている。   As these heat storage materials, a material filled with a gel-like or purine-like water-absorbing resin mixed with a cryogen such as ethylene glycol (for example, see Patent Document 1), ethylene glycol, salt, or the like (for example, see Patent Document 2) is disclosed. ing.

しかし、これらは、単位量当りの融解熱が少なかったり、融点が低くて常温近傍での保冷には適さない等の問題がある。   However, these have problems such that the heat of fusion per unit amount is small, and the melting point is low, so that it is not suitable for cooling at room temperature.

また、常温近傍での蓄熱材として、ヘキサデカンとテトラデカンの混合物と、炭化水素系有機高分子との機械的手段による固体状混合物からなる蓄熱材が開示されている(例えば、特許文献1参照)。しかし、この固体状混合物には16.6重量%をこえる固体高分子(熱可塑性エラストマーとポリエチレン)が含有されており、蓄熱容量の低下がさけられない。また、このような多くの固体高分子を含有しているのでこの固体状混合物は柔軟性が不十分で、使用時に力を受けて、その力に追従して変形する必要のある用途(例えば人体の所定部位の冷却など)での使用には適さない。
特開平8−56979号公報 特開平5−85575号公報 特許第3169422号公報
Further, as a heat storage material near normal temperature, a heat storage material made of a solid mixture obtained by mechanical means of a mixture of hexadecane and tetradecane and a hydrocarbon-based organic polymer is disclosed (for example, see Patent Document 1). However, since this solid mixture contains more than 16.6% by weight of solid polymer (thermoplastic elastomer and polyethylene), a reduction in heat storage capacity cannot be avoided. In addition, since it contains a large number of such solid polymers, this solid mixture is insufficiently flexible and receives a force during use and needs to be deformed following the force (for example, the human body). It is not suitable for use in the cooling of a predetermined part.
JP-A-8-55979 JP-A-5-85575 Japanese Patent No. 3169422

本発明の目的は、常温近傍での保冷に適し、ヘキサデカンやテトラデカンと混合すべき高分子の含有量が少なく、かつ柔軟性に優れた蓄熱材を提供することにある。   An object of the present invention is to provide a heat storage material that is suitable for cold preservation at around room temperature, has a small amount of polymer to be mixed with hexadecane or tetradecane, and has excellent flexibility.

本発明の要旨とするところは、
ヘキサデカン、ペンタデカン、テトラデカンから選択される1または複数種からなる炭化水素と、
分の長さの側鎖を有する直鎖状低密度ポリエチレン、天然油脂系脂肪酸から選択されるゲル化剤と
を主成分とするゲル状物からなる蓄熱材であることにある。
The gist of the present invention is that
One or more hydrocarbons selected from hexadecane, pentadecane, and tetradecane;
C It is a heat storage material comprising a gel-like product composed mainly of a linear low density polyethylene having a side chain length of 8 minutes and a gelling agent selected from natural fat and oil fatty acids.

前記炭化水素と前記ゲル化剤との総量に対する前記ゲル化剤の比率は6〜16重量%であり得る。   The ratio of the gelling agent to the total amount of the hydrocarbon and the gelling agent may be 6 to 16% by weight.

また、本発明の要旨とするところは、
ヘキサデカン、ペンタデカン、テトラデカンから選択される1または複数種からなる炭化水素と、
分の長さの側鎖を有する直鎖状低密度ポリエチレン、天然油脂系脂肪酸から選択されるゲル化剤と
が溶融状態で混合されている混合物を冷却する蓄熱材の製造方法であることにある。
In addition, the gist of the present invention is that
One or more hydrocarbons selected from hexadecane, pentadecane, and tetradecane;
C is a method for producing a heat storage material that cools a mixture in which a linear low-density polyethylene having a side chain length of 8 minutes and a gelling agent selected from natural fats and fatty acids are mixed in a molten state. It is in.

前記蓄熱材の製造方法においては、前記混合物を20℃以上の液温の液体に投入して冷却し得る。   In the method for producing the heat storage material, the mixture can be cooled by charging it into a liquid having a liquid temperature of 20 ° C. or higher.

また、本発明の要旨とするところは、前記蓄熱材と該蓄熱材を収納した収納容器とを含んでなる蓄熱材収納体であることにある。   Moreover, the place made into the summary of this invention exists in the thermal storage material storage body containing the said thermal storage material and the storage container which accommodated this thermal storage material.

さらに、本発明の要旨とするところは、前記蓄熱材収納体に用いられる前記収納容器であって、該収納容器の外面に滑り止め手段が設けられた蓄熱材収納体用容器であることにある。   Furthermore, the gist of the present invention is that the storage container used for the heat storage material storage body is a container for a heat storage material storage body provided with a non-slip means on the outer surface of the storage container. .

本発明によると、常温近傍での保冷に適し、ゲル化剤の含有量が少なく、かつ柔軟性に優れた蓄熱材が提供される。   According to the present invention, there is provided a heat storage material that is suitable for cold storage near normal temperature, has a low gelling agent content, and is excellent in flexibility.

本発明の蓄熱材の態様について説明する。本発明の蓄熱材はヘキサデカン、ペンタデカン、テトラデカンから選択される1または複数種からなる炭化水素(以下の記載においては蓄熱用炭化水素と称する)と、直鎖状低密度ポリエチレン、天然油脂系脂肪酸から選択されるゲル化剤とが混合されてなるゲル状物である。本発明において用いられる直鎖状低密度ポリエチレンは、直鎖を主体とする分子構造を有し、C(オクテン)分の長さの側鎖を有するポリエチレンであり、その比重は、約0.91である。この蓄熱用炭化水素の融解時における融解潜熱の吸収が保冷に利用される。 The aspect of the heat storage material of the present invention will be described. The heat storage material of the present invention is composed of one or a plurality of hydrocarbons selected from hexadecane, pentadecane, and tetradecane (referred to as heat storage hydrocarbons in the following description), linear low-density polyethylene, and natural oil-based fatty acids. It is a gel-like product formed by mixing a selected gelling agent. The linear low density polyethylene used in the present invention is a polyethylene having a molecular structure mainly composed of a linear chain and having a side chain having a length corresponding to C 8 (octene), and has a specific gravity of about 0. 91. Absorption of latent heat of fusion at the time of melting of the hydrocarbon for heat storage is used for cold insulation.

天然油脂系脂肪酸は、C鎖を有するカルボン酸であり、動物脂肪や植物油の成分として産出され好ましくはC〜C26分の長さのC鎖を有するものであり、蓄熱用炭化水素と混合することにより良好なゲル状物が得られる。また、蓄熱用炭化水素とC分の長さの側鎖を有する直鎖状低密度ポリエチレンと混合することにより良好なゲル状物が得られる。ゲル化は、例えば、両者の混合物を加熱して昇温し、溶解状態になってから冷却することにより行うことができる。この冷却は、この溶解状態の混合物を水やアルコールのような液体に急投入して行うことができる。あるいは気体に接触させて冷却してもよい。 Natural fat fatty acids are carboxylic acids having the C chain, preferably is produced as a component of animal fats and vegetable oils are those having a C chain of C 8 -C 26 minutes length, mixed with heat storage hydrocarbons By doing so, a good gel-like product is obtained. Also, good gel-like material is obtained by mixing a linear low density polyethylene having a side chain of the heat storage for hydrocarbons and C 8 minutes long. Gelation can be performed, for example, by heating the mixture of both to raise the temperature, and cooling after becoming a dissolved state. This cooling can be performed by rapidly charging the dissolved mixture into a liquid such as water or alcohol. Alternatively, it may be cooled by contacting with gas.

ゲル状物中のゲル化剤の含有率は、6〜30重量%である。蓄熱材の柔軟性のうえでさらに好ましくは6〜16重量%である。なお、この含有率が16重量%を超えると急激に蓄熱材の弾性率が増加するが、含有率が30重量%以下であれば、柔軟性が維持される。   The content rate of the gelatinizer in a gel-like material is 6-30 weight%. More preferably, it is 6 to 16% by weight in view of the flexibility of the heat storage material. In addition, when this content rate exceeds 16 weight%, the elasticity modulus of a thermal storage material will increase rapidly, but a softness | flexibility is maintained if a content rate is 30 weight% or less.

直鎖状低密度ポリエチレンの側鎖のサイズが蓄熱用炭化水素のC鎖のサイズと似通っていることにより、6〜16重量%という低い含有率であっても安定したゲルが得られる。また、このサイズの似かよりにより、この含有率が16重量%を超えても、蓄熱用炭化水素とゲル化剤との分子レベルでの十分な混合がなされてゲル化により柔軟性が維持される。   Since the size of the side chain of the linear low density polyethylene is similar to the size of the C chain of the hydrocarbon for heat storage, a stable gel can be obtained even at a low content of 6 to 16% by weight. In addition, due to the similarity in size, even when the content exceeds 16% by weight, the thermal storage hydrocarbon and the gelling agent are sufficiently mixed at the molecular level, and the flexibility is maintained by gelation. The

ゲル化の可否あるいはゲル化の状態は、両者の混合比率と冷却する温度、さらには直鎖状低密度ポリエチレンの側鎖の長さにより影響されることが判明した。また、本発明においては、蓄熱用炭化水素と直鎖状低密度ポリエチレンとの総量に対して直鎖状低密度ポリエチレンが6重量%以上であれば良好なゲル状物が得られることが判明した。さらに、溶解状態の混合物を投入する水の温度は、20℃以上であることが好ましく、30〜100℃であることが安定したゲルを得るうえでさらに好ましいことが判明した。この投入する水の温度が20℃を下回ると安定したゲルが得られないことがある。   It has been found that whether or not gelation is possible or the state of gelation is influenced by the mixing ratio of the two and the cooling temperature, as well as the length of the side chain of the linear low density polyethylene. Further, in the present invention, it has been found that if the linear low density polyethylene is 6% by weight or more based on the total amount of the heat storage hydrocarbon and the linear low density polyethylene, a good gel can be obtained. . Furthermore, it has been found that the temperature of the water into which the mixture in the dissolved state is charged is preferably 20 ° C. or higher, and more preferably 30 to 100 ° C. for obtaining a stable gel. If the temperature of the charged water is below 20 ° C., a stable gel may not be obtained.

ゲル化剤として直鎖状低密度ポリエチレンの側鎖がC分のもの(以下LLDPE−2と称する)、高圧法低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)、のそれぞれを使用した場合のゲル化の状態を表1に示す。(LLDPE、LDPE、HDPEの内容は、日本化学会編 化学便覧 応用化学編 第5版:平成7年3月15日発行;丸善株式会社II−336左欄に記載されている)。表1においては、蓄熱用炭化水素としてのヘキサデカンとこれらのゲル化剤それぞれとを、総重量に対してゲル化剤が6重量%の比率となるように混合した。 As a gelling agent, linear low density polyethylene having a side chain of C 8 minutes (hereinafter referred to as LLDPE-2), high pressure method low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), Table 1 shows the gelation state when each was used. (The contents of LLDPE, LDPE, and HDPE are described in the left column of Maruzen Co., Ltd. II-336). In Table 1, hexadecane as a heat storage hydrocarbon and each of these gelling agents were mixed so that the gelling agent had a ratio of 6% by weight with respect to the total weight.

Figure 0004905758
Figure 0004905758

なお、ゲル化の操作は、この蓄熱用炭化水素とゲル化剤との混合物を160℃まで昇温し、溶解状態になってから4、30、50、70、100℃の各温度の水に急投入して急冷して行なった。表中、○は弾力のある固体状物が得られたことを示す。△は半分ゲル化したことを示す。×はゲル化しないことを示す。   In the gelation operation, the mixture of the heat storage hydrocarbon and the gelling agent is heated to 160 ° C., and after being dissolved, is added to water at each temperature of 4, 30, 50, 70, and 100 ° C. It was carried out after rapid charging and rapid cooling. In the table, ◯ indicates that an elastic solid product was obtained. Δ indicates that it was half-gelled. X shows that it does not gelatinize.

表1でわかるように、ゲル化剤としてこれらの水準のうちLLDPE−2を用いた場合のみ弾力のある固体状のゲルが得られ、他の場合は弾力のある固体状のゲルが得られない。このように、蓄熱用炭化水素を用いて弾力のある固体状物のゲルを得る要因としてはゲル化剤の種類がきわめて重要であることが判明した。   As can be seen from Table 1, an elastic solid gel is obtained only when LLDPE-2 is used as a gelling agent among these levels, and an elastic solid gel is not obtained in other cases. . Thus, it has been found that the type of gelling agent is extremely important as a factor for obtaining an elastic solid-state gel using the heat storage hydrocarbon.

蓄熱用炭化水素としてテトラデカンを用い、表1と同様の操作を行なった場合のゲル化の状態を表2に示す。ただし、ゲル化の操作は、この蓄熱用炭化水素とゲル化剤との混合物を140℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷して行なった。なお、ゲル化剤としては、直鎖状低密度ポリエチレンの側鎖がC分のもの(以下LLDPE−1と称する)も使用した。 Table 2 shows the gelation state when tetradecane is used as the heat storage hydrocarbon and the same operation as in Table 1 is performed. However, the gelation operation was carried out by heating the mixture of the heat storage hydrocarbon and the gelling agent to 140 ° C., and then rapidly charging the mixture into water at 30 ° C. after being in a dissolved state. As the gelling agent, the side chain of the linear low density polyethylene (referred to as LLDPE-1 or less) that of the C 4 minutes was used.

Figure 0004905758
Figure 0004905758

蓄熱用炭化水素としてヘキサデカンを用い、表2と同様の操作を行なった場合のゲル化の状態を表3に示す。   Table 3 shows the gelation state when hexadecane is used as the heat storage hydrocarbon and the same operation as in Table 2 is performed.

Figure 0004905758
Figure 0004905758

表2、表3より、蓄熱用炭化水素の種類にかかわらず、ゲル化剤としてこれらの水準のうちLLDPE−2を用いた場合のみ弾力のある固体状のゲルが得られ、他の場合は弾力のある固体状のゲルが得られない。   From Tables 2 and 3, an elastic solid gel is obtained only when LLDPE-2 is used as a gelling agent among these levels, regardless of the type of hydrocarbon for heat storage, and in other cases, it is elastic. A solid gel with no can not be obtained.

蓄熱用炭化水素におけるヘキサデカン、ペンタデカン、テトラデカンのそれぞれの含有比率は、蓄熱材を用いて保冷するときの保冷温度により異なる。例えば、6℃あるいはその近傍の温度での保冷においては、テトラデカンを主体とする蓄熱用炭化水素が使用される。この蓄熱用炭化水素の融点は6℃あるいはその近傍の温度であり、融解時における融解潜熱の吸収が保冷に利用される。17℃あるいはその近傍の温度での保冷においては、ヘキサデカンを主体とする蓄熱用炭化水素が使用される。この蓄熱用炭化水素の融点は17℃あるいはその近傍の温度であり、融解時における融解潜熱の吸収が保冷に利用される。10℃あるいはその近傍の温度での保冷においては、ペンタデカンを主体とする蓄熱用炭化水素が使用される。あるいは、ヘキサデカンとテトラデカンの混合物や、ヘキサデカン、ペンタデカン、テトラデカンの混合物が用いられる。また、6〜17℃のある中間の温度での保冷においては、ヘキサデカン、ペンタデカン、テトラデカンの配合比率を適宜変えて使用される。   The content ratios of hexadecane, pentadecane, and tetradecane in the heat storage hydrocarbon vary depending on the cold storage temperature when the cold storage is performed using the heat storage material. For example, in cold insulation at a temperature of 6 ° C. or in the vicinity thereof, a hydrocarbon for thermal storage mainly composed of tetradecane is used. The heat storage hydrocarbon has a melting point of 6 ° C. or a temperature in the vicinity thereof, and absorption of latent heat of fusion at the time of melting is used for cooling. In cold storage at a temperature of 17 ° C. or in the vicinity thereof, a heat storage hydrocarbon mainly composed of hexadecane is used. The melting point of the hydrocarbon for heat storage is 17 ° C. or a temperature in the vicinity thereof, and absorption of latent heat of fusion at the time of melting is used for keeping the cold. In cold storage at a temperature of 10 ° C. or in the vicinity thereof, a hydrocarbon for thermal storage mainly composed of pentadecane is used. Alternatively, a mixture of hexadecane and tetradecane, or a mixture of hexadecane, pentadecane, and tetradecane is used. Moreover, in the cold preservation at a certain intermediate temperature of 6 to 17 ° C., the mixing ratio of hexadecane, pentadecane and tetradecane is appropriately changed and used.

図1にヘキサデカンとテトラデカンとの系の蓄熱用炭化水素における、両者の混合比率とゲル状物の融解熱のピークとの関係を示す。図1より融点ピーク(↓)がヘキサデカンの比率の増加にともない高温がわにシフトしてゆくことがわかる。このように、両者の混合比率をかえることによりゲル状物の融点の制御が可能である。   FIG. 1 shows the relationship between the mixing ratio of both of the hydrocarbons for heat storage in the system of hexadecane and tetradecane and the peak of the heat of fusion of the gel. As can be seen from FIG. 1, the melting point peak (↓) shifts to high temperature as the ratio of hexadecane increases. In this way, the melting point of the gel can be controlled by changing the mixing ratio of the two.

このようなゲル状物からなる本発明蓄熱材は、溶媒である蓄熱用炭化水素の保持性に優れ、かつ柔軟性に優れることが以下の実験で証明された。試料としてヘキサデカンとテトラデカンとの混合重量比を90:10とした蓄熱用炭化水素とLLDPE−2とを所定の混合割合で混合して得たゲル状物の圧縮弾性率(C)、溶媒保持性(S)、融解エンタルピー(H)とを表4に示す。なお、ゲル状物はこの蓄熱用炭化水素とLLDPE−2との混合物を160℃まで昇温し、溶解状態になってから40℃の水に急投入して急冷することにより得た。この蓄熱用炭化水素とLLDPE−2との総重量に対する、ゲル化剤の重量比率(W)が6.0、7.5、9.0、10.5、12.0重量%となるように異なる水準で混合した。   It was proved by the following experiment that the heat storage material of the present invention composed of such a gel-like material is excellent in retention of the hydrocarbon for heat storage as a solvent and excellent in flexibility. Compression elastic modulus (C) and solvent retention of a gel-like product obtained by mixing a heat storage hydrocarbon having a mixing weight ratio of 90:10 of hexadecane and tetradecane as a sample and LLDPE-2 at a predetermined mixing ratio Table 4 shows (S) and melting enthalpy (H). The gel-like material was obtained by heating the mixture of the heat storage hydrocarbon and LLDPE-2 to 160 ° C., and then rapidly throwing it into 40 ° C. water and rapidly cooling it. The weight ratio (W) of the gelling agent to the total weight of the hydrocarbon for heat storage and LLDPE-2 is 6.0, 7.5, 9.0, 10.5, 12.0% by weight. Mixed at different levels.

Figure 0004905758
Figure 0004905758

圧縮弾性率(C)は、このゲル状物を一辺1cmの立方体に切り出した試料を圧縮試験機により1mm/secの速度で圧縮したときの圧縮荷重と圧縮変位量との関係を表す曲線グラフより、その曲線の初期の立ち上がりの勾配の値より求めた。   The compression modulus (C) is a curve graph showing the relationship between the compression load and the amount of compression displacement when a sample obtained by cutting this gel-like material into a cube having a side of 1 cm is compressed by a compression tester at a speed of 1 mm / sec. The initial rise slope of the curve was obtained.

溶媒保持性(S)は、圧縮前のゲル状物中の溶媒量に対する、この立方体を4.9×10Paの荷重で圧縮した後のゲル状物中の溶媒量の重量比率(%)である。なお、この圧縮においてはこの立方体の下にろ紙を敷き、圧縮時に立方体からにじみ出た溶媒を吸収した。 The solvent retention (S) is the weight ratio (%) of the amount of solvent in the gel after compressing this cube with a load of 4.9 × 10 4 Pa to the amount of solvent in the gel before compression. It is. In this compression, a filter paper was laid under the cube to absorb the solvent that oozed from the cube during compression.

表4より、混合物(圧縮前ゲル状物)のLLDPE−2の含有率が6重量%以上であれば4.9×10Paの荷重で圧縮した後においても74重量%以上の溶媒が保持され、LLDPE−2の含有率が9重量%以上であれば4.9×10Paの荷重で圧縮した後においても98重量%以上の溶媒が保持されることがわかる。このように本発明の蓄熱材はLLDPE−2の含有率が小さいにもかかわらず優れた溶媒保持性を示す。 From Table 4, when the content of LLDPE-2 in the mixture (gel before compression) is 6% by weight or more, 74% by weight or more of the solvent is retained even after compression with a load of 4.9 × 10 4 Pa. When the content of LLDPE-2 is 9% by weight or more, it can be seen that 98% by weight or more of the solvent is retained even after compression with a load of 4.9 × 10 4 Pa. Thus, the heat storage material of the present invention exhibits excellent solvent retention despite the low content of LLDPE-2.

また、本発明の蓄熱材はLLDPE−2の含有率を15重量%以下とすることができ、優れた溶媒保持性を維持しつつ表4に示すような極めて小さい圧縮弾性率の柔軟性のある蓄熱材を得ることができる。   Further, the heat storage material of the present invention can have a content of LLDPE-2 of 15% by weight or less, and has a very low compression elastic modulus as shown in Table 4 while maintaining excellent solvent retention. A heat storage material can be obtained.

一方、蓄熱用炭化水素100重量部と、ポリエチレン(比重0.91)と熱可塑性エラストマーとを3:2の重量比率で混用した固化剤25重量部とを、混合溶融後冷却してなる固形物は、圧縮弾性率が50×10Paと高く柔軟性にとぼしかった。 On the other hand, 100 parts by weight of a hydrocarbon for heat storage and 25 parts by weight of a solidifying agent obtained by mixing polyethylene (specific gravity 0.91) and a thermoplastic elastomer in a weight ratio of 3: 2 are mixed and melted and then cooled. Had a high compressive modulus of 50 × 10 5 Pa and was flexible.

表5に試料としてテトラデカンとLLDPE−2とを所定の割合で混合して得た混合物の状態を示す。なお、混合物はこの蓄熱用炭化水素とLLDPE−2との混合物を140℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷することにより得た。表中、○は弾力のある固体状物が得られたことを示す。△は半分ゲル化したことを示す。×はゲル化しないことを示す。表5から混合物中のLLDPE−2の含有率が6重量%以上であればゲル化して弾力のある固体状物が得られるが、6重量%を下回ると完全にはゲル化しないことがわかる。   Table 5 shows the state of a mixture obtained by mixing tetradecane and LLDPE-2 as a sample at a predetermined ratio. The mixture was obtained by heating the mixture of the heat storage hydrocarbon and LLDPE-2 to 140 ° C., and then rapidly throwing it into water at 30 ° C. and rapidly cooling it. In the table, ◯ indicates that an elastic solid product was obtained. Δ indicates that it was half-gelled. X shows that it does not gelatinize. From Table 5, it can be seen that if the content of LLDPE-2 in the mixture is 6% by weight or more, it gels and an elastic solid product is obtained, but if it is less than 6% by weight, it does not completely gel.

Figure 0004905758
Figure 0004905758

表6に試料としてヘキサデカンとLLDPE−2とを所定の混合割合で混合して得た混合物の状態を示す。なお、混合物はこの蓄熱用炭化水素とLLDPE−2との混合物を140℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷することにより得た。表中、○は弾力のある固体状物が得られたことを示す。△は半分ゲル化したことを示す。×はゲル化しないことを示す。表5から混合物中のLLDPE−2の含有率が6重量%以上であればゲル化して弾力のある固体状物が得られるが、6重量%を下回るとか完全にはゲル化しないことがわかる。   Table 6 shows the state of a mixture obtained by mixing hexadecane and LLDPE-2 as a sample at a predetermined mixing ratio. The mixture was obtained by heating the mixture of the heat storage hydrocarbon and LLDPE-2 to 140 ° C., and then rapidly throwing it into water at 30 ° C. and rapidly cooling it. In the table, ◯ indicates that an elastic solid product was obtained. Δ indicates that it was half-gelled. X shows that it does not gelatinize. From Table 5, it can be seen that if the content of LLDPE-2 in the mixture is 6% by weight or more, gelation is obtained and an elastic solid product is obtained.

Figure 0004905758
Figure 0004905758

本発明においては、ゲル化剤として前述のように天然油脂系脂肪酸を用いることができる。試料としてヘキサデカンとテトラデカンとの混合重量比を90:10とした蓄熱用炭化水素と、ステアリン酸を主成分とする天然油脂系脂肪酸とを所定の混合割合で混合して得たゲル状物の混合物の状態を表7に示す。なお、混合物はこの蓄熱用炭化水素と天然油脂系脂肪酸との混合物を80℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷することにより得た。表中、○は弾力のある固体状物が得られたことを示す。×はゲル化しないことを示す。表7から混合物中の天然油脂系脂肪酸の含有率が6重量%以上であればゲル化して弾力のある固体状物が得られるが、6重量%を下回るとゲル化しないことがわかる。   In the present invention, natural fat and oil fatty acids can be used as the gelling agent as described above. A mixture of gel-like products obtained by mixing a mixture of hexadecane and tetradecane as a sample with a heat storage hydrocarbon of 90:10 and a natural fatty acid fatty acid mainly composed of stearic acid at a predetermined mixing ratio. Table 7 shows the state. The mixture was obtained by heating the mixture of the heat storage hydrocarbon and the natural fat-and-fatty acid fatty acid to 80 ° C., rapidly entering the 30 ° C. water after being dissolved, and quenching. In the table, ◯ indicates that an elastic solid product was obtained. X shows that it does not gelatinize. From Table 7, it can be seen that if the content of the natural fat-and-fatty acid fatty acid in the mixture is 6% by weight or more, gelation is obtained and an elastic solid product is obtained, but if it is less than 6% by weight, gelation does not occur.

Figure 0004905758
Figure 0004905758

試料としてヘキサデカンとテトラデカンとの混合重量比を90:10とした蓄熱用炭化水素とステアリン酸を主成分とする天然油脂系脂肪酸とを所定の混合割合で混合して得たゲル状物の圧縮弾性率(C)と、溶媒保持性(S)とを表8に示す。なお、ゲル状物はこの蓄熱用炭化水素と天然油脂系脂肪酸との混合物を80℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷することにより得た。   Compressive elasticity of a gel-like product obtained by mixing a heat storage hydrocarbon with a mixing weight ratio of hexadecane and tetradecane of 90:10 as a sample and a natural fat-based fatty acid mainly composed of stearic acid at a predetermined mixing ratio Table 8 shows the rate (C) and the solvent retention (S). The gel-like product was obtained by heating the mixture of the heat storage hydrocarbon and the natural fat-and-fatty acid fatty acid to 80 ° C., and then rapidly throwing it into water at 30 ° C. and rapidly cooling it.

Figure 0004905758
Figure 0004905758

表8より、混合物(圧縮前ゲル状物)の天然油脂系脂肪酸の含有率が6重量%以上であれば4.9×10Paの荷重で圧縮した後においても64.9重量%以上の溶媒が保持され、LLDPE−2の含有率が9重量%以上であれば4.9×10Paの荷重で圧縮した後においても74.5重量%以上の溶媒が保持されることがわかる。このように本発明の蓄熱材は天然油脂系脂肪酸の含有率が小さいにもかかわらず優れた溶媒保持性を示す。 From Table 8, if the content of the natural fatty acid fatty acid in the mixture (gel-like product before compression) is 6% by weight or more, 64.9% by weight or more after compression with a load of 4.9 × 10 4 Pa. It can be seen that when the solvent is retained and the content of LLDPE-2 is 9% by weight or more, 74.5% by weight or more of the solvent is retained even after compression with a load of 4.9 × 10 4 Pa. As described above, the heat storage material of the present invention exhibits excellent solvent retention despite the small content of natural fats and fatty acids.

また、天然油脂系脂肪酸を用いた本発明の蓄熱材は天然油脂系脂肪酸の含有率を15重量%以下とすることができ、優れた溶媒保持性を維持しつつ、表8に示すように、LLDPE−2を用いた場合に比べさらに小さい圧縮弾性率を得ることができ、極めて柔軟性のある蓄熱材が得られる。   Moreover, as shown in Table 8, the heat storage material of the present invention using a natural fat-and-fatty acid fatty acid can have a content of natural fat-and-fat fatty acid of 15% by weight or less, while maintaining excellent solvent retention. Compared to the case of using LLDPE-2, a smaller compression elastic modulus can be obtained, and a very flexible heat storage material can be obtained.

また、ゲル化剤としてゼラチン、ステアリン酸を主成分とする天然油脂系脂肪酸、アクリル酸系吸水性ポリマー、のそれぞれを使用した場合のゲル化の状態を表9に示す。表9においては、蓄熱用炭化水素としてヘキサデカンとテトラデカンとの混合重量比を90:10としたものを用いた。総重量に対してゲル化剤が6重量%の比率となるように混合した。なお、ゲル化の操作は、この蓄熱用炭化水素とゲル化剤との混合物を140℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷して行なった。表中、○は弾力のある固体状物が得られたことを示す。×はゲル化しないことを示す。   Table 9 shows the gelation state when gelatin, natural fatty acid fatty acid mainly composed of stearic acid, and acrylic acid water-absorbing polymer are used as gelling agents. In Table 9, the heat storage hydrocarbon used was a mixture weight ratio of hexadecane and tetradecane of 90:10. The gelling agent was mixed at a ratio of 6% by weight with respect to the total weight. The gelation operation was carried out by heating the mixture of the heat storage hydrocarbon and the gelling agent to 140 ° C., and then rapidly charging the mixture into water at 30 ° C. after being dissolved. In the table, ◯ indicates that an elastic solid product was obtained. X shows that it does not gelatinize.

Figure 0004905758
Figure 0004905758

表9でもわかるように、蓄熱用炭化水素を用いて弾力のある固体状物のゲルを得る要因としてはゲル化剤の種類がきわめて重要であることが判明した。   As can be seen from Table 9, it has been found that the type of gelling agent is extremely important as a factor for obtaining an elastic solid-state gel by using the hydrocarbon for heat storage.

本発明の蓄熱材の保冷性を確認するため測定を行った。測定にはn−テトラデカンとn−ヘキサデカンとを以下の重量比率で含む蓄熱用炭化水素を用いた。
試料1・・・1:0
試料2・・・3:1
試料3・・・1:1
試料4・・・1:3
試料5・・・1:9
試料6・・・1:19
試料7・・・0:1
これらそれぞれの蓄熱用炭化水素93.5重量部と、出光石油化学(株)社製ポリエチレン((LLDPE−2):商品名モアテック)6.5重量部とを混合して140℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷し、蓄熱材を得た。この蓄熱材はいずれも柔軟で弾力のあるゲル状物であった。
Measurement was performed to confirm the cold insulation of the heat storage material of the present invention. For the measurement, a hydrocarbon for thermal storage containing n-tetradecane and n-hexadecane in the following weight ratio was used.
Sample 1 ... 1: 0
Sample 2 ... 3: 1
Sample 3 ... 1: 1
Sample 4 ... 1: 3
Sample 5 ... 1: 9
Sample 6 ... 1:19
Sample 7 ... 0: 1
93.5 parts by weight of each of these hydrocarbons for heat storage and 6.5 parts by weight of polyethylene manufactured by Idemitsu Petrochemical Co., Ltd. ((LLDPE-2): trade name Moretech) are mixed and heated to 140 ° C. After being in a dissolved state, it was rapidly put into 30 ° C. water and rapidly cooled to obtain a heat storage material. All of the heat storage materials were flexible and elastic gels.

試料1〜7を用いて得られた蓄熱材を1cm×2.5cm×4cmに切り出し試験片とした。各試験片を10℃で24時間保持した後、30℃の室内に放置して試験片内部の温度の変化を測定した。結果を図2に示す。図中の符号は各試料の番号に対応する。   The heat storage material obtained using Samples 1 to 7 was cut into 1 cm × 2.5 cm × 4 cm, and used as a test piece. Each test piece was held at 10 ° C. for 24 hours and then left in a room at 30 ° C. to measure the change in temperature inside the test piece. The results are shown in FIG. The reference numerals in the figure correspond to the numbers of the respective samples.

いずれの試験片にも保冷効果が認められた。特に、蓄熱用炭化水素におけるn−ヘキサデカンの比率が大きくなるほど、温度の時間に対する勾配が緩やかになっているゾーンRの持続期間が長くなり、またそのゾーンでの温度が高くなる傾向が認められた。   All the test pieces showed a cooling effect. In particular, as the ratio of n-hexadecane in the heat storage hydrocarbon increases, the duration of the zone R in which the gradient of the temperature with respect to time becomes gentle and the temperature in the zone tends to increase. .

本発明の蓄熱材は、ヘキサデカン、ペンタデカン、テトラデカンから選択される1または複数種からなる炭化水素と、C分の長さの側鎖を有する直鎖状低密度ポリエチレン、天然油脂系脂肪酸から選択されるゲル化剤とを主成分とするゲル状物からなるものであるが、ゲル状物には、防腐剤、増量剤、着色剤、酸化防止剤、顔料、帯電防止剤、防黴剤、難燃剤、防鼠剤、金属やカーボン等の伝熱材、等の助剤や添加剤が混合されていてもよい。 Heat storage material of the present invention is selected, hexadecane, pentadecane, and hydrocarbon consisting of one or more selected from tetradecane, linear low density polyethylene having a side chain length of C 8 minutes, from natural oils and fats fatty acids It is made of a gel-like material mainly composed of a gelling agent, and the gel-like material includes preservatives, extenders, colorants, antioxidants, pigments, antistatic agents, antifungal agents, Auxiliaries and additives such as flame retardants, antifungal agents, heat transfer materials such as metals and carbon, and the like may be mixed.

本発明の蓄熱材は常温に近い温度での保冷用として好適に用いられる。常温に近い温度での保冷は、ケーキ類、鮮魚、生野菜、フルーツ、弁当類、米飯類等の保冷や、等が挙げられる。また、人体の冷湿布、枕や布団等の寝具や敷具を低温状態に維持するための蓄熱材の使用、ペット用の冷マット等が挙げられる。さらには、化学品の保冷保管、生理物質、生物関連物の保冷等が挙げられる。   The heat storage material of the present invention is suitably used for cold insulation at a temperature close to room temperature. Examples of cold insulation at a temperature close to normal temperature include cold preservation of cakes, fresh fish, raw vegetables, fruits, lunch boxes, cooked rice, and the like. Moreover, the use of a heat storage material for keeping the bedding and the laying material such as cold compresses, pillows and futons at a low temperature, and a cold mat for pets. Furthermore, cold storage of chemical products, cold storage of physiological substances and biological materials, and the like can be mentioned.

本発明の蓄熱材は柔軟で弾力のあるゲル状物であり、かつ、圧縮されても蓄熱用炭化水素がにじみ出しにくいので、保冷すべき対象物の形状や保冷状態に則して各種の形状に容易に成形して、常温に近い温度での保冷用の蓄熱材として好適に使用することができる。   The heat storage material of the present invention is a flexible and elastic gel-like material, and even if it is compressed, the heat storage hydrocarbon does not easily bleed out, so various shapes can be used according to the shape of the object to be kept cold and the cold insulation state. And can be suitably used as a heat storage material for cold storage at a temperature close to room temperature.

例えば、本発明においては、蓄熱用炭化水素とゲル化剤との混合物を溶融状態にしてダイリップから流下させて水浴中に投入させることによりシート状あるいはマット状に成形できる。また、シート状あるいはマット状に成形された蓄熱材をさらに所定の形状に切断して成形できる。   For example, in the present invention, a mixture of a heat storage hydrocarbon and a gelling agent can be melted and flowed down from a die lip and poured into a water bath to form a sheet or mat. Further, the heat storage material formed into a sheet shape or a mat shape can be further cut into a predetermined shape.

シート状あるいはマット状に成形された本発明の蓄熱材は柔軟で優れた可撓性を有するので、保冷すべき対象物の形状保冷状態に則して曲げ変形させて使用することができ、かつまた、本発明の蓄熱材は圧縮されても蓄熱用炭化水素がにじみ出しにくいので、使用時に圧縮力を受けるような使用態様が可能である。   Since the heat storage material of the present invention formed into a sheet or mat shape is soft and has excellent flexibility, it can be used by being bent and deformed according to the shape of the object to be kept cold, and In addition, since the heat storage material of the present invention hardly oozes out the hydrocarbon for heat storage even if it is compressed, it can be used in such a manner that it receives a compressive force during use.

本発明の蓄熱材は、保冷用の収納容器のなかに保冷対象物とともに収納して用いられるのはもちろん、シート状に成形したもので保冷対象物を包んで使用することも可能である。この場合、このシート状の蓄熱材は柔軟で弾力があるので、保冷対象物を外力から保護する緩衝材の作用も有する。また、専用の収納容器を用いずとも保冷対象物の保冷が可能である。   The heat storage material of the present invention can be used by being stored in a storage container for cold storage together with a cold storage object, and can also be used by wrapping the cold storage object in a sheet shape. In this case, since this sheet-like heat storage material is flexible and elastic, it also has a function of a cushioning material that protects the cold object from external force. Moreover, it is possible to keep the object to be kept cold without using a dedicated storage container.

また、本発明においては、図5に示すように本発明の蓄熱材2を、収納容器4に収納した状態の蓄熱材収納体6として用いることができる。収納容器4は、蓄熱材2を収納する収納部本体8と収納部本体8に蓋をする蓋部10とから構成される。収納容器4の素材は限定されないが、フィルムや発泡樹脂シートや編織物や不織布のようなシート状物を素材とするものが好ましく、非透水性であることが好ましい。このシート状物には断熱性向上のためアルミのような金属層が蒸着や箔の貼り付けにより積層されていてもよい。   Moreover, in this invention, as shown in FIG. 5, the heat storage material 2 of this invention can be used as the heat storage material storage body 6 of the state accommodated in the storage container 4. As shown in FIG. The storage container 4 includes a storage unit body 8 that stores the heat storage material 2 and a lid unit 10 that covers the storage unit body 8. The material of the storage container 4 is not limited, but a material using a sheet-like material such as a film, a foamed resin sheet, a knitted fabric, or a nonwoven fabric is preferable, and it is preferably non-permeable. A metal layer such as aluminum may be laminated on the sheet-like material by vapor deposition or foil attachment for improving heat insulation.

蓄熱材2を予め冷蔵庫等の冷却手段により冷却したのち収納部本体8に収め蓋部10により蓋をすることにより蓄熱材収納体6が使用に供される。収納容器4には底面部12に滑り止め手段14が設けられることが好ましい。滑り止め手段14は例えばゴム等のエラストマーのような高摩擦係数を有する素材からなる滑り止め材が底面部12にドット状あるいはメッシュ状に付着されてなる。これにより、使用時に蓄熱材収納体6がずり動いて移動することを防止できる。即ち、収納容器4はその外面に滑り止め手段が設けられた蓄熱材収納体用容器5であることが好ましい。   After the heat storage material 2 is cooled in advance by a cooling means such as a refrigerator, the heat storage material storage body 6 is put into use by being stored in the storage portion main body 8 and covered with the lid portion 10. The storage container 4 is preferably provided with anti-slip means 14 on the bottom surface portion 12. The non-slip means 14 is formed by attaching a non-slip material made of a material having a high friction coefficient such as an elastomer such as rubber to the bottom surface portion 12 in a dot shape or a mesh shape. Thereby, it can prevent that the thermal storage material accommodating body 6 slides and moves at the time of use. That is, the storage container 4 is preferably a heat storage material storage container 5 provided with an anti-slip means on its outer surface.

本発明の蓄熱材はマット状に成形して蓄熱材収納体6として就寝時の足置きとして使用できる。これにより、足先を過度に冷却することなく適度に冷やすことができ、快適な睡眠を得ることができる。また、枕状あるいはまくらカバー状に成形し、蓄熱材収納体6として枕に用いることができる。これにより、頭部を過度に冷却することなく適度に冷やすことができ、快適な睡眠を得ることができる。   The heat storage material of the present invention can be molded into a mat shape and used as a footrest at bedtime as the heat storage material storage body 6. Thereby, it can cool moderately, without cooling a toe excessively, and comfortable sleep can be obtained. Moreover, it shape | molds in the shape of a pillow or a pillow cover, and can be used for a pillow as the heat storage material storage body 6. FIG. Thereby, it can cool moderately, without cooling a head excessively, and comfortable sleep can be obtained.

さらに、本発明の蓄熱材は、座布団形に成形して、蓄熱材収納体6として夏場に乳母車の中に敷いて用いることができる。本発明の蓄熱材は柔軟性があり、幼児の体にそわせるように曲げ変形させて使用できる。蓄熱材収納体6の使用により、幼児の体を過度に冷却することなく適度に冷やすことができ、乳母車の快適性が向上する。また、本発明の蓄熱材はマット状に成形して蓄熱材収納体6としてペット用の冷マットとして使用できる。これらいずれの使用態様においても、滑り止め手段14があると使用時に蓄熱材収納体6がずり動いて移動することを防止できるので好ましい。   Furthermore, the heat storage material of the present invention can be used in the form of a cushion and laid in a baby carriage as a heat storage material storage body 6 in summer. The heat storage material of the present invention is flexible and can be used by being bent and deformed so as to conform to the infant's body. By using the heat storage material storage body 6, the infant's body can be cooled appropriately without excessive cooling, and the comfort of the baby carriage is improved. The heat storage material of the present invention can be molded into a mat shape and used as a cold mat for pets as the heat storage material storage body 6. In any of these usage modes, the presence of the anti-slip means 14 is preferable because the heat storage material storage body 6 can be prevented from sliding and moving during use.

本発明の蓄熱材の使用態様の他の一例においては、本発明の蓄熱材は、広さがハンカチあるいは風呂敷ほどで厚みが0.5〜2mmほどのシートに成形して、ワイン等の飲料のボトルを包んで、あるいは載置して、ボトルの保冷に使用することができる。これにより、ワイン等の飲料を過度に冷却することなく、5〜18℃の範囲の所定の適温例えば5〜8℃で冷却でき、飲料の最高の味を引き出すうえで強力な武器となる。この場合、本発明の蓄熱材はそとがわを布地等のシートで包むように覆って使用することができる。   In another example of the usage mode of the heat storage material of the present invention, the heat storage material of the present invention is formed into a sheet having a width of about 0.5-2 mm and a handkerchief or furoshiki, and is used for beverages such as wine. The bottle can be wrapped or placed and used to keep the bottle cool. Thereby, it can cool at predetermined | prescribed appropriate temperature of the range of 5-18 degreeC, for example, 5-8 degreeC, without cooling drinks, such as wine too much, and becomes a powerful weapon in extracting the highest taste of a drink. In this case, the heat storage material of the present invention can be used by covering Sotogawa so as to be wrapped with a sheet of cloth or the like.

本発明の蓄熱材を用いておにぎり等の食品を保冷すると、食品を過度に冷却することなく適度に冷やすことができ、保冷後にこの食品をおいしく喫することができる。   When food such as rice balls is kept cold using the heat storage material of the present invention, the food can be cooled appropriately without excessive cooling, and the food can be enjoyed deliciously after being kept cold.

本発明の蓄熱材を板状に成形し、室内の壁面に装着することにより、冷暖房停止後もしばらくのあいだ室内の冷却あるいは保温の効果が得られる。   By forming the heat storage material of the present invention into a plate shape and mounting it on the wall surface of the room, the effect of cooling or keeping the room indoors can be obtained for a while after the cooling and heating stop.

この他に、本発明の蓄熱材やそれを用いた二次成形物は、冷却固化物が融解する際の外部熱の吸熱作用を利用して種々の冷房や冷却システムに用いることができる。また、液状物が外部に熱を放出して凝固する際の放熱作用を利用して保温や凍結防止などのシステムに用いることができる。   In addition, the heat storage material of the present invention and the secondary molded product using the heat storage material can be used for various cooling and cooling systems by utilizing the endothermic action of external heat when the cooled and solidified material melts. Further, it can be used in a system for keeping warm and preventing freezing by utilizing a heat radiation action when the liquid material is solidified by releasing heat to the outside.

純度97%のn−テトラデカン(主な不純物:トリデカン、ペンタデカン、以下同じ)92重量部と、出光石油化学(株)社製ポリエチレン((LLDPE−2):商品名モアテック)8重量部とを混合して140℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷し、蓄熱材を得た。この蓄熱材は柔軟で弾力のあるゲル状物であった。   Mixing 92 parts by weight of 97% pure n-tetradecane (main impurities: tridecane, pentadecane, the same shall apply hereinafter) and 8 parts by weight of polyethylene ((LLDPE-2): trade name Moretech) manufactured by Idemitsu Petrochemical Co., Ltd. Then, the temperature was raised to 140 ° C., and after being in a dissolved state, it was rapidly poured into 30 ° C. water and rapidly cooled to obtain a heat storage material. This heat storage material was a flexible and elastic gel.

純度97%のn−テトラデカンと純度98%のn−ヘキサデカンとを重量比1:9で混合した蓄熱用炭化水素94重量部と、ステアリン酸を主成分とする天然油脂系脂肪酸6重量部とを混合して80℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷し、蓄熱材を得た。この蓄熱材は実施例1で得られたものよりさらに柔軟で弾力のあるゲル状物であった。   94 parts by weight of a hydrocarbon for thermal storage in which n-tetradecane with a purity of 97% and n-hexadecane with a purity of 98% are mixed at a weight ratio of 1: 9, and 6 parts by weight of a natural fat-and-fatty acid fatty acid mainly composed of stearic acid After mixing, the temperature was raised to 80 ° C., and after being in a dissolved state, it was rapidly put into 30 ° C. water and rapidly cooled to obtain a heat storage material. This heat storage material was a more flexible and elastic gel-like material than that obtained in Example 1.

この蓄熱材は図3に示すDSCカーブにみられるように16.8℃に融解熱のシャープな吸収ピークを有していた。   This heat storage material had a sharp absorption peak of heat of fusion at 16.8 ° C. as seen in the DSC curve shown in FIG.

純度97%のn−テトラデカンと純度98%のn−ヘキサデカンとを重量比1:9で混合した蓄熱用炭化水素88重量部と、ステアリン酸を主成分とする天然油脂系脂肪酸12重量部とを混合して80℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷し、蓄熱材を得た。この蓄熱材は実施例1で得られたものよりさらに柔軟で弾力のあるゲル状物であった。   88 parts by weight of a hydrocarbon for heat storage in which n-tetradecane having a purity of 97% and n-hexadecane having a purity of 98% are mixed at a weight ratio of 1: 9, and 12 parts by weight of a natural fat-and-fatty acid fatty acid mainly composed of stearic acid After mixing, the temperature was raised to 80 ° C., and after being in a dissolved state, it was rapidly put into 30 ° C. water and rapidly cooled to obtain a heat storage material. This heat storage material was a more flexible and elastic gel-like material than that obtained in Example 1.

この蓄熱材は図4に示すDSCカーブにみられるように16.2℃に融解熱のシャープな吸収ピークを有していた。   This heat storage material had a sharp absorption peak of heat of fusion at 16.2 ° C. as seen in the DSC curve shown in FIG.

純度97%のn−テトラデカンと純度98%のn−ヘキサデカンとを重量比1:9で混合した蓄熱用炭化水素88重量部と、ステアリン酸を主成分とする天然油脂系脂肪酸12重量部とを混合して80℃まで昇温し、溶解状態になってから30℃の水に急投入して急冷し、サイズが約10cm×15cm×1cmの蓄熱材を得た。この蓄熱材は柔軟で弾力のあるゲル状物であった。   88 parts by weight of a hydrocarbon for heat storage in which n-tetradecane having a purity of 97% and n-hexadecane having a purity of 98% are mixed at a weight ratio of 1: 9, and 12 parts by weight of a natural fat-and-fatty acid fatty acid mainly composed of stearic acid After mixing, the temperature was raised to 80 ° C., and after being in a dissolved state, it was rapidly put into 30 ° C. water and rapidly cooled to obtain a heat storage material having a size of about 10 cm × 15 cm × 1 cm. This heat storage material was a flexible and elastic gel.

図6に示すように、この蓄熱材を蓄熱材2aとして収納容器4aに収納した。収納容器4aは、収納部本体8aと蓋部10aとから構成される。収納容器4aと蓋部10aはいずれも厚手の織物から構成されている。蓄熱材2aをまず冷蔵庫で24時間約4℃に冷却し、取り出して収納容器4aに収納した。蓋部10aのそとがわ面(A)の部分と、蓄熱材2aの表面Bの部分にそれぞれ温度センサーを設置し温度の経時変化を温度測定器にて計測した。なお、外気温度は約30℃であった。   As shown in FIG. 6, this heat storage material was stored in the storage container 4a as the heat storage material 2a. The storage container 4a includes a storage body 8a and a lid 10a. Both the storage container 4a and the lid 10a are made of a thick fabric. The heat storage material 2a was first cooled to about 4 ° C. in a refrigerator for 24 hours, taken out, and stored in the storage container 4a. Temperature sensors were respectively installed on the side of the lid portion 10a (A) and the surface B of the heat storage material 2a, and the temperature change was measured with a temperature measuring instrument. The outside air temperature was about 30 ° C.

対照例としてサイズが約10cm×20cm×1cmの、カルボキシルメチルセルロースを主成分とするゲル状物からなる従来市販の蓄冷材を用い、同様の操作で収納容器4aに収納し、同様の部位の温度の経時変化を測定した。   As a control example, a conventional commercially available regenerator material made of a gel-like material mainly composed of carboxymethyl cellulose having a size of about 10 cm × 20 cm × 1 cm is stored in the storage container 4a by the same operation, and the temperature of the same part is set. The change with time was measured.

測定の結果を図7のグラフに示す。図7において、縦軸は温度(℃)、横軸は蓄熱材(あるいは蓄冷材)を収納容器に収納直前からの経過時間である。記号H−A、H−B、C−A、C−B、Gは、それぞれ、本発明の蓄熱材におけるA位置、本発明の蓄熱材におけるB位置、対照例におけるA位置、対照例におけるB位置、外気の温度曲線、を示す。   The measurement results are shown in the graph of FIG. In FIG. 7, the vertical axis represents temperature (° C.), and the horizontal axis represents elapsed time from immediately before storing the heat storage material (or cold storage material) in the storage container. The symbols HA, H-B, C-A, C-B, and G are the A position in the heat storage material of the present invention, the B position in the heat storage material of the present invention, the A position in the control example, and the B in the control example, respectively. The position and the temperature curve of the outside air are shown.

本発明の蓄熱材により、収納容器4aの内部、外がわ表面とも長時間にわたりほぼ一定の温度に保たれることがわかる。収納容器4aの内部においては、約6時間にわたり約16〜17℃の温度に保たれる。これに対して従来の蓄冷材を用いた保冷においては、初期には収納容器4aの内部が5℃以下の過度に低い温度となり、徐々に温度が上昇して、約4時間後には20℃以上となり引き続いて温度が上昇し、測定開始後約8時間後には約27℃になってしまう。このように、本発明の蓄熱材により、長時間にわたり室温に近いほぼ一定の温度での保冷を行うことができることがわかった。   It can be seen that the heat storage material of the present invention keeps the inside and outside of the storage container 4a at a substantially constant temperature for a long time. The inside of the storage container 4a is maintained at a temperature of about 16 to 17 ° C. for about 6 hours. On the other hand, in the cold insulation using the conventional cold storage material, the inside of the storage container 4a is initially at an excessively low temperature of 5 ° C. or lower, and the temperature gradually rises, and after about 4 hours, 20 ° C. or higher. Then, the temperature rises and reaches about 27 ° C. about 8 hours after the start of measurement. Thus, it has been found that the heat storage material of the present invention can perform cold insulation at a substantially constant temperature close to room temperature for a long time.

その他、本発明は、主旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変更を加えた態様で実施できるものである。   In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

本発明の蓄熱材における、ヘキサデカンとテトラデカンとの混合比率とゲル状物の融解熱のピークとの関係を示すグラフである。It is a graph which shows the relationship between the mixing ratio of the hexadecane and tetradecane in the heat storage material of this invention, and the peak of the heat of fusion of a gel-like material. 本発明の蓄熱材の試験片内部の温度の変化を示すグラフである。It is a graph which shows the change of the temperature inside the test piece of the thermal storage material of this invention. 本発明の蓄熱材のDSCカーブである。It is a DSC curve of the heat storage material of the present invention. 本発明の他の蓄熱材のDSCカーブである。It is a DSC curve of the other heat storage material of this invention. 本発明の蓄熱材を、収納容器に収納した状態の蓄熱材収納体の構成の一例を示す側面説明図である。It is side surface explanatory drawing which shows an example of the structure of the thermal storage material accommodating body of the state which accommodated the thermal storage material of this invention in the storage container. 本発明の蓄熱材による蓄熱材収納体の保冷状態を測定する温度センサーの位置を示す側面説明図である。It is side surface explanatory drawing which shows the position of the temperature sensor which measures the cold storage state of the thermal storage material storage body by the thermal storage material of this invention. 本発明の蓄熱材による蓄熱材収納体の保冷状態を示す温度の経時変化グラフである。It is a time-dependent change graph of the temperature which shows the cold storage state of the thermal storage material storage body by the thermal storage material of this invention.

符号の説明Explanation of symbols

2:蓄熱材
4:収納容器
5:蓄熱材収納体用容器
6:蓄熱材収納体
14:滑り止め手段
2: Thermal storage material 4: Storage container 5: Thermal storage material container 6: Thermal storage material 14: Non-slip means

Claims (5)

ヘキサデカン、ペンタデカン、テトラデカンから選択される1または複数種からなる炭化水素と、
分の長さの側鎖を有する直鎖状低密度ポリエチレン、天然油脂系脂肪酸から選択されるゲル化剤と
を主成分とし水を含まないゲル状物からなり、
前記炭化水素と前記ゲル化剤との総量に対する前記ゲル化剤の比率が6〜30重量%であり、
圧縮弾性率が10〜1600MPaである蓄熱材。
One or more hydrocarbons selected from hexadecane, pentadecane, and tetradecane;
A linear low-density polyethylene having a side chain with a length of C 8 minutes, a gelling agent containing a gelling agent selected from natural fats and fatty acids and containing no water,
The ratio of the gelling agent to the total amount of the hydrocarbon and the gelling agent is 6 to 30% by weight,
A heat storage material having a compression modulus of 10 to 1600 MPa.
前記ゲル化剤がC分の長さの側鎖を有する直鎖状低密度ポリエチレンである請求項1に記載の蓄熱材。 Heat storage material according to claim 1 wherein the gelling agent is a linear low density polyethylene having a side chain length of C 8 minutes. 前記炭化水素と前記ゲル化剤との総量に対する前記ゲル化剤の比率が6〜16重量%である請求項1または2に記載の蓄熱材。 The heat storage material according to claim 1 or 2, wherein a ratio of the gelling agent to a total amount of the hydrocarbon and the gelling agent is 6 to 16% by weight. ヘキサデカン、ペンタデカン、テトラデカンから選択される1または複数種からなる炭化水素と、
分の長さの側鎖を有する直鎖状低密度ポリエチレン、天然油脂系脂肪酸から選択されるゲル化剤とを主成分とし、水を含まず、前記炭化水素と前記ゲル化剤との総量に対する前記ゲル化剤の比率が6〜30重量%である、溶融状態の混合物を冷却する蓄熱材の製造方法。
One or more hydrocarbons selected from hexadecane, pentadecane, and tetradecane;
C The main component is a linear low-density polyethylene having a side chain with a length of 8 minutes and a gelling agent selected from natural oil-based fatty acids, and does not contain water, and includes the hydrocarbon and the gelling agent. The manufacturing method of the thermal storage material which cools the mixture of a molten state whose ratio of the said gelatinizer with respect to the total amount is 6-30 weight%.
請求項1から3のいずれかに記載の蓄熱材と該蓄熱材を収納する収納容器とを含み、前記蓄熱材が前記収納容器に収納されてなる蓄熱材収納体。 A heat storage material container comprising the heat storage material according to claim 1 and a storage container for storing the heat storage material, wherein the heat storage material is stored in the storage container.
JP2005141347A 2005-05-13 2005-05-13 Heat storage material Active JP4905758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005141347A JP4905758B2 (en) 2005-05-13 2005-05-13 Heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141347A JP4905758B2 (en) 2005-05-13 2005-05-13 Heat storage material

Publications (2)

Publication Number Publication Date
JP2006316194A JP2006316194A (en) 2006-11-24
JP4905758B2 true JP4905758B2 (en) 2012-03-28

Family

ID=37537144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141347A Active JP4905758B2 (en) 2005-05-13 2005-05-13 Heat storage material

Country Status (1)

Country Link
JP (1) JP4905758B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052855A (en) * 2009-08-31 2011-03-17 Showa Denko Kk Cold heat exchanger and method of manufacturing the same
BR112014030012A2 (en) * 2012-05-30 2017-06-27 Jx Nippon Oil & Energy Corp composition of paraffin-based latent thermal storage material
JP6087078B2 (en) * 2012-07-12 2017-03-01 白元アース株式会社 ice pack
JP6054814B2 (en) 2013-06-14 2016-12-27 Jxエネルギー株式会社 Paraffin-based latent heat storage material composition and use of paraffin-based composition as latent heat storage material
JP6054813B2 (en) 2013-06-14 2016-12-27 Jxエネルギー株式会社 Paraffin-based latent heat storage material composition and use of paraffin-based composition as latent heat storage material
JP6728646B2 (en) * 2015-11-18 2020-07-22 三菱ケミカルインフラテック株式会社 Paraffinic composition and heat storage material
WO2019111358A1 (en) * 2017-12-06 2019-06-13 日立化成株式会社 Resinous member, sheet, heat-storage material, and production method for resinous member
CN111517001A (en) * 2020-04-26 2020-08-11 湖北时利和冷链智能科技有限公司 Can dispose insulation can long when keeping warm
CN112826656B (en) * 2021-02-09 2023-04-07 大理大学 Medical cold compress bag

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103273A (en) * 1980-01-18 1981-08-18 Ajinomoto Co Inc Novel regenerative material and regenerating device using it
JPS5929934A (en) * 1982-08-12 1984-02-17 Norisue Ishihara Opening part apparatus equipped with ventilating device
JPS6275379A (en) * 1985-09-30 1987-04-07 株式会社東芝 Method of controlling output from boiling water type reactor
JPS6357241A (en) * 1986-08-28 1988-03-11 Toshiba Corp Recorder
JPS63164438A (en) * 1986-12-26 1988-07-07 Fujitsu Ltd Method for forming through-hole to substrate
JPH0379076A (en) * 1989-08-23 1991-04-04 Hitachi Ltd Solid state image pickup element
JP2528728B2 (en) * 1990-07-27 1996-08-28 三菱電線工業株式会社 Heat storage material
JP3169422B2 (en) * 1992-02-06 2001-05-28 三菱電線工業株式会社 Heat storage material
JPH09255944A (en) * 1996-03-21 1997-09-30 Nippon Seirou Kk Air-conditioning heat storage agent
JP2002096835A (en) * 2000-09-20 2002-04-02 Dainippon Printing Co Ltd Pet food container
JP2003155036A (en) * 2001-11-19 2003-05-27 Toyo Seikan Kaisha Ltd Container having slip-stopper
JP2003237868A (en) * 2002-02-20 2003-08-27 Taikisha Ltd Heat storage material and manufacturing method thereof
JP2003329383A (en) * 2002-05-09 2003-11-19 Mitsubishi Chemical Engineering Corp Heat accumulating capsule, heat accumulator and heat accumulating tank
JP2003336980A (en) * 2002-05-21 2003-11-28 Nippon Shokubai Co Ltd Heat storage material
JP4668541B2 (en) * 2003-03-14 2011-04-13 大日精化工業株式会社 Thermal storage material, method for producing the same, heating or cooling system, thermal storage article, and copolymer

Also Published As

Publication number Publication date
JP2006316194A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4905758B2 (en) Heat storage material
US11028301B2 (en) Temperature regulating polyurethane gels
US5637389A (en) Thermally enhanced foam insulation
CA2300618C (en) Constant temperature packaging system and phase change formulation
US3463161A (en) Temperature maintaining device
EP3010457B1 (en) Life cradle device for inducing neonatal hypothermia
CA3109848C (en) Cooling body support cushion and pillow
CN106061863B (en) Container with the mixture being made up of phase-change material and graphite powder
US12108879B2 (en) Cooling mattresses, pads or mats, and mattress protectors
TW201236660A (en) Cooling device
JP6865127B2 (en) Temperature control method and constant temperature unit
JP2005255726A (en) Cold reserving material and heat reserving material using gel and pillow, foot-warming tool and face mask using those
JP2001299592A (en) Storage method of cooked foods, heat storage device for storage of cooked foods and equipment for storage of cooked foods
JP5107980B2 (en) Thermal storage pack for cold insulation
JP5918181B2 (en) Insulation material
WO1991013839A2 (en) Improvements relating to heat retaining materials
JPH07255768A (en) Cold insulator
JP3181746U (en) Cold feeling pad
US20200329702A1 (en) Thermal Consistency Systems and Methods for the Application of Thermal Support to a Human or Animal Body or to an Organ for Transplantation
TWM342807U (en) Structure of cold-keeping/warm-keeping pad
JPH0136503Y2 (en)
WO1996039295A1 (en) Thermal storage sheet
JP2019107254A (en) Cool feeling mat
CN105919332A (en) Stool
JP2005133037A (en) Cold reserving agent and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250