JP4904734B2 - Novel pyrazole derivative and organic EL device containing the same - Google Patents

Novel pyrazole derivative and organic EL device containing the same Download PDF

Info

Publication number
JP4904734B2
JP4904734B2 JP2005210339A JP2005210339A JP4904734B2 JP 4904734 B2 JP4904734 B2 JP 4904734B2 JP 2005210339 A JP2005210339 A JP 2005210339A JP 2005210339 A JP2005210339 A JP 2005210339A JP 4904734 B2 JP4904734 B2 JP 4904734B2
Authority
JP
Japan
Prior art keywords
organic
light emitting
reaction
ring
pyrazole derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005210339A
Other languages
Japanese (ja)
Other versions
JP2007022986A (en
Inventor
敦史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005210339A priority Critical patent/JP4904734B2/en
Publication of JP2007022986A publication Critical patent/JP2007022986A/en
Application granted granted Critical
Publication of JP4904734B2 publication Critical patent/JP4904734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

本発明は、新規なピラゾール誘導体及びこれを含有する有機EL素子に関する。   The present invention relates to a novel pyrazole derivative and an organic EL device containing the same.

近年、フラットパネルディスプレイあるいは照明器具などの用途において、低消費電力で機器の占有面積が小さい発光媒体として有機電界発光素子(有機EL素子)が注目を集めている。これまで、有機EL素子の本格的な実用化に向けて素子の駆動電圧の低減、長寿命化、あるいは発光効率の向上など多くの観点から、多様な電極材料や電荷輸送材料、発光材料などが提案されてきた。   In recent years, organic electroluminescence devices (organic EL devices) have been attracting attention as light emitting media with low power consumption and a small area occupied by devices in applications such as flat panel displays and lighting fixtures. Up to now, various electrode materials, charge transport materials, luminescent materials, etc. have been developed from many viewpoints such as reduction of drive voltage, longer life, and improvement of luminous efficiency for full-scale practical application of organic EL devices. Has been proposed.

一般的な有機EL素子の基本構造としては、例えばガラスあるいはプラスチック等の可視光を透過する基板上にインジウム−スズ酸化物(ITO)などの導電性金属酸化物からなる陽極を設け、その上に正の電荷(正孔)を輸送する正孔輸送層、正負の電荷を再結合させて電流を光に変換する発光層、負の電荷(電子)を輸送する電子輸送層を順次積層し、その上にアルミニウム、マグネシウム、カルシウム、セシウム、銀などの金属、あるいはこれらを任意の比率で混合した合金などからなる陰極を設けた構造が採用されている。   As a basic structure of a general organic EL element, for example, an anode made of a conductive metal oxide such as indium-tin oxide (ITO) is provided on a substrate that transmits visible light such as glass or plastic, and an anode is formed thereon. A hole transport layer that transports positive charges (holes), a light-emitting layer that recombines positive and negative charges to convert current to light, and an electron transport layer that transports negative charges (electrons) are sequentially stacked. A structure in which a cathode made of a metal such as aluminum, magnesium, calcium, cesium, silver, or an alloy in which these are mixed at an arbitrary ratio is provided.

最近、有機EL素子の発光効率の大幅な向上の観点から、分子内にイリジウム(III)や白金(II)などを含むリン光材料を発光材料とする素子が大きな注目を浴びている。特に緑色のリン光材料であるトリス(2−フェニルピリジン)イリジウム(III)錯体(Ir(ppy)3)を使用した有機EL素子に関しては、素子に流した電流を光へ変換する効率(以下、内部量子効率)はほぼ100 %を達成している(非特許文献1)。更には、最近赤色のリン光材料を使用した素子の性能が実用レベルに到達し、その素子を使用した小型ディスプレイの市販が開始された。 Recently, from the viewpoint of greatly improving the light emission efficiency of organic EL devices, devices using phosphorescent materials containing iridium (III), platinum (II), etc. in the molecule as a light emitting material have attracted a great deal of attention. Especially for organic EL devices using the tris (2-phenylpyridine) iridium (III) complex (Ir (ppy) 3 ), which is a green phosphorescent material, the efficiency of converting the current passed through the device into light (hereinafter, The internal quantum efficiency is almost 100% (Non-patent Document 1). Furthermore, the performance of devices using red phosphorescent materials has recently reached a practical level, and small displays using such devices have been marketed.

しかしその一方で、青色のリン光材料を使用した有機EL素子に関しては、発光効率こそ改善されつつあるものの、駆動電圧の高さや素子を構成する各種材料の安定性、それらに起因する駆動寿命の短さなど、未だ多くの解決すべき問題を抱えているのが現状である。   On the other hand, for organic EL devices using blue phosphorescent materials, although the luminous efficiency is improving, the drive voltage is high, the stability of the various materials that make up the devices, and the drive life resulting from them. There are still many problems to be solved such as shortness.

一般に、有機EL素子における発光層は、正孔輸送層および電子輸送層より正負の電荷を受け取る役割を果たすホスト材料の中に、共蒸着法あるいは混合物溶液の塗付法などにより0.1〜10重量%程度の発光材料をドープする形で作成される。   Generally, the light emitting layer in an organic EL device is 0.1 to 10% by weight by a co-evaporation method or a mixture solution coating method in a host material that plays a role of receiving positive and negative charges from a hole transport layer and an electron transport layer. It is made in the form of doping light emitting material of a degree.

ここで、発光材料として特にリン光材料を使用する場合、ホスト材料と発光材料それぞれの基底状態−励起三重項状態間のエネルギー差(以下、三重項エネルギー)が極めて重要となる。発光材料ドープ型の発光層を形成する場合、ホスト材料の三重項エネルギーが発光材料の三重項エネルギーよりも大きいことが必要となる。ここでもし発光材料の三重項エネルギーがホスト材料の三重項エネルギーよりも大きい場合、電流により励起された発光材料のエネルギーがホスト材料へと逆流してしまい、その結果発光効率の大幅な低下を引き起こす原因となる。   Here, in particular, when a phosphorescent material is used as the light emitting material, an energy difference between the ground state and the excited triplet state (hereinafter, triplet energy) of the host material and the light emitting material is extremely important. In the case of forming a light emitting material-doped light emitting layer, the triplet energy of the host material needs to be larger than the triplet energy of the light emitting material. Here, if the triplet energy of the luminescent material is larger than the triplet energy of the host material, the energy of the luminescent material excited by the current flows back to the host material, resulting in a significant decrease in luminous efficiency. Cause.

実際に、一般的にリン光材料系の発光層ホストとして使用される4、4'−ビス(9−カルバゾリル)ビフェニル(以下、CBP)の場合、発光材料として前述の緑色リン光材料であるIr(ppy)3を使用した場合は内部量子効率がほぼ100 %を示す。しかし、青色のリン光材料であるFIrpicを使用した場合、FIrpicの三重項エネルギーがホストであるCBPの三重項エネルギーより大きくなる。このため、FirpicからCBPへのエネルギーの逆流が生じ、その結果、素子の内部量子効率が大幅に低下することが知られている(非特許文献2、3)。 Actually, in the case of 4,4′-bis (9-carbazolyl) biphenyl (hereinafter referred to as CBP), which is generally used as a light emitting layer host of a phosphorescent material system, the aforementioned green phosphorescent material is used as the light emitting material. When (ppy) 3 is used, the internal quantum efficiency is almost 100%. However, when FIrpic, which is a blue phosphorescent material, is used, the triplet energy of FIrpic is larger than the triplet energy of CBP as a host. For this reason, it is known that a reverse flow of energy from Firpic to CBP occurs, and as a result, the internal quantum efficiency of the device is significantly reduced (Non-Patent Documents 2 and 3).

また、CBPに代表されるカルバゾール系のホスト材料は電荷の輸送性に乏しく、素子の駆動電圧が高くなるという問題も生じる。
M. Ikai et al., Appl. Phys. Lett., 79, 156(2001) C. Adachi et al., Appl. Phys. Lett., 79, 2082(2005) Y. Kawamura et al., Appl. Phys. Lett., 86, 071104(2005)
In addition, a carbazole-based host material typified by CBP has a poor charge transport property, which causes a problem that the driving voltage of the device is increased.
M. Ikai et al., Appl. Phys. Lett., 79, 156 (2001) C. Adachi et al., Appl. Phys. Lett., 79, 2082 (2005) Y. Kawamura et al., Appl. Phys. Lett., 86, 071104 (2005)

従って、本発明の目的は、発光層ホストとして高い三重項エネルギーを有し、電荷の輸送性に優れる材料を提供することにある。   Accordingly, an object of the present invention is to provide a material having high triplet energy and excellent charge transportability as a light emitting layer host.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、安価な材料から下記一般式(1)で表される新規なピラゾール誘導体が容易に得られ、更にこの新規ピラゾール誘導体が極めて高い三重項エネルギーを有していることを見いだした。また、当該ピラゾール誘導体を有機EL素子の発光層に発光層ホストとして使用すると、ドープされた発光材料の絶対発光量子収率が高く、更に電荷の輸送性に優れ、その結果低電圧駆動下でも十分な発光輝度を有する有機EL素子が得られることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor can easily obtain a novel pyrazole derivative represented by the following general formula (1) from an inexpensive material, and the novel pyrazole derivative is extremely high. It has been found that it has triplet energy. In addition, when the pyrazole derivative is used as a light emitting layer host in the light emitting layer of an organic EL device, the doped light emitting material has a high absolute light emission quantum yield and excellent charge transportability, and as a result, sufficient even under low voltage driving. The present inventors have found that an organic EL device having a high luminance can be obtained, and have completed the present invention.

すなわち本発明は、一般式(1):
[式中、R1〜R8は同一又は異なって、水素原子、アルキル基又はアルコキシ基を示し;環A〜Eは、同一又は異なってベンゼン環又はピリジン環を示し;環Eに結合するベンゼン環上におけるピラゾール環と環Eとの結合がオルト位である。
で表されるピラゾール誘導体を含有する発光層を有し、該発光層が発光材料を含有することを特徴とする、有機EL素子を提供するものである。
ここで、前記発光材料が、青色リン光材料であることが好ましい。
That is, the present invention relates to the general formula (1):
Wherein, R 1 to R 8 are the same or different and each represents a hydrogen atom, an alkyl group or an alkoxy group; ring A~E are the same or different and indicates a benzene ring or a pyridine ring; binding to ring E The bond between the pyrazole ring and ring E on the benzene ring is in the ortho position. ]
The organic EL device is characterized by having a light-emitting layer containing a pyrazole derivative represented by the formula: wherein the light-emitting layer contains a light-emitting material.
Here, before Symbol luminescent material is preferably a blue phosphorescent material.

本発明の新規ピラゾール誘導体が極めて高い三重項エネルギーを有しており、これを発光層に発光層ホストとして使用すると、ドープされた発光材料の絶対発光量子収率が高く、更に電荷の輸送性に優れ、その結果低電圧駆動下でも十分な発光輝度を有する有機EL素子を得ることができる。   The novel pyrazole derivative of the present invention has extremely high triplet energy, and when this is used as a light emitting layer host in a light emitting layer, the doped light emitting material has a high absolute light emission quantum yield and further has a charge transport property. As a result, it is possible to obtain an organic EL element having sufficient light emission luminance even under low voltage driving.

上記一般式(1)においてR1〜R8で示されるアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基等の直鎖又は分枝鎖の炭素数1〜6のアルキル基が挙げられ、アルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基等の炭素数1〜6のアルコキシ基が挙げられる。 Examples of the alkyl group represented by R 1 to R 8 in the general formula (1) include linear or branched groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a tert-butyl group. Examples of the alkyl group include 1 to 6 carbon atoms in the chain, and examples of the alkoxy group include 1 to 6 alkoxy groups such as a methoxy group, an ethoxy group, an n-propoxy group, and an n-butoxy group.

1〜R8としては、同一又は異なって水素原子が好ましく、R1〜R8が同時に水素原子であることが好ましい。 R 1 to R 8 are the same or different and preferably a hydrogen atom, and R 1 to R 8 are preferably a hydrogen atom at the same time.

1〜R8としては、R1とR5、R2とR6、R3とR7、R4とR8がそれぞれ同一であるものが好ましい。 R 1 to R 8 are preferably those in which R 1 and R 5 , R 2 and R 6 , R 3 and R 7 , and R 4 and R 8 are the same.

一般式(1)中の環E上におけるベンゼン環とベンゼン環の結合は、o−、m−及びp−のいずれでもよいが、m−が特に好ましい。   The bond between the benzene ring and the benzene ring on the ring E in the general formula (1) may be o-, m-, or p-, and m- is particularly preferable.

また、環Eに結合するベンゼン環上におけるピラゾール環と環Eとの結合は、o−、m−及びp−のいずれでもよいが、o−又はp−が好ましく、o−がより好ましい。   Further, the bond between the pyrazole ring and the ring E on the benzene ring bonded to the ring E may be o-, m- or p-, but o- or p- is preferable, and o- is more preferable.

本発明の本発明のピラゾール誘導体は、例えば以下の方法によって製造できる。   The pyrazole derivative of the present invention can be produced, for example, by the following method.

(式中、R1〜R8及び環A〜Eは前記定義のとおりであり;X1及びX2は同一又は異なってハロゲン原子を示し;Yは水素原子又は炭素数1〜6のアルキル基を示す。) (Wherein R 1 to R 8 and rings A to E are as defined above; X 1 and X 2 are the same or different and each represents a halogen atom; Y represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) Is shown.)

すなわち、フェニルヒドラジン(2)にジベンゾイルメタン誘導体(3)を反応させて、ピラゾール誘導体(4)に誘導する。続いて、このピラゾール誘導体(4)にアルキルリチウム及びホウ酸トリアルキルを反応させ、ボロン酸誘導体(5)とした後、パラジウム触媒及び塩基存在下にハロゲン化物(6)を反応させることにより本発明のピラゾール誘導体が得られる。   That is, the phenyl hydrazine (2) is reacted with the dibenzoylmethane derivative (3) to induce the pyrazole derivative (4). Subsequently, the pyrazole derivative (4) is reacted with alkyl lithium and trialkyl borate to form a boronic acid derivative (5), and then reacted with the halide (6) in the presence of a palladium catalyst and a base. The pyrazole derivative is obtained.

化合物(2)と化合物(3)の反応は酢酸等の酸存在下に行うことが好ましい。酸の使用量は、フェニルヒドラジン(2)1モルに対して、通常2〜10モル、好ましくは2〜5モルである。   The reaction of the compound (2) and the compound (3) is preferably performed in the presence of an acid such as acetic acid. The usage-amount of an acid is 2-10 mol normally with respect to 1 mol of phenylhydrazine (2), Preferably it is 2-5 mol.

かかる反応に用いられる反応溶媒としては、反応に不活性なものであれば特に限定されないが、例えば1−プロパノール、2−プロパノール等のアルコール系溶媒が好ましい。反応は、室温〜溶媒の沸点温度の範囲で、5〜20時間程度行うことが好ましい。   The reaction solvent used in the reaction is not particularly limited as long as it is inert to the reaction, but alcohol solvents such as 1-propanol and 2-propanol are preferable. The reaction is preferably performed in the range of room temperature to the boiling point of the solvent for about 5 to 20 hours.

ピラゾール誘導体(4)の反応に用いるアルキルリチウムとしては、エチルリチウム、n−プロピルリチウム、n−ブチルリチウム等の炭素数1〜6のアルキルリチウムが挙げられるが、取り扱い性や反応性の点から、n−ブチルリチウムが好ましい。アルキルリチウムの使用量は、ピラゾール誘導体(4)1モルに対し、0.8〜2モル、好ましくは1〜1.5モルである。   Examples of the alkyllithium used for the reaction of the pyrazole derivative (4) include alkyllithium having 1 to 6 carbon atoms such as ethyllithium, n-propyllithium, and n-butyllithium. From the viewpoint of handleability and reactivity, n-Butyl lithium is preferred. The usage-amount of alkyl lithium is 0.8-2 mol with respect to 1 mol of pyrazole derivatives (4), Preferably it is 1-1.5 mol.

かかる反応に用いられる反応溶媒としては、反応に不活性なものであれば特に制限されないが、例えばジメトキシエタン、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒が好ましい。反応は、−80℃〜−30℃の温度範囲で15分〜1時間、次いで−20℃〜0℃の温度範囲で30分〜2時間で行うのが好ましい。   The reaction solvent used in the reaction is not particularly limited as long as it is inert to the reaction, but for example, ether solvents such as dimethoxyethane, diethyl ether, and tetrahydrofuran are preferable. The reaction is preferably performed at a temperature range of −80 ° C. to −30 ° C. for 15 minutes to 1 hour, and then at a temperature range of −20 ° C. to 0 ° C. for 30 minutes to 2 hours.

アルキルリチウムの反応の次に用いられるホウ酸トリアルキルとしては、ホウ酸トリメチル、ホウ酸トリエチル等が挙げられる。ホウ酸トリアルキル類の使用量は、ピラゾール誘導体(4)1モルに対し、通常1〜3.5モル、好ましくは1.1〜2.0モルである。   Examples of the trialkyl borate used after the alkyllithium reaction include trimethyl borate and triethyl borate. The usage-amount of trialkyl borate is 1-3.5 mol normally with respect to 1 mol of pyrazole derivatives (4), Preferably it is 1.1-2.0 mol.

ホウ酸トリアルキルの反応に用いられる反応溶媒としては、反応に不活性なものであれば特に制限されないが、例えばジメトキシエタン、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒が好ましい。反応は、−80℃〜−30℃の温度範囲で1〜3時間、次いで室温で2〜16時間程度行うことが好ましい。   The reaction solvent used for the reaction of the trialkyl borate is not particularly limited as long as it is inert to the reaction, but ether solvents such as dimethoxyethane, diethyl ether, and tetrahydrofuran are preferable. The reaction is preferably performed at a temperature range of -80 ° C to -30 ° C for 1 to 3 hours, and then at room temperature for about 2 to 16 hours.

かくして得られる反応液に、酢酸、塩酸等の酸を加え、例えば室温で15〜45分攪拌反応させることにより、ボロン酸誘導体(5)が得られる。   An acid such as acetic acid and hydrochloric acid is added to the reaction solution thus obtained, and the boronic acid derivative (5) is obtained by, for example, stirring reaction at room temperature for 15 to 45 minutes.

ハロゲン化物(6)としては、ジクロロベンゼン、ジブロモベンゼン、ジクロロピリジン、ジブロモピリジン等が挙げられる。ハロゲン化物(6)の使用量は、ボロン酸誘導体(5)及び(5’)それぞれ各1モルに対し、通常0.5〜1.2モル、好ましくは0.8〜1.0モルである。ここで、ボロン酸誘導体(5’)は、ボロン酸誘導体(5)と同様の方法により得ることができ、ボロン酸誘導体(5’)はボロン酸誘導体(5)と同一であってもよい。   Examples of the halide (6) include dichlorobenzene, dibromobenzene, dichloropyridine, dibromopyridine and the like. The amount of the halide (6) used is usually 0.5 to 1.2 mol, preferably 0.8 to 1.0 mol, with respect to 1 mol of each of the boronic acid derivatives (5) and (5 ′). . Here, the boronic acid derivative (5 ') can be obtained by the same method as the boronic acid derivative (5), and the boronic acid derivative (5') may be the same as the boronic acid derivative (5).

パラジウム触媒としては、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロ[ビス(ジフェニルホスフィノ)エタン]パラジウム、ジクロロ[ビス(ジフェニルホスフィノ)ブタン]パラジウム、ジクロロ[ビス(ジフェニルホスフィノ)フェロセン]パラジウム等が挙げられるが、これらの中でテトラキス(トリフェニルホスフィン)パラジウムが好ましい。パラジウム触媒の使用量は、ボロン酸誘導体(5)1モルに対し、通常0.005〜0.5モルであり、好ましくは0.01〜0.15モルである。   Palladium catalysts include tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, dichloro [bis (diphenylphosphino) ethane] palladium, dichloro [bis (diphenylphosphino) butane] palladium, dichloro [bis (diphenyl). Phosphino) ferrocene] palladium and the like, among which tetrakis (triphenylphosphine) palladium is preferable. The usage-amount of a palladium catalyst is 0.005-0.5 mol normally with respect to 1 mol of boronic acid derivatives (5), Preferably it is 0.01-0.15 mol.

塩基としては、例えば炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸セシウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素化合物カリウム等のアルカリ金属炭酸水素塩;水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム等のアルカリ金属水酸化物などが挙げられる。塩基の使用量は、ボロン酸誘導体(5)1モルに対して、通常2〜10モル、好ましくは2〜5モルである。   Examples of the base include alkali metal carbonates such as potassium carbonate, sodium carbonate, lithium carbonate and cesium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate compound; sodium hydroxide, potassium hydroxide and lithium hydroxide And alkali metal hydroxides such as cesium hydroxide. The usage-amount of a base is 2-10 mol normally with respect to 1 mol of boronic acid derivatives (5), Preferably it is 2-5 mol.

ボロン酸誘導体とハロゲン化物(6)の反応に用いられる反応溶媒としては、反応に不活性なものであれば特に限定されず、例えばベンゼン、トルエン等のベンゼン系溶媒;ジメトキシエタン、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒;n−ヘキサン、n−ヘプタン、n−オクタン等の脂肪族炭化水素系溶媒などが挙げられ、エーテル系溶媒が好ましい。反応は、室温〜溶媒の沸点温度の範囲で、6〜15時間程度行うことが好ましい。なお、ボロン酸誘導体は、異なる構造からなる2種を組み合わせて用いてもよい。   The reaction solvent used for the reaction between the boronic acid derivative and the halide (6) is not particularly limited as long as it is inert to the reaction. For example, benzene-based solvents such as benzene and toluene; dimethoxyethane, diethyl ether, tetrahydrofuran Ether solvents such as n-hexane, n-heptane, n-octane and the like, and ether solvents are preferred. The reaction is preferably performed in the range of room temperature to the boiling point of the solvent for about 6 to 15 hours. Note that the boronic acid derivatives may be used in combination of two types having different structures.

また、本発明のピラゾール誘導体(1)は、以下に示すように、フェニルヒドラジン(2)の代わりにハロゲン化物(2’)を用いることの他は、前記と同様の方法を行うことによっても製造できる。   Further, as shown below, the pyrazole derivative (1) of the present invention can also be produced by performing the same method as described above except that the halide (2 ′) is used instead of the phenylhydrazine (2). it can.

(式中、R1〜R8及び環A〜Eは前記定義のとおりであり;X1〜X3は同一又は異なってハロゲン原子を示し;Yは水素原子又は炭素数1〜6のアルキル基を示す。) (Wherein R 1 to R 8 and rings A to E are as defined above; X 1 to X 3 are the same or different and each represents a halogen atom; Y represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) Is shown.)

ピラゾール誘導体(4’)の反応に用いるアルキルリチウムとしては、エチルリチウム、n−プロピルリチウム、n−ブチルリチウム等の炭素数1〜6のアルキルリチウムが挙げられるが、取り扱い性や反応性の点から、n−ブチルリチウムが好ましい。アルキルリチウムの使用量は、ピラゾール誘導体(4’)1モルに対し、0.8〜2モル、好ましくは1〜1.5モルである。   Examples of the alkyl lithium used for the reaction of the pyrazole derivative (4 ′) include alkyl lithium having 1 to 6 carbon atoms such as ethyl lithium, n-propyl lithium, and n-butyl lithium, but from the viewpoint of handling and reactivity. N-Butyllithium is preferred. The amount of alkyl lithium used is 0.8 to 2 mol, preferably 1 to 1.5 mol, per 1 mol of pyrazole derivative (4 ').

かかる反応に用いられる反応溶媒としては、反応に不活性なものであれば特に制限されないが、例えばジメトキシエタン、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒が好ましい。反応は、−80℃〜−30℃の温度範囲で30分〜3時間で行うのが好ましい。   The reaction solvent used in the reaction is not particularly limited as long as it is inert to the reaction, but for example, ether solvents such as dimethoxyethane, diethyl ether, and tetrahydrofuran are preferable. The reaction is preferably carried out in the temperature range of −80 ° C. to −30 ° C. for 30 minutes to 3 hours.

アルキルリチウムの反応の次に用いられるホウ酸トリアルキルとしては、ホウ酸トリメチル、ホウ酸トリエチル等が挙げられる。ホウ酸トリアルキル類の使用量は、ピラゾール誘導体(4’)1モルに対し、通常1〜3.5モル、好ましくは1.1〜2.0モルである。   Examples of the trialkyl borate used after the alkyllithium reaction include trimethyl borate and triethyl borate. The amount of the trialkyl borate to be used is usually 1 to 3.5 mol, preferably 1.1 to 2.0 mol, per 1 mol of the pyrazole derivative (4 ').

ホウ酸トリアルキルの反応に用いられる反応溶媒としては、反応に不活性なものであれば特に制限されないが、例えばジメトキシエタン、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒が好ましい。反応は、−80℃〜−30℃の温度範囲で1〜3時間、次いで室温で2〜16時間程度行うことが好ましい。かくして得られる反応液に、酢酸、塩酸等の酸を加え、例えば室温で15〜45分攪拌反応させることにより、ボロン酸誘導体(5’’)が得られる。ボロン酸誘導体(5’’’)も同様の方法により製造できる。   The reaction solvent used for the reaction of the trialkyl borate is not particularly limited as long as it is inert to the reaction, but ether solvents such as dimethoxyethane, diethyl ether, and tetrahydrofuran are preferable. The reaction is preferably performed at a temperature range of -80 ° C to -30 ° C for 1 to 3 hours, and then at room temperature for about 2 to 16 hours. An acid such as acetic acid or hydrochloric acid is added to the reaction solution thus obtained, and the boronic acid derivative (5 ″) is obtained by, for example, stirring at room temperature for 15 to 45 minutes. The boronic acid derivative (5 ′ ″) can also be produced by the same method.

上記の方法により本発明のピラゾール誘導体(1)を含む反応混合物を得ることができるが、ろ過、中和、抽出、濃縮、再結晶、クロマトグラフィー等の一般的な操作を適宜組み合わせることにより、本発明のピラゾール誘導体(1)を結晶として単離することができる。   Although the reaction mixture containing the pyrazole derivative (1) of the present invention can be obtained by the above method, the present mixture can be obtained by appropriately combining general operations such as filtration, neutralization, extraction, concentration, recrystallization, and chromatography. The pyrazole derivative (1) of the invention can be isolated as crystals.

次に、本発明のピラゾール誘導体(1)を用いた有機EL素子について説明する。本発明の代表的な有機EL素子は、特開2004−339070号公報に記載の有機EL素子と同様の構造を有し、具体的には、透明基板、導電性材料からなる陽極、正孔輸送層、発光層、電子輸送層及び陰極が順次積層されており、発光層に、発光層ホストとして本発明のピラゾール誘導体を含有させたものである。   Next, an organic EL device using the pyrazole derivative (1) of the present invention will be described. A typical organic EL device of the present invention has a structure similar to that of the organic EL device described in JP-A-2004-339070, specifically, a transparent substrate, an anode made of a conductive material, and hole transport. A layer, a light emitting layer, an electron transport layer, and a cathode are sequentially laminated, and the light emitting layer contains the pyrazole derivative of the present invention as a light emitting layer host.

透明基板としては、ガラス、透明プラスチック等を使用すればよい。陽極としては、厚さ110nm程度に積層された導電性材料であるITOが使用できる。陰極としては、マグネシウムと銀の共蒸着により厚さ110nm程度に製膜して得られる半透明の仕事関数が小さな合金、例えば、MgAg/Agを使用すればよい。   As the transparent substrate, glass, transparent plastic or the like may be used. As the anode, ITO, which is a conductive material laminated to a thickness of about 110 nm, can be used. As the cathode, a semitransparent alloy having a small work function obtained by forming a film with a thickness of about 110 nm by co-evaporation of magnesium and silver, for example, MgAg / Ag may be used.

本発明の有機EL素子の発光層、電子輸送層等の有機層には、更に従来から当該分野において使用されている各種の化合物を含有させてもよい。発光層には、発光材料を加えられるが、発光材料としてはリン光材料が好ましい。リン光材料としては、緑色リン光材料、赤色リン光材料、青色リン光材料が挙げられるが、青色リン光材料が好ましく、FIrpicがより好ましい。FIrpicを発光層に加える場合、FIrpicの本発明のキノリン誘導体(1)に対する添加量は、重量比で0.1〜20%であることが好ましく、3〜15%であることがより好ましい。   The organic layer such as the light emitting layer and the electron transport layer of the organic EL device of the present invention may further contain various compounds conventionally used in the field. A light emitting material can be added to the light emitting layer, and a phosphorescent material is preferable as the light emitting material. Examples of phosphorescent materials include green phosphorescent materials, red phosphorescent materials, and blue phosphorescent materials, with blue phosphorescent materials being preferred and FIrpic being more preferred. When FIrpic is added to the light emitting layer, the amount of FIrpic added to the quinoline derivative (1) of the present invention is preferably 0.1 to 20%, more preferably 3 to 15% by weight.

次に実施例を挙げて本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, these do not limit the scope of the present invention.

実施例1
2,6−ビス(2−(3,5−ジフェニルピラゾール−1−イル)フェニル)ピリジン(以下、BPP)の合成
500 mLのナス型フラスコにフェニルヒドラジン23.0 g(213 mmol)およびジベンゾイルメタン52.5 g(234 mmol)を分取し、これに230 mLの2−プロパノール及び4.5 mLの酢酸を加え、窒素雰囲気下8時間還流した。反応液を室温まで冷却したのち、析出した白色の結晶をろ過、乾燥し、1,3,5−トリフェニルピラゾール(TPPz)の白色結晶61.0 g(206 mmol、収率96.8 %)を得た。
このTPPz 11.9 g(40 mmol)を300 mLのナス型フラスコに分取し、120 mLのテトラヒドロフランを加えて溶解した。この反応溶液をドライアイス−アセトン浴により−60 ℃以下まで冷却した。その後、内温を−40 ℃以下に保ちながら40 mLの1.6 M n−ブチルリチウム/ヘキサン溶液を滴下した。滴下終了後、内温を−10〜0 ℃に保ちながら1時間攪拌を続けた後、再びドライアイス−アセトン浴を用いて内温−60 ℃以下まで冷却した。この反応液に、内温を−40 ℃以下に保ちながら6.5 g(62.7 mmol)のホウ酸トリメチルを滴下した。滴下終了後、内温−40 ℃以下で2時間攪拌を続け、その後徐々に室温まで昇温させながら一晩攪拌を続けた。この反応液に、60 mLの1 M塩酸水溶液を加え、30分攪拌した。攪拌を停止し、分液した水層を廃棄し得られた有機層を減圧濃縮し、淡紅色アモルファスのボロン酸中間体(1-(2-(ジヒドロキシボリル)フェニル)-3,5-ジフェニルピラゾール)12.6 gを得た。このボロン酸中間体は少量の不純物を含むが、そのまま次の反応に使用した。
上記ボロン酸中間体4.2 gを100 mLのナス型フラスコに分取し、これに670 mg(4.5 mmol)の2,6−ジクロロピリジン、230 mg(0.4 mmol)のテトラキス(トリフェニルホスフィン)パラジウム(0)、4.8 g(35 mmol)の炭酸カリウム、20 mLのテトラヒドロフラン及び10 mLのイオン交換水を加え、窒素雰囲気下8時間還流した。反応液を室温まで冷却したのち、分液した水層を廃棄し、減圧濃縮により溶媒を留去して黄色オイル5 gを得た。このオイルをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)および昇華精製法により精製し、白色結晶の表題化合物(BPP)2.1 gを得た。尚、BPPの構造は1Hおよび13C−NMR、質量分析法により同定した。
Example 1
Synthesis of 2,6-bis (2- (3,5-diphenylpyrazol-1-yl) phenyl) pyridine (hereinafter BPP)
Into a 500 mL eggplant-shaped flask, 23.0 g (213 mmol) of phenylhydrazine and 52.5 g (234 mmol) of dibenzoylmethane were added, and 230 mL of 2-propanol and 4.5 mL of acetic acid were added to the flask. Reflux for hours. After cooling the reaction solution to room temperature, the precipitated white crystals were filtered and dried to obtain 61.0 g (206 mmol, yield 96.8%) of white crystals of 1,3,5-triphenylpyrazole (TPPz).
11.9 g (40 mmol) of this TPPz was dispensed into a 300 mL eggplant-shaped flask and dissolved by adding 120 mL of tetrahydrofuran. The reaction solution was cooled to −60 ° C. or lower with a dry ice-acetone bath. Thereafter, 40 mL of 1.6 M n-butyllithium / hexane solution was added dropwise while keeping the internal temperature at −40 ° C. or lower. After completion of the dropwise addition, stirring was continued for 1 hour while maintaining the internal temperature at −10 to 0 ° C., and then the internal temperature was again cooled to −60 ° C. or lower using a dry ice-acetone bath. To this reaction solution, 6.5 g (62.7 mmol) of trimethyl borate was dropped while maintaining the internal temperature at −40 ° C. or lower. After completion of the dropping, stirring was continued for 2 hours at an internal temperature of −40 ° C. or lower, and then stirring was continued overnight while gradually warming to room temperature. To this reaction solution, 60 mL of 1 M hydrochloric acid aqueous solution was added and stirred for 30 minutes. Stirring was stopped, the separated aqueous layer was discarded, and the resulting organic layer was concentrated under reduced pressure to obtain a light red amorphous boronic acid intermediate (1- (2- (dihydroxyboryl) phenyl) -3,5-diphenylpyrazole ) 12.6 g was obtained. This boronic acid intermediate contained a small amount of impurities, but was used in the next reaction as it was.
4.2 g of the boronic acid intermediate was taken in a 100 mL eggplant-shaped flask, and 670 mg (4.5 mmol) 2,6-dichloropyridine, 230 mg (0.4 mmol) tetrakis (triphenylphosphine) palladium ( 0), 4.8 g (35 mmol) of potassium carbonate, 20 mL of tetrahydrofuran and 10 mL of ion-exchanged water were added, and the mixture was refluxed for 8 hours under a nitrogen atmosphere. After cooling the reaction solution to room temperature, the separated aqueous layer was discarded, and the solvent was distilled off by concentration under reduced pressure to obtain 5 g of a yellow oil. This oil was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) and sublimation purification to give 2.1 g of the title compound (BPP) as white crystals. The structure of BPP was identified by 1 H and 13 C-NMR and mass spectrometry.

1H−NMR(400 MHz,CDCl3) δ ppm:6.310(2H, d),6.587〜6.610(6H, m),6.950(4H, t),7.035〜7.120(5H, m),7.306〜7.371(4H, m),7.436(4H, t),7.503(2H, t),7.701(2H, d),7.913(4H, d)
13C−NMR(100 MHz,CDCl3) δ ppm:103.791,120.770,125.648,127.572,127.638,127.746,127.788,127.837,128.501,128.683,129.198,129.281,131.130,132.897,135.419,136.995,137.492,145.770,151.634,154.654
DIMS(EI) m/z:667
1 H-NMR (400 MHz, CDCl 3 ) δ ppm: 6.310 (2H, d), 6.587-6.610 (6H, m), 6.950 (4H, t), 7.035-7.120 (5H, m), 7.306-7.371 ( 4H, m), 7.436 (4H, t), 7.503 (2H, t), 7.701 (2H, d), 7.913 (4H, d)
13 C-NMR (100 MHz, CDCl 3 ) δ ppm: 103.791, 120.770, 125.648, 127.572, 127.638, 127.746, 127.788, 127.837, 128.501, 128.683, 129.198, 129.281, 131.130, 132.897, 135.419, 136.995, 137.492, 145.770, 151.634, 154.654
DIMS (EI) m / z: 667

実施例2 (BPP薄膜の吸収スペクトル、蛍光および低温リン光スペクトル測定)
石英基板(吸収スペクトル測定用)およびシリコン基板(蛍光、低温リン光スペクトル測定用)上にそれぞれ本発明のピラゾール誘導体(BPP)を膜厚1000Åに蒸着し、室温状態での吸収スペクトル及び蛍光スペクトル、低温(5 K)でのリン光スペクトルを測定した(図1〜3)。BPPは、特に低温リン光スペクトル(図3)において波長450 nm付近に第一の発光ピークを有することから、極めて高い三重項エネルギーを有していることが明らかになった。
Example 2 (Measurement of absorption spectrum, fluorescence and low-temperature phosphorescence spectrum of BPP thin film)
The pyrazole derivative (BPP) of the present invention was deposited on a quartz substrate (for absorption spectrum measurement) and a silicon substrate (for fluorescence and low-temperature phosphorescence spectrum measurement) to a thickness of 1000 mm, respectively, and the absorption spectrum and fluorescence spectrum at room temperature, The phosphorescence spectrum at low temperature (5 K) was measured (FIGS. 1-3). BPP has a very high triplet energy because it has a first emission peak in the vicinity of a wavelength of 450 nm, particularly in the low-temperature phosphorescence spectrum (FIG. 3).

実施例3 (BPPをホスト材料とするFIrpicの絶対発光量子収率の測定)
石英基板上にFIrpicと本発明のピラゾール誘導体(BPP)を重量比1:9の割合で共蒸着し、膜厚を1000Åとした。この基板を積分球中に導入し、波長280 nmの紫外光を照射し、BPPに吸収された光子数に対してFIrpicからの発光により放出された光子数の比率(以下、絶対発光量子収率)を測定した。測定の結果、得られた絶対発光量子収率の値はほぼ100 %となった。これは、ホスト−発光材料間に生じているエネルギー移動がBPPからFIrpicへの流入のみに帰属し、FIrpicからBPPへのエネルギーの逆流は生じていないことを示唆している。従って、本発明のBPPを有機EL素子の発光層ホストとして利用することにより、非常に発光効率の高い青色リン光素子が構築可能になることが予測された。
Example 3 (Measurement of absolute emission quantum yield of FIrpic using BPP as a host material)
FIrpic and the pyrazole derivative (BPP) of the present invention were co-evaporated on a quartz substrate at a weight ratio of 1: 9, and the film thickness was 1000 mm. This substrate is introduced into an integrating sphere, irradiated with ultraviolet light with a wavelength of 280 nm, and the ratio of the number of photons emitted by the emission from FIrpic to the number of photons absorbed by BPP (hereinafter referred to as absolute emission quantum yield). ) Was measured. As a result of the measurement, the absolute luminescence quantum yield value obtained was almost 100%. This suggests that the energy transfer occurring between the host and the luminescent material is attributed only to the inflow from BPP to FIrpic, and there is no backflow of energy from FIrpic to BPP. Therefore, it was predicted that a blue phosphorescent device having very high luminous efficiency can be constructed by using the BPP of the present invention as a light emitting layer host of an organic EL device.

実施例4 (BPPを発光層ホストとして含有する有機EL素子)
1100Åの厚さにインジウム−スズ酸化物(ITO)をスパッタリングしたガラス基板上に、正孔注入層としてNPDを400Å、次いで正孔輸送層としてmCPを100Åの厚さに真空蒸着した。その上に発光層としてFIrpicと本発明のピラゾール誘導体(BPP)を重量比1:9の割合で共蒸着し、膜厚を200Åとした。更に、電子輸送層としてBPhenを400Å蒸着した。この状態で、蒸着された有機物薄膜は均一なアモルファスであることが確認された。この有機薄膜上に10重量%銀−マグネシウム合金を1000Å共蒸着し、次いで銀を100Åの厚さに蒸着した。以上の操作により得られた有機EL素子の発光特性を図4〜6に示す。
当該有機EL素子は3.2 V以上の電圧を印加すると電流が流れ、印加電圧−電流密度特性(図4)及び電流密度−外部量子効率特性(図5)から優れた電荷輸送性及び発光効率を示すことが確認された。また、当該有機EL素子は、波長450〜500 nm付近にピークを示すFIrpic由来の青色発光スペクトルを示すが、その他の発光(Exciplexの形成に起因する発光やBPPからの発光など)は観測されなかった(図6)。尚、この素子の外部量子効率の最大値は9 %であり、低電圧駆動で高い輝度を得ることが可能であった。
Example 4 (Organic EL device containing BPP as light emitting layer host)
On a glass substrate on which indium-tin oxide (ITO) was sputtered to a thickness of 1100 mm, 400 nm of NPD was vacuum deposited as a hole injection layer, and then mCP was vacuum deposited to a thickness of 100 mm as a hole transport layer. On top of that, FIrpic and the pyrazole derivative (BPP) of the present invention were co-evaporated as a light emitting layer at a weight ratio of 1: 9, and the film thickness was 200 mm. Further, 400 BP of BPhen was deposited as an electron transport layer. In this state, it was confirmed that the deposited organic thin film was uniform amorphous. On this organic thin film, 1000 wt% of a 10 wt% silver-magnesium alloy was co-deposited, and then silver was evaporated to a thickness of 100 mm. The light emission characteristics of the organic EL device obtained by the above operation are shown in FIGS.
When the voltage of 3.2 V or more is applied to the organic EL element, a current flows, and exhibits excellent charge transport properties and luminous efficiency from applied voltage-current density characteristics (FIG. 4) and current density-external quantum efficiency characteristics (FIG. 5). It was confirmed. The organic EL device shows a blue emission spectrum derived from FIrpic that shows a peak at a wavelength of about 450 to 500 nm, but no other emission (e.g., emission caused by exciplex formation or emission from BPP) is observed. (FIG. 6). Note that the maximum value of the external quantum efficiency of this device was 9%, and it was possible to obtain high luminance with low voltage driving.

BPP薄膜の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of a BPP thin film. BPP薄膜の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a BPP thin film. BPP薄膜のリン光スペクトルを示す図である。It is a figure which shows the phosphorescence spectrum of a BPP thin film. BPPを発光層ホストとして含有する有機EL素子の印加電圧−電流密度特性を示す図である。It is a figure which shows the applied voltage-current density characteristic of the organic EL element which contains BPP as a light emitting layer host. BPPを発光層ホストとして含有する有機EL素子の電流密度−外部量子効率特性を示す図である。It is a figure which shows the current density-external quantum efficiency characteristic of the organic EL element which contains BPP as a light emitting layer host. BPPを発光層ホストとして含有する有機EL素子の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the organic electroluminescent element containing BPP as a light emitting layer host.

Claims (2)

一般式(1):
[式中、R1〜R8は同一又は異なって、水素原子、アルキル基又はアルコキシ基を示し;環A〜Eは、同一又は異なってベンゼン環又はピリジン環を示し;環Eに結合するベンゼン環上におけるピラゾール環と環Eとの結合がオルト位である。
で表されるピラゾール誘導体を含有する発光層を有し、
該発光層が発光材料を含有することを特徴とする、有機EL素子
General formula (1):
Wherein, R 1 to R 8 are the same or different and each represents a hydrogen atom, an alkyl group or an alkoxy group; ring A~E are the same or different and indicates a benzene ring or a pyridine ring; binding to ring E The bond between the pyrazole ring and ring E on the benzene ring is in the ortho position. ]
A light emitting layer containing a pyrazole derivative represented by:
An organic EL device, wherein the light emitting layer contains a light emitting material .
前記発光材料が、青色リン光材料である
ことを特徴とする、請求項1記載の有機EL素子。
The luminescent material, characterized in that it is a blue phosphorescent material, according to claim 1 Symbol placement of the organic EL element.
JP2005210339A 2005-07-20 2005-07-20 Novel pyrazole derivative and organic EL device containing the same Active JP4904734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210339A JP4904734B2 (en) 2005-07-20 2005-07-20 Novel pyrazole derivative and organic EL device containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210339A JP4904734B2 (en) 2005-07-20 2005-07-20 Novel pyrazole derivative and organic EL device containing the same

Publications (2)

Publication Number Publication Date
JP2007022986A JP2007022986A (en) 2007-02-01
JP4904734B2 true JP4904734B2 (en) 2012-03-28

Family

ID=37784227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210339A Active JP4904734B2 (en) 2005-07-20 2005-07-20 Novel pyrazole derivative and organic EL device containing the same

Country Status (1)

Country Link
JP (1) JP4904734B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101587307B1 (en) * 2008-09-04 2016-01-20 유니버셜 디스플레이 코포레이션 White phosphorescent organic light emitting devices
WO2010052932A1 (en) 2008-11-07 2010-05-14 保土谷化学工業株式会社 Compound having triphenylsilyl group and triarylamine structure and organic electroluminescent element
KR20110116184A (en) 2009-01-22 2011-10-25 호도가야 가가쿠 고교 가부시키가이샤 Compound having triazole ring structure with pyridyl group attached thereto, and organic electroluminescent element
EP2492985A4 (en) 2009-10-23 2017-03-29 Hodogaya Chemical Co., Ltd. Organic electroluminescent element
KR101843589B1 (en) 2009-10-23 2018-03-29 호도가야 가가쿠 고교 가부시키가이샤 Organic electroluminescent element
US20130112950A1 (en) 2010-06-30 2013-05-09 Hodogaya Chemical Co., Ltd. Compound having carbazole ring structure, and organic electroluminescent device
CN103391933A (en) 2011-02-25 2013-11-13 保土谷化学工业株式会社 Compounds having bipyridyl group and carbazole ring, and organic electroluminescent element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631259B2 (en) * 2002-10-03 2011-02-16 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
JP2004331588A (en) * 2003-05-08 2004-11-25 Mitsubishi Chemicals Corp Pyrazole-based compound, electron-transporting material, material for organic electroluminescent element and organic electroluminescent element
JP2005011804A (en) * 2003-05-29 2005-01-13 Nippon Steel Chem Co Ltd Organic electroluminescent element

Also Published As

Publication number Publication date
JP2007022986A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
TWI429650B (en) Organic electroluminescent elements
JP5200099B2 (en) Compound for organic electroluminescence device and organic electroluminescence device
JP4519946B2 (en) Compound for organic electroluminescent device and organic electroluminescent device
JP4823730B2 (en) Luminescent layer compound and organic electroluminescent device
JP6452102B2 (en) AMINE DERIVATIVE, ORGANIC LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
KR101986570B1 (en) Organic electroluminescent element
TWI471405B (en) A phosphorescent element material, and an organic electroluminescent device using the same
TWI475004B (en) Organic electroluminescent elements
KR101758865B1 (en) Organic electroluminescent element
JP5399418B2 (en) Organic electroluminescence device
JP5421242B2 (en) Compound for organic electroluminescent device and organic electroluminescent device using the same
TWI466980B (en) Organic electroluminescent elements
TWI468490B (en) Novel red electroluminescent compounds and organic electroluminescent device using the same
JP5009922B2 (en) Organic electroluminescent element material and organic electroluminescent element
TW201245150A (en) Organic electroluminescent element
JP2005222948A (en) Blue light emitting novel material used for organic electroluminescence element
TW200914577A (en) Compound for organic electroluminescent device and organic electroluminescent device
KR20110105800A (en) Blue emitter with high efficiency based on imidazo [1,2-f] phenanthridine iridium complexes
JPWO2009136595A1 (en) Compound for organic electroluminescence device and organic electroluminescence device
KR20110008723A (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2013182046A1 (en) Organic electronic material and organic electroluminescent device
JP4904734B2 (en) Novel pyrazole derivative and organic EL device containing the same
JP2008214307A (en) Electron transport material and organic electroluminescent element using the same
JP2008214306A (en) Electron transport material and organic electroluminescent element using the same
TW201217356A (en) Novel compounds for organic electronic material and organic electroluminescent device using the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350