JP4904729B2 - Cell voltage measuring device and fuel cell - Google Patents
Cell voltage measuring device and fuel cell Download PDFInfo
- Publication number
- JP4904729B2 JP4904729B2 JP2005194271A JP2005194271A JP4904729B2 JP 4904729 B2 JP4904729 B2 JP 4904729B2 JP 2005194271 A JP2005194271 A JP 2005194271A JP 2005194271 A JP2005194271 A JP 2005194271A JP 4904729 B2 JP4904729 B2 JP 4904729B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- cell
- voltage measuring
- circuit
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims description 34
- 238000001514 detection method Methods 0.000 claims description 48
- 238000005259 measurement Methods 0.000 claims description 26
- 238000003745 diagnosis Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Secondary Cells (AREA)
- Fuel Cell (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measurement Of Current Or Voltage (AREA)
Description
本発明は、燃料電池等の複数セルが直列接続された組電池を構成するセルまたはセル群の電圧を検出するセル電圧検出装置に係り、特に組電池とセル電圧検出装置間の接続線の断線または接続不良を容易に検出できるセル電圧検出装置及びこれを備えた燃料電池に関する。 The present invention relates to a cell voltage detection device for detecting the voltage of a cell or a group of cells constituting an assembled battery in which a plurality of cells such as fuel cells are connected in series, and particularly, disconnection of a connection line between the assembled battery and the cell voltage detection device. Alternatively, the present invention relates to a cell voltage detection device that can easily detect a connection failure and a fuel cell including the same.
従来の組電池のセル電圧検出装置として、組電池を構成するセルの両端子のそれぞれに接続される検出端子を有し、検出端子間をスイッチング素子及び抵抗を介して所定時間短絡させ、短絡時と非短絡時の出力電圧を比較することにより、電池セルとセル電圧検出装置間の断線・接触不良などを検出する技術が知られている(例えば特許文献1)。 As a conventional battery voltage detector for an assembled battery, it has a detection terminal connected to each of both terminals of the cells constituting the assembled battery, and the detection terminals are short-circuited for a predetermined time via a switching element and a resistor. There is known a technique for detecting disconnection, contact failure, etc. between a battery cell and a cell voltage detection device by comparing the output voltage at the time of non-short circuit (for example, Patent Document 1).
また従来のセル電圧検出装置の故障診断技術として、燃料電池のセル電圧を検出し、そのセル電圧が所定値以下であるときには燃料電池の出力電流を制限し、開放電圧の状態においてもなおセル電圧が所定値以下である場合には、セル電圧検出装置の故障と診断する技術が知られている(特許文献2)。
しかしながら、上記特許文献1に記載の装置では、電圧入力端子間にそれぞれトランジスタと検出抵抗を有するため回路構成が複雑となるという問題点があった。またトランジスタの故障を検出することができないという問題点があった。
However, the device described in
また上記特許文献2に記載の装置では、故障を検出するために燃料電池の出力電流に制限を掛ける必要があり、車両走行時などの出力電流が高い状態が続くような場合には故障を検出することができないという問題点があった。
In addition, in the device described in
上記問題点を解決するために、本発明は、複数のセルが直列に接続して構成される組電池のセル電圧を測定するセル電圧測定装置において、前記セル毎または複数セルが直列接続されたセル群毎の電圧が入力される複数の入力端子と、前記入力端子間の電圧を測定する複数の電圧測定回路と、前記電圧測定回路が測定した電圧値に基づいて、前記組電池と前記入力端子との接続の良否及び前記セル毎または前記セル群毎の良否の判断を行う診断装置と、セル電圧測定装置の接地電位となる入力端子と他の入力端子間を接続する断線検出抵抗を含む前記入力端子間を接続する少なくとも1つの断線検出抵抗と、を備え、前記診断装置に入力される全ての測定電圧値の平均値または一部の測定電圧値の平均値を前記診断装置が演算し、前記電圧測定回路から出力される隣り合う2つのセルまたはセル群の測定電圧値の一方が前記平均値に所定係数乗じた値より大きいときに、接続線の断線または接触不良と診断することを要旨とする。 In order to solve the above problems, the present invention provides a cell voltage measuring device for measuring a cell voltage of an assembled battery configured by connecting a plurality of cells in series, wherein each cell or a plurality of cells are connected in series. A plurality of input terminals to which a voltage for each cell group is input; a plurality of voltage measuring circuits for measuring a voltage between the input terminals; and the assembled battery and the input based on a voltage value measured by the voltage measuring circuit. A diagnostic device for determining the quality of connection with a terminal and the quality of each cell or each cell group, and a disconnection detection resistor for connecting between an input terminal serving as a ground potential of the cell voltage measuring device and another input terminal At least one disconnection detection resistor for connecting between the input terminals, and the diagnostic device calculates an average value of all measured voltage values or an average value of a part of the measured voltage values input to the diagnostic device. , Voltage measurement When one of the measured voltage values of the two cells or cell group adjacent output from the circuit is greater than a value obtained by multiplying a predetermined coefficient to the average value, is summarized in that the diagnosis of disconnection or contact failure of the connecting lines.
本発明によれば、燃料電池セルまたはセル群の端子とセル電圧測定装置の入力端子とを接続する接続線の断線または接触不良を簡易な回路構成により検出することができるという効果がある。 According to the present invention, it is possible to detect a disconnection or contact failure of a connection line connecting a terminal of a fuel cell or a cell group and an input terminal of a cell voltage measuring device with a simple circuit configuration.
次に、図面を参照して、本発明の実施の形態を詳細に説明する。尚、以下の実施例は、燃料電池スタックのセル電圧を測定するセル電圧測定装置の実施例であるが、本発明に係るセル電圧測定装置は、ニッケル水素電池、リチウムイオン電池等の2次電池の組電池に適用可能であることは言うまでもない。 Next, embodiments of the present invention will be described in detail with reference to the drawings. The following examples are examples of a cell voltage measuring device that measures the cell voltage of the fuel cell stack. The cell voltage measuring device according to the present invention is a secondary battery such as a nickel metal hydride battery or a lithium ion battery. Needless to say, the present invention can be applied to the assembled battery.
図1(a)は本発明に係るセル電圧検出装置の実施例1の構成を説明する概略構成図、図1(b)は実施例1における電圧測定回路の詳細を説明する回路図である。実施例1において、断線検出抵抗は、セル電圧測定装置の接地電位となる入力端子と他の入力端子間を接続する断線検出抵抗であることを特徴とする。 FIG. 1A is a schematic configuration diagram illustrating the configuration of a cell voltage detection device according to a first embodiment of the present invention, and FIG. 1B is a circuit diagram illustrating details of a voltage measurement circuit according to the first embodiment. In the first embodiment, the disconnection detection resistor is a disconnection detection resistor that connects between an input terminal serving as a ground potential of the cell voltage measurement device and another input terminal.
セル電圧の測定対象である燃料電池スタック1は、総数ns の燃料電池セルまたは燃料電池セル群を有している。燃料電池スタック1における符号を以下のように定義する。ci(i=1〜ns):燃料電池セルまたは複数の燃料電池セルからなるセル群、ei(i=1〜ns):燃料電池セルまたは燃料電池セル群の電圧値、pi(i=0〜ns):燃料電池セルまたは燃料電池セル群の端子。
The
燃料電池スタック1と、セル電圧測定装置2とは、接続線li(i=0〜ns)で接続されている。
The
セル電圧測定装置2は、入力端子ti(i=0〜ns)、断線検出抵抗Ra10 、電圧測定回路Di(i=1〜ns)、診断装置3を備えている。電圧測定回路Di(i=1〜ns)は、それぞれ出力電圧値Vi(i=1〜ns)を診断装置3へ出力する。
The cell
また、図1(b)に示すように、それぞれの電圧測定回路Di(i=1〜ns)は、演算増幅器(オペアンプ)OPi(i=1〜ns)と抵抗Rij(i=1〜ns,j=1〜5)により構成された差動増幅器であり、+V及び−Vの電源電圧が供給されている。図1(a)、(b)に共通に、回路の基準電位は、グランドGND である。ここで、電圧測定回路Di(i=1〜ns)に用いる抵抗Rij(i=1〜ns,j=1〜5)の抵抗値、及び演算増幅器OPi(i=1〜ns)の入力インピーダンスは、以下に説明する全ての断線検出抵抗の抵抗値より十分大きい値とする。言い換えれば、断線検出抵抗に流れる電流に比べて、電圧測定回路Di(i=1〜ns)の入力に出入りする電流は無視できる程度に小さいものとする。 As shown in FIG. 1B, each voltage measuring circuit Di (i = 1 to ns) includes an operational amplifier (op-amp) OPi (i = 1 to ns) and a resistor Rij (i = 1 to ns, j = 1 to 5), which are supplied with + V and −V power supply voltages. In common with FIGS. 1A and 1B, the reference potential of the circuit is the ground GND. Here, the resistance value of the resistor Rij (i = 1 to ns, j = 1 to 5) used in the voltage measuring circuit Di (i = 1 to ns) and the input impedance of the operational amplifier OPi (i = 1 to ns) are: The resistance values of all the disconnection detection resistors described below are sufficiently larger. In other words, the current flowing in and out of the input of the voltage measuring circuit Di (i = 1 to ns) is small enough to be ignored compared to the current flowing through the disconnection detection resistor.
燃料電池セルの電圧値ei は、接続線li から入力端子ti に接続されセル電圧測定装置2へ入力される。入力された燃料電池セルの電圧値ei は、電圧測定回路Di によりグランドGND を基準電位とした出力電圧値Vi として出力される。
The voltage value ei of the fuel cell is connected to the input terminal ti from the connection line li and input to the cell
ここで電圧測定回路Di は、その2つの入力端子間の電圧差と等しい出力電圧値Vi が出力されるような抵抗器Rijの抵抗値が決められてる。またグランドGND は接続線li を介して燃料電池スタック1中の端子pi に接続され、セル電圧測定装置2のグランドGND と等電位となる。
Here, in the voltage measuring circuit Di, the resistance value of the resistor Rij is determined such that an output voltage value Vi equal to the voltage difference between the two input terminals is output. The ground GND is connected to a terminal pi in the
燃料電池スタック1の各セルまたはセル群の電圧は、接続線li を介して電圧測定回路Di へ入力され、それぞれの電圧測定回路Di から出力電圧値Vi が診断装置3へ出力される。診断装置3は、電圧Vi の総平均値または複数の電圧Vi の平均値であるVave を算出し、この平均値Vave と入力電圧Vi とに基づいて、接続線li の接続状態が正常か断線かを判断する。
The voltage of each cell or cell group of the
ここで図2で示すように基準電位のグランドGND と等電位である接続線li より電位の高い側の接続線lk が断線したとき、図3(a)で示すような正常時の電圧出力から、セルck+1 およびck の出力電圧Vk+1 およびVk が図3(b)に示すように本来のセル電圧値ek およびek+1 からかけ離れ、
Vk ≒ 0 …式(1)
Vk+1 ≒Σej=ei+1 +ei+2 +,・・・,+ek +ek+1 …式(2)
で表現される。
As shown in FIG. 2, when the connection line lk on the side higher in potential than the connection line li that is equipotential to the ground GND of the reference potential is disconnected, the normal voltage output as shown in FIG. , The output voltages Vk + 1 and Vk of the cells kk + 1 and kk are far from the original cell voltage values ek and ek + 1 as shown in FIG.
Vk ≒ 0 ... Formula (1)
Vk + 1≈Σej = ei + 1 + ei + 2 +,..., + Ek + ek + 1 (2)
It is expressed by
また図2で示すように基準電位のグランドGND と等電位である接続線li より電位の低い側の接続線lm が断線したとき、図4(a)で示すように正常時の電圧出力からセルcm+1 およびcm の出力電圧Vm+1 およびVm が図4(b)に示すよう本来のセル電圧値em およびem+1 からかけ離れ、
Vm ≒Σej =em + em+1 +,・・・,+ei-1 +ei …式(3)
Vm+1 ≒ 0 …式(4)
で表現される。
As shown in FIG. 2, when the connection line lm having a lower potential than the connection line li that is equipotential to the ground GND of the reference potential is disconnected, the cell outputs from the normal voltage output as shown in FIG. The output voltages Vm + 1 and Vm of cm + 1 and cm are far from the original cell voltage values em and em + 1 as shown in FIG.
Vm.apprxeq..SIGMA.ej = em + em + 1 +,..., + Ei-1 + ei (3)
Vm + 1 ≒ 0 ... Formula (4)
It is expressed by
図5は、比較例を説明する図であり、(a)断線検出抵抗を備えないセル電圧検出装置の構成、(b)比較例の正常時の電圧測定回路の出力電圧、(c)比較例の断線時の電圧測定回路の出力電圧をそれぞれ示す。尚、図5における符号は、図1と同様である。 FIG. 5 is a diagram for explaining a comparative example, (a) a configuration of a cell voltage detection device without a disconnection detection resistor, (b) an output voltage of a voltage measurement circuit in a normal state of the comparative example, and (c) a comparative example. The output voltage of the voltage measurement circuit at the time of disconnection of each is shown. The reference numerals in FIG. 5 are the same as those in FIG.
図5(a)に示すように基準電位のグランドGND と等電位である接続線li が断線したとき、セル電圧測定装置2の基準電位のグランドGND と等電位となるべき燃料電池スタック1の中の端子pi の電位が接続線li の断線により不定となる。
As shown in FIG. 5 (a), when the connection line li that is equipotential with the ground GND of the reference potential is disconnected, the
このとき、電圧Vi およびVi+1 が図5(b)で示すような正常時の電圧出力から図5(c)に示すように真の電圧値ei およびei+1 に近い値を出力することがある。 At this time, the voltages Vi and Vi + 1 output values close to the true voltage values ei and ei + 1 as shown in FIG. 5C from the normal voltage output as shown in FIG. 5B. There is.
そこで本実施例1では、図1(a)に示すように、入力端子ti とti+1 とを断線検出抵抗Ra10 を介して接続する構成とする。 Therefore, in the first embodiment, as shown in FIG. 1A, the input terminals ti and ti + 1 are connected via the disconnection detection resistor Ra10.
これにより、図6(a)に示すように接続線li が断線したときには、入力端子ti が燃料電池スタック1の端子pi+1 とほぼ等電位となる。これにより、図6(b)で示すような正常時の電圧出力から、セルci およびci+1 に対する電圧測定回路の出力電圧Vi およびVi+1 が図6(c)で示す断線時の電圧
Vi ≒ei +ei+1 …式(5)
Vi+1 ≒ 0 …式(6)
で表現されるような電圧を出力させることができる。これら出力電圧Vi およびVi+1 の変化に基づいて診断装置3は、接続線li が断線したことを容易に検出することができる。
As a result, as shown in FIG. 6A, when the connection line li is disconnected, the input terminal ti is substantially equipotential with the terminal pi + 1 of the
Vi + 1 ≒ 0 ... Formula (6)
The voltage expressed by can be output. Based on these changes in the output voltages Vi and Vi + 1, the
ここでセル電圧測定装置2で測定された電圧値について、
Vj > Vave ×k0 …式(7)
Vj+1 > Vave ×k0 …式(8)
式(7)または式(8)を満足する電圧値があるときには、接続線lj が断線していると判断する。
Here, regarding the voltage value measured by the cell
Vj> Vave × k0 (Formula (7))
Vj + 1> Vave × k0 (8)
When there is a voltage value satisfying Expression (7) or Expression (8), it is determined that the connection line lj is disconnected.
式(7)、(8)において、k0は1<k0<2を満足する値、Vave は、式(9)で算出されるセル電圧またはセル群電圧の平均値である。 In equations (7) and (8), k0 is a value satisfying 1 <k0 <2, and Vave is an average value of the cell voltage or cell group voltage calculated by equation (9).
Vave =ΣVj/ns …式(9)
ここで、ΣVj:セルまたはセル群電圧の総和、ns:セルまたはセル群の数である。
Vave = ΣVj / ns (9)
Here, ΣVj is the sum of cell or cell group voltages, and ns is the number of cells or cell groups.
またセル電圧の平均値Vave は、燃料電池スタック1の全てのセルまたはセル群の平均電圧値ではなく、2つ以上のセルまたはセル群の平均電圧値であってもよい。
In addition, the average value Vave of the cell voltages may be an average voltage value of two or more cells or cell groups instead of the average voltage value of all the cells or cell groups of the
図7は、実施例1において接続線li+1 が断線したことを示す図である。このとき、入力端子ti とti+1 との間のセル電圧を検出する電圧測定回路Di+1 の入力電圧は、ほぼ0[V]となり、容易に接続線li+1 が断線したことを判断できる。 FIG. 7 is a diagram illustrating that the connection line li + 1 is disconnected in the first embodiment. At this time, the input voltage of the voltage measuring circuit Di + 1 for detecting the cell voltage between the input terminals ti and ti + 1 is almost 0 [V], and it is easily determined that the connection line li + 1 is disconnected. it can.
次に、一つの入力端子に2つの断線検出抵抗を接続する際の留意点について説明する。図8は、同一の入力端子に、2つの断線検出抵抗が接続された実施例1の変形例の構成を示す図である。 Next, points to be noted when two disconnection detection resistors are connected to one input terminal will be described. FIG. 8 is a diagram illustrating a configuration of a modification of the first embodiment in which two disconnection detection resistors are connected to the same input terminal.
図8に示すように同じ入力端子ti に、2つの断線検出抵抗Ra11 およびRa12 が接続されて、入力端子ti に接続する接続線li が断線すると、電圧測定回路Di 、Di+1 の出力電圧Vi 、Vi+1 は、式(10)、式(11)で示される電圧が検出される。 As shown in FIG. 8, when two disconnection detection resistors Ra11 and Ra12 are connected to the same input terminal ti and the connection line li connected to the input terminal ti is disconnected, the output voltage Vi of the voltage measuring circuits Di and Di + 1. , Vi + 1 are voltages detected by the equations (10) and (11).
Vi ≒ Ra12/(Ra11+Ra12)×(ei+ei+1) …式(10)
Vi+1 ≒ Ra11/(Ra11+Ra12)×(ei+ei+1) …式(11)
即ち、2つの断線検出抵抗のそれぞれの一端が接続された入力端子ti があり、この入力端子ti に接続された接続線li が断線すると、入力端子ti の電位は、2つの断線検出抵抗のそれぞれ他端の電位と、断線検出抵抗の抵抗値により定まる。そして、この入力端子ti に接続された電圧測定回路Di 、Di+1 の出力電圧Vi 、Vi+1 には、2つの断線検出抵抗Ra11 およびRa12 による分圧が出力される。このため、2つの断線検出抵抗Ra11 およびRa12 の値が等しく、且つそれぞれの断線検出抵抗の他端が正常時の入力端子ti の電位に対して電位差の絶対値がほぼ等しく互いに逆極性である場合には、正常時と断線時とで出力電圧の変化が殆どなく、断線を検出することができない。
Vi≈Ra12 / (Ra11 + Ra12) × (ei + ei + 1) Equation (10)
Vi + 1≈Ra11 / (Ra11 + Ra12) × (ei + ei + 1) (11)
That is, there is an input terminal ti to which one end of each of the two disconnection detection resistors is connected. When the connection line li connected to the input terminal ti is disconnected, the potential of the input terminal ti is changed to each of the two disconnection detection resistors. It is determined by the potential of the other end and the resistance value of the disconnection detection resistor. Then, the divided voltages by the two disconnection detection resistors Ra11 and Ra12 are output to the output voltages Vi and Vi + 1 of the voltage measuring circuits Di and Di + 1 connected to the input terminal ti. For this reason, when the values of the two disconnection detection resistors Ra11 and Ra12 are equal and the other ends of the respective disconnection detection resistors are substantially equal in absolute value of the potential difference with respect to the potential of the input terminal ti at the normal time, and are opposite in polarity. Therefore, there is almost no change in the output voltage between normal and disconnected, and disconnection cannot be detected.
この対策として、断線検出抵抗Ra11 およびRa12 に、互いに抵抗値の異なるものを使用すれば、分圧比が異なるので、式(10)の値と式(11)の値が異なり、断線検出が可能となる。例えば燃料電池の同一運転条件における最大セル電圧と最小セル電圧との比が1.2であれば、断線検出抵抗Ra11 およびRa12 の抵抗比Ra11 /Ra12 がセル電圧比1.2を超えるように、断線検出抵抗Ra11 、Ra12 を選択すれば、セル電圧の変動と接続線の断線とを区別することができる。 As a countermeasure against this, if disconnection detection resistors Ra11 and Ra12 having different resistance values are used, the voltage dividing ratio is different, so that the value of equation (10) differs from the value of equation (11), and disconnection detection is possible. Become. For example, if the ratio of the maximum cell voltage to the minimum cell voltage under the same operating condition of the fuel cell is 1.2, the resistance ratio Ra11 / Ra12 of the disconnection detection resistors Ra11 and Ra12 exceeds the cell voltage ratio 1.2. If the disconnection detection resistors Ra11 and Ra12 are selected, it is possible to distinguish between fluctuations in the cell voltage and disconnection of the connection lines.
Ra11 /Ra12 >1.2 …式(12)
以上説明した本実施例によれば、燃料電池セルまたはセル群の端子と、セル電圧測定装置の入力端子とを接続する接続線の断線または接触不良を簡易な回路構成により検出することができるという効果がある。
Ra11 / Ra12> 1.2 Formula (12)
According to the present embodiment described above, it is possible to detect a disconnection or poor contact of a connection line connecting a terminal of a fuel cell or a group of cells and an input terminal of a cell voltage measuring device with a simple circuit configuration. effective.
次に、本発明に係るセル電圧測定装置の実施例2を説明する。図9は、実施例2の構成を例示する概略構成図である。本実施例の特徴は、断線検出抵抗の両端子が接続される入力端子の組が同一の電圧測定回路に入力されず、異なる電圧測定回路に入力される点にある。図9に示した実施例2は、図1(a)に示した実施例1とは、断線検出抵抗のみ異なり、その他の構成は、図1(a)に示した実施例1と同様であるので、同じ構成要素には、同じ符号を付与して、重複する説明を省略する。 Next, a second embodiment of the cell voltage measuring apparatus according to the present invention will be described. FIG. 9 is a schematic configuration diagram illustrating the configuration of the second embodiment. The feature of this embodiment is that a set of input terminals to which both terminals of the disconnection detection resistor are connected are not input to the same voltage measurement circuit but are input to different voltage measurement circuits. The second embodiment shown in FIG. 9 is different from the first embodiment shown in FIG. 1A only in the disconnection detection resistance, and the other configuration is the same as that of the first embodiment shown in FIG. Therefore, the same reference numerals are given to the same components, and redundant description is omitted.
図9において、断線検出抵抗Ra11 は入力端子ti+1 とti-1との間に接続され、断線検出抵抗Ra12 は入力端子ti とti-3 との間に接続されている。 In FIG. 9, the disconnection detection resistor Ra11 is connected between the input terminals ti + 1 and ti-1, and the disconnection detection resistor Ra12 is connected between the input terminals ti and ti-3.
セル電圧測定装置2が実施例1の図1(a)で示されるような回路構成である場合に、接続線図6(a)に示すようにli が断線すると式(5)および式(6)に示される電圧を出力し、また図7に示すように接続線li+1 が断線すると、
Vi+1 ≒0 …式(13)
Vi+2 ≒ei+1 +ei+2 …式(14)
で表現される電圧を出力する。
When the cell
Vi + 1 ≈ 0 (13)
Vi + 2≈ei + 1 + ei + 2 (14)
The voltage expressed by is output.
燃料電池スタック1の発電が過渡的な状態において、セルまたはセル群間の電圧ばらつきが大きいときには、式(7)または(8)で示される条件で断線を判断したときには誤診断の可能性がある。そこで接続線li およびli+1 などが断線しても出力電圧が導通時と大きな差異を生じない入力端子には、図9に示すように2つ以上離れた入力端子と断線検出抵抗を介して接続する。図10に示すように接続線li が断線したときには、入力端子ti が断線検出抵抗Ra12 を介してセル端子pi-3 とほぼ等電位となることにより、
Vi ≒ −(ei-1 +ei-2) …式(15)
Vi+1 ≒ei-2 +ei-1 +ei +ei+1 …式(16)
で表現されるような電圧を出力させることができる。
When the power generation of the
Vi ≒-(ei-1 + ei-2) Equation (15)
Vi + 1≈ei-2 + ei-1 + ei + ei + 1 Equation (16)
The voltage expressed by can be output.
また図11に示すように接続線li-1 が断線したときには、入力端子ti-1 が断線検出抵抗Ra11 を介してセル端子pi+1 とほぼ等電位となることにより
Vi-1 ≒ei-1 +ei +ei+1 …式(17)
Vi ≒ −ei+1 …式(18)
で表現されるような電圧を出力させることができる。
As shown in FIG. 11, when the connection line li-1 is disconnected, the input terminal ti-1 becomes substantially equipotential with the cell terminal pi + 1 through the disconnection detection resistor Ra11, so that Vi-1≈ei-1 + Ei + ei + 1 Equation (17)
Vi≈−
The voltage expressed by can be output.
また図12に示すように接続線li+1 が断線したときには入力端子ti+1 が断線検出抵抗Ra11 を介してセル端子pi-1 とほぼ等電位となることにより
Vi+1 ≒ −ei …式(19)
Vi+2 ≒ei +ei+1 +ei+2 …式(20)
で表現されるような電圧を出力させることができる。
Further, as shown in FIG. 12, when the connection line l i + 1 is disconnected, the input terminal t i + 1 becomes almost equipotential with the cell terminal p i-1 through the disconnection detection resistor Ra11. (19)
Vi + 2≈ei + ei + 1 + ei + 2 Equation (20)
The voltage expressed by can be output.
ここで、
Vi+1 > Vave ×k0 …式(21)
k0は2<k0<3…式(22)を満足する値
であるときには接続線li が断線していると判断する。
here,
Vi + 1> Vave × k0 Formula (21)
When k0 is a value satisfying 2 <k0 <3 (22), it is determined that the connection line li is disconnected.
また、
Vi+2 > Vave ×k0 …式(23)
であるときには接続線li+1 が断線していると判断する。
Also,
Vi + 2> Vave × k0 Formula (23)
When it is, it is determined that the connection line l i + 1 is disconnected.
また、
Vi-1 > Vave ×k0 …式(24)
であるときには接続線li-1 が断線していると判断する。
Also,
Vi-1> Vave × k0 Formula (24)
If it is, it is determined that the connection line li-1 is disconnected.
以上説明した本実施例によれば、接続線が断線したときに、平均セル電圧または平均セル群電圧の2倍以上の異常値を検出することができるので、燃料電池の発電開始時のような過渡な状態におけるセル電圧のばらつきが大きい場合でも、接続線の断線、または接触不良を容易に検出することができるという効果がある。 According to the present embodiment described above, when the connection line is disconnected, an abnormal value more than twice the average cell voltage or the average cell group voltage can be detected. Even when there is a large variation in cell voltage in a transient state, there is an effect that disconnection of connection lines or contact failure can be easily detected.
次に、本発明に係るセル電圧検出装置の実施例3を図13、図14を用いて説明する。本実施例3は、セル電圧測定装置を構成する複数の電圧測定回路が複数(実施例3では2)の回路モジュールに分割された実施例である。 Next, a third embodiment of the cell voltage detecting apparatus according to the present invention will be described with reference to FIGS. The third embodiment is an embodiment in which a plurality of voltage measurement circuits constituting the cell voltage measurement device are divided into a plurality (two in the third embodiment) of circuit modules.
図13は実施例3の構成を例示する概略構成図であり、図14(a)は回路モジュール5における電圧測定回路DBiの詳細回路図、図14(b)は回路モジュール4における電圧測定回路DAiの詳細回路図である。 FIG. 13 is a schematic configuration diagram illustrating the configuration of the third embodiment. FIG. 14A is a detailed circuit diagram of the voltage measurement circuit DBi in the circuit module 5, and FIG. 14B is a voltage measurement circuit DAi in the circuit module 4. FIG.
本実施例におけるセル電圧測定装置2は、複数の入力端子ti(i=0〜ns)、回路モジュール4と、回路モジュール5と、診断装置3とを備えている。回路モジュール4は、+VA 電源、−VA 電源、基準電位GND-A を供給するDC/DCコンバータDCA 、電圧測定回路DAiを備えている。回路モジュール5は、+VB 電源、−VB 電源、基準電位GND-B を供給するDC/DCコンバータDCB 、電圧測定回路DBnを備えている。その他記号は実施例1で示した記号と同じであるので省略する。
The cell
回路モジュール4は、入力端子ti から入力された燃料電池セルの電圧値ei を、差動増幅器である電圧測定回路DAiにより、基準電位GND-A に対する出力電圧値Vi として診断回路3へ出力する。それぞれの電圧測定回路DAiは、図14(b)に示すように、演算増幅器OPi および抵抗器Rijからなる。
The circuit module 4 outputs the voltage value ei of the fuel cell input from the input terminal ti to the
同様に、回路モジュール5は、入力端子tn から入力された燃料電池セルの電圧値en を、差動増幅器である電圧測定回路DBnにより、基準電位GND-B に対する出力電圧値Vn として診断回路3へ出力する。それぞれの電圧測定回路DBiは、図14(a)に示すように、演算増幅器OPi および抵抗器Rijからなる。
Similarly, the circuit module 5 supplies the voltage value en of the fuel cell input from the input terminal tn to the
実施例1と同様に電圧測定回路DAi、及びDBiは、2つの入力電圧の差と等しい出力電圧値Vi となるよう抵抗器Rijの抵抗値が決められる。 As in the first embodiment, the voltage measurement circuits DAi and DBi determine the resistance value of the resistor Rij so that the output voltage value Vi is equal to the difference between the two input voltages.
回路モジュール4に含まれる電圧測定回路DAiを構成する演算増幅器OPi には、DC/DCコンバータDCA から、プラス電源+VA 、マイナス電源−VA 、及び基準電位GND-A が供給される。回路モジュール5に含まれる電圧測定回路DBiを構成する演算増幅器OPi には、DC/DCコンバータDCB から、プラス電源+VB 、マイナス電源−VB 、及び基準電位GND-B が供給される。 A positive power source + VA, a negative power source -VA, and a reference potential GND-A are supplied from the DC / DC converter DCA to the operational amplifier OPi constituting the voltage measuring circuit DAi included in the circuit module 4. A positive power source + VB, a negative power source -VB, and a reference potential GND-B are supplied from the DC / DC converter DCB to the operational amplifier OPi constituting the voltage measuring circuit DBi included in the circuit module 5.
また図13において、回路モジュール5の一番電位の低い入力端子tn と、回路モジュール4の一番電位の高い入力端子tn-1 とを断線検出抵抗Ra20 を介して接続する。 In FIG. 13, the input terminal tn having the lowest potential of the circuit module 5 and the input terminal tn-1 having the highest potential of the circuit module 4 are connected via a disconnection detection resistor Ra20.
ここで断線検出方法は実施例1で示した方法と同じであるため省略する。 Here, since the disconnection detection method is the same as the method shown in the first embodiment, a description thereof will be omitted.
次に、本実施例における基準電位と電源電圧について考察する。基準電位GND-A と、基準電位GND-B とは電位が異なり、図13に示した燃料電池スタック1のセルci の極性では、基準電位GND-A より基準電位GND-B が高く設定される。
Next, the reference potential and power supply voltage in this embodiment will be considered. The reference potential GND-A is different from the reference potential GND-B, and the reference potential GND-B is set higher than the reference potential GND-A in the polarity of the cell ci of the
そして、回路モジュール4において、プラス電源+VA は、回路モジュール4の最大入力電圧である、GND-A の電位+e(n−i)の電圧に対して、数[V]程度高ければ、回路モジュール4に含まれる演算増幅器OPi(i=1〜ns)は十分動作可能である。同様に、マイナス電源−VA は、回路モジュール4の最小入力電圧である、GND-A の電位−e×iの電圧に対して、数[V]程度低ければ、回路モジュール4に含まれる演算増幅器OPi(i=1〜ns)は十分動作可能である。 In the circuit module 4, if the plus power source + VA is about several [V] higher than the GND-A potential + e (ni), which is the maximum input voltage of the circuit module 4, the circuit module 4. The operational amplifiers OPi (i = 1 to ns) included in FIG. Similarly, the negative power source −VA is an operational amplifier included in the circuit module 4 if it is about several [V] lower than the potential −e × i of GND−A, which is the minimum input voltage of the circuit module 4. OPi (i = 1 to ns) is sufficiently operable.
同様に、回路モジュール5において、プラス電源+VB は、回路モジュール5の最大入力電圧である、GND-B の電位+e×(GND-B より高電位にあるセル数)の電圧に対して、数[V]程度高ければ、回路モジュール5に含まれる演算増幅器OPi(i=1〜ns)は十分動作可能である。同様に、マイナス電源−VB は、回路モジュール5の最小入力電圧である、GND-B の電位−e×(GND-B のセルからセルcn+1 までのセル)の電圧に対して、数[V]程度低ければ、回路モジュール4に含まれる演算増幅器OPi(i=1〜ns)は十分動作可能である。 Similarly, in the circuit module 5, the positive power supply + VB is a number [with respect to the voltage of GND−B potential + e × (number of cells higher than GND-B), which is the maximum input voltage of the circuit module 5. If it is as high as V], the operational amplifier OPi (i = 1 to ns) included in the circuit module 5 is sufficiently operable. Similarly, the negative power supply −VB is a few [vs] with respect to the voltage of GND−B potential −e × (the cell from the GND−B cell to the cell cn + 1), which is the minimum input voltage of the circuit module 5. If V] is low, the operational amplifier OPi (i = 1 to ns) included in the circuit module 4 can operate sufficiently.
以上のプラス、マイナス電源、+VA 、−VA 、+VB 、−VB に関する説明より、本実施例のように回路モジュールに分割した場合には、分割しない場合に比べて、個々の演算増幅器に供給する電源電圧の絶対値が低くてよいことになる。そして、分割数が多いほど、電源電圧低下の効果は大きくなり、必要以上に高耐圧の演算増幅器を使用しなくてもセル電圧測定装置を構成できるという効果を奏することができる。 From the above description regarding the positive and negative power supplies, + VA, -VA, + VB, and -VB, the power supplied to the individual operational amplifiers when divided into circuit modules as in the present embodiment, compared to when not divided. The absolute value of the voltage may be low. As the number of divisions increases, the effect of lowering the power supply voltage increases, and the cell voltage measuring device can be configured without using an operational amplifier having a higher withstand voltage than necessary.
また本実施例によれば、セル電圧測定装置が個々の電源および基準電位をもつ複数の回路モジュールからなる場合に、隣り合う回路モジュールの両方に入力される接続線の断線または接触不良も、簡易な回路構成により容易に検出することができるという効果がある。 Further, according to this embodiment, when the cell voltage measuring device is composed of a plurality of circuit modules having individual power sources and reference potentials, disconnection or poor contact of connection lines input to both adjacent circuit modules can be simplified. It is possible to easily detect by a simple circuit configuration.
1:燃料電池スタック
2:セル電圧測定装置
3:診断装置
li(i=0〜ns):接続線
ti(i=0〜ns):入力端子
Di(i=1〜ns):電圧測定回路
Ra10 :断線検出抵抗
1: Fuel cell stack 2: Cell voltage measuring device 3: Diagnostic device li (i = 0 to ns): Connection line ti (i = 0 to ns): Input terminal Di (i = 1 to ns): Voltage measuring circuit Ra10 : Disconnection detection resistor
Claims (5)
前記セル毎または複数セルが直列接続されたセル群毎の電圧が入力される複数の入力端子と、
前記入力端子間の電圧を測定する複数の電圧測定回路と、
前記電圧測定回路が測定した電圧値に基づいて、前記組電池と前記入力端子との接続の良否及び前記セル毎または前記セル群毎の良否の判断を行う診断装置と、
セル電圧測定装置の接地電位となる入力端子と他の入力端子間を接続する断線検出抵抗を含む前記入力端子間を接続する少なくとも1つの断線検出抵抗と、を備え、
前記診断装置に入力される全ての測定電圧値の平均値または一部の測定電圧値の平均値を前記診断装置が演算し、
前記電圧測定回路から出力される隣り合う2つのセルまたはセル群の測定電圧値の一方が前記平均値に所定係数乗じた値より大きいときに、接続線の断線または接触不良と診断することを特徴とするセル電圧測定装置。 In the cell voltage measuring device for measuring the cell voltage of the assembled battery configured by connecting a plurality of cells in series,
A plurality of input terminals to which voltages for each cell group or a cell group in which a plurality of cells are connected in series are input;
A plurality of voltage measuring circuits for measuring a voltage between the input terminals;
Based on the voltage value measured by the voltage measurement circuit, a diagnostic device that determines whether the battery pack is connected to the input terminal and whether each cell or each cell group is good,
Including at least one disconnection detection resistor connecting between the input terminals including the disconnection detection resistor connecting between the input terminal serving as the ground potential of the cell voltage measuring device and the other input terminals ,
The diagnostic device calculates an average value of all measured voltage values or an average value of a part of measured voltage values input to the diagnostic device,
When one of measured voltage values of two adjacent cells or cell groups output from the voltage measuring circuit is larger than a value obtained by multiplying the average value by a predetermined coefficient, diagnosis of disconnection of a connection line or poor contact is made. A cell voltage measuring device.
それぞれの前記回路モジュールは、前記組電池中の直列に接続されたそれぞれ異なるセル群の電圧を測定し、
前記異なるセル群の境界から引き出された接続線が接続される入力端子は、第1の回路モジュールの最も電位の高い入力端子、及び第2の回路モジュールの最も電位の低い入力端子に接続され、
前記回路モジュールの最も電位の高い入力端子または最も電位の低い入力端子と、異なる回路モジュールの入力端子間を接続する断線検出抵抗を有することを特徴とする請求項1乃至請求項3の何れか1項に記載のセル電圧測定装置。 The plurality of voltage measurement circuits are divided into a plurality of circuit modules each having an individual power source and a reference potential,
Each of the circuit modules measures voltages of different groups of cells connected in series in the assembled battery,
The input terminal to which the connection line drawn from the boundary between the different cell groups is connected is connected to the input terminal having the highest potential of the first circuit module and the input terminal having the lowest potential of the second circuit module,
An input terminal most potential high input or lowest potential of the circuit module, one of claims 1 to 3, characterized in that it has a disconnection detection resistor connected between the input terminals of different circuit modules 1 The cell voltage measuring device according to item.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005194271A JP4904729B2 (en) | 2005-07-01 | 2005-07-01 | Cell voltage measuring device and fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005194271A JP4904729B2 (en) | 2005-07-01 | 2005-07-01 | Cell voltage measuring device and fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007010580A JP2007010580A (en) | 2007-01-18 |
JP4904729B2 true JP4904729B2 (en) | 2012-03-28 |
Family
ID=37749280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005194271A Expired - Fee Related JP4904729B2 (en) | 2005-07-01 | 2005-07-01 | Cell voltage measuring device and fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4904729B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104391212A (en) * | 2014-10-28 | 2015-03-04 | 芜湖天元汽车电子有限公司 | Multi-way battery voltage acquisition system disconnection detecting circuit |
US11418041B2 (en) | 2019-03-15 | 2022-08-16 | Lg Energy Solution, Ltd. | Battery system |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4883956B2 (en) * | 2005-08-04 | 2012-02-22 | 日立オートモティブシステムズ株式会社 | Battery cell voltage measuring device |
JP5100141B2 (en) * | 2007-02-01 | 2012-12-19 | 三洋電機株式会社 | Power supply for vehicle |
JP2009301791A (en) * | 2008-06-11 | 2009-12-24 | Nissan Motor Co Ltd | Failure diagnostic device of fuel cell system |
JP4775415B2 (en) * | 2008-07-14 | 2011-09-21 | Tdk株式会社 | Voltage monitor circuit |
EP2259079A1 (en) * | 2009-05-27 | 2010-12-08 | Belenos Clean Power Holding AG | System for measuring the voltage of the cells of a fuel cell |
KR101104190B1 (en) * | 2010-06-11 | 2012-01-10 | 김흥태 | Device for measuring voltage of fuel cell and the method using the same |
JP5606871B2 (en) | 2010-10-26 | 2014-10-15 | ラピスセミコンダクタ株式会社 | Semiconductor circuit, semiconductor device, wiring abnormality diagnosis method, and abnormality diagnosis program |
JP5353915B2 (en) | 2011-02-01 | 2013-11-27 | 株式会社デンソー | Battery voltage monitoring device |
JP6229248B2 (en) * | 2011-06-03 | 2017-11-15 | 株式会社Gsユアサ | Storage module cell monitoring device and disconnection detection method |
JP5843518B2 (en) * | 2011-08-08 | 2016-01-13 | 富士通テン株式会社 | Disconnection detector |
JP5884670B2 (en) * | 2012-07-26 | 2016-03-15 | 株式会社デンソー | Anomaly detection device |
JP6445989B2 (en) * | 2016-02-23 | 2018-12-26 | 本田技研工業株式会社 | FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM |
WO2023162453A1 (en) * | 2022-02-22 | 2023-08-31 | パナソニックIpマネジメント株式会社 | Voltage measurement system diagnosis system, voltage measurement system diagnosis method, and voltage measurement system diagnosis program |
CN116819405A (en) * | 2023-08-31 | 2023-09-29 | 绿进新能源科技(常熟)有限公司 | BMS sampling line detection system and method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3300309B2 (en) * | 1999-10-19 | 2002-07-08 | 本田技研工業株式会社 | Battery voltage measuring device |
JP3696124B2 (en) * | 2001-05-17 | 2005-09-14 | 三洋電機株式会社 | Battery voltage detection circuit |
-
2005
- 2005-07-01 JP JP2005194271A patent/JP4904729B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104391212A (en) * | 2014-10-28 | 2015-03-04 | 芜湖天元汽车电子有限公司 | Multi-way battery voltage acquisition system disconnection detecting circuit |
US11418041B2 (en) | 2019-03-15 | 2022-08-16 | Lg Energy Solution, Ltd. | Battery system |
Also Published As
Publication number | Publication date |
---|---|
JP2007010580A (en) | 2007-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4904729B2 (en) | Cell voltage measuring device and fuel cell | |
US10324119B2 (en) | Insulation resistance measuring device and method | |
US8587318B2 (en) | Sensor arrangement for an energy storage device and a method of using the same | |
US10901036B2 (en) | Assembled battery monitoring system | |
JP4659067B2 (en) | Insulation measurement method and insulation measurement apparatus | |
US7417438B2 (en) | Battery voltage measurement apparatus | |
JP5606997B2 (en) | Battery cell monitoring circuit, battery cell module, automobile equipped with battery cell module | |
US6833708B2 (en) | Leak detecting circuit for power source device | |
JP4883956B2 (en) | Battery cell voltage measuring device | |
US9322871B2 (en) | Current measurement circuit and method of diagnosing faults in same | |
US10288694B2 (en) | Secondary battery monitoring device and method for diagnosing failure | |
JP2015509605A (en) | Insulation resistance measuring device with self-fault diagnostic function and self-fault diagnostic method using the same | |
JP6470490B2 (en) | Power generation failure detection method, power generation failure detection device and solar power generation device for solar cell string | |
US8836341B2 (en) | Semiconductor circuit, semiconductor device, method of diagnosing abnormality of wire, and computer readable storage medium | |
JP4047558B2 (en) | Battery voltage detector | |
JP4075176B2 (en) | Voltage detection device for battery pack | |
US9091736B2 (en) | Systems and methods of battery cell anomaly detection | |
JP5059543B2 (en) | Storage device abnormality detection device | |
CN108226794B (en) | Secondary battery monitoring device and failure diagnosis method | |
JP6930745B2 (en) | Management equipment and power supply system | |
CN112946497A (en) | Storage battery fault diagnosis method and device based on fault injection deep learning | |
JP6016754B2 (en) | Battery voltage detector | |
US12080857B2 (en) | Systems and methods involving measurement of battery cells | |
US20030094954A1 (en) | Battery voltage detecting circuit | |
JP7086495B2 (en) | Battery monitoring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111213 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111226 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4904729 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |