JP4902464B2 - Solar cell back surface protective film - Google Patents

Solar cell back surface protective film Download PDF

Info

Publication number
JP4902464B2
JP4902464B2 JP2007215923A JP2007215923A JP4902464B2 JP 4902464 B2 JP4902464 B2 JP 4902464B2 JP 2007215923 A JP2007215923 A JP 2007215923A JP 2007215923 A JP2007215923 A JP 2007215923A JP 4902464 B2 JP4902464 B2 JP 4902464B2
Authority
JP
Japan
Prior art keywords
film
solar cell
back surface
surface protective
cell back
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007215923A
Other languages
Japanese (ja)
Other versions
JP2009045888A (en
Inventor
勝之 橋本
耕司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2007215923A priority Critical patent/JP4902464B2/en
Publication of JP2009045888A publication Critical patent/JP2009045888A/en
Application granted granted Critical
Publication of JP4902464B2 publication Critical patent/JP4902464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Photovoltaic Devices (AREA)

Description

太陽電池裏面保護膜用フィルムに関する。   It is related with the film for solar cell back surface protective films.

近年、太陽光発電システムは、クリーンエネルギーを利用する発電手段の一つとして、普及が進んでいる。太陽電池モジュールの構造は、例えば実開平6−38264号公報に記載があるように、一般的には、受光側のガラス基板と、裏面側の保護膜との間に、複数の板状太陽電池素子を挟み、内部の隙間に封止樹脂を充填した構造となっている。裏面側の保護膜は一般的には2〜3枚の樹脂フィルムを接着剤を介して積層されている。裏面の保護膜には、例えば特開平11−261085号公報、特開平11−186575号公報などに、ポリエチレン系樹脂やポリエステル系樹脂シート、フッ素樹脂フィルムが用いられることが記載されている。しかしながら、これらの保護膜は各層の接着性が必ずしも十分ではなく耐久性に劣る部分があった。   In recent years, a solar power generation system has been spreading as one of power generation means using clean energy. The structure of a solar cell module is generally a plurality of plate-like solar cells between a glass substrate on the light receiving side and a protective film on the back side, as described in, for example, Japanese Utility Model Publication No. 6-38264. It has a structure in which an element is sandwiched and a sealing resin is filled in an internal gap. The protective film on the back side is generally formed by laminating 2 to 3 resin films via an adhesive. For example, JP-A-11-261085 and JP-A-11-186575 describe that a polyethylene-based resin, a polyester-based resin sheet, or a fluororesin film is used as the protective film on the back surface. However, these protective films have portions where the adhesion of each layer is not always sufficient and the durability is inferior.

ポリエステルフィルム、特にポリエチレンテレフタレートやポリエチレンナフタレートの二軸延伸フィルムは、優れた機械的性質、耐熱性、耐湿性を有するため、磁気テープ、強磁性薄膜テープ、写真フィルム、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、金属板ラミネート用フィルム、ディスプレイ部材要フィルムとして広く用いられており、太陽電池裏面保護膜としても優れた性能を有する。しかしながら、ポリエステルフィルム、特に二軸延伸したポリエステルフィルムは、延伸方向すなわちフィルムの面内方向に分子鎖が配向するため、フィルムの厚み方向の凝集力が弱まり層状に破壊しやすい傾向がある。このため、フィルムの層状剥離(デラミネーション)が発生し、耐久性が悪化するという問題がある。   Polyester films, especially biaxially stretched films of polyethylene terephthalate and polyethylene naphthalate, have excellent mechanical properties, heat resistance, and moisture resistance, so they are used for magnetic tapes, ferromagnetic thin film tapes, photographic films, packaging films, and electronic parts. It is widely used as a film, an electrical insulating film, a metal plate laminating film, and a display member-required film, and has excellent performance as a solar cell back surface protective film. However, since a molecular chain is oriented in the stretching direction, that is, the in-plane direction of the film, the polyester film, particularly a biaxially stretched polyester film, tends to weaken the cohesive force in the thickness direction of the film and easily break into layers. For this reason, there exists a problem that delamination of a film generate | occur | produces and durability deteriorates.

実開平6−38264号公報Japanese Utility Model Publication No. 6-38264 特開平11−261085号公報JP-A-11-261085 特開平11−186575号公報JP-A-11-186575

本発明の目的は、かかる従来技術の課題を解決し、加水分解が抑制され、高い耐久性を備え、優れた加工性を有する太陽電池の裏面保護膜を提供することにある。   An object of the present invention is to solve the above-described problems of the prior art, and to provide a back surface protective film for a solar cell that is suppressed in hydrolysis, has high durability, and has excellent processability.

すなわち本発明は、ポリエチレン−2,6−ナフタレンジカルボキシレートからなり、厚みが1〜38μm、面配向係数が0.240〜0.255、破断強度が250〜280Mpaであることを特徴とする、太陽電池の裏面保護膜用フィルムである。   That is, the present invention consists of polyethylene-2,6-naphthalenedicarboxylate, and has a thickness of 1 to 38 μm, a plane orientation coefficient of 0.240 to 0.255, and a breaking strength of 250 to 280 Mpa, It is the film for back surface protection films of a solar cell.

本発明によれば、加水分解が抑制され、高い耐久性を備え、優れた加工性を有する太陽電池の裏面保護膜を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a back surface protective film of the solar cell which is suppressed hydrolysis, has high durability, and has the outstanding workability can be provided.

以下、本発明を詳細に説明する。
[ポリエチレン−2,6−ナフタレンジカルボキシレート]
本発明の太陽電池裏面保護膜用フィルムはポリエチレン−2,6−ナフタレンジカルボキシレートからなる。このポリエチレン−2,6−ナフタレンジカルボキシレートは、2,6−ナフタレンジカルボン酸をジカルボン酸成分とし、エチレングリコールをジオール成分としてなるポリエステルである。
ポリエチレン−2,6−ナフタレンジカルボキシレートは、高い耐加水分解性と強度を得るために、ホモポリマーであることが好ましいが、共重合成分をジカルボン酸、ジオールそれぞれについて3モル%まで共重合してもよい。
Hereinafter, the present invention will be described in detail.
[Polyethylene-2,6-naphthalenedicarboxylate]
The film for solar cell back surface protective film of the present invention comprises polyethylene-2,6-naphthalenedicarboxylate. This polyethylene-2,6-naphthalene dicarboxylate is a polyester comprising 2,6-naphthalenedicarboxylic acid as a dicarboxylic acid component and ethylene glycol as a diol component.
Polyethylene-2,6-naphthalenedicarboxylate is preferably a homopolymer in order to obtain high hydrolysis resistance and strength, but the copolymerization component is copolymerized up to 3 mol% for each of dicarboxylic acid and diol. May be.

[固有粘度]
ポリエチレン−2,6−ナフタレンジカルボキシレートは、その固有粘度が、o−クロロフェノール中35℃での測定から算出される固有粘度として、好ましくは0.40dl/g以上、さらに好ましくは0.40〜0.90dl/gである。固有粘度が0.40dl/g未満であると工程切断が多発することがあり好ましくなく、0.90dl/gを超えると溶融粘度が高いため溶融押出しが困難であるうえ重合時間が長く不経済であり好ましくない。
[Intrinsic viscosity]
The intrinsic viscosity of polyethylene-2,6-naphthalenedicarboxylate is preferably 0.40 dl / g or more, more preferably 0.40 as the intrinsic viscosity calculated from measurement at 35 ° C. in o-chlorophenol. ~ 0.90 dl / g. If the intrinsic viscosity is less than 0.40 dl / g, process cutting may occur frequently, which is not preferable. There is not preferable.

[厚み]
本発明の太陽電池裏面保護膜用フィルムは、太陽電池裏面保護フィルムとして使用するときに必要な強度と、ある程度自由な屈曲性を得るために、フィルム厚みが好ましくは1〜38μm、さらに好ましくは6〜38μm、特に好ましくは12〜25μmである。1μm未満であると太陽電池裏面保護膜としての強度が不足し、38μmを超えると絶縁用フィルムをラミネートした際のトータル厚みが厚くなり過ぎるため屈強性が低下して好ましくない。
[Thickness]
The film for a solar cell back surface protective film of the present invention preferably has a film thickness of 1 to 38 μm, more preferably 6 in order to obtain strength required when used as a solar cell back surface protective film and flexibility to some extent. It is -38 micrometers, Most preferably, it is 12-25 micrometers. If the thickness is less than 1 μm, the strength as a solar cell back surface protective film is insufficient, and if it exceeds 38 μm, the total thickness when the insulating film is laminated becomes too thick, so that the flexibility is not preferable.

[面配向係数]
本発明の太陽電池裏面保護膜用フィルムは、その面配向係数が0.240〜0.255である。面配向係数が0.240未満であると配向が低すぎるため厚み斑が悪く平面性の悪いフィルムとなり、また加水分解しやすく強度が不足する。他方、0.255を越えると配向が高すぎるためデラミネーションが発生しやすい。なお、ポリエチレン−2,6−ナフタレンジカルボキシレートフィルムの通常は面配向係数は0.260程度であり、配向が高すぎ、デラミネーションが発生しやすい。
[Surface orientation coefficient]
The film for solar cell back surface protective film of the present invention has a plane orientation coefficient of 0.240 to 0.255. If the plane orientation coefficient is less than 0.240, the orientation is too low, resulting in a film with poor thickness unevenness and poor flatness, and is easily hydrolyzed and lacks strength. On the other hand, if it exceeds 0.255, the orientation is too high and delamination tends to occur. In addition, the plane orientation coefficient of the polyethylene-2,6-naphthalene dicarboxylate film is usually about 0.260, the orientation is too high, and delamination is likely to occur.

[破断強度]
本発明の太陽電池裏面保護膜用フィルムは、破断強度が250〜280Mpaである。破断強度が250Mpa未満であると長期の耐久性が得られない。他方、300Mpaを越えると配向が高すぎるためデラミネーションが発生する。
本発明の太陽電池裏面保護膜用フィルムは、加水分解への耐久性を長期わたり維持する観点から、121℃、100RH%、2atmの環境にて300時間放置する加速試験の後のフィルムの破断強度が100Mpa以上であることが好ましい。
[Breaking strength]
The film for solar cell back surface protective film of the present invention has a breaking strength of 250 to 280 Mpa. If the breaking strength is less than 250 MPa, long-term durability cannot be obtained. On the other hand, if it exceeds 300 MPa, the orientation is too high and delamination occurs.
The film for protecting a back surface of a solar cell of the present invention has a breaking strength of the film after an acceleration test in which the film is allowed to stand for 300 hours in an environment of 121 ° C., 100 RH%, 2 atm from the viewpoint of maintaining durability to hydrolysis over a long period of time. Is preferably 100 Mpa or more.

[熱収縮率]
本発明の太陽電池裏面保護膜用フィルムは、長手方向の熱収縮率と幅方向の熱収縮率が共に0.5〜1.5%であることが好ましい。0.5%未満であると十分な強度が得られず好ましくなく、1.5%を超えると絶縁用フィルムとのラミネーションプロセスでの熱により反りやシワが発生して好ましくない。
[Heat shrinkage]
It is preferable that the film for solar cell back surface protective films of this invention is 0.5 to 1.5% of the heat shrinkage rate of a longitudinal direction and the heat shrinkage rate of the width direction. If it is less than 0.5%, it is not preferable because sufficient strength cannot be obtained, and if it exceeds 1.5%, warp and wrinkles are generated due to heat in the lamination process with the insulating film.

[易接着層]
太陽電池において、太陽電池の裏面保護膜のうえには太陽電池素子の封止材が設けられる。封止材としては、一般的にエチレン−酢酸ビニル共重合体樹脂(以下、EVAと略す)が用いられる。フィルムと封止材との密着性を向上させるために、フィルムのうえには易接着層が設けられていることが好ましい。
[Easily adhesive layer]
In the solar cell, a solar cell element sealing material is provided on the back surface protective film of the solar cell. As the sealing material, an ethylene-vinyl acetate copolymer resin (hereinafter abbreviated as EVA) is generally used. In order to improve the adhesion between the film and the sealing material, it is preferable that an easy adhesion layer is provided on the film.

易接着層の厚みは、好ましくは10〜200nm、さらに好ましくは20〜150nmである。易接着層の厚みが10nm未満であると密着性を向上させる効果が乏しく好ましくない。200nmを超えると易接着層の凝集破壊が発生しやすくなり密着性が低下することがあり好ましくない。   The thickness of the easy adhesion layer is preferably 10 to 200 nm, more preferably 20 to 150 nm. If the thickness of the easy-adhesion layer is less than 10 nm, the effect of improving adhesion is poor, which is not preferable. If it exceeds 200 nm, cohesive failure of the easy-adhesion layer tends to occur and the adhesion may be lowered, which is not preferable.

易接着層は、ポリエステルフィルムとEVAの双方に優れた接着性を示す構成材であることが好ましく、具体的には、ポリエステル樹脂、アクリル樹脂、ウレタンアクリル樹脂、シリコンアクリル樹脂、メラミン樹脂、ポリシロキサン樹脂が例示できる。これらの樹脂は単独で用いてもよく、2種以上を例えば混合物として用いてもよい。   The easy-adhesion layer is preferably a constituent material that exhibits excellent adhesion to both polyester film and EVA. Specifically, polyester resin, acrylic resin, urethane acrylic resin, silicon acrylic resin, melamine resin, polysiloxane Resins can be exemplified. These resins may be used alone, or two or more kinds thereof may be used as a mixture, for example.

易接着層は、フィルムが形成された後に設てもよく、ポリエステルフィルムの製造工程で塗工により設けてもよい。特にポリエステルフィルムの製造において延伸・熱固定等を実施する場合、これらの工程が完了する前に塗布するのが好ましい。ここで、結晶配向が完了する前のプラスチックフィルムとは、未延伸フィルム、未延伸フィルムを縦方向または横方向の何れか一方に配向せしめた一軸配向フィルム、さらには縦方向および横方向の二方向に低倍率延伸配向せしめたもの(最終的に縦方向また横方向に再延伸せしめて配向結晶化を完了せしめる前の二軸延伸フィルム)等を含むものである。   The easy adhesion layer may be provided after the film is formed, or may be provided by coating in the production process of the polyester film. In particular, when stretching, heat setting, etc. are carried out in the production of a polyester film, it is preferably applied before these steps are completed. Here, the plastic film before crystal orientation is completed is an unstretched film, a uniaxially oriented film in which the unstretched film is oriented in either the longitudinal direction or the transverse direction, and further in two directions, the longitudinal direction and the transverse direction. And the like that have been oriented at a low magnification (biaxially stretched film before being finally re-stretched in the machine direction or the transverse direction to complete orientation crystallization).

[製造方法]
本発明におけるポリエチレン−2,6−ナフタレンジカルボキシレートは、従来公知の方法で製造することができる。例えばジカルボン酸とグリコールの反応で直接低重合度ポリエステルを得る方法で製造することができる。また、例えば、ジカルボン酸の低級アルキルエステルとグリコールとを従来公知のエステル交換触媒を用いて反応させた後、重合触媒の存在下で重合反応を行う方法で得ることができる。ポリエチレン−2,6−ナフタレンジカルボキシレートは、溶融重合後これをチップ化し、加熱減圧下または窒素などの不活性気流中においてさらに固相重合を施してもよい。
[Production method]
The polyethylene-2,6-naphthalenedicarboxylate in the present invention can be produced by a conventionally known method. For example, it can be produced by a method of directly obtaining a low-polymerization degree polyester by reaction of dicarboxylic acid and glycol. Further, for example, it can be obtained by a method in which a lower alkyl ester of dicarboxylic acid and glycol are reacted using a conventionally known transesterification catalyst and then a polymerization reaction is carried out in the presence of a polymerization catalyst. Polyethylene-2,6-naphthalenedicarboxylate may be converted into chips after melt polymerization, and further subjected to solid phase polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen.

本発明のフィルムは、原料のポリエチレン−2,6−ナフタレンジカルボキシレートをシート状に溶融押出し、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムをTg〜(Tg+60)℃で縦方向に倍率3.6〜4.0倍、横方向に倍率3.9〜4.3倍で2軸に延伸し、240〜250℃の温度で1〜100秒間熱固定し、熱固定後に幅方向に0−2%弛緩(トーイン)することにより得ることができる。
延伸方法は、一般に用いられる方法例えばロールによる方法やステンターを用いる方法で行うことができ、縦方向、横方向を同時に延伸してもよく、また縦方向、横方向に逐次延伸してもよい。
In the film of the present invention, polyethylene-2,6-naphthalene dicarboxylate as a raw material is melt-extruded into a sheet shape, cooled and solidified with a casting drum to form an unstretched film, and this unstretched film is longitudinally stretched at Tg to (Tg + 60) ° C. Stretched biaxially at a magnification of 3.6 to 4.0 times in the direction and a magnification of 3.9 to 4.3 times in the transverse direction, heat-set at a temperature of 240 to 250 ° C. for 1 to 100 seconds, and after heat setting, the width It can be obtained by 0-2% relaxation (toe-in) in the direction.
The stretching method can be performed by a generally used method such as a method using a roll or a method using a stenter. The stretching method may be performed simultaneously in the longitudinal direction and the transverse direction, or may be sequentially performed in the longitudinal direction and the transverse direction.

易接着層の塗設は、逐次延伸の場合には、一方向に延伸した1軸配向フィルムに、水性塗液を塗布し、そのままもう一方向に延伸し熱固定することで行うことができる。
塗布方法としては、例えばロールコート法、グラビアコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、含浸法及びカーテンコート法を用いることができる。塗布量は走行しているフイルム1mあたり例えば0.5〜20g、好ましくは1〜10gである。水性塗液は、水分散液または乳化液として用いるのが好ましい。
In the case of sequential stretching, the easy-adhesion layer can be applied by applying an aqueous coating solution to a uniaxially oriented film stretched in one direction, stretching in the other direction as it is, and heat fixing.
As a coating method, for example, a roll coating method, a gravure coating method, a roll brush method, a spray coating method, an air knife coating method, an impregnation method, and a curtain coating method can be used. The coating amount is, for example, 0.5 to 20 g, preferably 1 to 10 g per 1 m 2 of the running film. The aqueous coating liquid is preferably used as an aqueous dispersion or emulsion.

以下、実施例を挙げて本発明を詳細に説明する。
なお、物性値および特性は以下のとおり測定した。
Hereinafter, the present invention will be described in detail with reference to examples.
The physical property values and characteristics were measured as follows.

(1)フィルム厚み
電子マイクロメータ(アンリツ(株)製の商品名「K−312A型」)を用いて針圧30gにてフィルム厚みを測定した。
(1) Film thickness Film thickness was measured at 30 g of needle pressure using an electronic micrometer (trade name “K-312A type” manufactured by Anritsu Corporation).

(2)破断強度
フィルムを試料幅10mm、長さ15cmに切り、チャック感100mmにして引張速度100mm/分、チャート速度100mm/分でインストロンタイプの万能引張試験装置にて引張り、破断した際の強度を測定した。
(2) Breaking strength When the film was cut into a sample width of 10 mm and a length of 15 cm, the chuck feeling was 100 mm, the tensile speed was 100 mm / min, and the chart speed was 100 mm / min. The strength was measured.

(3)熱収縮率
フィルムサンプルに30cm間隔で標点をつけ、荷重をかけずに所定の温度のオーブンで所定時間熱処理を実施し、熱処理後の標点間隔を測定して、フィルム連続製膜方向(MD方向)と、製膜方向に垂直な方向(TD方向)において、下記式にて熱収縮率を算出した。
熱収縮率(%)
=(熱処理前標点間距離−熱処理後標点間距離)/熱処理前標点間距離×100
(3) Heat shrinkage rate Marks are applied to film samples at intervals of 30 cm, heat treatment is performed for a predetermined time in an oven at a predetermined temperature without applying a load, and the interval between the heat marks after the heat treatment is measured to form a film continuously. In the direction (MD direction) and the direction (TD direction) perpendicular to the film forming direction, the thermal shrinkage rate was calculated by the following formula.
Thermal shrinkage (%)
= (Distance between the pre-heat treatment marks -Distance between the heat treatment marks) / Distance between the pre-heat treatment marks x 100

(4)面配向係数(NS)
アッベ屈折計を用い、ナトリウムD線(589nm)を光源として屈折率を測定し、nMD、nT、D及びnZを求める。
また面配向係数(NS)は、下記式により求めた。
NS=(nMD+nTD)/2−nZ
(式中、nMDはフィルムの連続製膜方向の屈折率、nTDは幅方向の屈折率、nZは厚み方向の屈折率を表す。)
(4) Planar orientation coefficient (NS)
Using an Abbe refractometer, the refractive index is measured using sodium D line (589 nm) as a light source to determine nMD, nT, D and nZ.
The plane orientation coefficient (NS) was determined by the following formula.
NS = (nMD + nTD) / 2-nZ
(In the formula, nMD represents the refractive index in the continuous film-forming direction of the film, nTD represents the refractive index in the width direction, and nZ represents the refractive index in the thickness direction.)

(5)耐デラミ性
フィルムサンプルに125μmのポリエチレンテレフタレートフィルムをウレタン系接着剤{ポリエステル系主剤+(イソホロンジイソシアネート/キシリレンジイソシアネート)系硬化剤}にてドライラミネート手法によりラミネートを行い、その後、180°にてピールオフし、そのときにできる剥離界面を観察して下記の基準で評価した。
○:剥離が接着剤層の破壊により発生しているもの
×:剥離がフィルム自体の凝集破壊により発生しているもの(デラミ)
(5) Delamination resistance A 125 μm polyethylene terephthalate film is laminated on a film sample with a urethane-based adhesive {polyester-based main agent + (isophorone diisocyanate / xylylene diisocyanate) -based curing agent} by a dry laminating method, and then 180 °. Was peeled off, and the peeling interface formed at that time was observed and evaluated according to the following criteria.
○: Peeling occurs due to destruction of the adhesive layer ×: Peeling occurs due to cohesive failure of the film itself (Delami)

(6)耐加水分解性
フィルムの縦方向に100mm長、横方向に10mm幅に切り出した短冊状の試料片を、121℃・100%RH・2atm・濡れ飽和モードに設定した環境試験機内に100時間放置した。その後試料片を取り出し、その縦方向の破断強度を5回測定し、平均値を求めた。下記基準にて耐加水分解性を評価した。
○: 処理後の破断強度 100Mpa以上
×: 処理後の破断強度 100Mpa未満
(6) Hydrolysis resistance A strip-shaped sample piece cut to a length of 100 mm in the vertical direction and a width of 10 mm in the horizontal direction is set to 100 in an environmental test machine set to 121 ° C., 100% RH, 2 atm, wet saturation mode. Left for hours. Thereafter, the sample piece was taken out, its longitudinal breaking strength was measured 5 times, and the average value was obtained. Hydrolysis resistance was evaluated according to the following criteria.
○: Breaking strength after treatment 100 Mpa or more ×: Breaking strength after treatment <100 Mpa

[実施例1]
2,6−ナフタレンジカルボン酸ジメチル100部とエチレングリコール60部の混合物に、酢酸マンガン・4水塩0.03部を添加し、150℃から240℃に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が170℃に達した時点で三酸化アンチモン0.024部を添加し、さらに平均粒径0.25μm、粒径比1.1の球状シリカ粒子を0.13重量%添加した。そして、反応温度が220℃に達した時点で3,5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042部(2mmol%に相当)を添加した。その後、引き続いてエステル交換反応を行い、エステル交換反応終了後、燐酸トリメチル0.023部を添加した。ついで、反応生成物を重合反応器に移し、290℃まで昇温し、0.2mmHg以下の高真空下にて重縮合反応を行い、25℃のo−クロロフェノール溶液で測定した固有粘度が固有粘度が0.66dl/gのポリエチレン−2,6−ナフタレンジカルボキシレートを得た。
[Example 1]
0.03 part of manganese acetate tetrahydrate is added to a mixture of 100 parts of dimethyl 2,6-naphthalenedicarboxylate and 60 parts of ethylene glycol, and transesterification is performed while gradually raising the temperature from 150 ° C to 240 ° C. It was. On the way, when the reaction temperature reached 170 ° C., 0.024 part of antimony trioxide was added, and further 0.13% by weight of spherical silica particles having an average particle size of 0.25 μm and a particle size ratio of 1.1 was added. When the reaction temperature reached 220 ° C., 0.042 part (corresponding to 2 mmol%) of 3,5-dicarboxybenzenesulfonic acid tetrabutylphosphonium salt was added. Subsequently, a transesterification reaction was carried out. After the transesterification reaction, 0.023 parts of trimethyl phosphate was added. Next, the reaction product was transferred to a polymerization reactor, heated to 290 ° C., subjected to a polycondensation reaction under a high vacuum of 0.2 mmHg or less, and the intrinsic viscosity measured with an o-chlorophenol solution at 25 ° C. was inherent. Polyethylene-2,6-naphthalenedicarboxylate having a viscosity of 0.66 dl / g was obtained.

このポリエチレン−2,6−ナフタレンジカルボキシレートのペレットを170℃で6時間乾燥後、押出機ホッパーに供給し、溶融温度305℃で溶融し、平均目開きが17μmのステンレス鋼細線フィルターで濾過し、2mmのスリット状ダイを通して表面温度60℃の回転冷却ドラム上で押出し、急冷して未延伸フィルムを得た。このようにして得られた未延伸フィルムを120℃にて予熱し、さらに低速、高速のロール間で15mm上方より900℃のIRヒーターにて加熱して縦方向に3.8に延伸した。続いてテンターに供給し、145℃にて横方向に.4.1倍に延伸し、さらに245℃で5秒間熱固定処理および幅方向に1.0%弛緩(トーイン)させ、厚み12μmのフィルムを得た。得られたフィルムの特性を表1に示す。   The polyethylene-2,6-naphthalenedicarboxylate pellets were dried at 170 ° C. for 6 hours, then fed to an extruder hopper, melted at a melting temperature of 305 ° C., and filtered through a stainless steel fine wire filter having an average opening of 17 μm. The film was extruded through a 2 mm slit die on a rotary cooling drum having a surface temperature of 60 ° C. and rapidly cooled to obtain an unstretched film. The unstretched film thus obtained was preheated at 120 ° C. and further heated by a 900 ° C. IR heater 15 mm above between low-speed and high-speed rolls and stretched in the longitudinal direction to 3.8. Subsequently, it was supplied to a tenter and laterally at 145 ° C. The film was stretched 4.1 times, further heat-set at 245 ° C. for 5 seconds and 1.0% relaxed (toe-in) in the width direction to obtain a film having a thickness of 12 μm. The properties of the obtained film are shown in Table 1.

[実施例2〜6、比較例1〜6]
フィルムの製膜条件を表1に示すように変えること以外は実施例1と同様に行った。得られたフィルムの特性を表1に示す。
[Examples 2-6, Comparative Examples 1-6]
The same procedure as in Example 1 was performed except that the film forming conditions of the film were changed as shown in Table 1. The properties of the obtained film are shown in Table 1.

Figure 0004902464
Figure 0004902464

本発明の太陽電池裏面保護膜用フィルムは、太陽電池裏面保護膜として利用することができる。   The film for solar cell back surface protective film of the present invention can be used as a solar cell back surface protective film.

Claims (4)

ポリエチレン−2,6−ナフタレンジカルボキシレートからなり、厚みが1〜38μm、面配向係数が0.240〜0.255、破断強度が250〜280Mpaであることを特徴とする、太陽電池裏面保護膜用フィルム。   A solar cell back surface protective film comprising polyethylene-2,6-naphthalenedicarboxylate, having a thickness of 1 to 38 μm, a plane orientation coefficient of 0.240 to 0.255, and a breaking strength of 250 to 280 Mpa. Film. フィルムの長手方向の熱収縮率および幅方向の熱収縮率がともに0.5〜1.5%である、請求項1記載の太陽電池裏面保護膜用フィルム。   The film for solar cell back surface protective films of Claim 1 whose heat shrinkage rate of the longitudinal direction of a film and the heat shrinkage rate of the width direction are both 0.5 to 1.5%. 121℃、100RH%、2気圧の環境に300時間放置した後のフィルムの破断強度が100Mpa以上である、請求項1記載の太陽電池裏面保護膜用フィルム。   The film for protecting a back surface of a solar cell according to claim 1, wherein the film has a breaking strength of 100 Mpa or more after being left in an environment of 121 ° C, 100RH%, 2 atm for 300 hours. 請求項1記載の太陽電池裏面保護膜用フィルムからなる太陽電池裏面保護膜。   The solar cell back surface protective film which consists of a film for solar cell back surface protective films of Claim 1.
JP2007215923A 2007-08-22 2007-08-22 Solar cell back surface protective film Expired - Fee Related JP4902464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215923A JP4902464B2 (en) 2007-08-22 2007-08-22 Solar cell back surface protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007215923A JP4902464B2 (en) 2007-08-22 2007-08-22 Solar cell back surface protective film

Publications (2)

Publication Number Publication Date
JP2009045888A JP2009045888A (en) 2009-03-05
JP4902464B2 true JP4902464B2 (en) 2012-03-21

Family

ID=40498574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215923A Expired - Fee Related JP4902464B2 (en) 2007-08-22 2007-08-22 Solar cell back surface protective film

Country Status (1)

Country Link
JP (1) JP4902464B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565020B2 (en) * 2009-03-27 2014-08-06 東レ株式会社 Polyester film and solar cell using the same
KR101445462B1 (en) 2010-01-06 2014-09-29 다이니폰 인사츠 가부시키가이샤 Collector sheet for solar cell
JP5504957B2 (en) * 2010-02-18 2014-05-28 東レ株式会社 Multilayer polyester film, solar cell backsheet using the same, and solar cell
CN103201851A (en) * 2010-11-12 2013-07-10 富士胶片株式会社 Back sheet for solar cells and process for production thereof, and solar cell module
WO2012133125A1 (en) * 2011-03-28 2012-10-04 富士フイルム株式会社 Polyester film, gas barrier film, backsheet for solar cell, organic device, and solar cell module
JP5838578B2 (en) * 2011-03-29 2016-01-06 凸版印刷株式会社 Gas barrier laminate
WO2015146780A1 (en) * 2014-03-24 2015-10-01 東レ株式会社 Solar cell back sheet and solar cell module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11255913A (en) * 1998-03-10 1999-09-21 Teijin Ltd Biaxially oriented polyethylene 2,6-naphthalate film
JP3948908B2 (en) * 2001-04-10 2007-07-25 帝人株式会社 Polyester film for coverlay film
JP4052021B2 (en) * 2002-06-04 2008-02-27 帝人デュポンフィルム株式会社 Oriented polyester film and laminated film using the same
WO2004000920A1 (en) * 2002-06-24 2003-12-31 Teijin Limited Laminated film
EP1764206B1 (en) * 2004-05-14 2009-09-09 Teijin Dupont Films Japan Limited Oriented polyester film for a flexible electronics device substrate
JP2006253264A (en) * 2005-03-09 2006-09-21 Toppan Printing Co Ltd Rear face protection sheet for solar cell, and solar cell module using the same
JP2007109696A (en) * 2005-10-11 2007-04-26 Toppan Printing Co Ltd Back side protection sheet for solar cell and solar cell module
JP2007150084A (en) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd Solar cell module, rear face protection sheet therefor and rear face lamination therefor
JP5204375B2 (en) * 2006-01-06 2013-06-05 帝人デュポンフィルム株式会社 Polyester film for solar cell back surface protective film
JP2007208179A (en) * 2006-02-06 2007-08-16 Teijin Dupont Films Japan Ltd Plastic film for rear surface protective film of solar cell, and rear surface protective film of solar cell
JP2007332198A (en) * 2006-06-13 2007-12-27 Teijin Dupont Films Japan Ltd Easily adhesive film for protecting solar battery and solar battery-protecting film using the same
JP2008043979A (en) * 2006-08-17 2008-02-28 Nippon Steel Corp Continuous casting method for low aluminum steel

Also Published As

Publication number Publication date
JP2009045888A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4902464B2 (en) Solar cell back surface protective film
JP5752617B2 (en) Biaxially stretched polyester film and method for producing the same, solar cell backsheet, and solar cell module
JP5914339B2 (en) Polyester film and method for producing the same
KR101511201B1 (en) Solar cell backsheet, method of manufacturing same, and solar cell module
EP2423248A1 (en) Biaxially stretched polyester film for solar battery
KR102402833B1 (en) Polyester film
JP5635366B2 (en) Method for producing polyester film for solar cell back surface protective film and polyester film for solar cell back surface protective film
KR20140060531A (en) Solar cell backsheet and solar cell module
TWI752017B (en) Films and electrical insulating sheets, adhesive tapes, and rotary machines using the same
CN110023437B (en) PV cell and back sheet polyester film
JP4881464B2 (en) Polyester film for solar cell back surface protective film
KR20180018481A (en) Biaxially oriented polyester film
JP2012046734A (en) Method for producing polyester sheet, polyester film and method for producing the polyester film
TW201347995A (en) Back sheet for solar cell module and method for manufacturing the same
JP6243179B2 (en) Laminated film
JP6231580B2 (en) Polyester film for solar cell and protective film for solar cell comprising the same
KR20150077990A (en) Polyester film, back sheet for solar cell module and manufacturing method of polyester film
JP2017066265A (en) Polyester film roll for solar cell back sheet
JP2015185687A (en) Back sheet member for solar batteries, method for manufacturing the same, back sheet for solar batteries, and solar battery module
JP6374214B2 (en) Laminated film with coating layer
JP5209568B2 (en) White polyester film for solar cell back surface protection sheet
KR20150002978A (en) Polyester film, back sheet for solar cell module and manufacturing method of polyester film
JP2011016899A (en) Polyester film for heat-resistant tape
JP2016174073A (en) Polyester film for solar batter back sheet
KR20120119296A (en) White film for solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Ref document number: 4902464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees