JP4901293B2 - Decolorization method of bio-method glycolic acid aqueous solution or ammonium glycolate aqueous solution - Google Patents

Decolorization method of bio-method glycolic acid aqueous solution or ammonium glycolate aqueous solution Download PDF

Info

Publication number
JP4901293B2
JP4901293B2 JP2006125071A JP2006125071A JP4901293B2 JP 4901293 B2 JP4901293 B2 JP 4901293B2 JP 2006125071 A JP2006125071 A JP 2006125071A JP 2006125071 A JP2006125071 A JP 2006125071A JP 4901293 B2 JP4901293 B2 JP 4901293B2
Authority
JP
Japan
Prior art keywords
aqueous solution
glycolic acid
solution
aqueous
ammonium glycolate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006125071A
Other languages
Japanese (ja)
Other versions
JP2007295820A (en
Inventor
誠 岡本
英城 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006125071A priority Critical patent/JP4901293B2/en
Publication of JP2007295820A publication Critical patent/JP2007295820A/en
Application granted granted Critical
Publication of JP4901293B2 publication Critical patent/JP4901293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、ニトリル加水分解能を有する生体触媒を用いて製造されたグリコール酸水溶液又はグリコール酸アンモニウム水溶液を脱色する方法に関する。   The present invention relates to a method for decolorizing an aqueous glycolic acid solution or an aqueous ammonium glycolate solution produced using a biocatalyst having nitrile hydrolysis ability.

グリコール酸は、従来より、化粧品、染毛剤、シャンプー、トリートメント、洗浄剤(家庭用洗浄剤、工業用洗浄剤等)、金属処理剤、皮なめし剤等の重要な成分として用いられてきた。特に化粧品用途等に使用する場合、高純度であることは勿論、微量着色不純物に起因する着色についても、製品品質上、低減が求められている。   Glycolic acid has been conventionally used as an important component for cosmetics, hair dyes, shampoos, treatments, cleaning agents (household cleaning agents, industrial cleaning agents, etc.), metal treatment agents, and tanning agents. In particular, when used for cosmetics and the like, not only is it highly pure, but also the coloring caused by trace coloring impurities is required to be reduced in terms of product quality.

一方、バイオ法によるグリコール酸の製造方法としては、コリネバクテリウム属に属する微生物を用いてグリコロニトリルからグリコール酸を製造する方法(特許文献1)、アシドボラックス属に属する微生物由来のニトリラーゼを用いてグリコロニトリルからグリコール酸を製造する方法(特許文献2)、ロドコッカス属又はゴルドナ属に属する微生物を用いてグリコロニトリルからグリコール酸を製造する方法(特許文献3)等が挙げられるが、前記のいずれの文献にも加水分解反応液の着色に関する記述はない。   On the other hand, as a method for producing glycolic acid by a bio method, a method of producing glycolic acid from glycolonitrile using a microorganism belonging to the genus Corynebacterium (Patent Document 1), a nitrilase derived from a microorganism belonging to the genus Acidborax, And a method for producing glycolic acid from glycolonitrile (Patent Document 2), a method for producing glycolic acid from glycolonitrile using a microorganism belonging to the genus Rhodococcus or Gordona (Patent Document 3), and the like. None of the above references describes the coloring of the hydrolysis reaction solution.

また、電気透析を用いた種々の有機酸塩の脱塩についても多数の先行文献が開示されており、その中でも、クロロ酢酸を過剰なアリカリ金属水酸化物を用いてけん化した液の電気透析による高純度グリコール酸の製造法(特許文献4)が代表として挙げられるが、やはり、加水分解反応液の着色及び電気透析処理による脱色については前記文献には記述がない。   A number of prior literatures have also been disclosed regarding the desalting of various organic acid salts using electrodialysis, and among them, electrodialysis of a solution obtained by saponifying chloroacetic acid with an excess antkari metal hydroxide. A representative example is a method for producing high-purity glycolic acid (Patent Document 4). However, there is no description in the above-mentioned document regarding coloring of the hydrolysis reaction solution and decolorization by electrodialysis.

その他、グリコール酸の精製、特に着色物の除去による脱色方法としては、例えば、α−ヒドロキシ酸を少なくとも2つの結晶化段階にかけることで脱色する方法(特許文献5)、α−ヒドロキシ酸を抽出、濃縮、結晶化する方法(特許文献6)、α−ヒドロキシ酸を結晶化段階の次に蒸留段階にかける方法(特許文献7)、顆粒状活性炭を用いて粗製ヒドロキシ酸を脱色させる方法(特許文献8)等が挙げられるが、いずれもグリコロニトリルを原料にニトリル加水分解能を有する生体触媒を用いて製造されたグリコール酸アンモニウムの電気透析液を原料とした例ではなく、簡便且つ十分な脱色方法とは言えない。   In addition, as a decolorization method by purification of glycolic acid, particularly removal of colored substances, for example, a method of decoloring by subjecting α-hydroxy acid to at least two crystallization stages (Patent Document 5), extraction of α-hydroxy acid , Method of concentrating and crystallizing (Patent Document 6), method of subjecting α-hydroxy acid to distillation step after crystallization step (Patent Document 7), method of decolorizing crude hydroxy acid using granular activated carbon (Patent Document 7) Reference 8) and the like, but all are not examples of using ammonium glycolate electrodialysate produced from a biocatalyst with glycolonitrile as a raw material and having a nitrile hydrolysis ability, but simple and sufficient decolorization It's not a method.

つまり、グリコロニトリルを原料にニトリル加水分解能を有する生体触媒を用いて製造されたグリコール酸水溶液又はグリコール酸アンモニウム水溶液を脱色する実用的な工業的方法として、簡便且つ十分な脱色方法がないのが実状である。
特開昭61−56086号公報 特表2005−504506号公報 特開平9−28390号公報 特開平9−216848号公報 特表2004−509092号公報 特表2004−509091号公報 特表2004−509090号公報 特開昭49−124025号公報 特開2001−299378号公報 特開平11−180971号公報 特開平06−303991号公報 特開昭63−209592号公報 特公昭63−2596号公報
That is, there is no simple and sufficient decolorization method as a practical industrial method for decolorizing an aqueous glycolic acid solution or an aqueous ammonium glycolate solution produced using a biocatalyst having nitrile hydrolysis ability from glycolonitrile. It's real.
JP-A 61-56086 JP 2005-504506 A JP-A-9-28390 JP 9-216848 A Japanese translation of PCT publication No. 2004-509092 Japanese translation of PCT publication No. 2004-509091 JP-T-2004-509090 Japanese Patent Laid-Open No. 49-1224025 JP 2001-299378 A JP-A-11-180971 Japanese Patent Laid-Open No. 06-303991 Japanese Patent Laid-Open No. 63-209592 Japanese Examined Patent Publication No. 63-2596

本発明の課題は、グリコロニトリルを原料にニトリル加水分解能を有する生体触媒を用いて製造されたグリコール酸水溶液又はグリコール酸アンモニウム水溶液を脱色するに当たり、簡便且つ十分に脱色ができ、製品品質上、十分に高純度なグリコール酸水溶液又はグリコール酸アンモニウムを取得できるグリコール酸水溶液又はグリコール酸アンモニウム水溶液の脱色法を提供することに有る。   The object of the present invention is to easily and sufficiently decolorize glycolic acid aqueous solution or ammonium glycolate aqueous solution produced using a biocatalyst having nitrile hydrolysis ability from glycolonitrile as a raw material. An object of the present invention is to provide a method for decolorizing a glycolic acid aqueous solution or an ammonium glycolate aqueous solution that can obtain a sufficiently high purity glycolic acid aqueous solution or ammonium glycolate.

本発明者らは、グリコロニトリルを原料にニトリル加水分解能を有する生体触媒を用いて製造されたグリコール酸アンモニウム水溶液が、UV〜可視光領域において特異的な吸収を示す微量着色物質を含有することに着目し、その着色物質は電気透析による脱アンモニウム操作後も、十分に脱色されることはなく、従って該反応液の脱アンモニウム水溶液を別途脱色する必要が生じたため、その方法について鋭意検討を行ったところ、驚くべきことに該電気透析で除去しきれなかった残存アンモニウム塩を除去する目的で行ったカチオン樹脂を用いたカチオン交換操作で、該水溶液の脱色も同時に行われる事実を発見し、本発明を完成させるに至った。   The inventors of the present invention have described that an aqueous solution of ammonium glycolate produced using glycolonitrile as a raw material using a biocatalyst having a nitrile hydrolyzing ability contains a trace amount of a colored substance exhibiting specific absorption in the UV to visible light region. In view of the above, the colored substance was not sufficiently decolorized even after the deammonium operation by electrodialysis, and therefore it was necessary to decolorize the deammonium aqueous solution of the reaction solution separately. As a result, it was surprisingly found that the aqueous solution was decolorized simultaneously with a cation exchange operation using a cation resin for the purpose of removing residual ammonium salts that could not be removed by electrodialysis. The invention has been completed.

即ち、本発明は以下に記載する通りの構成を有する。
[1] グリコロニトリルを原料に、ニトリラーゼ又はニトリルヒドラターゼ及びアミダーゼを有し、ニトリル加水分解能を有する生体触媒を用いて製造された、グリコール酸水溶液又はグリコール酸アンモニウム水溶液から、着色物を除去することにより脱色する方法であって、グリコール酸水溶液又はグリコール酸アンモニウム水溶液を、予めプロトン(H )型に再生処理された、強酸性陽イオン交換樹脂と接触させることを特徴とするグリコール酸水溶液又はグリコール酸アンモニウム水溶液の脱色方法。
[2] グリコール酸水溶液が、グリコール酸アンモニウム水溶液を電気透析によって脱塩して得られるグリコール酸水溶液であることを特徴とする請求項1記載のグリコール酸水溶液又はグリコール酸アンモニウム水溶液の脱色方法。
That is, the present invention has a configuration as described below.
[1] Remove colored substances from glycolic acid aqueous solution or ammonium glycolate aqueous solution produced using a biocatalyst having nitrilase or nitrile hydratase and amidase and having nitrile hydrolyzing ability using glycolonitrile as a raw material A glycolic acid aqueous solution or a glycolic acid aqueous solution or a glycolic acid aqueous solution, which is brought into contact with a strongly acidic cation exchange resin that has been regenerated into a proton (H + ) type in advance. Decolorization method of ammonium glycolate aqueous solution.
[2] The method for decolorizing an aqueous glycolic acid solution or an aqueous ammonium glycolate solution according to claim 1, wherein the aqueous glycolic acid solution is an aqueous glycolic acid solution obtained by desalting an aqueous ammonium glycolate solution by electrodialysis .

本発明は、グリコロニトリルを原料にニトリル加水分解能を有する生体触媒を用いて製造されたグリコール酸水溶液又はグリコール酸アンモニウム水溶液を脱色するに当たり、簡便且つ十分に脱色ができ、製品品質上、十分に高純度なグリコール酸水溶液又はグリコール酸アンモニウムを取得できるグリコール酸水溶液又はグリコール酸アンモニウム水溶液の脱色法を提供できる。   In the present invention, when decolorizing an aqueous glycolic acid solution or an aqueous ammonium glycolate solution produced using a biocatalyst having a nitrile hydrolyzing ability from glycolonitrile as a raw material, it can be easily and sufficiently decolored. A decolorization method of a glycolic acid aqueous solution or an ammonium glycolate aqueous solution capable of obtaining a high-purity glycolic acid aqueous solution or ammonium glycolate can be provided.

本発明で言うニトリル加水分解能とは、大きく分けて、1)ニトリル基を対応するカルボン酸(アンモニウム)基へ直接変換する能力(ニトリラーゼ)と、2)ニトリル基を対応する酸アミド基へ変換する能力(ニトリルヒドラターゼ)と該酸アミド基を対応するカルボン酸(アンモニウム)基へ変換する能力(アミダーゼ)を同時に有するものとの2つがある。本発明においては、これらの2つの能力の何れか一方もしくは両方を保有している生体触媒であれば如何なる形態のものでも良い。   The nitrile hydrolyzing ability referred to in the present invention is broadly divided into 1) the ability to directly convert a nitrile group into a corresponding carboxylic acid (ammonium) group (nitrilase), and 2) the nitrile group into a corresponding acid amide group. There are two, the ability (nitrile hydratase) and the ability to simultaneously convert the acid amide group to the corresponding carboxylic acid (ammonium) group (amidase). In the present invention, the biocatalyst having any one or both of these two abilities may be in any form.

本発明で言う生体触媒とは、上記ニトリル加水分解活性を持つ生物体そのもの或いは生物体由来のものであれば如何なるものでもよい。具体的には、酵素そのもの、或いは該酵素を内含する微生物、動植物細胞等が挙げられるが、基本的に該酵素の活性が発揮されるならば如何なる形態でもよい。通常は、重量当たりの酵素発現量や取り扱いの容易性から、微生物菌体を使用することが好ましい。   The biocatalyst referred to in the present invention may be any organism as long as it is derived from the organism having nitrile hydrolysis activity or from the organism. Specific examples include an enzyme itself, a microorganism containing the enzyme, animal and plant cells, and the like, but any form may be used as long as the activity of the enzyme is basically exhibited. Usually, it is preferable to use microbial cells from the viewpoint of enzyme expression per weight and ease of handling.

微生物種としては、多くのものが知られているが、ニトリラーゼ活性を有するか、ニトリルヒドラターゼ活性及びアミダーゼ活性を有していれば特に制限はない。例えばニトリラーゼ活性を有する微生物としては、Rhodococcus属、Acinetobacter属、Alcaligenes属、Psudomonas属、Corynebacterium属、Caseobacter属、Brevibacterium属、Nocardia属、Gordona属、Arthrobacter属、Bacillus属、Aureobacterium属、Enterobacter属、Escherichia属、Micrococcus属、Streptomyces属、Flavobacterium属、Aeromonas属、Mycoplana属、Cellulomonas属、Erwinia属、Candida属、Bacteridium属、Aspergillus属、Penicillium属、Cochliobolus属、Fusarium属、Rhodopseudomonas属等が挙げられる。本発明においてはこれらの中でも、特にグラム陰性菌であるAcinetobacter属、Alcaligenes属が好ましく、更に好ましくはAcinetobacter属が好ましい。
具体的には、Acinetobacter sp.AK226 (FERM BP-08590)、Acinetobacter sp.AK227(FERM BP-08591)である。これらの菌株は先行特許に開示されている。(特許文献9〜13)
Many microorganism species are known, but there is no particular limitation as long as it has nitrilase activity or nitrile hydratase activity and amidase activity. For example, microorganisms having nitrilase activity include Rhodococcus, Acinetobacter, Alcaligenes, Psudomonas, Corynebacterium, Caseobacter, Brevibacterium, Nocardia, Gordona, Arthrobacter, Bacillus, Aureobacterium, Enterobacter, Escherichia , Micrococcus genus, Streptomyces genus, Flavobacterium genus, Aeromonas genus, Mycoplana genus, Cellulomonas genus, Erwinia genus, Candida genus, Bacteridium genus, Aspergillus genus, Penicillium genus, Cochliobolus genus, Fusarium genus, Rhodopseudomonas genus and the like. Among these, the genus Acinetobacter and Alcaligenes, which are Gram-negative bacteria, are particularly preferable in the present invention, and more preferably the genus Acinetobacter.
Specifically, Acinetobacter sp. AK226 (FERM BP-08590) and Acinetobacter sp. AK227 (FERM BP-08591). These strains are disclosed in prior patents. (Patent Documents 9 to 13)

一方、例えばニトリルヒドラターゼ及びアミダーゼ活性を有する微生物としては、Rhodococcus属、Corynebactgerium属、Pseudomonas属、Artrobacter属、Alcaligenes属、Batillus属、Bacteridium属、Micrococcus属、Brevibacterium属、Nocardia属等が挙げられる。   On the other hand, examples of microorganisms having nitrile hydratase and amidase activity include Rhodococcus, Corynebactgerium, Pseudomonas, Artrobacter, Alcaligenes, Batillus, Bacteridium, Micrococcus, Brevibacterium, and Nocardia.

また、本発明における生体触媒としては、例えば、天然の或いは人為的に改良したニトリラーゼ遺伝子及び/又はニトリルヒドラターゼ及びアミダーゼ遺伝子を遺伝子工学的手法によって組み込んだ微生物、あるいはそこから取り出したニトリラーゼ酵素及び/又はニトリルヒドラターゼ及びアミダーゼ酵素であっても構わないが、該ニトリル分解酵素の発現量が少ない微生物或いはニトリル加水分解活性の低い酵素を発現した微生物を少量用いてカルボン酸(アンモニウム)を製造するには、より多くの反応時間を要するため、可能な限りニトリル加水分解酵素を高発現した微生物、及びまたは変換活性の高いニトリル加水分解酵素を発現した微生物、或いはそこから取り出したニトリル加水分解酵素を用いることが望ましい。   Examples of the biocatalyst in the present invention include, for example, a natural or artificially improved nitrilase gene and / or a microorganism incorporating a nitrile hydratase and amidase gene by genetic engineering techniques, or a nitrilase enzyme extracted from the microorganism. Alternatively, a nitrile hydratase and amidase enzyme may be used, but a carboxylic acid (ammonium) can be produced using a small amount of a microorganism having a low expression amount of the nitrile degrading enzyme or a microorganism expressing an enzyme having a low nitrile hydrolysis activity. Requires a longer reaction time, so use microorganisms that express nitrile hydrolase as high as possible and / or microorganisms that express nitrile hydrolase with high conversion activity, or nitrile hydrolase extracted from them. It is desirable.

生体触媒の形態としては、微生物・動植物細胞等をそのまま用いても構わないし、又は、該微生物・動植物細胞等そのもの、該微生物・動植物細胞等に破砕等の処理をしたもの、或いは該微生物・動植物細胞等から取り出したニトリル加水分解酵素を一般的な包括法、架橋法、担体結合法等で固定化したものを用いても良い。尚、固定化する際の固定化担体の例としては、ガラスビーズ、シリカゲル、ポリウレタン、ポリアクリルアミド、ポリビニルアルコール、カラギーナン、アルギン酸、光架橋樹脂等が挙げられるが、これらに限定されるものではない。   As the form of the biocatalyst, microorganisms / animal / plant cells or the like may be used as they are, or the microorganisms / animal / plant cells, etc. themselves, those obtained by crushing the microorganism / animal / plant cells etc., or the microorganisms / animal / plants A nitrile hydrolase extracted from cells or the like may be immobilized by a general entrapment method, a crosslinking method, a carrier binding method, or the like. Examples of the immobilization carrier used for immobilization include, but are not limited to, glass beads, silica gel, polyurethane, polyacrylamide, polyvinyl alcohol, carrageenan, alginic acid, and photocrosslinking resin.

微生物・動植物細胞等をそのまま用いる場合、水(蒸留水及びまたはイオン交換水)のみに懸濁させても構わないが、通常、浸透圧の関係から無機塩のバッファー液に懸濁させて使用する。また、固定化したものを用いる場合にも、通常、浸透圧の関係からバッファー液に懸濁させて使用する。この時のバッファー液濃度は、反応液中の不純物低減の観点からは低ければ低いほど良いが、生体触媒の安定性、比活性の維持という観点からは、通常0.1M未満であり、好ましくは0.01〜0.08M、より好ましくは0.02〜0.06Mである。   When microorganisms, animal and plant cells are used as they are, they may be suspended only in water (distilled water and / or ion-exchanged water), but are usually suspended in an inorganic salt buffer solution due to osmotic pressure. . Moreover, also when using what was fix | immobilized, it is normally suspended and used for a buffer solution from the relationship of osmotic pressure. The concentration of the buffer solution at this time is preferably as low as possible from the viewpoint of reducing impurities in the reaction solution. However, from the viewpoint of maintaining the stability of the biocatalyst and specific activity, it is usually less than 0.1M, preferably It is 0.01-0.08M, More preferably, it is 0.02-0.06M.

上記の生体触媒を用いて製造されるグリコール酸水溶液又はグリコール酸アンモニウム水溶液の濃度は通常20重量%以上であるが、経済的な理由から高濃度である程良く、好ましくは30重量%以上、より好ましくは35重量%以上、更に好ましくは40重量%以上である。   The concentration of the glycolic acid aqueous solution or ammonium glycolate aqueous solution produced using the above biocatalyst is usually 20% by weight or more, but for economic reasons, a higher concentration is better, preferably 30% by weight or more. Preferably it is 35 weight% or more, More preferably, it is 40 weight% or more.

グリコール酸水溶液又はグリコール酸アンモニウム水溶液を製造する反応方法は、固定床、移動層、流動層、撹拌槽等、いずれでもよく、また連続反応でも半回分反応でもよいが、特に固定化されていない微生物菌体を用いる場合、反応の容易性から攪拌槽を用いた半回分反応がよい。その場合、反応効率の観点から、適切な攪拌を行うのがよい。   The reaction method for producing the glycolic acid aqueous solution or the ammonium glycolate aqueous solution may be any of a fixed bed, a moving bed, a fluidized bed, a stirring tank, etc., and may be a continuous reaction or a semi-batch reaction. When using bacterial cells, a half-batch reaction using a stirring tank is preferable because of the ease of reaction. In that case, it is good to perform appropriate stirring from the viewpoint of reaction efficiency.

また、半回分反応を行う場合、生体触媒は1バッチ使い捨てでもよいし、繰り返し反応を行ってもよい。但し、繰り返し反応を行う場合、該生体触媒をグリコール酸アンモニウム高濃度から低濃度へ急激に変化させるため、浸透圧の影響等で比活性が低下する場合があるので注意を要する。   In addition, when a half-batch reaction is performed, the biocatalyst may be disposable for one batch or may be repeatedly performed. However, when the reaction is repeated, the biocatalyst is rapidly changed from a high concentration of ammonium glycolate to a low concentration, so that the specific activity may decrease due to the influence of osmotic pressure or the like, so care must be taken.

製造されるグリコール酸アンモニウムに対する使用乾燥生体触媒重量は1/50以下がよく、好ましくは1/100〜1/1000、より好ましくは1/200〜1/500がよい。製造されるグリコール酸アンモニウムに対する使用乾燥生体触媒重量が多すぎると該生体触媒懸濁液由来の不純物が反応液中に多く同伴されるため精製コストが上がり、製品品質が低下するので好ましくない。逆に、製造されるグリコール酸アンモニウムに対する使用乾燥生体触媒重量が少なすぎるとリアクターボリューム当たりの生産性が低下し、大きなリアクターサイズが必要となり経済的に不利となる。   The dry biocatalyst weight used for the ammonium glycolate produced is preferably 1/50 or less, preferably 1/100 to 1/1000, more preferably 1/200 to 1/500. If the weight of the dry biocatalyst used relative to the ammonium glycolate produced is too large, a large amount of impurities from the biocatalyst suspension is entrained in the reaction solution, which increases the purification cost and lowers the product quality. Conversely, if the weight of dry biocatalyst used for the ammonium glycolate produced is too small, the productivity per reactor volume will be reduced, and a large reactor size will be required, which will be economically disadvantageous.

反応温度が低すぎると反応活性が低くなり、高濃度のグリコール酸アンモニウムを製造する場合、より多くの反応時間を必要とする。一方、反応温度が高すぎると生体触媒の熱による失活の影響で、目的とするグリコール酸アンモニウム濃度が高い場合、該濃度まで到達させることが困難となり、結果として新たに生体触媒の追添等の処置が必要となり触媒コストが高くなる。よって、通常、反応温度は氷点〜70℃がよく、好ましくは10〜60℃、より好ましくは20〜50℃がよい。   If the reaction temperature is too low, the reaction activity becomes low, and more reaction time is required to produce a high concentration of ammonium glycolate. On the other hand, if the reaction temperature is too high, the biocatalyst is deactivated by heat, and if the target ammonium glycolate concentration is high, it is difficult to reach the concentration, resulting in the addition of a new biocatalyst, etc. Therefore, the cost of the catalyst becomes high. Therefore, the reaction temperature is usually from the freezing point to 70 ° C, preferably from 10 to 60 ° C, more preferably from 20 to 50 ° C.

反応初期に微生物を懸濁させておく反応仕込み液は、水溶液であれば特に限定されないが、通常、水が用いられる。また、浸透圧の関係で微生物の安定性を上げるという観点からバッファー液を用いてもよい。また、活性を低下させない範囲であれば極性有機溶媒を任意の割合で混合させてもよい。   The reaction charging solution for suspending microorganisms at the initial stage of the reaction is not particularly limited as long as it is an aqueous solution, but water is usually used. Further, a buffer solution may be used from the viewpoint of increasing the stability of the microorganism due to the osmotic pressure. Moreover, you may mix a polar organic solvent in arbitrary ratios, if it is a range which does not reduce activity.

反応液のpHは使用する生体触媒のニトリル加水分解活性の至適pHにすることが好ましく、通常、反応液pHは6〜13がよく、好ましくは9〜11がよい。しかし、得られる製品の都合上、必要なpHが規定されるならばこの限りではなく、反応活性の低下が極端に現れない範囲で任意に選ぶことができる。   The pH of the reaction solution is preferably adjusted to the optimum pH for the nitrile hydrolysis activity of the biocatalyst to be used. Usually, the reaction solution pH is preferably 6 to 13, and more preferably 9 to 11. However, for the convenience of the product to be obtained, this is not limited as long as the required pH is defined, and it can be arbitrarily selected within a range in which the decrease in reaction activity does not appear extremely.

本発明における、カチオン交換樹脂を用いたカチオン交換には、上記のような条件で製造したグリコール酸アンモニウム水溶液をそのまま用いることもできるし、或いは電気透析による脱塩処理を施して得られるグリコール酸の水溶液を用いることもできるが、脱色の効率を高くするには電気透析による脱塩処理を施した後の水溶液の方が好ましい。   In cation exchange using a cation exchange resin in the present invention, an aqueous ammonium glycolate solution produced under the above conditions can be used as it is, or glycolic acid obtained by subjecting to desalination treatment by electrodialysis can be used. Although an aqueous solution can be used, the aqueous solution after the desalting treatment by electrodialysis is preferable in order to increase the efficiency of decolorization.

本発明において使用されるカチオン交換樹脂としては弱酸性カチオン交換樹脂や強酸性カチオン交換樹脂を用いることができるが、好ましくは強酸性カチオン交換樹脂がよい。具体的には、例えば、ダイヤイオンSK1B、同SK104、同SK110、同SK112、同SK116、同PK208、同PK212、同PK216、同PK220、同PK228、同UBK530、同UBK550、同UBK535、同UBK555(以上三菱化学社製)、レバチットS100、同S109、同、SP112、同STV40、同MSD1368(以上バイエル社製)、アンバーライトIR120B、同120BN、同IR124、同1006F、同200CT、同252(以上オルガノ社製)、ダウエックス モノスフィア650C、同マラソンC、同HCR−S、同マラソンMSC(以上ダウケミカル・カンパニー社製)等が挙げられるが、必ずしもこれらに限定されるものではない。これらのカチオン交換樹脂は、通常の方法で、予めプロトン(H+)型に再生処理してから使用する。   As the cation exchange resin used in the present invention, a weak acid cation exchange resin or a strong acid cation exchange resin can be used, and a strong acid cation exchange resin is preferable. Specifically, for example, Diaion SK1B, SK104, SK110, SK112, SK116, PK208, PK212, PK216, PK220, PK228, UBK530, UBK550, UBK535, UBK555 ( (Mitsubishi Chemical Corporation), Lebatit S100, S109, SP112, STV40, MSD1368 (above Bayer), Amberlite IR120B, 120BN, IR124, 1006F, 200CT, 252 (above organo) ), Dowex Monosphere 650C, Marathon C, HCR-S, Marathon MSC (manufactured by Dow Chemical Company) and the like, but are not necessarily limited thereto. These cation exchange resins are used after being regenerated into a proton (H +) type by a conventional method.

本発明におけるカチオン交換樹脂の使用方法としては、通常の方法が採用される。即ち、UV〜可視光領域において特異的な吸収を示す微量着色物質を含有する、上記の生体触媒を用いて製造されるグリコール酸水溶液又はグリコール酸アンモニウム水溶液に所定量のカチオン交換樹脂を添加するバッチ式でもよいし、或いはまた、該カチオン交換樹脂を樹脂塔に充填して、該グリコール酸水溶液又はグリコール酸アンモニウム水溶液を通液するカラム法を採用することもできる。バッチ式の場合は、着色物質の該カチオン交換樹脂への平衡吸着に達するのに十分な時間の撹拌を行った後、上澄みを回収すれば十分に脱色されたグリコール酸水溶液又はグリコール酸アンモニウム水溶液を得ることができる。また、カラム法の場合は、樹脂通過液が、十分に脱色されたグリコール酸水溶液又はグリコール酸アンモニウム水溶液となる。   As a method of using the cation exchange resin in the present invention, a usual method is adopted. That is, a batch in which a predetermined amount of a cation exchange resin is added to a glycolic acid aqueous solution or an ammonium glycolate aqueous solution produced using the above biocatalyst, which contains a trace amount of a coloring substance exhibiting specific absorption in the UV to visible light region. Alternatively, a column method in which the cation exchange resin is filled in a resin tower and the aqueous glycolic acid solution or the aqueous ammonium glycolate solution is passed can be employed. In the case of the batch type, after stirring for a sufficient time to reach the equilibrium adsorption of the coloring substance to the cation exchange resin, if the supernatant is recovered, a sufficiently decolorized glycolic acid aqueous solution or ammonium glycolate aqueous solution can be obtained. Obtainable. In the case of the column method, the resin passing solution is a sufficiently decolorized glycolic acid aqueous solution or ammonium glycolate aqueous solution.

カチオン交換樹脂の使用量は、グリコール酸アンモニウム水溶液を処理する場合と、電気透析による脱塩処理液であるグリコール酸水溶液を処理する場合とでは異なる。グリコール酸アンモニウム水溶液の場合は、樹脂の総交換容量がアンモニウムイオンと当量以上に相当する樹脂量は必須であり、更に確実に着色成分を除去するためには、通常1.2倍当量以上の樹脂を使用するのがよい。また、グリコール酸水溶液の場合、樹脂の総交換容量が、若干含まれているカチオン成分と当量以上に相当する樹脂量であれば可能であるが、この場合もより過剰に樹脂を使用する方が好ましい。更にカラム法の場合、樹脂の破過、樹脂の再生を行うまでの時間を長くとるために、より過剰の樹脂を使用することは通常行われることである。   The amount of cation exchange resin used is different between the case of treating an aqueous ammonium glycolate solution and the case of treating an aqueous glycolic acid solution that is a desalting solution by electrodialysis. In the case of an ammonium glycolate aqueous solution, the amount of the resin corresponding to the total exchange capacity of the resin equal to or more than that of ammonium ions is essential, and in order to remove the coloring component more reliably, the resin is usually 1.2 times equivalent or more. It is good to use. In the case of an aqueous glycolic acid solution, the total exchange capacity of the resin is possible as long as the amount of the resin is equivalent to an equivalent amount or more of the cation component that is slightly contained, but in this case as well, it is better to use the resin in excess. preferable. Further, in the case of the column method, in order to increase the time until resin breakthrough and resin regeneration, it is common practice to use more excess resin.

樹脂処理時の温度は常温でもよいが、必要であれば樹脂の耐熱性が保証される範囲で加温しても構わない。通常は70℃以下で行われる。また、カラム法の場合、通液速度は空間速度(L/L−樹脂/Hr)で1〜20の範囲、好ましくは2〜10の範囲がよい。   The temperature during the resin treatment may be room temperature, but if necessary, the resin may be heated within a range in which the heat resistance of the resin is guaranteed. Usually, it is performed at 70 ° C. or lower. In the case of the column method, the liquid flow rate is in the range of 1 to 20, preferably 2 to 10, in terms of space velocity (L / L-resin / Hr).

カラム法の場合、樹脂通過液に着色物質の混入が確認される点を破過点とし、そこから適当な逆再生剤(例えば水酸化ナトリウム水溶液等のアルカリ液)を用いて逆再生を行い、或いは行わずに、適当な再生剤(例えば希塩酸、希硫酸等の鉱酸)を用いて再生処理を行えば、樹脂は繰り返し使用が可能である。   In the case of the column method, the point where mixing of colored substances is confirmed in the resin passage liquid is used as a breakthrough point, and reverse regeneration is performed using an appropriate reverse regeneration agent (e.g., alkaline liquid such as sodium hydroxide aqueous solution) from there. Alternatively, the resin can be used repeatedly if it is regenerated using a suitable regenerant (eg, mineral acid such as dilute hydrochloric acid or dilute sulfuric acid).

本発明における電気透析とは、当業者に知られる一般的な方法であって、特に限定されるものではない。例えば、バイポーラ膜とカチオン膜を組み合わせて該カチオン膜をアンモニウムイオンに通過させ、別室に持っていくことでグリコール酸水溶液を得る方法、或いはバイポーラ膜とアニオン膜を組み合わせて該アニオン膜をグリコール酸アニオンに通過させ、別室に持っていくことでグリコール酸水溶液を得る方法、或いはバイポーラ膜とカチオン交換膜とアニオン交換膜を組み合わせて、それぞれアンモニウムイオンとグリコール酸アニオンを通過させ、別室に持っていくことでグリコール酸水溶液とアンモニア水を得る方法等を挙げることができる。
<実施例>
The electrodialysis in the present invention is a general method known to those skilled in the art and is not particularly limited. For example, a method of obtaining a glycolic acid aqueous solution by combining a bipolar membrane and a cation membrane and passing the cation membrane through ammonium ions and bringing it into a separate chamber, or combining a bipolar membrane and an anion membrane to make the anion membrane an glycolate anion To obtain a glycolic acid aqueous solution by passing it through a separate chamber, or combining a bipolar membrane, a cation exchange membrane, and an anion exchange membrane to pass ammonium ions and glycolate anions, respectively, and bring them into a separate chamber. And a method for obtaining an aqueous solution of glycolic acid and aqueous ammonia.
<Example>

以下実施例を挙げて本発明をより詳細に説明する。尚、本発明はこれらの実施例により限定されるものではなく、その要旨を超えない限り、様々な変更、修飾が可能である。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited by these Examples, A various change and modification are possible unless it exceeds the summary.

反応液の分析は、以下のごとく実施した。
基質であるα−ヒドロキシニトリル及び生成物であるα−ヒドロキシ酸水溶液又はグリコール酸アンモニウムは、高速液体クロマトグラフィーで測定した。カラムはイオン排除カラム(島津Shim−pack SCR−101H)、カラム温度は40℃、移動相はリン酸水溶液(pH=2.3)、検出器はUV(島津SPD−10AV vp、210nm)及びRI(島津RID−6A)で実施した。
The reaction solution was analyzed as follows.
The substrate α-hydroxynitrile and the product α-hydroxy acid aqueous solution or ammonium glycolate were measured by high performance liquid chromatography. The column is an ion exclusion column (Shimadzu Shim-pack SCR-101H), the column temperature is 40 ° C., the mobile phase is phosphoric acid aqueous solution (pH = 2.3), the detector is UV (Shimadzu SPD-10AV vp, 210 nm) and RI (Shimadzu RID-6A).

カチオン交換処理液の脱色の評価は、以下のごとく実施した。
着色程度の評価(色相変化)は、色度計を用いて実施した。装置は、柳本製作所製空気浴法微量融点測定装置を用いた。評価結果は色差表示法(JIS Z 8730)に則り、L値、a値、b値の3つで表される。L値は明度で白黒の度合いを表し、Lが100の場合完全な白となり、Lが0の場合完全な黒となる。また、a値は大きくなるほど赤味が濃く、小さくなるほど緑味が濃くなる。また、b値は大きくなるほど黄味が強く、小さくなるほど青味が強くなる。
Evaluation of decolorization of the cation exchange treatment solution was performed as follows.
The evaluation of the degree of coloring (change in hue) was carried out using a chromaticity meter. The apparatus used was an air bath method trace melting point measuring apparatus manufactured by Yanagimoto Seisakusho. The evaluation results are represented by three values of L value, a value, and b value according to the color difference display method (JIS Z 8730). The L value represents the degree of black and white with lightness. When L is 100, it is completely white, and when L is 0, it is completely black. Further, the redness becomes darker as the value a becomes larger, and the greenness becomes darker as the value a becomes smaller. Moreover, the b value increases as the b value increases, and the blue color increases as the b value decreases.

[生体触媒の調製]
塩化ナトリウム0.1重量%、リン酸二水素カリウム0.1重量%、硫酸マグネシウム七水和物0.05重量%、硫酸第一鉄七水和物0.005重量%、硫酸アンモニウム0.1重量%、硝酸カリウム0.1重量%硫酸マンガン五水和物0.005重量%を含む培養液250mlを三角フラスコに仕込み、pHが7になるように水酸化ナトリウムで調整し、121℃で20分間滅菌した後、アセトニトリル0.5重量%を添加した。これにAcinetobacter sp.AK226を接種して30℃で振とう培養した(前培養)。ミーストパウダー0.3重量%、グルタミン酸ナトリウム0.5重量%、硫酸アンモニウム0.5重量%、リン酸水素二カリウム0.2重量%、リン酸二水素カリウム0.15重量%、塩化ナトリウム0.1重量%、硫酸マグネシウム七水和物0.18重量%、塩化マンガン4水和物0.02重量%、塩化カルシウム二水和物0.01重量%、硫酸鉄7水和物0.003重量%、硫酸亜鉛7水和物0.002重量%、硫酸銅5水和物0.002重量%、大豆油2重量%を含む培養液3Lを5Lジャーファーメンターに仕込み、121℃で20分間滅菌した後、前記の前培養液を接種して30℃で通気攪拌を行った。培養開始10時間後から大豆油のフィードを開始した。PHは7になるようにリン酸及びアンモニア水でコントロールし、最終的に約5重量%のAcinetobacter sp.AK226懸濁液を得た。更に0.06Mリン酸バッファーを用いて2回洗浄を行い、最終的にリン酸バッファーに懸濁されたAcinetobacter sp.AK226懸濁液(乾燥菌体濃度5〜10重量%)を得た。
[Preparation of biocatalyst]
Sodium chloride 0.1 wt%, potassium dihydrogen phosphate 0.1 wt%, magnesium sulfate heptahydrate 0.05 wt%, ferrous sulfate heptahydrate 0.005 wt%, ammonium sulfate 0.1 wt% %, Potassium nitrate 0.1 wt% Manganese sulfate pentahydrate 250ml culture solution 250ml was placed in an Erlenmeyer flask, adjusted to pH 7 with sodium hydroxide and sterilized at 121 ° C for 20 minutes After that, 0.5% by weight of acetonitrile was added. This was inoculated with Acinetobacter sp. AK226 and cultured with shaking at 30 ° C. (preculture). Mist powder 0.3% by weight, sodium glutamate 0.5% by weight, ammonium sulfate 0.5% by weight, dipotassium hydrogen phosphate 0.2% by weight, potassium dihydrogen phosphate 0.15% by weight, sodium chloride 0. 1% by weight, magnesium sulfate heptahydrate 0.18% by weight, manganese chloride tetrahydrate 0.02% by weight, calcium chloride dihydrate 0.01% by weight, iron sulfate heptahydrate 0.003% by weight 3L of culture broth containing 0.002% by weight of zinc sulfate heptahydrate, 0.002% by weight of copper sulfate pentahydrate and 2% by weight of soybean oil was charged into a 5L jar fermenter and sterilized at 121 ° C for 20 minutes. After that, the pre-cultured solution was inoculated and aerated and stirred at 30 ° C. Soybean oil feed was started 10 hours after the start of the culture. The pH was controlled with phosphoric acid and aqueous ammonia so that the pH was 7, and finally a suspension of about 5% by weight of Acinetobacter sp. AK226 was obtained. Furthermore, it was washed twice with 0.06M phosphate buffer, and finally Acinetobacter sp. AK226 suspension (dry cell concentration 5 to 10% by weight) suspended in phosphate buffer was obtained.

[バイオ法グリコール酸アンモニウム水溶液の調製]
上記で得られたAcinetobacter sp.AK226懸濁液を用いて、グリコロニトリルの加水分解によるグリコール酸アンモニウムの蓄積実験を行った。既知菌体濃度のAcinetobacter sp.AK226懸濁液を濃度が1.02重量%となるように2L四ツ口フラスコに予め仕込まれた蒸留水316mlに懸濁させた。該フラスコにpH計と温度計を設置し反応液のpHと温度をモニタリングできるようにして、50℃恒温水槽に入れてスターラー攪拌を実施し、内温が50℃になるまでしばらく保持した。次に原料の55重量%グリコロニトリル水溶液(東京化成製)を、定量ポンプを用いて連続的に添加すると同時に、5wt%KOH水溶液定量ポンプでpHが6.5〜7に維持されるように添加した。反応中は定期的にサンプリングを行い、高速液体クロマトグラフィーでグリコロニトリルとグリコール酸アンモニウム濃度を測定し、定常グリコロニトリル濃度が2重量%以下になるように原料のポンプフィード速度を調節した。最終的なグリコール酸アンモニウム蓄積濃度は56.7重量%であった。得られたグリコール酸アンモニウムをメンブレンフィルター(1ミクロン)で減圧濾過し、AK226菌体及びそれに由来する残骸物やタンパクを除去し、バイオ法グリコール酸アンモニウム水溶液852gを得た。
[Preparation of bio-method ammonium glycolate aqueous solution]
Using the Acinetobacter sp. AK226 suspension obtained above, an ammonium glycolate accumulation experiment by hydrolysis of glycolonitrile was conducted. A suspension of Acinetobacter sp. AK226 having a known bacterial cell concentration was suspended in 316 ml of distilled water previously charged in a 2 L four-necked flask so that the concentration was 1.02% by weight. A pH meter and a thermometer were installed in the flask so that the pH and temperature of the reaction solution could be monitored. The flask was placed in a 50 ° C. constant temperature water bath and stirred with a stirrer, and held for a while until the internal temperature reached 50 ° C. Next, a 55 wt% aqueous solution of glycolonitrile (manufactured by Tokyo Chemical Industry) is continuously added using a metering pump, and at the same time, the pH is maintained at 6.5 to 7 with a 5 wt% KOH aqueous solution metering pump. Added. Sampling was periodically performed during the reaction, the concentration of glycolonitrile and ammonium glycolate was measured by high performance liquid chromatography, and the feed pump feed rate of the raw material was adjusted so that the steady glycolonitrile concentration was 2% by weight or less. The final ammonium glycolate accumulation concentration was 56.7% by weight. The obtained ammonium glycolate was filtered under reduced pressure with a membrane filter (1 micron) to remove AK226 cells and debris and proteins derived therefrom, to obtain 852 g of a biomethod ammonium glycolate aqueous solution.

[バイオ法グリコール酸水溶液の調製]
上記で得られたグリコール酸アンモニウム水溶液の一部を用いて、50.2重量%グリコール酸アンモニウム水溶液500gを調製し、バイポーラ膜電気透析装置を用いて脱アンモニウムを行った。使用した装置は、ACILYZER EX3B(株式会社トクヤマ製)で、部屋数は10室、膜面積は550cm2。バイポーラ膜とカチオン交換膜の組み合わせで構成されており、原料室に該グリコール酸アンモニウム500gを、アルカリ室に1.0重量%のアンモニア水500gを、電極室に0.5N水酸化ナトリウム水溶液を用いた。脱塩当初は、30Vの定電圧運転を実施し、運転開始から80分程度で4Aの定電流運転に切り替えた。運転中の液温は冷却操作で40℃に一定に保ち、運転の推移は原料室のpH及び電導度で監視し、終点を見極め、最終的に37.8重量%のグリコール酸水溶液が得られた。
[Preparation of aqueous bioglycolic acid solution]
Using a part of the ammonium glycolate aqueous solution obtained above, 500 g of a 50.2 wt% ammonium glycolate aqueous solution was prepared, and deammonium was removed using a bipolar membrane electrodialyzer. The apparatus used was ACILIZER EX3B (manufactured by Tokuyama Corporation), with 10 rooms and a membrane area of 550 cm2. It consists of a combination of a bipolar membrane and a cation exchange membrane. 500 g of the ammonium glycolate is used in the raw material chamber, 500 g of 1.0 wt% ammonia water is used in the alkali chamber, and 0.5 N sodium hydroxide aqueous solution is used in the electrode chamber. It was. At the beginning of desalting, a constant voltage operation of 30 V was performed, and the operation was switched to a constant current operation of 4 A in about 80 minutes from the start of operation. The liquid temperature during operation is kept constant at 40 ° C by the cooling operation, and the transition of operation is monitored by the pH and conductivity of the raw material chamber, the end point is determined, and finally 37.8 wt% glycolic acid aqueous solution is obtained. It was.

[脱色試験]
上記で得られたグリコール酸水溶液300gを、予めプロトン(H)型に再生処理された強酸性カチオン交換樹脂アンバーライトIR120B(商品名オルガノ(株))40mlを充填した樹脂塔にダウンフローで通液し、フラクションコレクターで採取した。樹脂塔は内径14mm、フィード速度は2.66ml/min(空間速度=4)、フラクション条件は5.3ml/本、処理温度は室温で実施した。原料液が無くなった時点で、蒸留水のフィードを原料液と同一条件で行うことで押出操作を行った。各フラクションのpHを測定しpH範囲が1.69〜0.71のものを回収、混合することで処理液とした。処理前と処理後の色相変化は表1のごとくであった。
[Decolorization test]
300 g of the aqueous glycolic acid solution obtained above was passed through a resin tower packed with 40 ml of a strongly acidic cation exchange resin Amberlite IR120B (trade name Organo Co., Ltd.) that had been regenerated into a proton (H + ) type in advance. Liquid was collected and collected with a fraction collector. The resin tower had an inner diameter of 14 mm, a feed rate of 2.66 ml / min (space velocity = 4), a fraction condition of 5.3 ml / tube, and a treatment temperature of room temperature. When the raw material liquid disappeared, the extrusion operation was performed by feeding distilled water under the same conditions as the raw material liquid. The pH of each fraction was measured, and those having a pH range of 1.69 to 0.71 were collected and mixed to obtain a treatment liquid. The hue change before and after the treatment was as shown in Table 1.

Figure 0004901293
Figure 0004901293

実施例1で得られたグリコール酸アンモニウム水溶液の一部20gを予めプロトン(H)型に再生処理された強酸性カチオン交換樹脂アンバーライトIR120B(商品名オルガノ(株))100mlを充填した樹脂塔にダウンフローで通液し、フラクションコレクターで採取した。樹脂塔は内径14mm、フィード速度は3.33ml/min(空間速度=2)、フラクション条件は1ml/本、処理温度は室温で実施した。原料液が無くなった時点で、蒸留水のフィードを原料液と同一条件で行うことで押出操作を行った。各フラクションのpHを測定しpH範囲が1.72〜0.73のものを回収、混合することで処理液とした。処理前と処理後の色相変化は表2のごとくであった。 Resin tower packed with 100 ml of a strongly acidic cation exchange resin Amberlite IR120B (trade name Organo Co., Ltd.), in which a portion of 20 g of the ammonium glycolate aqueous solution obtained in Example 1 was previously regenerated into a proton (H + ) type. The solution was passed through a down flow and collected with a fraction collector. The resin tower was 14 mm in inner diameter, the feed rate was 3.33 ml / min (space velocity = 2), the fraction conditions were 1 ml / tube, and the treatment temperature was room temperature. When the raw material liquid disappeared, the extrusion operation was performed by feeding distilled water under the same conditions as the raw material liquid. The pH of each fraction was measured, and those having a pH range of 1.72 to 0.73 were collected and mixed to obtain a treatment liquid. The hue change before and after the treatment was as shown in Table 2.

Figure 0004901293
Figure 0004901293

本発明によれば、製品品質上、十分に高純度のグリコール酸水溶液又はグリコール酸アンモニウム水溶液を製造することができるので、得られた高純度のグリコール酸水溶液又はグリコール酸アンモニウム水溶液は種々の用途、特に化粧品用途等に好適に使用することができる。   According to the present invention, since a sufficiently high purity glycolic acid aqueous solution or ammonium glycolate aqueous solution can be produced in terms of product quality, the obtained high purity glycolic acid aqueous solution or ammonium glycolate aqueous solution can be used in various applications. In particular, it can be suitably used for cosmetic applications.

Claims (2)

グリコロニトリルを原料に、ニトリラーゼ又はニトリルヒドラターゼ及びアミダーゼを有し、ニトリル加水分解能を有する生体触媒を用いて製造された、グリコール酸水溶液又はグリコール酸アンモニウム水溶液から、着色物を除去することにより脱色する方法であって、グリコール酸水溶液又はグリコール酸アンモニウム水溶液を、予めプロトン(H )型に再生処理された、強酸性陽イオン交換樹脂と接触させることを特徴とするグリコール酸水溶液又はグリコール酸アンモニウム水溶液の脱色方法。 Decolorization by removing colored substances from glycolic acid aqueous solution or ammonium glycolate aqueous solution produced using biocatalyst having nitrilase or nitrile hydratase and amidase and having nitrile hydrolyzing ability from glycolonitrile as raw material A glycolic acid aqueous solution or an ammonium glycolate characterized in that an aqueous glycolic acid solution or an aqueous ammonium glycolate solution is brought into contact with a strongly acidic cation exchange resin that has been regenerated into a proton (H + ) type in advance. Decolorization method of aqueous solution. グリコール酸水溶液が、グリコール酸アンモニウム水溶液を電気透析によって脱塩して得られるグリコール酸水溶液であることを特徴とする請求項1記載のグリコール酸水溶液又はグリコール酸アンモニウム水溶液の脱色方法。 The method for decoloring an aqueous glycolic acid solution or an aqueous ammonium glycolate solution according to claim 1, wherein the aqueous glycolic acid solution is an aqueous glycolic acid solution obtained by desalting an aqueous ammonium glycolate solution by electrodialysis .
JP2006125071A 2006-04-28 2006-04-28 Decolorization method of bio-method glycolic acid aqueous solution or ammonium glycolate aqueous solution Active JP4901293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125071A JP4901293B2 (en) 2006-04-28 2006-04-28 Decolorization method of bio-method glycolic acid aqueous solution or ammonium glycolate aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125071A JP4901293B2 (en) 2006-04-28 2006-04-28 Decolorization method of bio-method glycolic acid aqueous solution or ammonium glycolate aqueous solution

Publications (2)

Publication Number Publication Date
JP2007295820A JP2007295820A (en) 2007-11-15
JP4901293B2 true JP4901293B2 (en) 2012-03-21

Family

ID=38765871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125071A Active JP4901293B2 (en) 2006-04-28 2006-04-28 Decolorization method of bio-method glycolic acid aqueous solution or ammonium glycolate aqueous solution

Country Status (1)

Country Link
JP (1) JP4901293B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165393B2 (en) * 2008-01-10 2013-03-21 旭化成ケミカルズ株式会社 Method for producing glycolic acid or ammonium glycolate
KR101274369B1 (en) 2008-06-20 2013-06-13 아사히 가세이 케미칼즈 가부시키가이샤 PROCESS FOR PRODUCING α-HYDROXY ACID
JP5336904B2 (en) * 2009-03-31 2013-11-06 旭化成ケミカルズ株式会社 Method for producing carboxylic acid
CN114260028A (en) * 2021-12-27 2022-04-01 同舟纵横(厦门)流体技术有限公司 Method and device for decoloring sodium glutamate feed liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859349A (en) * 1973-02-15 1975-01-07 Du Pont Purification of hydroxyacetic acid
JPS6156086A (en) * 1984-08-27 1986-03-20 Asahi Chem Ind Co Ltd Microbial preparation of alpha-hydroxyacid and its salt
US6416980B1 (en) * 2001-02-23 2002-07-09 E. I. Du Pont De Nemours & Company Method for producing glycolic acid from glycolonitrile using nitrilase
KR100974693B1 (en) * 2005-10-26 2010-08-06 미쓰이 가가쿠 가부시키가이샤 Process for producing glycolic acid

Also Published As

Publication number Publication date
JP2007295820A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP4235450B2 (en) Method for producing alpha-hydroxy acid, glycolic acid, 2-hydroxyisobutyric acid from corresponding alpha-hydroxynitrile using nitrilase
US5518906A (en) Production of d-pantoic acid and d-pantothenic acid
JP5297455B2 (en) Method for producing α-hydroxy acid
US6043061A (en) Process for producing amide compound
EP1828385A2 (en) Enzymatic production of glycolic acid
JP4901293B2 (en) Decolorization method of bio-method glycolic acid aqueous solution or ammonium glycolate aqueous solution
HU226148B1 (en) Method for preparing 2-hydroxy 4-methylthio butyric acid using a nitrilase
US9382560B2 (en) Method for producing amide compound
WO2012165415A1 (en) Method for producing acrylamide
CN1635990A (en) Method for producing 2-hydroxyisobutyric acid and methacrylic acid from acetone cyanohydrin
JP5987825B2 (en) Acrylamide aqueous solution, stabilization method of acrylamide aqueous solution
JP2007295821A (en) Production method of alpha-hydroxylic acid or ammonium alpha-hydroxylate with biocatalyst
WO2011148867A1 (en) Method for manufacturing an amide compound
JP5165393B2 (en) Method for producing glycolic acid or ammonium glycolate
CN103757068B (en) A kind of preparation method of benzoic acid derivative
JP4553242B2 (en) Method for producing carboxylic acid (ammonium) using biocatalyst
JP5165396B2 (en) Method for producing α-hydroxy acid or ammonium α-hydroxy acid
JP2007289062A (en) METHOD FOR PRODUCING alpha-HYDROXYACID OR AMMONIUM SALT OF alpha-HYDROXYACID BY USING BIOCATALYST
JP4020991B2 (en) Process for producing D-pantoic acid, D-pantothenic acid and salts thereof
JP2007236396A (en) Process for producing amide compound using microbial catalyst
JP2006006119A (en) Method and apparatus for treating microbial cell and microbial cell catalyst
JP2007295933A (en) Method for producing amide compound by using microorganism catalyst
JP2009165418A (en) Method for producing ammonium carboxylate
JP2007082401A (en) METHOD FOR PRODUCING alpha-HYDROXYACID AMMONIUM SALT BY USING BIOCATALYST

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350