JP4900569B2 - Method for producing aluminum-containing zinc oxide sintered body - Google Patents
Method for producing aluminum-containing zinc oxide sintered body Download PDFInfo
- Publication number
- JP4900569B2 JP4900569B2 JP2006067968A JP2006067968A JP4900569B2 JP 4900569 B2 JP4900569 B2 JP 4900569B2 JP 2006067968 A JP2006067968 A JP 2006067968A JP 2006067968 A JP2006067968 A JP 2006067968A JP 4900569 B2 JP4900569 B2 JP 4900569B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc oxide
- alumina
- weight
- sintered body
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims description 114
- 239000011787 zinc oxide Substances 0.000 title claims description 58
- 229910052782 aluminium Inorganic materials 0.000 title claims description 31
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000005245 sintering Methods 0.000 claims description 44
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000000630 rising effect Effects 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 19
- 230000007423 decrease Effects 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010248 power generation Methods 0.000 description 7
- 238000002490 spark plasma sintering Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052596 spinel Inorganic materials 0.000 description 4
- 239000011029 spinel Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は、アルミニウム含有酸化亜鉛焼結体の製造方法に関する。より詳細には、熱電変換材料として有用な、低熱伝導率及び高導電率の特性を兼備したアルミニウム含有酸化亜鉛焼結体の製造方法に関する。 The present invention relates to a method for producing an aluminum-containing zinc oxide sintered body . More specifically, the present invention relates to a method for producing an aluminum-containing zinc oxide sintered body that is useful as a thermoelectric conversion material and has characteristics of low thermal conductivity and high conductivity.
従来、熱電変換材料としては、p型とn型とが知られている。熱電変換材料は、材料の温度差に基づいて電気を取り出すことができる機能材料であり、その性能は、一般に性能指数Zによって示される。具体的には、性能指数Zは、下記式(1)
Z=S2×σ/κ (1)
(但し、Sはゼーベック係数、σは導電率、κは熱伝導率を示す。)
によって示される。ここで、式中の(S2×σ)は、特に「出力因子」と呼ばれる。
Conventionally, p-type and n-type are known as thermoelectric conversion materials. A thermoelectric conversion material is a functional material that can extract electricity based on a temperature difference between materials, and its performance is generally indicated by a figure of merit Z. Specifically, the figure of merit Z is given by the following formula (1)
Z = S 2 × σ / κ (1)
(However, S is the Seebeck coefficient, σ is the conductivity, and κ is the thermal conductivity.)
Indicated by. Here, (S 2 × σ) in the formula is particularly called an “output factor”.
熱電変換材料の性能を高める(Zを大きくする)ためには、式(1)から考察すると、出力因子を大きくするとともに、熱伝導率を小さくすることが重要となる。 In order to improve the performance of the thermoelectric conversion material (increase Z), considering from the equation (1), it is important to increase the output factor and decrease the thermal conductivity.
熱電変換材料としては金属酸化物が良く知られている。特に亜鉛の一部をアルミニウムに置換した酸化亜鉛(Zn1−xAlxO)は、n型熱電変換材料として公知であり、廃熱発電などの高温域での用途展開が期待されている。例えば、特許文献1〜4には、亜鉛の一部をアルミニウムに置換した酸化亜鉛(以下「アルミニウム含有酸化亜鉛」とも言う)からなる熱電変換材料及びその用途について記載されている。
Metal oxides are well known as thermoelectric conversion materials. In particular, zinc oxide (Zn 1-x Al x O) in which a part of zinc is substituted with aluminum is known as an n-type thermoelectric conversion material, and is expected to be used in a high temperature range such as waste heat power generation. For example,
当該アルミニウム含有酸化亜鉛は、次のような特徴を有する。即ち、希少元素を含まず、安価に製造できる,人体に対する有害性が低い,出力因子が他のn型熱電変換材料よりも大きい,などが長所として挙げられる。他方、熱伝導率が他のn型熱電変換材料に比して極端に大きいという特徴も有する。そのため、大きな出力因子を有するにもかかわらず、熱伝導率も大きいために性能指数Zを十分に高めることができないという問題がある。 The aluminum-containing zinc oxide has the following characteristics. In other words, it can be manufactured inexpensively without containing rare elements, has low harmfulness to the human body, and has a larger output factor than other n-type thermoelectric conversion materials. On the other hand, it also has a feature that its thermal conductivity is extremely large compared to other n-type thermoelectric conversion materials. Therefore, there is a problem that the figure of merit Z cannot be sufficiently increased because of the large thermal conductivity despite having a large output factor.
上記問題を改善するためには、例えば、材料中に気孔を導入して相対密度を低下させて、熱伝導率κを小さくすることが挙げられる。即ち、多孔化による熱伝導率の低下である。この場合における相対密度と熱伝導率との関係は、Maxwellの式により見積もりが可能である。つまり、ZnOの熱伝導率を30W/mKとし、気孔(空気)の熱伝導率を0.024W/mKとすると、相対密度を70重量%に小さくする(30重量%の気孔の導入)ことにより、熱伝導率は16W/mKと約半分にまで小さくすることができる。 In order to improve the above problem, for example, pores are introduced into the material to lower the relative density, thereby reducing the thermal conductivity κ. That is, it is a decrease in thermal conductivity due to porosity. In this case, the relationship between the relative density and the thermal conductivity can be estimated by Maxwell's formula. That is, assuming that the thermal conductivity of ZnO is 30 W / mK and the thermal conductivity of pores (air) is 0.024 W / mK, the relative density is reduced to 70% by weight (introduction of 30% by weight of pores). The thermal conductivity can be reduced to about half with 16 W / mK.
しかしながら、上記手法を採用しても、性能指数Zを十分に高めるには至っていない。理由は、相対密度の低下により、導電経路も減少するために、導電率σについても同時に低下させてしまうからである。なお、相対密度と導電率との関係は限定的ではないが、一般には相対密度が90%未満になると導電率は著しく低下する。このような理由に基づき、従来法では、常圧焼結法、加圧焼結法、真空焼結法、放電プラズマ焼結法等のいかなる製造方法によっても、低熱伝導率及び高導電率の特性を兼備したアルミニウム含有酸化亜鉛焼結体は得られていない。
本発明は、熱電変換材料として有用な、低熱伝導率及び高導電率の特性を兼備したアルミニウム含有酸化亜鉛焼結体の製造方法を提供することを目的とする。 An object of this invention is to provide the manufacturing method of the aluminum containing zinc oxide sintered compact which has the characteristic of low thermal conductivity and high conductivity useful as a thermoelectric conversion material.
本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、アルミニウム含有酸化亜鉛焼結体の製造方法として、特定条件における放電プラズマ焼結を採用する場合には、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor is able to achieve the above object when employing discharge plasma sintering under specific conditions as a method for producing an aluminum-containing zinc oxide sintered body. The headline and the present invention were completed.
即ち、本発明は、下記のアルミニウム含有酸化亜鉛焼結体の製造方法に関する。 That is, this invention relates to the manufacturing method of the following aluminum containing zinc oxide sintered compact .
1.下記工程を順に有する、アルミニウム含有酸化亜鉛焼結体の製造方法:
(1)酸化亜鉛とアルミナとを含有する原料混合物であって、アルミナ含有量が酸化亜鉛重量とアルミナ重量との合計量の2重量%以下である原料混合物を用意する工程1、
(2)前記原料混合物からなる圧粉体を、昇温速度50℃/分以上で800〜1100℃まで昇温させる工程2、
(3)昇温させた前記圧粉体を、ガス圧0.05〜0.13MPaの不活性ガス中、40MPa以下で加圧しながら、且つ、前記温度を維持しながら、10分以下で放電プラズマ焼結する工程3、及び
(4)前記放電プラズマ焼結により得られる焼結体を、少なくとも600℃になるまで、降温速度50℃/分以上で降温させる工程4。
2.原料混合物中のアルミナ含有量が、酸化亜鉛重量とアルミナ重量との合計量の1〜2重量%である、上記項1に記載の製造方法。
3.酸化亜鉛が粉末であり、前記粉末の平均粒子径が2μm以下である、上記項1又は2に記載の製造方法。
4.アルミナが粉末であり、前記粉末の平均粒子径が5nm〜2μmである、上記項1〜3のいずれかに記載の製造方法。
以下、本発明のアルミニウム含有酸化亜鉛焼結体の製造方法について説明する。
1 . A method for producing an aluminum-containing zinc oxide sintered body having the following steps in order:
(1)
(2)
(3) Discharge plasma in 10 minutes or less while pressurizing the heated green compact at 40 MPa or less in an inert gas having a gas pressure of 0.05 to 0.13 MPa and maintaining the temperature.
2.
3.
4).
Hereinafter, the manufacturing method of the aluminum containing zinc oxide sintered compact of this invention is demonstrated.
アルミニウム含有酸化亜鉛焼結体
本発明のアルミニウム含有酸化亜鉛焼結体は、一般組成式:Zn1−yAlxO1+δ
〔但し、0<x≦0.035、0≦y≦x、1+δは酸素原子数を示す〕
によって示される。焼結体におけるアルミニウムの含有態様は限定的ではなく、例えば、酸化亜鉛の亜鉛原子の一部がアルミニウム原子に置換されたいわゆる置換型固溶の態様、酸化亜鉛格子の間にアルミニウム原子が入り込んだいわゆる侵入型固溶の態様等がある。
Aluminum-containing zinc oxide sintered body The aluminum-containing zinc oxide sintered body of the present invention has a general composition formula: Zn 1-y Al x O 1 + δ
[However, 0 <x ≦ 0.035, 0 ≦ y ≦ x, 1 + δ represents the number of oxygen atoms]
Indicated by. The aluminum content in the sintered body is not limited. For example, a so-called substitutional solid solution in which some zinc atoms of zinc oxide are substituted with aluminum atoms, aluminum atoms have entered between zinc oxide lattices. There are so-called interstitial solid solutions.
アルミニウムの含有量を示すxは0<x≦0.035であれば良いが、0.015≦x≦0.035がより好ましい。 Although x which shows content of aluminum should just be 0 <x <= 0.035, 0.015 <= x <= 0.035 is more preferable.
亜鉛の含有量は1−yで表される。yの採り得る値は、例えば、上記したアルミニウム含有態様に応じて変動する。yの採り得る値は限定的ではないが、yは0≦y≦xであればよい。 The zinc content is represented by 1-y. The value that y can take varies depending on, for example, the above-described aluminum-containing mode. The value that y can take is not limited, but y may be 0 ≦ y ≦ x.
酸素原子数は1+δで表される。δの採り得る範囲は限定的ではないが、0≦δ≦(3x−2y)/2の範囲内であれば好ましい。 The number of oxygen atoms is represented by 1 + δ. The range in which δ can be taken is not limited, but is preferably in the range of 0 ≦ δ ≦ (3x−2y) / 2.
本発明のアルミニウム含有酸化亜鉛焼結体は、従来品と比較すると、相対密度が低い場合であっても導電率σの低下が抑制されている。具体的には、相対密度が70〜90%の場合に、20℃における導電率が250S/cm以上である。また、相対密度が80〜90%の場合に、20℃における導電率が500S/cm以上である。 In the aluminum-containing zinc oxide sintered body of the present invention, the decrease in the conductivity σ is suppressed even when the relative density is low as compared with the conventional product. Specifically, when the relative density is 70 to 90%, the conductivity at 20 ° C. is 250 S / cm or more. Further, when the relative density is 80 to 90%, the conductivity at 20 ° C. is 500 S / cm or more.
なお、本明細書における相対密度は、次式により算出される密度である。即ち、気孔や欠陥を含むバルク体の実測密度を嵩密度(実密度)とし、気孔や欠陥を含まないとして理論的に算出される密度を理論密度とし、両密度を[嵩密度/理論密度×100(%)]に代入することによって算出される密度である。 In addition, the relative density in this specification is a density calculated by the following formula. That is, the measured density of the bulk body including pores and defects is defined as the bulk density (actual density), the theoretically calculated density without including pores and defects is defined as the theoretical density, and both densities are expressed as [bulk density / theoretical density × 100 (%)] is a density calculated by substitution.
本発明のアルミニウム含有酸化亜鉛焼結体の平均結晶粒子径は限定的ではないが、2μm以下が好ましく、500nm以下がより好ましい。なお、この値は、電子顕微鏡による観察により無作為に選択した100個以上の結晶粒子についてインターセプト法又は画像解析法により求めた直径の測定値の算術平均である。 The average crystal particle diameter of the aluminum-containing zinc oxide sintered body of the present invention is not limited, but is preferably 2 μm or less, and more preferably 500 nm or less. This value is the arithmetic average of the measured diameter values obtained by the intercept method or the image analysis method for 100 or more crystal particles randomly selected by observation with an electron microscope.
本発明のアルミニウム含有酸化亜鉛焼結体は、相対密度の低下に伴って、熱伝導率κは低下する。これは、相対密度の低下によって多孔化することに基づく効果であり、かかる相関関係はmaxwellの式により理論的に特定される相関曲線と実質的に一致する。また、相対密度を固定した場合には、焼結体の測定温度が高くなるに従って熱伝導率κは低下するため、高温環境下で動作させる材料として用いる場合ほど、熱伝導率κを低くした状態で使用できる。 In the aluminum-containing zinc oxide sintered body of the present invention, the thermal conductivity κ decreases as the relative density decreases. This is an effect based on porosity due to a decrease in relative density, and such correlation substantially matches the correlation curve theoretically specified by the maxwell equation. In addition, when the relative density is fixed, the thermal conductivity κ decreases as the measurement temperature of the sintered body increases. Therefore, the thermal conductivity κ is lowered as the material is operated in a high temperature environment. Can be used in
以上の通り、本発明のアルミニウム含有酸化亜鉛焼結体は、相対密度を低くした場合に、熱伝導率κを低くできるとともに、導電率σの低下を従来の常識を覆すかの如く、高く維持することができる。このような特性を有するため、本発明のアルミニウム含有酸化亜鉛焼結体は、熱電変換材料の性能指数Zが高い。また、相対密度を低くした材料で使用する場合には、熱電変換材料の軽量化、耐熱衝撃特性の改善、コスト削減等にも寄与する。 As described above, when the relative density is lowered, the aluminum-containing zinc oxide sintered body of the present invention can lower the thermal conductivity κ, and keep the decrease in the conductivity σ high as if the conventional common sense is overturned. can do. Since it has such characteristics, the aluminum-containing zinc oxide sintered body of the present invention has a high performance index Z of the thermoelectric conversion material. In addition, when used with a material having a low relative density, it contributes to weight reduction of thermoelectric conversion materials, improvement of thermal shock resistance, cost reduction, and the like.
より具体的には、性能指数Zは下記式(1)
Z=S2×σ/κ (1)
(但し、Sはゼーベック係数を示す。σは導電率:S/cmを示す。κは熱伝導率:W/mKを示す。)により定義され、相対密度が65〜90%である場合に、20℃における性能指数Zは0.2×10−5/K以上である。また、相対密度が80〜90%である場合に、20℃における性能指数Zは0.5×10−5/K以上である。
More specifically, the figure of merit Z is given by the following formula (1)
Z = S 2 × σ / κ (1)
(Where S is the Seebeck coefficient, σ is conductivity: S / cm, κ is thermal conductivity: W / mK), and the relative density is 65 to 90%, The figure of merit Z at 20 ° C. is 0.2 × 10 −5 / K or more. When the relative density is 80 to 90%, the figure of merit Z at 20 ° C. is 0.5 × 10 −5 / K or more.
上記性能指数で評価される熱電変換特性は、従来品に対して明確に優位性があり、即ち、本発明のアルミニウム含有酸化亜鉛焼結体はn型熱電変換材料として廃熱発電、地熱発電、太陽熱発電等の高温域での用途展開に対して有利である。なお、n型熱電変換材料は材料内部の高温端から低温端に向かって電子が流れる(電流の向きは逆)ことにより、電流を取り出すことができる。 The thermoelectric conversion characteristics evaluated by the above figure of merit are clearly superior to conventional products, that is, the aluminum-containing zinc oxide sintered body of the present invention is an n-type thermoelectric conversion material such as waste heat power generation, geothermal power generation, This is advantageous for application development in high-temperature areas such as solar thermal power generation. In addition, an n-type thermoelectric conversion material can take out an electric current because an electron flows into the low temperature end from the high temperature end inside a material (the direction of an electric current is reverse).
アルミニウム含有酸化亜鉛焼結体の製造方法
本発明のアルミニウム含有酸化亜鉛焼結体は、次の工程を順に有する、放電プラズマ焼結法を用いた製造方法によって好適に製造することができる:
(1)酸化亜鉛とアルミナとを含有する原料混合物であって、アルミナ含有量が酸化亜鉛重量とアルミナ重量との合計量の2重量%以下である原料混合物を用意する工程1、
(2)前記原料混合物からなる圧粉体を、昇温速度50℃/分以上で800〜1100℃まで昇温させる工程2、
(3)昇温させた前記圧粉体を、ガス圧0.05〜0.13MPaの不活性ガス中、40MPa以下で加圧しながら、且つ、前記温度を維持しながら、10分以下で放電プラズマ焼結する工程3、及び
(4)前記放電プラズマ焼結により得られる焼結体を、少なくとも600℃になるまで、降温速度50℃/分以上で降温させる工程4。
Method for Producing Aluminum-Containing Zinc Oxide Sintered Body The aluminum-containing zinc oxide sintered body of the present invention can be suitably produced by a production method using a discharge plasma sintering method having the following steps in order:
(1)
(2)
(3) Discharge plasma in 10 minutes or less while pressurizing the heated green compact at 40 MPa or less in an inert gas having a gas pressure of 0.05 to 0.13 MPa and maintaining the temperature.
上記の通り、本発明の製造方法では、原料として酸化亜鉛とアルミナとを用いて、原料混合物からなる圧粉体を特定条件下において放電プラズマ焼結する。放電プラズマ焼結は、公知の焼結機によって実施できるが、特定の条件下において放電プラズマ焼結を行うことによって本発明のアルミニウム含有酸化亜鉛焼結体は得られる。 As described above, in the production method of the present invention, zinc oxide and alumina are used as raw materials, and a green compact made of a raw material mixture is subjected to discharge plasma sintering under specific conditions. Although the discharge plasma sintering can be performed by a known sintering machine, the aluminum-containing zinc oxide sintered body of the present invention can be obtained by performing the discharge plasma sintering under specific conditions.
放電プラズマ焼結機としては、例えば、図7に例示するものがある。この放電プラズマ焼結機は、上端及び下端に一対の電極が配置されており、放電プラズマ焼結時に電極間に直流パルス電流を印加する。上下のカーボンプレートの間には、試料(原料)を収容する黒鉛ダイスがあり、黒鉛ダイスに収容した試料は一対の黒鉛パンチによって挟まれて圧力印加状態において放電プラズマ焼結に供される。 An example of the discharge plasma sintering machine is shown in FIG. In this discharge plasma sintering machine, a pair of electrodes are arranged at the upper end and the lower end, and a direct current pulse current is applied between the electrodes during the discharge plasma sintering. Between the upper and lower carbon plates, there is a graphite die that contains a sample (raw material), and the sample contained in the graphite die is sandwiched between a pair of graphite punches and subjected to discharge plasma sintering in a pressure applied state.
以下、上記各工程について説明する。
≪工程1≫
工程1では、酸化亜鉛とアルミナとを含有する原料混合物であって、アルミナ含有量が酸化亜鉛重量とアルミナ重量との合計量の2重量%以下である原料混合物を用意する。
Hereafter, each said process is demonstrated.
≪
In
酸化亜鉛、アルミナの形状はともに限定的ではなく、粒子、粉末、ウイスカ等の各種状態のものが広く使用できる。アルミナの種類についても、γ型、α型、δ型、η型、θ型、アモルファス型等の各種結晶形のものが使用でき、更に水酸化アルミニウムも使用できる。本発明ではとりわけγアルミナ(いわゆる活性アルミナ)を用いることが好ましい。 The shapes of zinc oxide and alumina are not limited, and those in various states such as particles, powder, whiskers and the like can be widely used. As for the type of alumina, various crystal forms such as γ-type, α-type, δ-type, η-type, θ-type and amorphous type can be used, and aluminum hydroxide can also be used. In the present invention, it is particularly preferable to use γ alumina (so-called activated alumina).
酸化亜鉛の大きさは限定的ではないが、粉末である場合には、その平均粒子径は2μm以下が好ましく、100〜500nm程度がより好ましい。 The size of zinc oxide is not limited, but when it is a powder, the average particle size is preferably 2 μm or less, more preferably about 100 to 500 nm.
アルミナの大きさも限定的ではないが、粉末である場合には、その平均粒子径は、5nm〜2μm程度が好ましく、20nm〜0.5μm程度がより好ましい。 The size of alumina is not limited, but in the case of powder, the average particle size is preferably about 5 nm to 2 μm, more preferably about 20 nm to 0.5 μm.
酸化亜鉛とアルミナとの混合は、例えば、公知のボールミルやミキサーを用いて行う。混合は、アルミナ含有量が酸化亜鉛重量とアルミナ重量との合計量の2重量%以下となるように行う。この中でも、アルミナ含有量が1〜2重量%となる範囲が好ましい。 Mixing of zinc oxide and alumina is performed using, for example, a known ball mill or mixer. Mixing is performed so that the alumina content is 2% by weight or less of the total amount of zinc oxide weight and alumina weight. Among these, the range in which the alumina content is 1 to 2% by weight is preferable.
原料混合物は、実質的に酸化亜鉛とアルミナとの2成分のみでよいが、放電プラズマ焼結特性、焼結体の特性等を向上させるために、例えば、インジウム、スズ、希土類等から選択される少なくとも1種を添加剤(第3成分)として更に含めてもよい。このような添加剤の含有量は限定的ではないが、原料混合物中0.2重量%以下が好ましい。
≪工程2≫
工程2では、前記原料混合物からなる圧粉体を、昇温速度50℃/分以上で800〜1100℃まで昇温させる。
The raw material mixture may be essentially only two components of zinc oxide and alumina, but is selected from, for example, indium, tin, rare earth, etc., in order to improve the discharge plasma sintering characteristics, the characteristics of the sintered body, etc. At least one kind may be further included as an additive (third component). The content of such additives is not limited, but is preferably 0.2% by weight or less in the raw material mixture.
≪
In
圧粉体は、例えば、原料混合物を放電プラズマ焼結機の試料を収容する黒鉛ダイスに収容し、付設された一対の黒鉛パンチによって圧縮することにより作製できる。ここでいう圧粉体は一定の形状を保つ程度に成形されているものを意味する。 The green compact can be produced, for example, by storing the raw material mixture in a graphite die that stores a sample of a discharge plasma sintering machine and compressing it with a pair of attached graphite punches. The green compact as used herein means one that is molded to a certain degree.
前記圧粉体を、昇温速度50℃/分以上で800〜1100℃まで昇温させる。ここで、昇温速度は50〜100℃/分程度が好ましい。昇温は、前記圧粉体の温度が800〜1100℃の範囲における指定の温度に達するまで行う。
≪工程3≫
工程3では、昇温させた前記圧粉体を、ガス圧0.05〜0.13MPaの不活性ガス中、40MPa以下で加圧しながら、且つ、前記温度を維持しながら、10分以下で放電プラズマ焼結する。
The green compact is heated to 800-1100 ° C. at a temperature rising rate of 50 ° C./min or more. Here, the heating rate is preferably about 50 to 100 ° C./min. The temperature is raised until the temperature of the green compact reaches a specified temperature in the range of 800 to 1100 ° C.
≪
In
昇温した前記圧粉体は、40MPa以下(好ましくは30MPa以下)で加圧しながら、且つ、前記温度(800〜1100℃)を維持しながら放電プラズマ焼結する。加圧の下限値は限定的ではないが、10MPa程度である。 The green compact whose temperature has been raised is subjected to spark plasma sintering while being pressurized at 40 MPa or less (preferably 30 MPa or less) and maintaining the temperature (800 to 1100 ° C.). Although the lower limit of pressurization is not limited, it is about 10 MPa.
放電プラズマ焼結の時間は、10分以下とするが、5分以下で完結すれば好ましい。焼結時間の下限値は限定的ではないが、少なくとも1分程度とする。 The time for spark plasma sintering is 10 minutes or less, but it is preferable if it is completed in 5 minutes or less. The lower limit of the sintering time is not limited, but is at least about 1 minute.
放電プラズマ焼結の雰囲気としては、ガス圧0.05〜0.13MPa、好ましくはガス圧0.08〜0.11MPaの不活性ガス雰囲気とする。一般に不活性雰囲気としては真空雰囲気が知られているが、真空雰囲気は酸化亜鉛を昇華させ易いために好ましくなく、本発明では特に不活性ガス雰囲気とする。不活性ガスとしては、例えば、窒素、アルゴン、ヘリウム等の、酸素などの反応性ガスを含有しない雰囲気が挙げられる。
≪工程4≫
工程4では、前記放電プラズマ焼結により得られる焼結体を、少なくとも600℃になるまで、降温速度50℃/分以上で降温させる。ここで、降温速度はより速い方が良く、100℃/分以上が好ましい。降温速度の上限は限定的ではないが、200℃/分程度である。
The atmosphere of the discharge plasma sintering is an inert gas atmosphere having a gas pressure of 0.05 to 0.13 MPa, preferably 0.08 to 0.11 MPa. In general, a vacuum atmosphere is known as an inert atmosphere. However, a vacuum atmosphere is not preferable because zinc oxide is easily sublimated, and an inert gas atmosphere is particularly used in the present invention. Examples of the inert gas include an atmosphere that does not contain a reactive gas such as oxygen, such as nitrogen, argon, or helium.
≪
In
本発明のアルミニウム含有酸化亜鉛焼結体は、相対密度を低くした場合に、熱伝導率κを低くできるとともに、導電率σの低下を従来の常識を覆すかの如く、高く維持することができる。このような特性を有するため、本発明のアルミニウム含有酸化亜鉛焼結体は、熱電変換材料の性能指数Zが高い。また、相対密度を低くした材料で使用する場合には、熱電変換材料の軽量化、耐熱衝撃特性の改善、コスト削減等にも寄与する。 When the relative density is lowered, the aluminum-containing zinc oxide sintered body of the present invention can lower the thermal conductivity κ, and can maintain the decrease in the conductivity σ as high as if the conventional common sense is overturned. . Since it has such characteristics, the aluminum-containing zinc oxide sintered body of the present invention has a high performance index Z of the thermoelectric conversion material. In addition, when used with a material having a low relative density, it contributes to weight reduction of thermoelectric conversion materials, improvement of thermal shock resistance, cost reduction, and the like.
より具体的には、相対密度が65〜90%である場合に、20℃における性能指数Zは0.2×10−5/K以上である。また、相対密度が80〜90%である場合に、20℃における性能指数Zは0.5×10−5/K以上である。 More specifically, when the relative density is 65 to 90%, the figure of merit Z at 20 ° C. is 0.2 × 10 −5 / K or more. When the relative density is 80 to 90%, the figure of merit Z at 20 ° C. is 0.5 × 10 −5 / K or more.
上記性能指数で評価される熱電変換特性は、従来品に対して明確に優位性があり、即ち、本発明のアルミニウム含有酸化亜鉛焼結体はn型熱電変換材料として廃熱発電、地熱発電、太陽熱発電等の高温域での用途展開に対して有利である。 The thermoelectric conversion characteristics evaluated by the above figure of merit are clearly superior to conventional products, that is, the aluminum-containing zinc oxide sintered body of the present invention is an n-type thermoelectric conversion material such as waste heat power generation, geothermal power generation, This is advantageous for application development in high-temperature areas such as solar thermal power generation.
本発明の製造方法によれば、上記特徴を有する本発明の焼結体を簡便に製造できる。 According to the manufacturing method of the present invention, the sintered body of the present invention having the above characteristics can be easily manufactured.
1.パルス電流
2.電極
3.カーボンプレート
4.黒鉛パンチ
5.試料(を収容する空間)
6.黒鉛ダイス
7.電極
1. 1. Pulse
6). Graphite die 7. electrode
以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。 The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited to the examples.
実施例1〜14
≪原料混合物の調製≫
酸化亜鉛粉末(平均粒子径:0.2μm、ハクスイテック製)及びγアルミナ粉末(平均一次粒子径:0.02μm、旭化成製)を用意した。
Examples 1-14
≪Preparation of raw material mixture≫
Zinc oxide powder (average particle size: 0.2 μm, manufactured by HakuSitec) and γ alumina powder (average primary particle size: 0.02 μm, manufactured by Asahi Kasei) were prepared.
酸化亜鉛粉末とγアルミナ粉末とを下記表1に示す配合(Al2O3量)となるように湿式混合し、乾燥させ、更に乾式ボールミルで混合することにより原料混合物を調製した。
≪放電プラズマ焼結≫
調製した原料混合物は、放電プラズマ放置(住友石炭鉱業社製Dr.Sinter)の黒鉛ダイスに収容して圧粉体とした。また、内部の雰囲気ガスをアルゴンに置換した。
A raw material mixture was prepared by wet-mixing zinc oxide powder and γ-alumina powder so as to have the composition shown in Table 1 (Al 2 O 3 amount), drying, and further mixing with a dry ball mill.
≪Discharge plasma sintering≫
The prepared raw material mixture was housed in a graphite die left by discharge plasma (Dr. Sinter, manufactured by Sumitomo Coal Mining Co., Ltd.) to obtain a green compact. Also, the internal atmosphere gas was replaced with argon.
次いで、原料混合物を30MPaで加圧下、直流パルス電流を印加することにより、昇温速度50℃/分で800〜1100℃(個別に表1に示す)にまで昇温し、前記温度を維持しながら下記表1に示す時間(1〜5分間)で放電プラズマ焼結し、次いで600℃未満となるまで100℃/分の降温速度で冷却した。 Next, the raw material mixture was heated to 800-1100 ° C. (individually shown in Table 1) at a heating rate of 50 ° C./min by applying a direct current pulse current under pressure at 30 MPa, and the temperature was maintained. However, the discharge plasma sintering was performed for the time shown in Table 1 below (1 to 5 minutes), and then cooled at a rate of temperature decrease of 100 ° C./min until the temperature became below 600 ° C.
得られた焼結体「SPS−ZnO(Al)と称する」の表面を研削・鏡面研磨することにより14種類の試験体を得た。 By grinding and mirror polishing the surface of the obtained sintered body “referred to as SPS-ZnO (Al)”, 14 types of test bodies were obtained.
〔表1中、焼結方法SPS(S)は、放電プラズマ焼結を示す〕
比較例1〜30
≪原料混合物の調製≫
下記表2に示す配合とする以外は、実施例と同様にして原料混合物を調製した。
≪常圧焼結≫
原料混合物の圧粉体(実施例と同じ圧粉体)を大気炉に収容し、焼結温度を1000〜1400℃(個別に表2に示す)とし、焼結時間を下記表2に示す通り(2〜24時間)とし、焼結体「PL−ZnO(Al)と称する」を作製した。
[In Table 1, sintering method SPS (S) indicates discharge plasma sintering]
Comparative Examples 1-30
≪Preparation of raw material mixture≫
A raw material mixture was prepared in the same manner as in the Examples except that the formulation shown in Table 2 was used.
≪Normal pressure sintering≫
The green compact of the raw material mixture (the same green compact as in the example) was placed in an atmospheric furnace, the sintering temperature was 1000 to 1400 ° C. (shown individually in Table 2), and the sintering time was as shown in Table 2 below. (2 to 24 hours), and a sintered body "PL-ZnO (Al)" was produced.
得られた焼結体の表面を研削・鏡面研磨することにより30種類の試験体を得た。 Thirty kinds of test bodies were obtained by grinding and mirror polishing the surface of the obtained sintered body.
〔表2中、常圧(P)は、常圧焼結を示す〕
試験例1
実施例及び比較例で作製した各試験体について、XRD(理学電機製、RINT2500VHF)により結晶相を同定し、アルキメデス法により相対密度を算出した。また、電子顕微鏡(日立製作所製、S−4200型)により微細組織の観察を行い、平均粒子径を計算した。
[In Table 2, normal pressure (P) indicates normal pressure sintering]
Test example 1
About each test body produced by the Example and the comparative example, the crystal phase was identified by XRD (the Rigaku Electric make, RINT2500VHF), and the relative density was computed by the Archimedes method. Moreover, the fine structure was observed with an electron microscope (manufactured by Hitachi, Ltd., model S-4200), and the average particle size was calculated.
各試験体の熱電特性評価のために、直流4端子法(三菱化学製、MCP−T600)で導電率σの測定を行った。また、レーザーフラッシュ法(アルバック理工製、TC−7000型)で熱伝導率κを測定し、更に性能指数Zを算出した。 In order to evaluate the thermoelectric characteristics of each specimen, the electrical conductivity σ was measured by a direct current four-terminal method (manufactured by Mitsubishi Chemical Co., Ltd., MCP-T600). Further, the thermal conductivity κ was measured by a laser flash method (manufactured by ULVAC-RIKO, TC-7000 type), and a figure of merit Z was calculated.
これらの試験結果を表1及び表2に併記した。また、表1及び表2の右端に示される識別符号(Al2O3量及び焼結時間が同じものは同符号)を用いて、各特性(σ、κ、Z)を図1〜図6に図示した。 These test results are also shown in Tables 1 and 2. Further, Table 1 and the identification code shown in the right end of Table 2 (Al 2 O 3 amount and sintering time are the same ones the same reference numerals) with the respective characteristics (sigma, kappa, Z) to FIGS As shown in the figure.
試験例1の結果の考察
SPS−ZnO(Al)の相対密度と導電率σとの関係が図1に示されている。また、相対密度と熱伝導率κとの関係が図2に示されている。γアルミナの添加量が1重量%、2重量%のどちらの場合も、相対密度70〜100%の範囲で高い導電性σを有することが分かる。また、熱伝導率κは相対密度の低下とともに減少し、最も低い場合には緻密な酸化亜鉛の3分の1程度まで低減することが分かる。これらの結果は、放電プラズマ焼結法が低い熱伝導性と高い導電性を両立できることを示している。
Discussion of Results of Test Example 1 The relationship between the relative density of SPS-ZnO (Al) and the conductivity σ is shown in FIG. Further, the relationship between the relative density and the thermal conductivity κ is shown in FIG. It can be seen that in both cases where the addition amount of γ-alumina is 1% by weight and 2% by weight, it has a high conductivity σ in the range of a relative density of 70 to 100%. Moreover, it turns out that thermal conductivity (kappa) decreases with the fall of a relative density, and reduces to about 1/3 of dense zinc oxide in the lowest case. These results indicate that the discharge plasma sintering method can achieve both low thermal conductivity and high conductivity.
PL−ZnO(Al)の相対密度と導電率σとの関係が図3に示されている。また、相対密度と熱伝導率κとの関係が図4に示されている。常圧焼結法では相対密度が100%近傍では高い導電率を示すものの、90%以下では全く導電性が得られないことが分かる。一方、熱伝導率は相対密度の低下とともに単調に減少し、相対密度が80%になるとほぼ半減することが分かった。これらの結果は、常圧焼結法が低い熱伝導性と高い導電性を両立できないことを示している。 The relationship between the relative density of PL-ZnO (Al) and the conductivity σ is shown in FIG. Moreover, the relationship between relative density and thermal conductivity (kappa) is shown by FIG. It can be seen that the normal pressure sintering method shows high conductivity when the relative density is near 100%, but no conductivity is obtained when the relative density is 90% or less. On the other hand, it has been found that the thermal conductivity decreases monotonously with a decrease in relative density, and is almost halved when the relative density reaches 80%. These results indicate that the normal pressure sintering method cannot achieve both low thermal conductivity and high conductivity.
また、図5(実施例)と図6(比較例)との対比から明らかな通り、本発明の焼結体は、相対密度が90%以下の場合において明らかに高い性能指数Zを与える。特に、アルミナ含有量が実質的に1重量%となるように原料混合物を調製し、その原料混合物の圧粉体を焼結時間900〜950℃において5分(4〜5分間)放電プラズマ焼結した場合には、極めて良好な性能指数Zが得られることが分かる。 Further, as apparent from the comparison between FIG. 5 (Example) and FIG. 6 (Comparative Example), the sintered body of the present invention gives a clearly high figure of merit Z when the relative density is 90% or less. In particular, a raw material mixture is prepared so that the alumina content is substantially 1% by weight, and the green compact of the raw material mixture is subjected to spark plasma sintering at a sintering time of 900 to 950 ° C. for 5 minutes (4 to 5 minutes). It can be seen that a very good figure of merit Z is obtained.
放電プラズマ焼結法が、(低熱伝導率にもかかわらず)高い導電率を示す理由として、次のメカニズムが考えられる。即ち、アルミニウム含有酸化亜鉛は、添加したアルミナは酸化亜鉛と反応して「スピネル」を生成する。常圧焼結では、低温焼結(1000℃)でも高温焼結(1400℃)においても、ほぼ同じ量のスピネルが生成しており、添加したアルミナの大部分が絶縁体であるスピネルの生成に費やされ、導電性に寄与する酸化亜鉛中へのアルミナの固溶量が制限される。一方、放電プラズマ焼結法では、焼結温度が低い領域ではスピネルの生成が抑制され、添加したアルミナが効果的に酸化亜鉛中に固溶するために、緻密化が十分進んでいない多孔質な状態でも高い導電率を示す。このような現象は、放電プラズマ焼結が高圧環境下において実施でき、且つ、超高速昇温・冷却が可能であるために生じるものであると考えられる。 The following mechanism can be considered as the reason why the spark plasma sintering method shows high conductivity (despite low thermal conductivity). That is, in the aluminum-containing zinc oxide, the added alumina reacts with the zinc oxide to produce “spinel”. In normal pressure sintering, almost the same amount of spinel is generated in both low temperature sintering (1000 ° C.) and high temperature sintering (1400 ° C.), and most of the added alumina is used to generate spinel as an insulator. The amount of solid solution of alumina in zinc oxide that is consumed and contributes to conductivity is limited. On the other hand, in the spark plasma sintering method, the formation of spinel is suppressed in the region where the sintering temperature is low, and the added alumina is effectively dissolved in zinc oxide, so that the densification is not sufficiently advanced. High conductivity even in the state. Such a phenomenon is considered to occur because the discharge plasma sintering can be performed in a high-pressure environment and can be heated and cooled at an ultra-high speed.
Claims (4)
(1)酸化亜鉛とアルミナとを含有する原料混合物であって、アルミナ含有量が酸化亜鉛重量とアルミナ重量との合計量の2重量%以下である原料混合物を用意する工程1、
(2)前記原料混合物からなる圧粉体を、昇温速度50℃/分以上で800〜1100℃まで昇温させる工程2、
(3)昇温させた前記圧粉体を、ガス圧0.05〜0.13MPaの不活性ガス中、40MPa以下で加圧しながら、且つ、前記温度を維持しながら、10分以下で放電プラズマ焼結する工程3、及び
(4)前記放電プラズマ焼結により得られる焼結体を、少なくとも600℃になるまで、降温速度50℃/分以上で降温させる工程4。 A method for producing an aluminum-containing zinc oxide sintered body having the following steps in order:
(1) Step 1 of preparing a raw material mixture containing zinc oxide and alumina, the alumina content being 2% by weight or less of the total amount of zinc oxide weight and alumina weight,
(2) Step 2 of heating the green compact made of the raw material mixture to 800 to 1100 ° C. at a temperature rising rate of 50 ° C./min or more,
(3) Discharge plasma in 10 minutes or less while pressurizing the heated green compact at 40 MPa or less in an inert gas having a gas pressure of 0.05 to 0.13 MPa and maintaining the temperature. Step 3 for sintering, and (4) Step 4 for lowering the temperature of the sintered body obtained by the discharge plasma sintering at a temperature lowering rate of 50 ° C./min or more until at least 600 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006067968A JP4900569B2 (en) | 2006-03-13 | 2006-03-13 | Method for producing aluminum-containing zinc oxide sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006067968A JP4900569B2 (en) | 2006-03-13 | 2006-03-13 | Method for producing aluminum-containing zinc oxide sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007246294A JP2007246294A (en) | 2007-09-27 |
JP4900569B2 true JP4900569B2 (en) | 2012-03-21 |
Family
ID=38590981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006067968A Active JP4900569B2 (en) | 2006-03-13 | 2006-03-13 | Method for producing aluminum-containing zinc oxide sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4900569B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076405A (en) | 2007-09-21 | 2009-04-09 | Sony Corp | Optical element packing body, back light and liquid crystal display |
EP2248928A4 (en) | 2008-01-30 | 2012-03-07 | Ihi Corp | Discharge surface treatment method and coating block for discharge surface treatment |
JP5095517B2 (en) | 2008-06-19 | 2012-12-12 | 独立行政法人科学技術振興機構 | Aluminum-containing zinc oxide n-type thermoelectric conversion material |
JP5168726B2 (en) * | 2008-07-30 | 2013-03-27 | Toto株式会社 | Thermoelectric material and manufacturing method thereof |
CN101905972A (en) * | 2009-06-04 | 2010-12-08 | 清华大学 | Aluminum-doped zinc oxide-based thermoelectric material and preparation method thereof |
EP2361887A1 (en) | 2010-02-25 | 2011-08-31 | Corning Incorporated | A process for manufacturing a doped or non-doped zno material and said material |
JP5729680B2 (en) * | 2010-07-07 | 2015-06-03 | Toto株式会社 | Composite material and manufacturing method thereof |
JP2012253302A (en) * | 2011-06-07 | 2012-12-20 | Fujitsu Ltd | Thermoelectric element and manufacturing method of the same |
CN103706792B (en) * | 2013-12-30 | 2015-08-26 | 北京科技大学 | A kind of preparation method of Al doping ZnO texture thermoelectric material |
JP2015162664A (en) * | 2014-02-28 | 2015-09-07 | 国立大学法人 千葉大学 | Thermoelectric conversion material and method for manufacturing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04219359A (en) * | 1990-12-19 | 1992-08-10 | Tosoh Corp | Electrically conductive zinc oxide sintered compact |
JP2002118296A (en) * | 2000-10-05 | 2002-04-19 | Unitika Ltd | N-type thermoelectric conversion element for high temperature having high electric conductivity, and thermoelectric conversion module using it |
-
2006
- 2006-03-13 JP JP2006067968A patent/JP4900569B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007246294A (en) | 2007-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4900569B2 (en) | Method for producing aluminum-containing zinc oxide sintered body | |
Matsubara et al. | Thermoelectric properties of spark plasma sintered Ca 2.75 Gd 0.25 Co 4 O 9 ceramics | |
US8628680B2 (en) | Reduced oxides having large thermoelectric ZT values | |
Gao et al. | Sequential Combination of Constituent Oxides in the Synthesis of Pb (Fe1/2Nb1/2) O3by Mechanical Activation | |
JP5376274B2 (en) | Method for producing highly conductive diamond sintered body | |
US9444026B2 (en) | Reduced oxides having large thermoelectric ZT values | |
EP2189431B1 (en) | Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same | |
US8454860B2 (en) | Aluminum-containing zinc oxide-based n-type thermoelectric conversion material | |
Iyasara et al. | La and Sm co-doped SrTiO3-δ thermoelectric ceramics | |
JP5574881B2 (en) | Air electrode material powder for solid oxide fuel cell and method for producing the same | |
US9076567B2 (en) | Reduced oxides having large thermoelectric ZT values | |
JP5019323B2 (en) | Ceria sintered body doped with rare earth element and manufacturing method thereof | |
JP4543127B2 (en) | Structure of oxide thermoelectric conversion material | |
JP2009004542A (en) | Thermoelectric material and manufacturing method thereof | |
KR102198210B1 (en) | Thermoelectric material and a method of manufacturing the zinc oxide is mixed | |
JP2006347861A (en) | Manufacturing method of zinc-based oxide and zinc-based oxide manufactured by the method | |
Katsuyama et al. | Synthesis of NaxCo2O4 by the hydrothermal hot-pressing and its thermoelectric properties | |
JP6044972B2 (en) | Thermoelectric conversion material manufacturing method and thermoelectric conversion material | |
JP2008124404A (en) | Thermoelectric material and manufacturing method of thermoelectric material | |
KR101151696B1 (en) | NaCo,Ag2O4-BASED THERMOELECTRIC MATERIALS AND PREPARING METHOD OF THE SAME USING SOLUTION COMBUSTION | |
Buntham et al. | Effects of Bi0. 5Na0. 5TiO3 Dopant on Microstructure and Thermoelectric Properties of Na x CoO2 Ceramics | |
EP2361886A1 (en) | Thermoelectric materials, their preparation and thermoelectric devices comprising them | |
KR20150090396A (en) | Thermoelectric material for thermoelectric device | |
Park et al. | Thermoelectric properties of solution-combustion-processed Na (Co 1− x Ni x) 2 O 4 | |
JP2014501036A (en) | Tin oxide-based thermoelectric materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060418 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090310 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090327 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090310 |
|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20090310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4900569 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |