JP4900073B2 - Liquid crystal device and electronic device - Google Patents

Liquid crystal device and electronic device Download PDF

Info

Publication number
JP4900073B2
JP4900073B2 JP2007157122A JP2007157122A JP4900073B2 JP 4900073 B2 JP4900073 B2 JP 4900073B2 JP 2007157122 A JP2007157122 A JP 2007157122A JP 2007157122 A JP2007157122 A JP 2007157122A JP 4900073 B2 JP4900073 B2 JP 4900073B2
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
display region
crystal device
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007157122A
Other languages
Japanese (ja)
Other versions
JP2008309978A (en
Inventor
▲琢▼巳 関
浩輔 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007157122A priority Critical patent/JP4900073B2/en
Publication of JP2008309978A publication Critical patent/JP2008309978A/en
Application granted granted Critical
Publication of JP4900073B2 publication Critical patent/JP4900073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、半透過反射型の液晶装置およびこれを備えた電子機器に関する。   The present invention relates to a transflective liquid crystal device and an electronic apparatus including the same.

半透過反射型の液晶装置としては、互いに対向する上基板と下基板との間に液晶層が挟持され、1つのドット領域内に透過表示領域と反射表示領域とを有し、選択電圧印加時、非選択電圧印加時のいずれか一方において、透過表示領域における液晶層の位相差が反射表示領域における位相差よりも大きく設定された液晶表示装置が知られている(特許文献1)。これにより、透過モード時の表示の明るさを向上させ視認性を改善している。   As a transflective liquid crystal device, a liquid crystal layer is sandwiched between an upper substrate and a lower substrate facing each other, and a transmissive display region and a reflective display region are provided in one dot region. A liquid crystal display device is known in which the phase difference of the liquid crystal layer in the transmissive display region is set to be larger than the phase difference in the reflective display region at any one time when the non-selection voltage is applied (Patent Document 1). Thereby, the brightness of the display in the transmissive mode is improved and the visibility is improved.

さらには、一画素内に反射表示部と透過表示部とを備え、反射表示部に対応する部分に位相板を有し、反射表示部の液晶層のリタデーションが4分の1波長であり、位相板のリタデーションが2分の1である半透過型IPS(In Plane Switching)方式の液晶表示装置が知られている(特許文献2)。これにより、透過型IPS方式と同等の広視野角を実現することができるとしている。   Furthermore, a reflective display portion and a transmissive display portion are provided in one pixel, a phase plate is provided in a portion corresponding to the reflective display portion, the retardation of the liquid crystal layer of the reflective display portion is a quarter wavelength, and the phase A transflective IPS (In Plane Switching) type liquid crystal display device in which the retardation of the plate is ½ is known (Patent Document 2). As a result, a wide viewing angle equivalent to that of the transmissive IPS system can be realized.

特開2004−4494号公報JP 2004-4494 A 特開2005−338256号公報JP 2005-338256 A

上記従来の液晶表示装置において、上下一対の基板により構成されるセル内に位相差層(位相板)を形成する場合、理想的には形成領域に渡って同じ厚み(層厚)であることが望ましい。しかし、実際には、反射表示領域(反射表示部)に対応するようにパターニングすると、形成領域の端部では層厚が変化し易い。位相差層の層厚が変化している部分では、設計値どおりの位相差値(リタデーション値)が得られず、セル表面に装着される偏光板で吸収できない光が発生する。すなわち、当該部分で光漏れが生じコントラストが低下するという課題があった。   In the conventional liquid crystal display device, when a retardation layer (phase plate) is formed in a cell constituted by a pair of upper and lower substrates, ideally, the thickness (layer thickness) should be the same across the formation region. desirable. However, in practice, when patterning is performed so as to correspond to the reflective display region (reflective display portion), the layer thickness tends to change at the end of the formation region. In the portion where the thickness of the retardation layer is changed, a retardation value (retardation value) as designed is not obtained, and light that cannot be absorbed by the polarizing plate attached to the cell surface is generated. That is, there is a problem that light leaks at the portion and the contrast is lowered.

上述の課題を考慮し、一対の基板と、一対の基板に挟持された液晶層と、透過表示領域および反射表示領域を具備する複数の画素と、一対の基板のいずれか一方に、複数の画素の反射表示領域に跨るように帯状に設けられ、透過する光に対して略1/2波長の位相差を付与する位相差層と、を備え、該位相差層は、画素内の反射表示領域の側に、帯状の位相差層の透過表示領域に対向する第1の端部が透過表示領域と反射表示領域との境界に沿うように形成されている液晶装置、が提供される。  In view of the above problems, a plurality of pixels on any one of a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, a plurality of pixels including a transmissive display region and a reflective display region, and a pair of substrates. A retardation layer that is provided in a strip shape so as to straddle the reflective display region of the light source and imparts a phase difference of approximately ½ wavelength to the transmitted light. The retardation layer includes a reflective display region in the pixel. On the other side, a liquid crystal device is provided in which a first end facing the transmissive display region of the belt-like retardation layer is formed along the boundary between the transmissive display region and the reflective display region.

この構成によれば、反射表示領域に設けられた位相差層は、画素内の透過表示領域と反射表示領域との境界において、層厚変化が生じ易い一方の端部が、反射表示領域の側に位置するように、一対の基板のいずれか一方に形成されている。位相差層の層厚変化に起因する光漏れが反射表示領域で発生しても、反射表示は透過表示に比べて暗くなり光漏れを視認し難い。すなわち、光漏れが透過表示領域で発生することを防ぎ、複数の画素を含んで構成される表示領域において光漏れによるコントラストの低下を低減した液晶装置を提供することができる。   According to this configuration, the phase difference layer provided in the reflective display region has one end portion on the side of the reflective display region where the layer thickness easily changes at the boundary between the transmissive display region and the reflective display region in the pixel. It is formed in either one of a pair of board | substrates so that it may be located in. Even if light leakage due to a change in the thickness of the retardation layer occurs in the reflective display region, the reflective display becomes darker than the transmissive display, making it difficult to visually recognize the light leakage. That is, it is possible to provide a liquid crystal device in which light leakage is prevented from occurring in the transmissive display region, and a reduction in contrast due to light leakage is reduced in a display region including a plurality of pixels.

また、位相差層が、複数の画素の反射表示領域に跨るように帯状に設けられているので、帯状の位相差層の長辺方向における画素内の位相差の変化およびセル厚の変化を低減することができる。 In addition, since the phase difference layer is provided in a band shape so as to straddle the reflective display area of a plurality of pixels , changes in the phase difference in the pixel and cell thickness in the long side direction of the band-like phase difference layer are reduced. can do.

また、上記液晶装置を搭載した電子機器が提供される
これによれば、位相差層が好適に配置され、コントラストの低下が低減された液晶装置を搭載しているので、高い表示品質を有する電子機器を提供することができる。
Further, an electronic device equipped with the liquid crystal device is provided .
According to this, since the liquid crystal device in which the retardation layer is suitably arranged and the decrease in contrast is reduced is mounted, an electronic apparatus having high display quality can be provided.

以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。   Embodiments of the present invention will be described below with reference to the drawings. In each drawing used for the following description, the scale of each member is appropriately changed to make each member a recognizable size.

(実施形態1)
まず、本実施形態の液晶装置について、図1〜図4を参照して説明する。図1は、液晶装置を示す概略図である。同図(a)は概略平面図、同図(b)は、同図(a)のH−H’線で切った概略断面図である。
(Embodiment 1)
First, the liquid crystal device of this embodiment will be described with reference to FIGS. FIG. 1 is a schematic view showing a liquid crystal device. FIG. 4A is a schematic plan view, and FIG. 4B is a schematic cross-sectional view taken along the line HH ′ in FIG.

図1(a)および(b)に示すように、本実施形態の液晶装置100は、一対の基板としての素子基板10および対向基板20を備えている。対向基板20は、所定の位置で一回り大きいサイズの素子基板10とシール材40を介して接合されている。   As shown in FIGS. 1A and 1B, the liquid crystal device 100 of this embodiment includes an element substrate 10 and a counter substrate 20 as a pair of substrates. The counter substrate 20 is bonded to the element substrate 10 having a size slightly larger at a predetermined position via a sealing material 40.

シール材40を介した素子基板10と対向基板20との隙間(ギャップ)に、正の誘電異方性を有する液晶が充填され液晶層50を構成している。すなわち、素子基板10と対向基板20とにより液晶層50を挟持している。   A liquid crystal layer 50 is configured by filling a gap (gap) between the element substrate 10 and the counter substrate 20 via the sealing material 40 with a liquid crystal having positive dielectric anisotropy. That is, the liquid crystal layer 50 is sandwiched between the element substrate 10 and the counter substrate 20.

シール材40の外側は、周辺回路領域であり、素子基板10の一辺に沿ってデータ線駆動回路70および外部回路と接続するための複数の実装端子80とが設けられている。また、素子基板10のX軸方向において対向する他の二辺に沿って、それぞれ走査線駆動回路90が設けられている。素子基板10の残る一辺に沿って、2つの走査線駆動回路90を接続する複数の配線13が設けられている。   The outside of the sealing material 40 is a peripheral circuit region, and a plurality of mounting terminals 80 for connecting to the data line driving circuit 70 and an external circuit are provided along one side of the element substrate 10. A scanning line driving circuit 90 is provided along each of the other two sides facing each other in the X-axis direction of the element substrate 10. A plurality of wirings 13 for connecting the two scanning line driving circuits 90 are provided along the remaining side of the element substrate 10.

シール材40の内側には、X軸方向およびY軸方向にマトリクス状に配列した複数の画素を有している。1つの画素は、3色のカラーフィルタ22R(赤),22G(緑),22B(青)に対応した3つのサブ画素から構成されている。3色のカラーフィルタ22R,22G,22Bは、同色のカラーフィルタがY軸方向に連続するように対向基板20側に形成されている。また、素子基板10側には、サブ画素ごとに、これを駆動制御するスイッチング素子としての複数のTFT(Thin Film Transistor)30が設けられている。すなわち、液晶装置100は、ストライプ方式のカラーフィルタを備え、カラー表示を可能としたアクティブ型の表示装置である。   Inside the sealing material 40, a plurality of pixels are arranged in a matrix in the X-axis direction and the Y-axis direction. One pixel is composed of three sub-pixels corresponding to the three color filters 22R (red), 22G (green), and 22B (blue). The three color filters 22R, 22G, and 22B are formed on the counter substrate 20 side so that the color filters of the same color are continuous in the Y-axis direction. On the element substrate 10 side, a plurality of TFTs (Thin Film Transistors) 30 serving as switching elements for driving and controlling the sub-pixels are provided. That is, the liquid crystal device 100 is an active display device that includes a stripe-type color filter and enables color display.

本実施形態では、実際に表示に寄与する複数の画素の領域を表示領域Eとし、各サブ画素を区画すると共に、表示領域Eを額縁状に遮光する遮光膜61が設けられている。遮光膜61が設けられた遮光領域60は、液晶装置100を電子機器に取り付ける際に、表示領域Eの位置を規定する目安となっている。   In the present embodiment, a region of a plurality of pixels that actually contribute to display is defined as a display region E, and a light shielding film 61 that partitions each sub pixel and shields the display region E in a frame shape is provided. The light shielding region 60 provided with the light shielding film 61 is a guideline for defining the position of the display region E when the liquid crystal device 100 is attached to an electronic device.

また、液晶装置100の表裏面にそれぞれ偏光板が貼り付けられている。このような液晶装置100は、LEDなどを光源とした照明装置により照明される。図1では、偏光板と照明装置について図示省略している。より詳細な液晶装置100の構造については後述する。   Further, polarizing plates are respectively attached to the front and back surfaces of the liquid crystal device 100. Such a liquid crystal device 100 is illuminated by an illumination device using an LED or the like as a light source. In FIG. 1, the polarizing plate and the illumination device are not shown. A more detailed structure of the liquid crystal device 100 will be described later.

図2は、液晶装置の等価回路図である。図2に示すように、液晶装置100の表示領域Eを構成する各サブ画素SGは、画素電極9と、共通電極19と、画素電極9をスイッチング制御するためのTFT30とを有している。画素電極9と共通電極19との間には液晶層50が介在している。共通電極19は走査線駆動回路90から延びる共通線3bと電気的に接続されており、各サブ画素SGにおいて共通の電位に保持されるようになっている。   FIG. 2 is an equivalent circuit diagram of the liquid crystal device. As shown in FIG. 2, each sub-pixel SG constituting the display area E of the liquid crystal device 100 includes a pixel electrode 9, a common electrode 19, and a TFT 30 for switching control of the pixel electrode 9. A liquid crystal layer 50 is interposed between the pixel electrode 9 and the common electrode 19. The common electrode 19 is electrically connected to the common line 3b extending from the scanning line driving circuit 90, and is held at a common potential in each subpixel SG.

データ線駆動回路70から延びるデータ線6aがTFT30のソースと電気的に接続されている。データ線駆動回路70は、画像信号S1,S2,…,Snを、データ線6aを介して各サブ画素SGに供給する。画像信号S1〜Snはこの順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループごとに供給するようにしてもよい。   A data line 6 a extending from the data line driving circuit 70 is electrically connected to the source of the TFT 30. The data line driving circuit 70 supplies the image signals S1, S2,..., Sn to each subpixel SG via the data line 6a. The image signals S1 to Sn may be supplied line-sequentially in this order, or may be supplied for each group to a plurality of adjacent data lines 6a.

また、TFT30のゲートには、走査線駆動回路90から延びる走査線3aが電気的に接続されている。走査線駆動回路90から所定のタイミングで走査線3aにパルス的に供給される走査信号G1,G2,…,Gmが、この順に線順次でTFT30のゲートに印加されるようになっている。画素電極9は、TFT30のドレインに電気的に接続されている。   Further, the scanning line 3 a extending from the scanning line driving circuit 90 is electrically connected to the gate of the TFT 30. Scan signals G1, G2,..., Gm, which are supplied from the scanning line driving circuit 90 to the scanning line 3a at a predetermined timing, are applied to the gates of the TFTs 30 in this order. The pixel electrode 9 is electrically connected to the drain of the TFT 30.

スイッチング素子であるTFT30が走査信号G1,G2,…,Gmの入力により一定期間だけオン状態とされることで、データ線6aから供給される画像信号S1,S2,…,Snが所定のタイミングで画素電極9に書き込まれるようになっている。画素電極9を介して液晶に書き込まれた所定レベルの画像信号S1,S2,…,Snは、画素電極9と液晶を介して対向する共通電極19との間で一定期間保持される。   The TFT 30 serving as a switching element is turned on for a certain period by the input of the scanning signals G1, G2,..., Gm, so that the image signals S1, S2,. Writing is performed on the pixel electrode 9. Image signals S1, S2,..., Sn written to the liquid crystal via the pixel electrode 9 are held for a certain period between the pixel electrode 9 and the common electrode 19 opposed via the liquid crystal.

図3は、画素の構造を示す概略平面図である。図3に示すように、液晶装置100の1つの画素は、3色(R,G,B)のカラーフィルタ22R,22G,22Bに対応する3つのサブ画素SGにより構成されている。各サブ画素SGには、複数のスリット(隙間)29がほぼ梯子状に形成された矩形の画素電極9が設けられている。画素電極9の外周を取り囲むようにして、走査線3aと共通線3bと複数のデータ線6aとが配置されている。
走査線3aとデータ線6aとの交差部近傍にTFT30が形成されており、TFT30はデータ線6a及び画素電極9と電気的に接続されている。また、画素電極9と平面視でほぼ重なる位置に矩形状の共通電極19が形成されている。
FIG. 3 is a schematic plan view showing the structure of the pixel. As shown in FIG. 3, one pixel of the liquid crystal device 100 includes three sub-pixels SG corresponding to three color (R, G, B) color filters 22R, 22G, 22B. Each sub-pixel SG is provided with a rectangular pixel electrode 9 in which a plurality of slits (gap) 29 are formed in a ladder shape. A scanning line 3a, a common line 3b, and a plurality of data lines 6a are arranged so as to surround the outer periphery of the pixel electrode 9.
A TFT 30 is formed in the vicinity of the intersection of the scanning line 3a and the data line 6a, and the TFT 30 is electrically connected to the data line 6a and the pixel electrode 9. Further, a rectangular common electrode 19 is formed at a position substantially overlapping the pixel electrode 9 in plan view.

画素電極9は、ITO等の透明導電材料からなる導電膜である。1つのサブ画素SGの画素電極9に17本のスリット29が形成されている。各スリット29は、走査線3a及びデータ線6aの双方と交差する方向(図中斜め方向)に延びて、Y軸方向において等間隔に配列するように形成されている。各スリット29はほぼ同一の幅に形成され、互いに平行である。これにより、画素電極9は、複数本(図示では16本)の帯状電極部9cを有することになる。スリット29が一定の幅を有して等間隔で配列していることから、帯状電極部9cも一定の幅を有して等間隔で配列している。本実施形態では、スリット29の幅と帯状電極部9cの幅はいずれも4μmである。   The pixel electrode 9 is a conductive film made of a transparent conductive material such as ITO. Seventeen slits 29 are formed in the pixel electrode 9 of one subpixel SG. Each slit 29 extends in a direction intersecting with both the scanning line 3a and the data line 6a (an oblique direction in the figure), and is formed so as to be arranged at equal intervals in the Y-axis direction. The slits 29 are formed with substantially the same width and are parallel to each other. As a result, the pixel electrode 9 has a plurality (16 in the drawing) of strip-shaped electrode portions 9c. Since the slits 29 have a constant width and are arranged at equal intervals, the strip electrode portions 9c are also arranged with a constant width and at equal intervals. In the present embodiment, the width of the slit 29 and the width of the strip electrode portion 9c are both 4 μm.

共通電極19は、ITO等の透明導電材料からなる平面視矩形状の透明共通電極19tと、アルミニウムや銀などの光反射性を有する金属材料からなる平面視ほぼ矩形状の反射共通電極19rとからなる。透明共通電極19tと反射共通電極19rとは、互いの辺端部において電気的に接続されている。
反射共通電極19rは、走査線3aと平行に延びる共通線3bと一体に形成されている。したがって、透明共通電極19tと反射共通電極19rとからなる共通電極19は共通線3bと電気的に接続されている。
反射共通電極19rの形成領域が当該サブ画素SGの反射表示領域Rを構成しており、透明共通電極19tの形成領域が透過表示領域Tを構成している。
The common electrode 19 includes a transparent common electrode 19t having a rectangular shape in plan view made of a transparent conductive material such as ITO, and a reflective common electrode 19r having a substantially rectangular shape in plan view made of a metal material having light reflectivity such as aluminum or silver. Become. The transparent common electrode 19t and the reflective common electrode 19r are electrically connected to each other at the end portions.
The reflective common electrode 19r is integrally formed with a common line 3b extending in parallel with the scanning line 3a. Therefore, the common electrode 19 composed of the transparent common electrode 19t and the reflective common electrode 19r is electrically connected to the common line 3b.
The formation area of the reflective common electrode 19r constitutes the reflective display area R of the subpixel SG, and the formation area of the transparent common electrode 19t constitutes the transmissive display area T.

なお、共通線3bと反射共通電極19rとを別々の導電膜を用いて形成し、これらを電気的に接続してもよい。その方法としては、反射共通電極19rと共通線3bとを層間絶縁膜を介して異なる配線層に形成し、層間絶縁膜に開口したコンタクトホールを介して両者を接続する方法が挙げられる。また、透明共通電極19tが反射共通電極19rを覆って形成されていてもよい。   Alternatively, the common line 3b and the reflective common electrode 19r may be formed using different conductive films, and these may be electrically connected. As the method, there is a method in which the reflective common electrode 19r and the common line 3b are formed in different wiring layers through an interlayer insulating film, and both are connected through a contact hole opened in the interlayer insulating film. Further, the transparent common electrode 19t may be formed so as to cover the reflective common electrode 19r.

TFT30は、走査線3a上に部分的に形成された島状のアモルファスシリコン膜からなる半導体層35と、データ線6aを分岐して半導体層35上に延出されたソース電極31と、半導体層35上から画素電極9の形成領域に延びる矩形状のドレイン電極32とを備えている。
走査線3aは、半導体層35と対向する位置でTFT30のゲート電極として機能する。ドレイン電極32と画素電極9とは、両者が平面的に重なる位置に形成された画素コンタクトホール47を介して電気的に接続されている。
なお、図示のサブ画素SGにおいて、画素電極9と共通電極19とが平面視で重なる領域が、当該サブ画素SGの容量として機能するので、画像信号を保持するために別途保持容量をサブ画素SGの形成領域内に設ける必要が無く、高い開口率を得ることができる。
The TFT 30 includes a semiconductor layer 35 made of an island-shaped amorphous silicon film partially formed on the scanning line 3a, a source electrode 31 branched from the data line 6a and extended onto the semiconductor layer 35, and a semiconductor layer. 35 and a rectangular drain electrode 32 extending from above to the formation region of the pixel electrode 9.
The scanning line 3 a functions as a gate electrode of the TFT 30 at a position facing the semiconductor layer 35. The drain electrode 32 and the pixel electrode 9 are electrically connected via a pixel contact hole 47 formed at a position where they overlap in a plane.
In the illustrated subpixel SG, a region where the pixel electrode 9 and the common electrode 19 overlap in plan view functions as a capacitor of the subpixel SG. Therefore, a separate storage capacitor is provided to hold the image signal. Therefore, it is not necessary to provide in the formation region, and a high aperture ratio can be obtained.

図4を参照して、液晶装置100の構造をさらに詳しく説明する。図4は、液晶装置の構造を示す概略断面図である。詳しくは、同図(a)は、図3のA−A’線で切った断面図、同図(b)は、X軸方向における遮光領域の一方の端を含む断面図である。   The structure of the liquid crystal device 100 will be described in more detail with reference to FIG. FIG. 4 is a schematic sectional view showing the structure of the liquid crystal device. Specifically, FIG. 4A is a cross-sectional view taken along line A-A ′ in FIG. 3, and FIG. 4B is a cross-sectional view including one end of the light shielding region in the X-axis direction.

図4(a)に示すように、液晶装置100は、画素電極9および共通電極19を有する素子基板10と、対向基板20とにより、液晶層50を挟持している。対向基板20は、カラーフィルタ22と、カラーフィルタ22をサブ画素SGごと(色ごと)に区画する遮光膜61とを備えている。カラーフィルタ22上(液晶層50側)には、反射表示領域Rに対応して位相差層26とセル厚調整層27とが選択的に形成されている。したがって、透過表示領域Tのセル厚dに対して反射表示領域Rのセル厚が薄くなっており、本実施形態では、およそd/2、すなわち、半分となっている。
このように反射表示を行う液晶装置100では、光学設計上、反射黒表示を行う際に反射共通電極19rに到達する外光がすべての可視波長でほぼ円偏光である必要がある。反射共通電極19rに到達した外光が楕円偏光であると黒表示に色づきが生じ、高コントラストな反射表示を得ることが困難になるからである。
そこで本実施形態では、カラーフィルタ22上の反射表示領域Rに対応する領域に選択的に位相差層26とセル厚調整層27とを形成し、反射表示領域Rにおけるセル厚が透過表示領域Tに比して薄くなるように構成している。これにより、下偏光板14と位相差層26と反射表示領域R内の液晶層50とで広帯域円偏光を作り出せるようにして反射共通電極19rに到達する外光をすべての可視波長で円偏光に近づけている。
As shown in FIG. 4A, the liquid crystal device 100 has a liquid crystal layer 50 sandwiched between an element substrate 10 having a pixel electrode 9 and a common electrode 19 and a counter substrate 20. The counter substrate 20 includes a color filter 22 and a light shielding film 61 that partitions the color filter 22 for each sub-pixel SG (for each color). On the color filter 22 (the liquid crystal layer 50 side), a retardation layer 26 and a cell thickness adjusting layer 27 are selectively formed corresponding to the reflective display region R. Therefore, the cell thickness of the reflective display region R is smaller than the cell thickness d of the transmissive display region T, and is approximately d / 2, that is, half in this embodiment.
In the liquid crystal device 100 that performs reflection display in this manner, external light that reaches the reflection common electrode 19r when performing reflection black display needs to be substantially circularly polarized at all visible wavelengths in terms of optical design. This is because if the external light reaching the reflective common electrode 19r is elliptically polarized, the black display is colored and it is difficult to obtain a high-contrast reflective display.
Therefore, in the present embodiment, the retardation layer 26 and the cell thickness adjusting layer 27 are selectively formed in the region corresponding to the reflective display region R on the color filter 22 so that the cell thickness in the reflective display region R is equal to the transmissive display region T. It is configured to be thinner than that. As a result, the lower polarizing plate 14, the retardation layer 26, and the liquid crystal layer 50 in the reflective display region R can create broadband circularly polarized light, and external light reaching the reflective common electrode 19r is circularly polarized at all visible wavelengths. It is approaching.

透明なガラス等からなる素子基板10上には、走査線3a、共通電極19および共通線3bが形成されている。これらの走査線3a、共通電極19および共通線3bを覆って、シリコン酸化物膜等からなる絶縁薄膜11が形成されている。絶縁薄膜11上には、島状の半導体層35と、半導体層35と一部が重なるようにソース電極31とドレイン電極32とが形成されている。これらの半導体層35、ソース電極31およびドレイン電極32を覆って、シリコン酸化物膜や樹脂膜からなる層間絶縁膜12が形成されている。層間絶縁膜12上には、画素電極9が形成され、層間絶縁膜12を貫通してドレイン電極32に達する画素コンタクトホール47を介して、画素電極9とドレイン電極32とが電気的に接続されている。   A scanning line 3a, a common electrode 19 and a common line 3b are formed on the element substrate 10 made of transparent glass or the like. An insulating thin film 11 made of a silicon oxide film or the like is formed so as to cover the scanning line 3a, the common electrode 19 and the common line 3b. On the insulating thin film 11, an island-shaped semiconductor layer 35 and a source electrode 31 and a drain electrode 32 are formed so as to partially overlap the semiconductor layer 35. An interlayer insulating film 12 made of a silicon oxide film or a resin film is formed so as to cover the semiconductor layer 35, the source electrode 31, and the drain electrode 32. A pixel electrode 9 is formed on the interlayer insulating film 12, and the pixel electrode 9 and the drain electrode 32 are electrically connected through a pixel contact hole 47 that penetrates the interlayer insulating film 12 and reaches the drain electrode 32. ing.

図4(a)および(b)に示すように、光反射性を有する反射層としての反射共通電極19rは、X軸方向およびY軸方向における反射表示領域R内に形成されている。これにより、反射共通電極19rに対して斜めに入射した光が反射して、透過表示領域Tや隣り合うサブ画素SGへ漏れることを低減している。   As shown in FIGS. 4A and 4B, the reflective common electrode 19r as a reflective layer having light reflectivity is formed in the reflective display region R in the X-axis direction and the Y-axis direction. As a result, light incident obliquely on the reflective common electrode 19r is reflected and leaked to the transmissive display region T and the adjacent subpixel SG.

画素電極9を覆って、ポリイミド等からなる配向膜18が形成されている。配向膜18は、ラビング処理等の配向処理を施されて液晶を所定方向に配向させるようになっている。本実施形態では、配向膜18による配向規制方向は、走査線3aの延在方向と平行であり、画素電極9のスリット29の延在方向とは交差する方向である。   An alignment film 18 made of polyimide or the like is formed so as to cover the pixel electrode 9. The alignment film 18 is subjected to an alignment process such as a rubbing process to align the liquid crystal in a predetermined direction. In the present embodiment, the alignment regulating direction by the alignment film 18 is parallel to the extending direction of the scanning line 3 a and intersects the extending direction of the slit 29 of the pixel electrode 9.

同じく透明なガラス等からなる対向基板20上には、液晶層50側に向かってカラーフィルタ22(22B,22G,22R)と、配向膜23と、位相差層26と、セル厚調整層27と、配向膜28とが順に形成されている。また、対向基板20の表面(液晶層50側に対して反対側の表面)には、上偏光板24が貼り付けられている。上偏光板24および素子基板10側の下偏光板14の光学的な配置は、クロスニコルとなっている。   Similarly, on the counter substrate 20 made of transparent glass or the like, the color filter 22 (22B, 22G, 22R), the alignment film 23, the retardation layer 26, and the cell thickness adjusting layer 27 are formed toward the liquid crystal layer 50 side. The alignment film 28 is formed in order. An upper polarizing plate 24 is attached to the surface of the counter substrate 20 (the surface opposite to the liquid crystal layer 50 side). The optical arrangement of the upper polarizing plate 24 and the lower polarizing plate 14 on the element substrate 10 side is crossed Nicol.

遮光膜61は、ブラックマトリクス(BM)と呼ばれるものである。その形成方法は、例えば、遮光性材料として金属または金属化合物の薄膜を対向基板20の表面(液晶層50側)に成膜し、フォトリソグラフィ法により、サブ画素SGに対応した開口部を有するようにパターニングする方法が挙げられる。代表的な金属または金属化合物としては、クロム(Cr)または酸化クロムが挙げられる。また、遮光性材料として黒色顔料などを含む樹脂をオフセットなどの印刷法でパターニングする方法が挙げられる。   The light shielding film 61 is called a black matrix (BM). For example, a thin film of a metal or a metal compound is formed on the surface of the counter substrate 20 (on the liquid crystal layer 50 side) as a light-shielding material, and an opening corresponding to the sub-pixel SG is formed by photolithography. And a patterning method. Typical metals or metal compounds include chromium (Cr) or chromium oxide. Another example is a method of patterning a resin containing a black pigment or the like as a light shielding material by a printing method such as offset.

カラーフィルタ22は、例えば、各色の着色材料を含む感光性樹脂材料を、遮光膜61が形成された対向基板20に塗布して、これをフォトリソグラフィ法により露光・現像することにより、上記遮光膜61の開口部を埋めるように形成することができる。塗布方法としては、スピンコート、スリットコートなどの方法を用いることができる。   For example, the color filter 22 is formed by applying a photosensitive resin material containing a coloring material of each color to the counter substrate 20 on which the light shielding film 61 is formed, and exposing and developing the same by a photolithography method. The opening 61 can be filled. As a coating method, methods such as spin coating and slit coating can be used.

位相差層26は、反射表示領域Rに対応してカラーフィルタ22上に選択的に形成されている。位相差層26は、位相差層26を透過する光に対してほぼ1/2波長(λ/2)の位相差(リタデーション)を付与するものであり、一対の基板により液晶層50を狭持したセルの内面側に設けられた所謂内面位相差層である。
かかる位相差層26は、公知の方法を用いて形成すればよい。例えば、高分子液晶の溶液や液晶性モノマーの溶液を、カラーフィルタ22を覆って形成した配向膜23上に塗布し、所定方向に配向させた状態で固化する方法により形成することができる。そして、反射表示領域Rに対応するように選択的に成形する方法としては、必要な部分をマスキングして不要な部分をエッチングして取り除く方法が挙げられる。
あるいは、光重合性液晶化合物を配向膜23上に塗布し、不要な部分をマスキングして必要な部分の配向を維持した状態で硬化させる。そして、有機溶剤等の現像液を用いて未硬化部分(不要な部分)を取り除く方法が挙げられる。このような方法では、エッチング工程または現像工程において、位相差層26の端部が鉛直に形成されず、膜減りして傾斜し易い。後者の光重合液晶化合物を用いた例では、位相差層26の層厚(膜厚)をおよそ1.5〜2μmとして形成した場合、傾斜した端部の水平方向の距離は、およそ3〜10μmであった。すなわち、上記端部では、層厚に対して倍以上の長さの傾斜部が形成された。
なお、前述した高分子液晶、液晶モノマー、光重合型液晶化合物の配向方向を規制する配向膜23は、液晶層50に面する配向膜18,28と同じ膜材料を用いることができる。その場合には、配向膜23の表面をラビングして、配向方向を定める。また、配向膜23に限らず、カラーフィルタ22の表面に、シリコン酸化物などを斜め蒸着する方法や、感光性配向材料を塗布して、紫外線を照射することにより、光配向させる方法などがある。
The retardation layer 26 is selectively formed on the color filter 22 corresponding to the reflective display region R. The retardation layer 26 imparts a retardation (retardation) of approximately ½ wavelength (λ / 2) to the light transmitted through the retardation layer 26, and the liquid crystal layer 50 is held between a pair of substrates. This is a so-called inner surface retardation layer provided on the inner surface side of the prepared cell.
The retardation layer 26 may be formed using a known method. For example, it can be formed by a method in which a polymer liquid crystal solution or a liquid crystal monomer solution is applied onto an alignment film 23 formed so as to cover the color filter 22 and solidified in a state of being aligned in a predetermined direction. As a method of selectively forming so as to correspond to the reflective display region R, there is a method of masking a necessary portion and etching away an unnecessary portion.
Alternatively, a photopolymerizable liquid crystal compound is applied on the alignment film 23, and unnecessary portions are masked to be cured in a state where alignment of necessary portions is maintained. And the method of removing an unhardened part (unnecessary part) using developing solutions, such as an organic solvent, is mentioned. In such a method, in the etching process or the development process, the end portion of the retardation layer 26 is not formed vertically, and the film is easily reduced and inclined. In the example using the latter photopolymerized liquid crystal compound, when the layer thickness (film thickness) of the retardation layer 26 is formed to be about 1.5 to 2 μm, the horizontal distance of the inclined end portion is about 3 to 10 μm. Met. That is, an inclined portion having a length more than double the layer thickness was formed at the end portion.
The alignment film 23 that regulates the alignment direction of the polymer liquid crystal, the liquid crystal monomer, and the photopolymerizable liquid crystal compound described above can use the same film material as the alignment films 18 and 28 facing the liquid crystal layer 50. In that case, the surface of the alignment film 23 is rubbed to determine the alignment direction. In addition to the alignment film 23, there are a method of obliquely depositing silicon oxide or the like on the surface of the color filter 22, a method of photo-alignment by applying a photosensitive alignment material and irradiating ultraviolet rays. .

位相差層26を透過する光に対して付与する位相差の値(以降、位相差値と呼ぶ)は、その構成材料である液晶性高分子の種類や、位相差層26の層厚によって調整することができる。しかし、上記端部では、位相差層26が傾斜しているので層厚が徐々に減少しており、位相差値も変化することになる。本実施形態では、位相差層26の位相差値は、280nmであり、透過表示領域Tにおける液晶層50の位相差値(λ/2)と同等となっている。なお、液晶層50の位相差値は、液晶分子の複屈折率Δnにセル厚dを乗ずることにより求められる。よって、反射表示領域Rの液晶層50の位相差値は、λ/4となる。   The phase difference value (hereinafter referred to as phase difference value) applied to the light transmitted through the phase difference layer 26 is adjusted according to the type of liquid crystalline polymer that is the constituent material and the layer thickness of the phase difference layer 26. can do. However, since the retardation layer 26 is inclined at the end portion, the layer thickness gradually decreases, and the retardation value also changes. In the present embodiment, the retardation value of the retardation layer 26 is 280 nm, which is equivalent to the retardation value (λ / 2) of the liquid crystal layer 50 in the transmissive display region T. The retardation value of the liquid crystal layer 50 is obtained by multiplying the birefringence Δn of the liquid crystal molecules by the cell thickness d. Therefore, the retardation value of the liquid crystal layer 50 in the reflective display region R is λ / 4.

本実施形態では、上記端部の位相差値の変化を考慮して、図4(a)に示すように、サブ画素SG内の位相差層26の一方の端部26cが、反射表示領域R内に位置するように形成されている。また、他方の端部26dが、Y軸方向に配列するサブ画素SGの間、つまり遮光膜61を有する遮光領域60内に位置するように形成されている。これにより、透過表示領域Tには、位相差層26が入り込まないので、透過表示領域Tにおけるセル厚ムラを回避できる。また、反射表示領域R内に一方の端部26cが位置しても、当該端部26cの位相差値の変化による色づきは、反射表示の明るさが透過表示の明るさよりも暗いため目立ち難い。さらに、他方の端部26dは、遮光領域60内に位置しているので、遮光膜61で遮光され、当該端部26dの位相差値の変化による反射表示への色づきが回避されている。   In the present embodiment, in consideration of the change in the retardation value of the end portion, as shown in FIG. 4A, one end portion 26c of the retardation layer 26 in the sub-pixel SG is formed in the reflective display region R. It is formed so as to be located inside. The other end portion 26d is formed so as to be positioned between the sub-pixels SG arranged in the Y-axis direction, that is, in the light-shielding region 60 having the light-shielding film 61. Thereby, since the retardation layer 26 does not enter the transmissive display region T, the cell thickness unevenness in the transmissive display region T can be avoided. Even if one end portion 26c is located in the reflective display region R, coloring due to a change in the phase difference value of the end portion 26c is not noticeable because the brightness of the reflective display is darker than the brightness of the transmissive display. Further, since the other end portion 26d is located in the light shielding region 60, the other end portion 26d is shielded from light by the light shielding film 61, and coloring to the reflective display due to a change in the phase difference value of the end portion 26d is avoided.

また、図4(b)に示すように、表示領域Eの内側においては、X軸方向における位相差層26の傾斜を有する二つの端部26a,26bが、Y軸方向と同様に、遮光膜61が設けられた遮光領域60内に位置するように形成されている。すなわち、図3のB−B’線で切った場合には、位相差層26は、各色のサブ画素SGごとに設けられ、その端部26a,26bは、それぞれサブ画素SGを区画する遮光膜61が形成された遮光領域60内に位置している。
表示領域Eの外側には、ダミーのカラーフィルタ22と、ダミーの画素電極9およびダミーの共通電極19(透明共通電極19tおよび反射共通電極19r)とからなるダミー画素が設けられている。ダミー画素は、表示に寄与するサブ画素SGに隣接し、表示領域Eの外周部において、急激にセル厚が変化することを防ぐものである。よって、当然ながらダミーの画素電極9および共通電極19は、TFT30に電気的に接続される必要はない。このダミー画素に対応して形成された位相差層26およびセル厚調整層27においても、同様に位相差層26の二つの端部26a,26bがそれぞれ遮光領域60内に位置している。
これにより、表示領域E内のサブ画素SGごとの位相値の変化やセル厚の変化による色づきや、光漏れによるコントラストの低下を抑制している。さらに、表示領域Eの外周部における額縁状のコントラストの低下(コントラストムラ)を抑制している。
Further, as shown in FIG. 4B, inside the display area E, the two end portions 26a and 26b having the inclination of the retardation layer 26 in the X-axis direction have light shielding films as in the Y-axis direction. It is formed so as to be located in the light shielding region 60 provided with 61. That is, when cut along the line BB ′ in FIG. 3, the phase difference layer 26 is provided for each sub-pixel SG of each color, and its end portions 26a and 26b are light-shielding films that divide the sub-pixel SG, respectively. 61 is located in the light-shielding region 60 where it is formed.
Outside the display area E, a dummy pixel including a dummy color filter 22, a dummy pixel electrode 9, and a dummy common electrode 19 (a transparent common electrode 19t and a reflective common electrode 19r) is provided. The dummy pixels are adjacent to the sub-pixels SG that contribute to display, and prevent the cell thickness from changing abruptly at the outer periphery of the display area E. Therefore, it is needless to say that the dummy pixel electrode 9 and the common electrode 19 do not need to be electrically connected to the TFT 30. Similarly, in the retardation layer 26 and the cell thickness adjusting layer 27 formed corresponding to the dummy pixels, the two end portions 26 a and 26 b of the retardation layer 26 are respectively located in the light shielding region 60.
This suppresses coloring due to a change in phase value or cell thickness for each sub-pixel SG in the display area E, and a decrease in contrast due to light leakage. Further, the frame-shaped contrast decrease (contrast unevenness) in the outer peripheral portion of the display area E is suppressed.

図4(a)に示された配向膜28は、素子基板10側の配向膜18と同様の構成であり、配向膜28による配向規制方向は、配向膜18の配向規制方向と反平行である。すなわち、配向処理時には、配向膜18に対して180度反対方向にラビングする。したがって、液晶層50は、素子基板10と対向基板20との間で、水平配向の初期配向状態を呈する。セルの表裏に貼り付けられた上下偏光板24,14の光学軸との関係から、非駆動状態のモードは、ノーマリーブラックである。なお、光学設計によりノーマリーホワイトモードにも対応可能である。   The alignment film 28 shown in FIG. 4A has the same configuration as the alignment film 18 on the element substrate 10 side, and the alignment regulating direction by the alignment film 28 is antiparallel to the alignment regulating direction of the alignment film 18. . That is, at the time of the alignment process, the alignment film 18 is rubbed in the opposite direction by 180 degrees. Therefore, the liquid crystal layer 50 exhibits an initial alignment state of horizontal alignment between the element substrate 10 and the counter substrate 20. From the relationship with the optical axes of the upper and lower polarizing plates 24 and 14 attached to the front and back of the cell, the mode in the non-driven state is normally black. In addition, it can respond to the normally white mode by optical design.

以上、本実施形態の液晶装置100は、サブ画素SGごとに透過表示領域Tと反射表示領域Rとを有し、反射表示領域Rに対応してセル内に位相差層26を有する所謂FFS(Fringe Field Switching)方式と呼ばれるものである。光学設計が最適化され、位相差層26の各端部26a,26b,26c,26dにおける位相差値の変化やセル厚ムラが表示に影響しないように、端部26a,26b,26dが遮光領域60内に位置している。また、端部26cが反射表示領域R内に位置している。よって、表示領域Eの内側および外側においてコントラストムラが生じない透過表示および反射表示を実現している。   As described above, the liquid crystal device 100 according to the present embodiment has the transmissive display region T and the reflective display region R for each subpixel SG, and the so-called FFS (phase retardation layer 26 in the cell corresponding to the reflective display region R). Fringe Field Switching). The optical design is optimized, and the end portions 26a, 26b, and 26d are light-shielding regions so that changes in retardation values and cell thickness unevenness at the end portions 26a, 26b, 26c, and 26d of the retardation layer 26 do not affect display. 60. Further, the end portion 26c is located in the reflective display region R. Therefore, transmissive display and reflective display that do not cause contrast unevenness inside and outside the display region E are realized.

上記実施形態1によれば、以下の効果が得られる。
(1)液晶装置100は、複数のサブ画素SGごとに反射表示領域Rに対応した位相差層26をセル内(対向する一対の基板間)に有している。位相差層26のX軸方向側の端部26a,26bおよびY軸方向側の端部26dが遮光領域60内に位置している。したがって、当該端部26a,26b,26dの位相差値の変化およびセル厚ムラに起因するサブ画素SGの色づきや光漏れに起因するコントラストムラを低減することができる。
According to the first embodiment, the following effects can be obtained.
(1) The liquid crystal device 100 includes the retardation layer 26 corresponding to the reflective display region R in each cell (between a pair of opposing substrates) for each of the plurality of subpixels SG. The end portions 26 a and 26 b on the X-axis direction side and the end portion 26 d on the Y-axis direction side of the retardation layer 26 are located in the light shielding region 60. Accordingly, it is possible to reduce the unevenness in the contrast of the subpixel SG due to the change in the phase difference value of the end portions 26a, 26b, and 26d and the unevenness of the cell thickness and the light leakage.

(2)液晶装置100において、サブ画素SG内の透過表示領域Tと反射表示領域Rの境界において、位相差層26のY軸方向側の一方の端部26cは、反射表示領域R内に位置するように形成されている。これにより、透過表示領域Tには、位相差層26が入り込まないので、透過表示領域Tにおけるセル厚ムラを回避できる。また、一方の端部26cの位相差値の変化による色づきを目立ち難くすることができる。   (2) In the liquid crystal device 100, at the boundary between the transmissive display region T and the reflective display region R in the sub-pixel SG, one end portion 26c on the Y-axis direction side of the retardation layer 26 is located in the reflective display region R. It is formed to do. Thereby, since the retardation layer 26 does not enter the transmissive display region T, the cell thickness unevenness in the transmissive display region T can be avoided. Further, coloring due to a change in the phase difference value of one end portion 26c can be made inconspicuous.

(3)液晶装置100において、光反射性を有する反射共通電極19rは、各サブ画素SGにおいて、X軸方向およびY軸方向における反射表示領域R内に形成されている。したがって、反射共通電極19rを反射表示領域Rの外側まで形成する場合に比べて、反射共通電極19rに対して斜めに入射した光が反射して、透過表示領域Tや隣り合うサブ画素SGへ漏れることを低減することができる。すなわち、このような光漏れによるコントラストの低下を低減することができる。   (3) In the liquid crystal device 100, the reflective common electrode 19r having light reflectivity is formed in the reflective display region R in the X-axis direction and the Y-axis direction in each subpixel SG. Therefore, as compared with the case where the reflective common electrode 19r is formed to the outside of the reflective display region R, light incident obliquely to the reflective common electrode 19r is reflected and leaks to the transmissive display region T and the adjacent subpixel SG. This can be reduced. That is, it is possible to reduce a decrease in contrast due to such light leakage.

(4)液晶装置100は、光学設計が最適化され、位相差層26の各端部26a,26b,26c,26dにおける位相差値の変化やセル厚ムラが表示に影響しないように、セル内に位相差層26が配置されている。したがって、優れた表示品質を有する半透過反射型FFS方式の液晶装置100を提供することができる。   (4) In the liquid crystal device 100, the optical design is optimized, and the change in the retardation value and the cell thickness unevenness at each end 26a, 26b, 26c, 26d of the retardation layer 26 do not affect the display. The retardation layer 26 is disposed on the surface. Therefore, the transflective FFS mode liquid crystal device 100 having excellent display quality can be provided.

(実施形態2)
次に、本実施形態に係る電子機器について図5を参照して説明する。図5は、電子機器としての携帯型電話機を示す概略斜視図である。
(Embodiment 2)
Next, the electronic apparatus according to the present embodiment will be described with reference to FIG. FIG. 5 is a schematic perspective view showing a mobile phone as an electronic apparatus.

図5に示すように、本実施形態の携帯型電話機200は、操作用の入力部と表示部201とを備えた本体を有する。表示部201には、実施形態1の液晶装置100とこれを照明する照明装置とが搭載されている。したがって、照明装置からの透過光を利用した透過表示と、外光などの入射光を利用した反射表示とにより、表示された情報を確認することが可能である。すなわち、屋外など十分な明るさの環境化では、照明装置を駆動せず、反射表示モードにより情報を確認することができる。すなわち、省電力化を実現し、長い電池寿命を有する携帯型電話機200を実現している。   As shown in FIG. 5, the mobile phone 200 according to the present embodiment includes a main body including an operation input unit and a display unit 201. The display unit 201 includes the liquid crystal device 100 according to the first embodiment and an illumination device that illuminates the liquid crystal device 100. Therefore, the displayed information can be confirmed by transmissive display using transmitted light from the illumination device and reflective display using incident light such as external light. That is, in a sufficiently bright environment such as outdoors, information can be confirmed by the reflective display mode without driving the lighting device. That is, power saving and a portable telephone 200 having a long battery life are realized.

液晶装置100を携帯型電話機200に搭載する場合には、液晶装置100の遮光領域60(図1参照)の位置を目安として、本体との間に隙間が生じないように、額縁状のガスケットなどが組み込まれている。   When the liquid crystal device 100 is mounted on the mobile phone 200, a frame-like gasket or the like is used so that no gap is formed between the liquid crystal device 100 and the main body with reference to the position of the light shielding region 60 (see FIG. 1). Is incorporated.

上記実施形態2によれば、以下の効果が得られる。
(1)電子機器としての携帯型電話機200は、高い表示品質を有する半透過反射型の液晶装置100を搭載しているので、使用環境の明るさを問わず表示された情報を確認でき、省電力化を実現した携帯型電話機200を提供することができる。
According to the second embodiment, the following effects can be obtained.
(1) Since the mobile phone 200 as an electronic device is equipped with the transflective liquid crystal device 100 having high display quality, the displayed information can be confirmed regardless of the brightness of the use environment. It is possible to provide the mobile phone 200 that realizes power generation.

上記実施形態の他にも、様々な変形を加えることができる。以下、変形例を挙げて説明する。   In addition to the above embodiment, various modifications can be made. Hereinafter, a modification will be described.

(変形例1)上記実施形態1の液晶装置100において、位相差層26は、サブ画素SGごとに配置することに限定されない。図6は、変形例の位相差層の配置を示す概略図である。同図(a)は概略平面図、同図(b)は概略断面図である。例えば、図6(a)に示すように、複数のサブ画素の反射表示領域Rに跨るように、位相差層26を帯状に形成する。帯状の位相差層26の両方の端部26a,26bが、表示領域Eの外側に位置するように形成する。同図(a)では、端部26a,26bは、表示領域Eを囲むように遮光膜61が設けられた遮光領域60内に位置している。また、同図(b)に示すように、表示領域Eの外側にダミー画素を設けた場合には、ダミー画素を含む複数のサブ画素SGの反射表示領域Rに跨って、位相差層26とセル厚調整層27とを帯状に形成する。この場合、端部26a(26b)は、遮光領域60内に位置してもよいし、ダミー画素が形成された領域内に位置してもよい。これにより、サブ画素SG間に傾斜を有する位相差層26の端部26a,26bが配置されないので、X軸方向における反射表示領域R間のセル厚を一定にすることができる。言い換えれば、反射表示領域R間の急激なセル厚変化を低減して、セル厚変化に起因する各反射表示領域Rのコントラストムラを低減することができる。なお、帯状の位相差層26の両方の端部26a,26bのうちの一方が、遮光領域60内またはダミー画素が形成された領域内に位置しているとしてもよい。
図7(a)および(b)は、帯状の位相差層の配置を示す概略平面図である。帯状の位相差層としては、図7(a)に示すように、Y軸方向に隣接するサブ画素SGの反射表示領域Rに跨るようにX軸方向に延在する位相差層66としてもよい。これによれば、図6(a)に示した変形例に比べて、Y軸方向に隣接するサブ画素SG間に位相差層26の端部が配置されない。すなわち、Y軸方向に隣接する反射表示領域R間でのセル厚変化を回避することができる。また、図7(b)に示すように、X軸方向に隣接するサブ画素SGの反射表示領域Rに跨るようにY軸方向に延在する位相差層68としてもよい。すなわち、X軸方向に隣接する反射表示領域R間でのセル厚変化を回避することができる。このように、位相差層を図面上において、横方向(X軸方向)、または縦方向(Y軸方向)のいずれに配置するかは、サブ画素SGの形状により効果的な反射表示領域Rの配置を考慮して、決定すればよい。
(Modification 1) In the liquid crystal device 100 of the first embodiment, the retardation layer 26 is not limited to being arranged for each sub-pixel SG. FIG. 6 is a schematic diagram illustrating an arrangement of a retardation layer according to a modification. FIG. 4A is a schematic plan view, and FIG. 4B is a schematic cross-sectional view. For example, as shown in FIG. 6A, the retardation layer 26 is formed in a strip shape so as to straddle the reflective display region R of a plurality of subpixels. Both end portions 26 a and 26 b of the belt-like retardation layer 26 are formed so as to be located outside the display region E. In FIG. 5A, the end portions 26a and 26b are located in a light shielding region 60 provided with a light shielding film 61 so as to surround the display region E. Further, as shown in FIG. 5B, when the dummy pixel is provided outside the display area E, the phase difference layer 26 and the reflective display area R of the plurality of sub-pixels SG including the dummy pixel are formed. The cell thickness adjusting layer 27 is formed in a strip shape. In this case, the end portion 26a (26b) may be located in the light shielding region 60, or may be located in a region where dummy pixels are formed. Thereby, since the end portions 26a and 26b of the retardation layer 26 having an inclination between the sub-pixels SG are not disposed, the cell thickness between the reflective display regions R in the X-axis direction can be made constant. In other words, it is possible to reduce a sudden change in cell thickness between the reflective display regions R and reduce contrast unevenness in each reflective display region R due to the change in cell thickness. One of the end portions 26a and 26b of the belt-like retardation layer 26 may be located in the light shielding region 60 or the region where the dummy pixels are formed.
FIGS. 7A and 7B are schematic plan views showing the arrangement of the band-shaped retardation layer. As the belt-like retardation layer, as shown in FIG. 7A, a retardation layer 66 extending in the X-axis direction so as to straddle the reflective display region R of the sub-pixel SG adjacent in the Y-axis direction may be used. . According to this, as compared with the modified example shown in FIG. 6A, the end portion of the retardation layer 26 is not disposed between the sub-pixels SG adjacent in the Y-axis direction. That is, a change in cell thickness between the reflective display regions R adjacent in the Y-axis direction can be avoided. Further, as shown in FIG. 7B, a retardation layer 68 extending in the Y-axis direction so as to straddle the reflective display region R of the sub-pixel SG adjacent in the X-axis direction may be used. That is, a change in cell thickness between the reflective display regions R adjacent in the X-axis direction can be avoided. As described above, whether the retardation layer is arranged in the horizontal direction (X-axis direction) or the vertical direction (Y-axis direction) in the drawing depends on the shape of the sub-pixel SG. It may be determined in consideration of the arrangement.

(変形例2)上記実施形態1の液晶装置100において、3色のカラーフィルタ22R,22G,22Bの配置は、ストライプ方式に限定されない。図8(a)および(b)は、カラーフィルタの配置を示す概略平面図である。例えば、同図(a)に示すようなモザイク方式の配置、同図(b)に示すようなデルタ方式の配置においても、上記実施形態1の位相差層の構成を適用することができる。特にデルタ方式において、位相差層を図面上縦方向に配置する場合には、縦方向に配列する2色のカラーフィルタに跨るように配置する方法が挙げられる。なお、カラーフィルタ22は、3色に限定されず、R,G,B以外の色を加えた多色構成としてもよい。また、カラーフィルタ22を設けず、所謂白黒表示のみの半透過反射型液晶装置においても適用可能である。   (Modification 2) In the liquid crystal device 100 of the first embodiment, the arrangement of the three color filters 22R, 22G, and 22B is not limited to the stripe method. FIGS. 8A and 8B are schematic plan views showing the arrangement of the color filters. For example, the configuration of the retardation layer of the first embodiment can also be applied to a mosaic arrangement as shown in FIG. 5A and a delta arrangement as shown in FIG. In particular, in the delta method, when the retardation layer is arranged in the vertical direction in the drawing, a method of arranging the phase difference layer so as to straddle the two color filters arranged in the vertical direction can be mentioned. The color filter 22 is not limited to three colors, and may have a multicolor configuration in which colors other than R, G, and B are added. Further, the present invention can also be applied to a transflective liquid crystal device that does not include the color filter 22 and only performs so-called monochrome display.

(変形例3)上記実施形態1の液晶装置100において、セル厚調整層27を位相差層26上に設ける構成は、これに限定されない。例えば、セル厚調整層27は、素子基板10側に設けてもよい。その場合、反射共通電極19rの下層に設けるのが望ましい。また、セル厚調整機能を有するように位相差層26の層厚を調整して、セル厚調整層27を削除してもよい。これによれば、より簡単なセル構造とすることができる。   (Modification 3) In the liquid crystal device 100 of the first embodiment, the configuration in which the cell thickness adjustment layer 27 is provided on the retardation layer 26 is not limited to this. For example, the cell thickness adjusting layer 27 may be provided on the element substrate 10 side. In that case, it is desirable to provide it below the reflective common electrode 19r. Further, the cell thickness adjusting layer 27 may be deleted by adjusting the layer thickness of the retardation layer 26 so as to have a cell thickness adjusting function. According to this, a simpler cell structure can be obtained.

(変形例4)上記実施形態1の液晶装置100において、反射表示領域Rを実現するサブ画素SGの構成は、光反射性を有する反射共通電極19rに限定されない。例えば、透明共通電極19tを平面視で画素電極9と同じ大きさで設け、透明共通電極19tの下層に光反射性を有する反射層を形成してもよい。例えば、反射層は、複数の凹凸を有する樹脂層上にAl、Agなどの金属薄膜を成膜する方法が挙げられる。このような反射層は反射表示領域Rに対応して形成する。これによれば、反射層で反射した光の指向性を低減してより明るい反射表示を実現できる。   (Modification 4) In the liquid crystal device 100 of the first embodiment, the configuration of the sub-pixel SG realizing the reflective display region R is not limited to the reflective common electrode 19r having light reflectivity. For example, the transparent common electrode 19t may be provided in the same size as the pixel electrode 9 in plan view, and a reflective layer having light reflectivity may be formed under the transparent common electrode 19t. For example, the reflective layer includes a method of forming a metal thin film such as Al or Ag on a resin layer having a plurality of irregularities. Such a reflective layer is formed corresponding to the reflective display region R. According to this, it is possible to realize a brighter reflective display by reducing the directivity of the light reflected by the reflective layer.

(変形例5)上記実施形態1の液晶装置100は、FFS方式の半透過反射型に限定されない。例えば、IPS方式、VA(Vertical Alignment)方式の半透過反射型の液晶装置にも適用可能である。また、スイッチング素子は、TFT30に限らず、TFD(Thin Film Diode)素子でもよい。さらには、スイッチング素子を備えたアクティブ方式に限定されず、単純マトリクス方式の液晶装置にも適用可能である。   (Modification 5) The liquid crystal device 100 of the first embodiment is not limited to the FFS transflective type. For example, the present invention can be applied to a transflective liquid crystal device of an IPS system or a VA (Vertical Alignment) system. The switching element is not limited to the TFT 30 and may be a TFD (Thin Film Diode) element. Furthermore, the present invention is not limited to an active method including a switching element, and can be applied to a simple matrix liquid crystal device.

(変形例6)上記実施形態2において、液晶装置100を搭載した電子機器は、携帯型電話機200に限定されない。例えば、ノート型パーソナルコンピュータ、電子手帳、映像情報を表示するビューワーやDVDプレーヤ、携帯型情報端末などの電子機器に搭載すれば、好適である。   (Modification 6) In the second embodiment, the electronic device in which the liquid crystal device 100 is mounted is not limited to the mobile phone 200. For example, it is suitable if it is installed in an electronic device such as a notebook personal computer, an electronic notebook, a viewer for displaying video information, a DVD player, or a portable information terminal.

(a)は液晶装置の構成を示す概略平面図、(b)は(a)のH−H’線で切った液晶装置の概略断面図。FIG. 4A is a schematic plan view illustrating a configuration of a liquid crystal device, and FIG. 5B is a schematic cross-sectional view of the liquid crystal device taken along line H-H ′ in FIG. 液晶装置の等価回路図。FIG. 3 is an equivalent circuit diagram of a liquid crystal device. 画素の構造を示す概略平面図。FIG. 2 is a schematic plan view showing a structure of a pixel. (a)は図3のA−A’線で切った液晶装置の断面図、(b)はX軸方向における遮光領域の一方の端を含む液晶装置の断面図。(A) is sectional drawing of the liquid crystal device cut | disconnected by the A-A 'line | wire of FIG. 3, (b) is sectional drawing of the liquid crystal device containing one end of the light-shielding area | region in the X-axis direction. 電子機器としての携帯型電話機を示す概略斜視図。The schematic perspective view which shows the portable telephone as an electronic device. (a)は変形例の位相差層の配置を示す概略平面図、(b)は変形例の位相差層の配置を示す概略断面図。(A) is a schematic plan view which shows arrangement | positioning of the phase difference layer of a modification, (b) is a schematic sectional drawing which shows arrangement | positioning of the phase difference layer of a modification. (a)および(b)は変形例の帯状の位相差層の配置を示す概略平面図。(A) And (b) is a schematic plan view which shows arrangement | positioning of the strip | belt-shaped phase difference layer of a modification. (a)および(b)は変形例のカラーフィルタの配置を示す概略平面図。(A) And (b) is a schematic plan view which shows arrangement | positioning of the color filter of a modification.

符号の説明Explanation of symbols

10…基板としての素子基板、20…基板としての対向基板、26…位相差層、26a,26b,26c,26d…位相差層の端部、50…液晶層、60…遮光領域、61…遮光膜、100…液晶装置、200…電子機器としての携帯型電話機、E…表示領域、R…反射表示領域、SG…サブ画素、T…透過表示領域。   DESCRIPTION OF SYMBOLS 10 ... Element substrate as a substrate, 20 ... Counter substrate as a substrate, 26 ... Retardation layer, 26a, 26b, 26c, 26d ... End of retardation layer, 50 ... Liquid crystal layer, 60 ... Light shielding region, 61 ... Light shielding DESCRIPTION OF SYMBOLS Film | membrane 100 ... Liquid crystal device, 200 ... Portable telephone as an electronic device, E ... Display area, R ... Reflective display area, SG ... Sub pixel, T ... Transmission display area.

Claims (5)

一対の基板と、
前記一対の基板に挟持された液晶層と、
透過表示領域および反射表示領域を具備する複数の画素と、
前記一対の基板のいずれか一方に、前記複数の画素の前記反射表示領域に跨るように帯状に設けられ、透過する光に対して略1/2波長の位相差を付与する位相差層と
を備え、
該位相差層は、前記画素内の前記反射表示領域の側に、前記帯状の位相差層の前記透過表示領域に対向する第1の端部が前記透過表示領域と前記反射表示領域との境界に沿うように形成されている液晶装置。
A pair of substrates;
A liquid crystal layer sandwiched between the pair of substrates;
A plurality of pixels having a transmissive display area and a reflective display area;
A retardation layer provided on one of the pair of substrates so as to straddle the reflective display region of the plurality of pixels and imparting a phase difference of approximately ½ wavelength to transmitted light ;
With
Retardation layer is on the side of the front Symbol reflective display region in said pixel, a first end facing the transmissive display region of the band-shaped retardation layer between the transmissive display region and the reflective display region liquid crystal device that is formed along the boundary.
前記複数の画素をそれぞれ区画する遮光膜をさらに備え、
前記位相差層の前記第1の端部と平行する第2の端部が前記遮光膜が形成された領域内に位置している請求項1に記載の液晶装置。
Further comprising a light shielding film for partitioning the plurality of pixels,
The liquid crystal device according to Motomeko 1 second end that is located in the light shielding film is formed within a region parallel to said first end portion of the retardation layer.
前記遮光膜で区画された前記画素の前記反射表示領域内に反射層が形成されている請求項2に記載の液晶装置。 The liquid crystal device according to Motomeko second reflective layer that is formed on the reflective display area of the pixels which are partitioned by the light shielding film. 前記帯状の位相差層の前記第1の端部に対して垂直方向にある端部が、前記複数の画素を含む表示領域の外側に位置している請求項1に記載の液晶装置。2. The liquid crystal device according to claim 1, wherein an end portion of the strip-like retardation layer that is perpendicular to the first end portion is positioned outside a display region including the plurality of pixels. 請求項1乃至4のいずれか一項に記載の液晶装置が搭載されている電子機器。An electronic device in which the liquid crystal device according to any one of claims 1 to 4 is mounted.
JP2007157122A 2007-06-14 2007-06-14 Liquid crystal device and electronic device Expired - Fee Related JP4900073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157122A JP4900073B2 (en) 2007-06-14 2007-06-14 Liquid crystal device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157122A JP4900073B2 (en) 2007-06-14 2007-06-14 Liquid crystal device and electronic device

Publications (2)

Publication Number Publication Date
JP2008309978A JP2008309978A (en) 2008-12-25
JP4900073B2 true JP4900073B2 (en) 2012-03-21

Family

ID=40237643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157122A Expired - Fee Related JP4900073B2 (en) 2007-06-14 2007-06-14 Liquid crystal device and electronic device

Country Status (1)

Country Link
JP (1) JP4900073B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017055971A1 (en) 2015-10-01 2017-04-06 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
JP2020514797A (en) * 2017-01-06 2020-05-21 ニスティカ,インコーポレーテッド Optical arrangement for suppressing out-of-band crosstalk in wavelength selective switches
JP6984965B2 (en) * 2017-03-24 2021-12-22 アルパイン株式会社 Liquid crystal display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098623A (en) * 2004-09-29 2006-04-13 Hitachi Displays Ltd Liquid crystal display device
JP2006292787A (en) * 2005-04-05 2006-10-26 Sharp Corp Liquid crystal display panel and device
JP2006292847A (en) * 2005-04-06 2006-10-26 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device
JP4039444B2 (en) * 2005-07-15 2008-01-30 エプソンイメージングデバイス株式会社 Liquid crystal display device and electronic device
WO2007063629A1 (en) * 2005-12-02 2007-06-07 Sharp Kabushiki Kaisha Liquid crystal display device
JP2008076640A (en) * 2006-09-20 2008-04-03 Seiko Epson Corp Method of manufacturing electrooptical device
JP2008241959A (en) * 2007-03-27 2008-10-09 Epson Imaging Devices Corp Liquid crystal display

Also Published As

Publication number Publication date
JP2008309978A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4900072B2 (en) Liquid crystal device and electronic device
US7688408B2 (en) Liquid crystal device and electronic apparatus
US7477347B2 (en) Liquid crystal device and electronic apparatus
JP4828557B2 (en) Liquid crystal display
JP4337794B2 (en) Liquid crystal device and electronic device
JP4016977B2 (en) Liquid crystal display device, electronic equipment
JP2003172923A (en) Transflective liquid crystal device and electronic apparatus using the same
US8334956B2 (en) Liquid crystal device and electronic apparatus
JP2004219996A (en) Liquid crystal display device and electronic equipment
JP2007133293A (en) Liquid crystal device and electronic apparatus
JP2007058019A (en) Liquid crystal device and electronic apparatus
JP5100047B2 (en) Liquid crystal device and electronic device
JP4900073B2 (en) Liquid crystal device and electronic device
JP4887745B2 (en) Liquid crystal device and electronic device
JP2008170483A (en) Liquid crystal device and electronic device
JP4127272B2 (en) Electro-optical device substrate, electro-optical device, and electronic apparatus
KR20040005652A (en) Color filter substrate as well as method of manufacturing the same, electrooptic device and electronic equipment
JP2005202034A (en) Liquid crystal display device, method for manufacturing the same, and electronic appliance
JP4645628B2 (en) Liquid crystal display device, electronic equipment
JP2008304560A (en) Display device, and method for manufacturing substrate for display device
JP2003262852A (en) Transflective liquid crystal device and electronic apparatus using the same
JP4433738B2 (en) Electro-optical device substrate, electro-optical device, and electronic apparatus
JP2008076503A (en) Liquid crystal display
JP4735292B2 (en) Liquid crystal device and electronic device
JP2008209852A (en) Liquid crystal device and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R151 Written notification of patent or utility model registration

Ref document number: 4900073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees