JP4899306B2 - Periodic pattern unevenness inspection device - Google Patents

Periodic pattern unevenness inspection device Download PDF

Info

Publication number
JP4899306B2
JP4899306B2 JP2004332833A JP2004332833A JP4899306B2 JP 4899306 B2 JP4899306 B2 JP 4899306B2 JP 2004332833 A JP2004332833 A JP 2004332833A JP 2004332833 A JP2004332833 A JP 2004332833A JP 4899306 B2 JP4899306 B2 JP 4899306B2
Authority
JP
Japan
Prior art keywords
inspection
periodic pattern
axis
imaging
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004332833A
Other languages
Japanese (ja)
Other versions
JP2006145272A (en
Inventor
崇 稲村
恵一 谷澤
政司 郡嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004332833A priority Critical patent/JP4899306B2/en
Publication of JP2006145272A publication Critical patent/JP2006145272A/en
Application granted granted Critical
Publication of JP4899306B2 publication Critical patent/JP4899306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Liquid Crystal (AREA)

Description

本発明は周期性パターンを有する製品におけるムラ検査装置に関する。   The present invention relates to an unevenness inspection apparatus for products having a periodic pattern.

従来の周期性パターンのムラ検査では、同軸の透過照明や平面照明(例えば、特許文献1、2参照)を用いて透過光画像を撮像し、各々の画像での光の強度(明るさ)を比べてムラ部と正常部とを視認する方法である。そのため、元々ムラ部と正常部との光の強度差が少ない、すなわち、コントラストが低い画像をその強度差の処理方法を工夫することで、差を拡大してムラ部の抽出し、検査を行っている。   In a conventional periodic pattern unevenness inspection, a transmitted light image is captured using coaxial transmitted illumination or planar illumination (see, for example, Patent Documents 1 and 2), and the intensity (brightness) of light in each image is determined. This is a method of visually recognizing the uneven portion and the normal portion. For this reason, the difference in light intensity between the uneven part and the normal part is originally small, that is, by devising an intensity difference processing method for images with low contrast, the difference is expanded and the uneven part is extracted and inspected. ing.

しかし、上記従来技術においては、格子状の周期性パターンのブラックマトリクスのムラ、特に開口部の大きいブラックマトリクスのムラの撮像において、ムラ部と正常部でのコントラストの向上が望めず、強度差の処理を工夫したとしても、元画像のコントラストが低い画像の場合の検査では、目視での官能検査方法より低い検査能力しか達成できない問題がある。なお、周期性パターンとは、一定の間隔(以下ピッチと記す)を持つスリットのパターンの集合体を称し、例えば、1本のパターンが所定ピッチで配列したストライプ状の周期性パターン、又は開口部のパターンが所定ピッチで配列したマトリクス状の周期性パターン等である。   However, in the above-described prior art, in the imaging of the black matrix unevenness of the grid-like periodic pattern, particularly the black matrix unevenness having a large opening, the contrast between the uneven portion and the normal portion cannot be improved, and the intensity difference Even if the processing is devised, there is a problem that the inspection in the case of an image with a low contrast of the original image can only achieve a lower inspection ability than the visual sensory inspection method. The periodic pattern refers to an aggregate of slit patterns having a constant interval (hereinafter referred to as a pitch). For example, a striped periodic pattern in which one pattern is arranged at a predetermined pitch, or an opening. These patterns are a matrix-like periodic pattern in which these patterns are arranged at a predetermined pitch.

一方、微細な表示、と明るい画面の電子部品の増加により、前記周期性パターンでは、微細化、又は開口部比率アップへの傾向が進んでいる。将来、更に開口部の大きい高開口率の、より超微細形状のブラックマトリクス用の周期性パターンのムラ検査の方法及びその装置が必要となる。すなわち、従来の光の振幅による光の強度(明るさ)の強弱のみの出力では限界である。   On the other hand, due to the increase in fine display and electronic components with a bright screen, the periodic pattern tends to be miniaturized or the aperture ratio is increased. In the future, there will be a need for a method and apparatus for inspecting unevenness of a periodic pattern for an ultrafine black matrix having a higher aperture ratio and a larger aperture ratio. That is, there is a limit in the conventional output with only the intensity (brightness) of the light depending on the amplitude of the light.

他方、特にCCDやCMOS、LCDといった撮像用や表示用のカラーフィルター等の製作に用いられるフォトマスクの周期性パターン部においては、従来から目視による外観検査が行なわれている。このような人間による外観検査は熟練度が必要ではあるが、極微細な欠陥部を発見することが可能であることから、広く実施されている。   On the other hand, visual inspection is conventionally performed on periodic pattern portions of photomasks used for manufacturing color filters for imaging and display, such as CCD, CMOS, and LCD. Such an appearance inspection by a human needs skill, but is widely implemented because it can find a very fine defect.

これは、人間の視覚はコントラストの変動に敏感であることを活用しているのだが、このコントラスト変動も一点の欠陥では発見が難しく、ある程度の幅において連続的に発生する場合に非常に感度良く認識することができるという人間の目の錐体の特性を利用している。   This makes use of the fact that human vision is sensitive to contrast fluctuations, but this contrast fluctuation is also difficult to detect with a single defect, and is very sensitive when it occurs continuously within a certain range. It uses the characteristics of the human eye's cone that it can recognize.

そして、人間の目では絶対に見ることの出来ない、超微細形状の大きさの欠陥を、平行光の光を斜めから当てて観察することにより、回折(散乱)などの現象から欠陥が強調されて確認できることを経験的に学んで実施しているのである。   And, by observing a microscopic size defect that can never be seen by human eyes by illuminating parallel light from an angle, the defect is emphasized from phenomena such as diffraction (scattering). It is learned and implemented empirically what can be confirmed.

このとき、先にも述べたようにミクロレベルでの一点欠陥は発見が難しいが、必ずしも一点の欠陥は(例えば一辺が数nm〜数十nm程度の欠陥)不良品となるわけではない。ミクロレベルでの検査は顕微鏡にて別途おこなっており、この検査にて不良品として判定される閾値を超えなければ問題はないと判断される。ただし、このような顕微鏡を用いた検査で不良品と判定されないものでも、先に述べたような連続的な不良に関しては、人間は非常に感度良く知覚することが可能なのである。従って、ミクロレベルでの検出力を上げることと、目視検査では判断すべきポイントが異なるのである。   At this time, as described above, it is difficult to find a single point defect at the micro level, but a single point defect (for example, a defect having a side of about several nanometers to several tens of nanometers) does not necessarily become a defective product. Inspection at the micro level is separately performed with a microscope, and it is determined that there is no problem unless a threshold value determined as a defective product is exceeded by this inspection. However, even if the product is not judged as defective by the inspection using such a microscope, humans can perceive the continuous failure as described above with high sensitivity. Therefore, the point that should be judged in the visual inspection is different from increasing the detection power at the micro level.

しかし、このような人間による目視検査では見逃しや個人差があり、良品不良品の判定基準が明確でないという問題点を抱えていた。   However, such visual inspection by humans has a problem that there are oversights and individual differences, and the determination criteria for non-defective products are not clear.

また、フォトマスクのような製品の検査を行う際には清浄な空間で検査を実施する必要があるが、実際には全ての環境が検査に適しているとは言えず、検査をすることで、逆に欠陥の原因を増やしてしまうという問題点がある。   In addition, when inspecting products such as photomasks, it is necessary to perform inspections in a clean space. However, in reality, not all environments are suitable for inspection. On the contrary, there is a problem of increasing the cause of defects.

製品の検査をクリーンルームにて行った場合にも、このクリーンルームのクリーン度が条件を満たしていなければワークの汚染は避けられない。   Even when a product is inspected in a clean room, contamination of the work is inevitable unless the cleanness of the clean room satisfies the conditions.

また、検査装置を箱型の壁にて密閉することにも問題がある。装置製作の段階で発生した不純物は密閉空間から逃げることが出来ずに、やはりワークは汚染される。仮に極めてクリーン度の高い作業環境と部材にて検査装置を組み上げたとしても、一度汚染されたワークを投入した段階でこの検査装置内部は汚染され、次に検査を行うワークも汚染されるという問題がある。   There is also a problem in sealing the inspection apparatus with a box-shaped wall. Impurities generated at the stage of manufacturing the device cannot escape from the sealed space, and the work is still contaminated. Even if an inspection device is assembled with an extremely clean work environment and components, the inside of this inspection device is contaminated when a contaminated workpiece is introduced, and the workpiece to be inspected next is also contaminated. There is.

以下に公知文献を記す。
特開2002−148210号公報 特開2002−350361号公報
The known literature is described below.
JP 2002-148210 A JP 2002-350361 A

本発明は上記のような従来技術の問題点に鑑みて、周期性のあるパターン、例えばブラックマトリクスのムラを安定的に、高精度に撮像、検出可能で、さらにワークに対して不純物で汚染させることのない周期性パターンムラ検査装置を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention can stably and accurately image and detect periodic patterns, for example, black matrix unevenness, and further contaminate the workpiece with impurities. It is an object of the present invention to provide a periodic pattern unevenness inspection apparatus that does not occur.

上記目的を達成するため、本発明の請求項1に係る発明は、検査対象基板の周期性パターンのムラの検査をする検査装置であって、
前記検査対象基板を載置し、位置の認知と、前記検査対象基板の平面に対して平行なX軸方向及びY軸方向に駆動する手段を具備するXYステージと、
前記XYステージおよび前記検査対象基板に垂直な軸を前記検査装置の光軸とし、これに平行な撮像側平行光学系を備え、画像を撮像する手段を具備する撮像部と、
前記検査対象基板の上部に配置され、前記撮像部を保持して前記検査対象基板の平面に対して垂直なZ軸方向に駆動するZ軸駆動部と、
照明側平行光学系を有し前記検査対象基板に対して斜め透過光の照明を行い個別に点灯が可能な複数の光源と、
前記光源のそれぞれを個別に、前記検査装置の光軸の上下方向に、及び前記XYステージの左右平行方向に、回転させることが可能な複数の上下左右回転駆動部と、
前記撮像部及びXYステージ及び複数の光源及び複数の上下左右回転駆動部を管理し、周期性パターンのムラの検査の工程を逐次処理する手段を具備する処理部と、
前記撮像部および前記Z軸駆動部を覆うように配置される駆動部カバーと、
クリーンユニットを有し、かつ、前記検査装置全体を覆うように配置される装置全体カバーと、を備え、
前記斜め透過光の照明を行うことで生じる、前記検査対象基板の周期性パターンでの回折光を撮像する際に、前記斜め透過光の照明の入射角と方向を調整して回折光の差異を強調することを特徴とする周期性パターンムラ検査装置である。
In order to achieve the above object, an invention according to claim 1 of the present invention is an inspection apparatus for inspecting unevenness of a periodic pattern of a substrate to be inspected,
An XY stage having a means for mounting the substrate to be inspected, recognizing the position, and means for driving in the X-axis direction and the Y-axis direction parallel to the plane of the substrate to be inspected;
An imaging unit including an imaging axis parallel optical system parallel to the optical axis of the inspection apparatus, and an axis perpendicular to the XY stage and the inspection target substrate;
A Z-axis drive unit disposed on the inspection target substrate and holding the imaging unit and driving in a Z-axis direction perpendicular to the plane of the inspection target substrate;
A plurality of light sources having an illumination side parallel optical system and capable of individually lighting by illuminating obliquely transmitted light on the inspection target substrate,
A plurality of vertical and horizontal rotation driving units capable of rotating each of the light sources individually in the vertical direction of the optical axis of the inspection apparatus and in the horizontal direction of the XY stage;
A processing unit that manages the imaging unit, the XY stage, the plurality of light sources, and the plurality of up / down / left / right rotation driving units, and that sequentially processes a process for inspecting the periodic pattern unevenness;
A drive unit cover arranged to cover the imaging unit and the Z-axis drive unit;
An overall apparatus cover having a clean unit and arranged to cover the entire inspection apparatus,
When imaging the diffracted light in the periodic pattern of the substrate to be inspected, which is generated by illuminating the oblique transmitted light, the incident angle and direction of the oblique transmitted light illumination are adjusted, and the difference in the diffracted light is determined. It is a periodic pattern nonuniformity inspection apparatus characterized by emphasizing .

上記のような本発明の検査装置によれば、周期性パターンブラックマトリクスのムラのみを安定的、高精度に検出可能となる。   According to the inspection apparatus of the present invention as described above, it is possible to detect only the irregularity of the periodic pattern black matrix stably and with high accuracy.

さらに、原画像自体がムラが強調されている画像となるため、ムラのモニター用装置としての利用も有効となる。   Furthermore, since the original image itself is an image in which unevenness is emphasized, the use as an unevenness monitoring device is also effective.

また、検査機内部は常にクリーンな環境が保たれるので、検査機が原因の不良をなくし
、検査データの信頼性も向上する。
In addition, since a clean environment is always maintained inside the inspection machine, defects caused by the inspection machine are eliminated, and the reliability of inspection data is improved.

本発明の外観検査装置を用いたことにより、検査時間が短縮され、検査効率が向上する効果がある。   By using the appearance inspection apparatus of the present invention, the inspection time is shortened and the inspection efficiency is improved.

本発明の外観検査装置を一実施形態に基づいて以下説明する。   An appearance inspection apparatus according to the present invention will be described below based on an embodiment.

図1は、本発明の周期性パターンムラの検査装置の機能構成を示す概念図である。図1に示すように、斜め透過照明部10と、透過照明が可能なXYステージ部20と、撮像するための撮像部30と、撮像された画像を強調処理し、ムラ部を判定、さらに強調された画像を人がムラを認識しやすい様に表示する機能を有する処理部40から構成されている。   FIG. 1 is a conceptual diagram showing a functional configuration of a periodic pattern unevenness inspection apparatus according to the present invention. As shown in FIG. 1, the oblique transmission illumination unit 10, the XY stage unit 20 capable of transmission illumination, the imaging unit 30 for imaging, the captured image is enhanced, the unevenness portion is determined, and further enhancement is performed. The processing unit 40 has a function of displaying the displayed image so that a person can easily recognize unevenness.

斜め透過照明部10では、上下方向や左右方向及び回転する自由自在に高さ方向を変える上下左右回転駆動部12を配置され、該駆動部の先端に固定した照明側平行光学系11の照明が設けられており、様々な角度、方向からの照明が可能となっている。すなわち、斜め透過照明部10では、様々な角度、方向から、平行光学系11の透過照明が設定できる。さらに、前記照明が複数台配置され、その照明の点灯を切り換える(点光源の変更)ことや、検査対象基板との距離、又は照明光の入射角、方向を切り換えることができる。   In the oblique transmission illumination unit 10, an up / down / left / right rotation drive unit 12 that freely changes the height direction in the vertical direction and the left / right direction is arranged, and illumination of the illumination side parallel optical system 11 fixed to the tip of the drive unit is performed. It is provided and illumination from various angles and directions is possible. That is, the oblique transmission illumination unit 10 can set the transmission illumination of the parallel optical system 11 from various angles and directions. Furthermore, a plurality of the illuminations are arranged, and switching of lighting of the illuminations (change of the point light source), a distance from the inspection target substrate, or an incident angle and direction of illumination light can be switched.

XYステージ部20では、検査対象基板をXYステージ部の所定の位置に載置する。前記XYステージ部は、測定機能を持ち、位置の認知して、検査対象基板の検査開始位置に装置の光軸を重ねる。X軸及びY軸方向に駆動する手段を用いて、予め設定した動作手順に従ってXYステージをX軸及びY軸方向に駆動する。   In the XY stage unit 20, the inspection target substrate is placed at a predetermined position of the XY stage unit. The XY stage unit has a measurement function, recognizes the position, and superimposes the optical axis of the apparatus on the inspection start position of the inspection target substrate. Using the means for driving in the X-axis and Y-axis directions, the XY stage is driven in the X-axis and Y-axis directions according to a preset operation procedure.

撮像部30では、光軸に平行な撮像側平行光学系31から構成され、画像を撮像する手段、例えば、CCDカメラ、画像のデータ化及びデータ保存送信等の役割を分担する。   The imaging unit 30 includes an imaging-side parallel optical system 31 parallel to the optical axis, and shares functions such as a means for capturing an image, such as a CCD camera, image data conversion, data storage and transmission.

前述した手段を備えた周期性パターンのムラの検査をする検査装置では、周期性パターンを撮像することができ、その画像データにより、その特徴抽出することができる。第一の特徴抽出では、検査対象基板へ照明光軸に平行光で、入射角をある透過照明光を照射する方法であり、斜め透過光の照明を行うことで生じる、周期性パターンでの回折光を撮像することを特徴とする周期性パターンムラ検査装置である。周期性パターンの正常部では、スリット部(又は開口部)の形状・ピッチが一定となるために互いに干渉し、一定の方向に強い回折光が生じ、ムラ部では、スリット部(又は開口部)の形状・ピッチが不安定となるために形状・ピッチに応じて、色々な方向に、種々の強さで回折光が生じる。この様に構成された本周期性パターンムラの検査装置において、斜め透過照明部10から照射された光が、周期性パターンのブラックマトリクスの検査対象基板50の開口部にて回折され、その回折光が画像として撮像部30に捕らえられる。次に、第二の特徴抽出では、入射角を変更する方法であり、入射角が90°より小さくすると観察環境が替わり、スリット部(又は開口部)の形状・ピッチの差違が強調される効果があり、位相を少しずつ変化させる照明により回折光の差違が更に強調される。   In the inspection apparatus for inspecting the periodic pattern unevenness having the above-described means, the periodic pattern can be imaged, and the feature can be extracted from the image data. The first feature extraction is a method of irradiating the inspection target substrate with transmitted illumination light that is parallel to the illumination optical axis and having an incident angle, and is diffracted by a periodic pattern caused by illuminating oblique transmitted light. It is a periodic pattern nonuniformity inspection apparatus characterized by imaging light. In the normal part of the periodic pattern, the shape and pitch of the slit part (or opening part) are constant, so that they interfere with each other, and strong diffracted light is generated in a certain direction. In the uneven part, the slit part (or opening part). Since the shape / pitch becomes unstable, diffracted light is generated with various intensities in various directions according to the shape / pitch. In the periodic pattern unevenness inspection apparatus configured as described above, the light emitted from the oblique transmission illumination unit 10 is diffracted at the opening of the inspection target substrate 50 of the black matrix of the periodic pattern, and the diffracted light. Is captured by the imaging unit 30 as an image. Next, the second feature extraction is a method of changing the incident angle. When the incident angle is smaller than 90 °, the observation environment is changed, and the difference in the shape and pitch of the slit (or opening) is emphasized. The difference in the diffracted light is further emphasized by illumination that changes the phase little by little.

前記検査対象基板50にて回折される回折光は、ブラックマトリクスの微妙な変動により、回折角に変化をもたらすため、前記撮像部30に捕らえられた画像はブラックマトリクスの変動に起因するムラ部を強調した画像となる。さらに、斜め透過照明部10及び撮像部30に平行光学系を用いることで、回折光の変動をより正確に強調した画像が捕らえられる。   The diffracted light diffracted by the substrate to be inspected 50 causes a change in the diffraction angle due to subtle fluctuations in the black matrix, so that the image captured by the imaging unit 30 has uneven portions due to fluctuations in the black matrix. The image is emphasized. Furthermore, by using a parallel optical system for the oblique transmission illumination unit 10 and the imaging unit 30, an image in which the fluctuation of the diffracted light is more accurately emphasized is captured.

また、第三の特徴抽出では、照明光の位置を変更する方法であり、複数設置された照明を順次点灯すること、又は、照明光と検査対象基板50との距離を変更等により、様々な方向性をもつムラに対して最適な画像が取得可能となる。   The third feature extraction is a method of changing the position of the illumination light. Various features can be obtained by sequentially lighting a plurality of installed lights or changing the distance between the illumination light and the inspection target substrate 50. An optimum image can be acquired for unevenness having directionality.

処理部40では、前記撮像部30及びXYステージ20及び透過照明部10を管理し、周期性パターンのムラの検査の工程を逐次処理する手段を統括管理する。さらに、処理部40では、撮像部30から画像のデータを受け取り、該データを所定のデータ処理手順により画像の特徴を抽出(以下特徴抽出と記す)すること、予め登録した正常(良品)画像のデータの特徴と比較し、その差分を算出し、良否の判定する。なお、周期性パターンムラの検査の工程を逐次処理する手段(フロー図)は図2に示した。フロー図は、開始〜終了まで(順番に1〜23まで)逐次処理される。   The processing unit 40 manages the imaging unit 30, the XY stage 20, and the transmitted illumination unit 10, and comprehensively manages means for sequentially processing the periodic pattern unevenness inspection process. Further, the processing unit 40 receives image data from the imaging unit 30, extracts image features from the data according to a predetermined data processing procedure (hereinafter referred to as feature extraction), and stores normal (non-defective) images registered in advance. Compare with the characteristics of the data, calculate the difference, and determine pass / fail. The means (flow diagram) for sequentially processing the inspection process for periodic pattern unevenness is shown in FIG. The flowchart is sequentially processed from the start to the end (in order from 1 to 23).

次に、処理部40の特徴抽出及び照合比較の解析手法を説明する。上述したように、本発明では、経験的に習得した回折、又は透過照明光源の照度の変化、点光源の変更、照射角の変更等による撮像画像の、回折現象又はコントラスト比を集約し、データベース化した手法である。最初に、正常(良品)画像、例えばブラックマトリクスのデータの特徴を解析し、その特徴を詳細に抽出し、正常画像の特徴を登録する。次に、経験した異常画像の特徴を撮像条件、例えば回折、又は透過照明光源の照度の変化、点光源の変更、照射角の変更等毎に回折現象又はコントラスト比の特徴抽出し、異常画像の特徴を登録する。以上により、本発明の特徴抽出のデータベースが完成する。次に、撮像部30の極低倍率レンズを用いて、周期性パターンムラの検査工程を逐次処理し、領域分割により、正常画像の特徴の一様性に基づいて、画像を重複しない連続領域に分割処理する。すなわち、一つの撮像エリア毎に、特徴抽出し、正常画像の特徴と照合比較し、一致エリアのみ正常として登録する。登録漏れのエリア、すなわち、異常画像エリアは、ある種の属性、例えば異常画像の特徴毎に分類し、その撮像画像及び位置座標、欠陥名等を付与し一時登録する。前記正常画像の、又は異常画像の特徴は、常時更新し、より高精度のデータベースとする最適化が望ましい。なお、特徴抽出及び照合比較の解析手法では、一つの撮像エリアの面積は主要な条件であり、前記極低倍率レンズの倍率は、適宜最適化することが重要となる。   Next, a feature extraction and collation analysis method of the processing unit 40 will be described. As described above, in the present invention, the diffraction phenomenon or contrast ratio of the captured images obtained by empirically acquired diffraction or change in illuminance of the transmission illumination light source, change in the point light source, change in the irradiation angle, etc. It is a method that has become. First, a feature of a normal (non-defective) image, for example, black matrix data is analyzed, the feature is extracted in detail, and a feature of the normal image is registered. Next, the characteristics of the experienced abnormal image are extracted for each imaging condition, for example, diffraction or illuminance change of the transmitted illumination light source, point light source change, irradiation angle change, etc. Register features. Thus, the feature extraction database of the present invention is completed. Next, using the ultra-low magnification lens of the imaging unit 30, the periodic pattern unevenness inspection process is sequentially processed, and the regions are divided into continuous regions that do not overlap based on the uniformity of the characteristics of normal images. Split processing. That is, for each imaging area, features are extracted, compared with the features of the normal image, and only the matching areas are registered as normal. The registration omission area, that is, the abnormal image area is classified according to certain attributes, for example, features of the abnormal image, and the captured image, position coordinates, defect name, etc. are assigned and temporarily registered. It is desirable that the characteristics of the normal image or the abnormal image are constantly updated to optimize the database with higher accuracy. Note that in the analysis method of feature extraction and collation comparison, the area of one imaging area is a major condition, and it is important to optimize the magnification of the extremely low magnification lens as appropriate.

図2に示したフロー図において、周期性パターンムラの検査の工程を逐次処理する手段では、b6の撮像条件設定、すなわち、b7の倍率設定〜b8照明条件設定を初期条件としているが、限定せずに一つの撮像エリア毎に自動変更、例えば、前記第一から第三の照射条件まで、順次変更して撮像することもできる。さらに、撮像した画像データと、特徴抽出のデータベースとの照合比較は、並列処理することも可能な処理システムを備えている。   In the flowchart shown in FIG. 2, the means for sequentially processing the inspection process for periodic pattern unevenness has b6 imaging condition setting, that is, b7 magnification setting to b8 illumination condition setting as initial conditions. In addition, it is possible to change the image automatically for each image pickup area, for example, sequentially change from the first to the third irradiation condition. Furthermore, the comparison between the captured image data and the feature extraction database includes a processing system that can also perform parallel processing.

処理部40では、撮像部30からの画像データを所定のデータ処理手順により画像の特徴抽出と、予め登録した正常画像データの特徴と照合比較し、良否の判定する。   The processing unit 40 determines whether the image data from the imaging unit 30 is good or bad by comparing the feature extraction of the image with a feature of normal image data registered in advance by a predetermined data processing procedure.

判定されたムラ部の位置やレベルをムラ画像と同時に処理部40に表示することで、ムラのモニター用途としての利用も有効となっている。   By displaying the determined position and level of the uneven portion at the same time as the uneven image on the processing unit 40, the use for unevenness monitoring is also effective.

このとき、撮像光学系は必ずしもミクロレベルでの一点欠陥(例えば一辺が数nm〜数十nm程度の欠陥)の回折光のコントラスト差を検出できるレンズや高解像度カメラ、超高感度カメラを選定する必要は無い。あくまで連続的な欠陥を検出できる光学部品を選定することが可能で、安価、かつ一回の検査エリアを広く取ることが可能であり、例えば一辺が150mmのフォトマスクを検査する為に、一回の検査エリアを30mm角の撮像が可能な光学系を選定するとすれば、最も少ない撮像回数は25回で全面撮像可能であり、一回の撮像につき2秒かけたとしても一面の検査時間としては1分に満たない。(検査ス
テージの能力、計算処理能力の向上で更なる高速化が可能である。)
繰り返すが、ミクロレベルでの一点欠陥(例えば一辺が数nm〜数十nm程度の欠陥)は必ずしも商品として不良になるわけではないことから、本検査装置ではあくまでも人が行う外観検査に変わる装置として設計を行ったことで、このような高速での検査を可能とすることが出来た。更に測定精度についても連続的な欠陥の検出レベルにおいては10nmレベルという極めて微小なパターン寸法欠陥を検出可能な、高精度な検査装置である。
At this time, the imaging optical system does not necessarily select a lens, a high-resolution camera, or a super-sensitive camera that can detect the contrast difference of diffracted light of a single point defect (for example, a defect having a side of several nanometers to several tens of nanometers) at the micro level. There is no need. It is possible to select optical components capable of detecting continuous defects to the last, and it is possible to take a wide inspection area at a low cost and once. For example, in order to inspect a photomask having a side of 150 mm, If an optical system capable of imaging a 30 mm square is selected for the inspection area, the entire imaging can be performed with the smallest number of imaging times of 25. Even if it takes 2 seconds for each imaging, the inspection time for one surface is as follows. Less than 1 minute. (It is possible to further increase the speed by improving the inspection stage capability and calculation processing capability.)
Again, a single-point defect at the micro level (for example, a defect with a side of several nanometers to several tens of nanometers) does not necessarily become a defective product. The design made it possible to inspect at such a high speed. Further, the measurement accuracy is a high-precision inspection apparatus capable of detecting extremely minute pattern dimension defects of 10 nm level at the continuous defect detection level.

次に図3は、本発明のワーク汚染を防止する機能構成を示した概念図である。図3に示すように、ステージ2上に検査対象基板50を載置し、照明部1よりの照射した撮像条件下で、Z軸駆動部4によりカメラを走査させ、その画像データを取り込む検査装置である。装置全体カバー6で不純物が装置内部に入り込むのを防いでいる。更に、ワーク上部にある発塵の起こり易い駆動部分には駆動部カバー9を装備する。駆動部カバーの下面には透明ガラス7を取り付け透過光を取り込む、或いはカメラ3のレンズ部のみ駆動部カバーから露出させ、その他の部分をカバーするなどの方法で駆動部からの発塵による装置内部の汚染を防止する。   Next, FIG. 3 is a conceptual diagram showing a functional configuration for preventing workpiece contamination according to the present invention. As shown in FIG. 3, an inspection apparatus that places an inspection target substrate 50 on the stage 2, scans the camera with the Z-axis drive unit 4 under the imaging conditions irradiated from the illumination unit 1, and captures the image data. It is. The entire device cover 6 prevents impurities from entering the inside of the device. Furthermore, the drive part cover 9 is equipped in the drive part which is easy to generate | occur | produce dust on the workpiece | work upper part. A transparent glass 7 is attached to the lower surface of the drive unit cover to capture transmitted light, or only the lens unit of the camera 3 is exposed from the drive unit cover, and other parts are covered to generate dust from the drive unit. To prevent contamination.

このとき、装置全体カバーをしているだけでは新たに進入した不純物に対して除去機能が無いので、装置本体枠60天井にクリーンユニット5を取り付け、クリーンな空気を常時供給して不純物を排出する。装置内部は外部に対して陽圧とし、外部からの空気はクリーンユニットのHEPAフィルター、ULPAフィルターなどを経てクリーンな空気が供給され、装置本体枠60床に開口部8から排気し、不純物を装置内部より除去する。   At this time, since there is no function to remove newly introduced impurities simply by covering the entire apparatus, the clean unit 5 is attached to the ceiling of the apparatus main body frame 60, and clean air is constantly supplied to discharge impurities. . The inside of the device is positive with respect to the outside, and the air from the outside is supplied with clean air through the HEPA filter, ULPA filter, etc. of the clean unit, exhausted from the opening 8 to the floor of the device body frame 60, and impurities are introduced into the device Remove from inside.

また、ハンドリングスペース61を設けることにより、サンプルケースの開封などの作業時に汚染されることも防いでいる。   Further, by providing the handling space 61, it is possible to prevent contamination during work such as opening the sample case.

本発明の周期性パターンムラ検査装置の機能構成を示す概念図である。It is a conceptual diagram which shows the function structure of the periodic pattern nonuniformity inspection apparatus of this invention. 本発明の周期性パターンムラの検査の工程を逐次処理するフロー図である。It is a flowchart which processes sequentially the process of the test | inspection of the periodic pattern nonuniformity of this invention. 本発明の検査装置の不純物での汚染を防ぐ機能機工を示す概念図である。It is a conceptual diagram which shows the functional mechanic which prevents the contamination with the impurity of the test | inspection apparatus of this invention.

符号の説明Explanation of symbols

1…照明部
2…ステージ
3…カメラ
4…Z軸駆動部
5…クリーンユニット
6…装置全体カバー
8…開口部
7…透明ガラス
9…駆動部カバー
10…斜め透過照明部
11…照明側平行光学系
12…上下左右回転稼動部
20…XYステージ部
30…撮像部
31…撮像側平行光学系
40…処理部
50…検査対象基板
60…装置本体枠
61…ハンドリングスペース
DESCRIPTION OF SYMBOLS 1 ... Illumination part 2 ... Stage 3 ... Camera 4 ... Z-axis drive part 5 ... Clean unit 6 ... Whole apparatus cover 8 ... Opening part 7 ... Transparent glass 9 ... Drive part cover 10 ... Oblique transmission illumination part 11 ... Illumination side parallel optics System 12: Up / down / left / right rotation operation unit 20: XY stage unit 30 ... Imaging unit 31 ... Imaging side parallel optical system 40 ... Processing unit 50 ... Inspection target substrate 60 ... Apparatus body frame 61 ... Handling space

Claims (1)

検査対象基板の周期性パターンのムラの検査をする検査装置であって、
前記検査対象基板を載置し、位置の認知と、前記検査対象基板の平面に対して平行なX軸方向及びY軸方向に駆動する手段を具備するXYステージと、
前記XYステージおよび前記検査対象基板に垂直な軸を前記検査装置の光軸とし、これに平行な撮像側平行光学系を備え、画像を撮像する手段を具備する撮像部と、
前記検査対象基板の上部に配置され、前記撮像部を保持して前記検査対象基板の平面に対して垂直なZ軸方向に駆動するZ軸駆動部と、
照明側平行光学系を有し前記検査対象基板に対して斜め透過光の照明を行い個別に点灯が可能な複数の光源と、
前記光源のそれぞれを個別に、前記検査装置の光軸の上下方向に、及び前記XYステージの左右平行方向に、回転させることが可能な複数の上下左右回転駆動部と、
前記撮像部及びXYステージ及び複数の光源及び複数の上下左右回転駆動部を管理し、周期性パターンのムラの検査の工程を逐次処理する手段を具備する処理部と、
前記撮像部および前記Z軸駆動部を覆うように配置される駆動部カバーと、
クリーンユニットを有し、かつ、前記検査装置全体を覆うように配置される装置全体カバーと、を備え、
前記斜め透過光の照明を行うことで生じる、前記検査対象基板の周期性パターンでの回折光を撮像する際に、前記斜め透過光の照明の入射角と方向を調整して回折光の差異を強調することを特徴とする周期性パターンムラ検査装置。
An inspection apparatus for inspecting unevenness of a periodic pattern of an inspection target substrate,
An XY stage having a means for mounting the substrate to be inspected, recognizing the position, and means for driving in the X-axis direction and the Y-axis direction parallel to the plane of the substrate to be inspected;
An imaging unit including an imaging axis parallel optical system parallel to the optical axis of the inspection apparatus, and an axis perpendicular to the XY stage and the inspection target substrate;
A Z-axis drive unit disposed on the inspection target substrate and holding the imaging unit and driving in a Z-axis direction perpendicular to the plane of the inspection target substrate;
A plurality of light sources having an illumination side parallel optical system and capable of individually lighting by illuminating obliquely transmitted light on the inspection target substrate,
A plurality of vertical and horizontal rotation driving units capable of rotating each of the light sources individually in the vertical direction of the optical axis of the inspection apparatus and in the horizontal direction of the XY stage;
A processing unit that manages the imaging unit, the XY stage, the plurality of light sources, and the plurality of up / down / left / right rotation driving units, and that sequentially processes a process for inspecting the periodic pattern unevenness;
A drive unit cover arranged to cover the imaging unit and the Z-axis drive unit;
An overall apparatus cover having a clean unit and arranged to cover the entire inspection apparatus,
When imaging the diffracted light in the periodic pattern of the substrate to be inspected, which is generated by illuminating the oblique transmitted light, the incident angle and direction of the oblique transmitted light illumination are adjusted, and the difference in the diffracted light is determined. A periodic pattern unevenness inspection apparatus characterized by emphasizing .
JP2004332833A 2004-11-17 2004-11-17 Periodic pattern unevenness inspection device Expired - Fee Related JP4899306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332833A JP4899306B2 (en) 2004-11-17 2004-11-17 Periodic pattern unevenness inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332833A JP4899306B2 (en) 2004-11-17 2004-11-17 Periodic pattern unevenness inspection device

Publications (2)

Publication Number Publication Date
JP2006145272A JP2006145272A (en) 2006-06-08
JP4899306B2 true JP4899306B2 (en) 2012-03-21

Family

ID=36625152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332833A Expired - Fee Related JP4899306B2 (en) 2004-11-17 2004-11-17 Periodic pattern unevenness inspection device

Country Status (1)

Country Link
JP (1) JP4899306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967245B2 (en) * 2005-03-28 2012-07-04 凸版印刷株式会社 Periodic pattern unevenness inspection apparatus and unevenness inspection method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643968B2 (en) * 1985-07-19 1994-06-08 大日本印刷株式会社 Shade mask defect inspection method
JPH04364404A (en) * 1991-06-11 1992-12-16 Matsushita Electric Ind Co Ltd Method for illuminating electronic parts
JPH0755439A (en) * 1993-08-11 1995-03-03 Kobe Steel Ltd Three-dimensional shape measuring equipment
JP3314253B2 (en) * 1993-11-26 2002-08-12 大日本印刷株式会社 Inspection device for color filters for viewfinder
JP3366802B2 (en) * 1995-06-21 2003-01-14 大日本スクリーン製造株式会社 Unevenness inspection method and apparatus
JPH09133636A (en) * 1995-09-07 1997-05-20 Toshiba Corp Illuminator and defect inspection equipment employing it
JP4560898B2 (en) * 2000-06-12 2010-10-13 ソニー株式会社 Inspection apparatus and inspection method
JP2004125703A (en) * 2002-10-04 2004-04-22 Pentax Corp Visual inspection device for transmission phase object
JP4474904B2 (en) * 2003-11-18 2010-06-09 凸版印刷株式会社 Periodic pattern unevenness inspection device

Also Published As

Publication number Publication date
JP2006145272A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
EP2198279B1 (en) Apparatus and method for detecting semiconductor substrate anomalies
KR101401146B1 (en) System And Method For Inspecting Patterned Devices Having Microscopic Conductors
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
CN110208269B (en) Method and system for distinguishing foreign matters on surface of glass from foreign matters inside glass
JP2001013085A (en) Flow inspection apparatus
US20090213215A1 (en) Defect inspection apparatus and method
JP2012242268A (en) Inspection device and inspection method
JPWO2007132925A1 (en) Surface inspection device
JP2006208084A (en) Inspection device for irregularities in cyclic pattern
JP2008170256A (en) Flaw detection method, flaw detection program and inspection device
JP5320936B2 (en) Inspection condition setting method and inspection apparatus in periodic pattern unevenness inspection apparatus
JP2008046109A (en) Flaw inspection device of substrate, and manufacturing method of substrate
JP2001209798A (en) Method and device for inspecting outward appearance
JP2001249090A (en) X-ray analyzer having mechanism for observing surface of sample
TWI734992B (en) Foreign body inspection device and foreign body inspection method
JP2014102208A (en) Appearance inspection device, and appearance inspection method
JP4474904B2 (en) Periodic pattern unevenness inspection device
JP7125576B2 (en) Foreign matter inspection device and foreign matter inspection method
JP4899306B2 (en) Periodic pattern unevenness inspection device
JP2009204388A (en) Defect inspection method
JP2008180578A (en) Cyclic pattern nonuniformity inspection device
JP2017138246A (en) Inspection device, inspection method, and image sensor
KR102237593B1 (en) Optical device for inspecting glass surface
JP4609089B2 (en) Periodic pattern unevenness inspection apparatus and periodic pattern imaging method
JP5738628B2 (en) Internal defect inspection apparatus and internal defect inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees