JP4899089B2 - Atmosphere analyzer and atmosphere analysis method - Google Patents

Atmosphere analyzer and atmosphere analysis method Download PDF

Info

Publication number
JP4899089B2
JP4899089B2 JP2006122908A JP2006122908A JP4899089B2 JP 4899089 B2 JP4899089 B2 JP 4899089B2 JP 2006122908 A JP2006122908 A JP 2006122908A JP 2006122908 A JP2006122908 A JP 2006122908A JP 4899089 B2 JP4899089 B2 JP 4899089B2
Authority
JP
Japan
Prior art keywords
container
atmosphere
sensor
sensor device
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006122908A
Other languages
Japanese (ja)
Other versions
JP2007292676A (en
Inventor
良三 ▲高▼須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006122908A priority Critical patent/JP4899089B2/en
Publication of JP2007292676A publication Critical patent/JP2007292676A/en
Application granted granted Critical
Publication of JP4899089B2 publication Critical patent/JP4899089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、例えば半導体ウェーハの保存や搬送に用いる容器内の雰囲気をリアルタイムで分析したり、雰囲気の汚染物質を同定するのに用いて好適な雰囲気分析装置及びその装置を用いた雰囲気分析方法に関する。   The present invention relates to an atmosphere analysis apparatus suitable for analyzing, for example, an atmosphere in a container used for storage and transportation of a semiconductor wafer in real time, and identifying contaminants in the atmosphere, and an atmosphere analysis method using the apparatus. .

現在、半導体関連分野に於いて、例えば半導体ウェーハの保存や搬送にミニエンバイロメント(SMIF、FOUP)と呼ばれる容器が使用されているところであるが、該容器は、ほぼ密閉された小さなものであるため、内部で発生した気体の汚染物質がウェーハに吸着されて、半導体装置の製造に用いた場合、その製造歩留まりが低下したり、或いは、製品の信頼性が低下するなどの問題が起こっている。   At present, in the semiconductor related field, for example, a container called a mini-environment (SMIF, FOUP) is used for storing and transporting a semiconductor wafer, but the container is a small and almost sealed container. When gas contaminants generated inside are adsorbed on a wafer and used for manufacturing a semiconductor device, problems such as a decrease in manufacturing yield or a decrease in product reliability occur.

従って、ミニエンバイロメント内の雰囲気の清浄度を管理することが重視されているのであるが、ミニエンバイロメントは、ほぼ密閉状態にすることができる容器である為、内部の雰囲気を測定するのは困難である。   Therefore, it is important to manage the cleanliness of the atmosphere in the mini-environment, but since the mini-environment is a container that can be almost sealed, measuring the atmosphere inside Have difficulty.

従来、高感度で且つ小型の雰囲気センサーとして水晶振動子を主体とするQCM(quartz crystal microbalance)と呼ばれるものが知られている(例えば、特許文献1を参照。)。   2. Description of the Related Art Conventionally, a so-called QCM (quartz crystal microbalance) mainly including a quartz resonator is known as a highly sensitive and small atmosphere sensor (see, for example, Patent Document 1).

そこで、このQCMをミニエンバイロメント内の雰囲気分析に使用すれば有効であろうと考えられるが、前記のような構成を採る場合、ミニエンバイロメント内に設置したセンサーと外部に設置した制御回路との間をケーブルで接続しなければならない。   Therefore, it is thought that it would be effective to use this QCM for atmosphere analysis in the mini-environment. However, in the case of adopting the configuration as described above, the sensor installed in the mini-environment and the control circuit installed outside are used. They must be connected with cables.

従って、ミニエンバイロメントには、ケーブルを通す穴をあける等の加工を施さなければならず、工場の生産ラインで使用されているミニエンバイロメントに適用することは困難である。   Therefore, the mini-environment must be processed such as making a hole through which the cable passes, and it is difficult to apply the mini-environment to a mini-environment used in a factory production line.

また、QCMは高感度である為、雰囲気分析をリアルタイムで実施するには、良好に機能させることができるのであるが、汚染物質の種類を同定する、即ち、定性分析することはできない。
特開2002−333394号公報
Moreover, since QCM is highly sensitive, it can function well in order to perform atmospheric analysis in real time, but it cannot identify the type of contaminant, that is, qualitative analysis.
JP 2002-333394 A

本発明では、例えばミニエンバイロメントなどの容器内に設置したセンサーと外部の制御回路とを容器に何らの加工を施すことなく接続することを可能にすると共に容器内の汚染物質を同定する為の資料を容易に取得することが可能であるようにする。   In the present invention, for example, a sensor installed in a container such as a mini-environment and an external control circuit can be connected to the container without any processing, and contaminants in the container can be identified. Make it possible to obtain materials easily.

本発明に依る雰囲気分析装置及び雰囲気分析方法に於いては、QCMをセンサーとして含むセンサー装置と、該センサー装置から導出され且つ該センサー装置が設置された容器内から容器に既存の間隙を経て容器外へ取り出すのに必要な長さをもつフレキシブルフラットケーブルと、該容器外に取り出されたフレキシブルフラットケーブルと制御回路との間を結ぶケーブルとを備えてなる雰囲気分析装置、及び、その雰囲気分析装置を用いて容器内の雰囲気を分析することが基本になっている。   In the atmosphere analysis device and the atmosphere analysis method according to the present invention, a sensor device including a QCM as a sensor, and a container which is led out from the sensor device and installed in the container through the existing gap Atmosphere analyzer including a flexible flat cable having a length necessary for taking out, a cable connecting the flexible flat cable taken out of the container and the control circuit, and the atmosphere analyzer It is fundamental to analyze the atmosphere in the container using the.

前記手段を採ることに依り、ミニエンバイロメントなどの容器内に於ける汚染物質の濃度変化を高感度で、且つ、リアルタイムで検出することができ、しかも、容器内に設置したセンサーであるQCMと外部の制御回路とを接続する為に容器を加工することは一切不要であるから、多くの容器に簡単にセットして、雰囲気分析を行うことができる。また、容器内の汚染物質を定性分析して同定することができるので、速やかに汚染物質への対応策を採ることができ、そして、汚染物質を定性分析する為の資料を取得するのに必要な金属薄膜付き板はセンサーと簡単に着脱できる構造になっているので、その設置は容易である。   By adopting the above means, it is possible to detect the change in the concentration of contaminants in the container such as mini-environment with high sensitivity and in real time, and QCM which is a sensor installed in the container. Since it is not necessary to process the container to connect to an external control circuit, it can be easily set in many containers to perform atmosphere analysis. In addition, since the contaminants in the container can be identified by qualitative analysis, it is possible to quickly take countermeasures against the contaminants, and to acquire materials for qualitative analysis of the contaminants. Since the plate with a thin metal film has a structure that can be easily attached to and detached from the sensor, its installation is easy.

図1はセンサー及び近傍の構成を表す要部説明図であって、(A)は要部上面を、そして、(B)は要部側面をそれぞれ示している。   FIGS. 1A and 1B are explanatory views of the main part showing the configuration of the sensor and the vicinity, wherein FIG. 1A shows the upper surface of the main part and FIG.

図に於いて、1は発振回路基板、2は水晶振動子を主体とするセンサー(QCM)、3はセンサーを保護するスペーサー、4はフレキシブルフラットケーブル、5はコネクタ、6は同軸ケーブルをそれぞれ示している。   In the figure, 1 is an oscillation circuit board, 2 is a sensor (QCM) mainly composed of a crystal unit, 3 is a spacer for protecting the sensor, 4 is a flexible flat cable, 5 is a connector, and 6 is a coaxial cable. ing.

前記したところから明らかであるが、本発明に依る雰囲気分析装置では、発振回路基板1を介してセンサー2と制御回路とを接続する信号線として、所要長さのフレキシブルフラットケーブル4及び同軸ケーブル6を用いている。ここで、フレキシブルフラットケーブル4の所要長さとは、センサー2及び発振回路基板1を含むセンサー装置をミニエンバイロメントなどの容器内に設置し、信号を容器外に取り出す場合、信号線が容器を通過するのに必要な長さの意味である。   As is apparent from the above description, in the atmosphere analyzer according to the present invention, the flexible flat cable 4 and the coaxial cable 6 having a required length are used as signal lines for connecting the sensor 2 and the control circuit via the oscillation circuit board 1. Is used. Here, the required length of the flexible flat cable 4 means that when the sensor device including the sensor 2 and the oscillation circuit board 1 is installed in a container such as a mini-environment and a signal is taken out of the container, the signal line passes through the container. It means the length necessary to do.

図2はミニエンバイロメントである容器にセンサー装置を設置した状態を表す要部説明図であり、図1に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとする。   FIG. 2 is an explanatory diagram of the main part showing a state where the sensor device is installed in a container that is a mini-environment, and the parts indicated by the same symbols as those used in FIG. 1 represent the same or equivalent parts. And

図に於いて、11は発振回路基板1及びセンサー2を含むセンサー装置、12は容器本体、13は容器底部をそれぞれ示している。   In the figure, 11 is a sensor device including an oscillation circuit board 1 and a sensor 2, 12 is a container body, and 13 is a container bottom.

図から明らかであるが、制御回路に接続されている同軸ケーブル6とセンサー装置11との間にはフレキシブルフラットケーブル4が介在し、フレキシブルフラットケーブル4は容器本体12と容器底部13との間を容易に通過して内外を結ぶ役割を果たしている。   As is apparent from the figure, a flexible flat cable 4 is interposed between the coaxial cable 6 connected to the control circuit and the sensor device 11, and the flexible flat cable 4 is connected between the container body 12 and the container bottom 13. It plays the role of easily passing and connecting the inside and outside.

このように、容器自体には何らの加工を施すことなく、容器内にセンサー装置11を設置し、且つ、フレキシブルフラットケーブル4を容器外に導出することができ、そして、フレキシブルフラットケーブル4は薄いので、容器の密閉性に影響を与えることはない。   In this way, the sensor device 11 can be installed in the container and the flexible flat cable 4 can be led out of the container without any processing on the container itself, and the flexible flat cable 4 is thin. Therefore, it does not affect the sealing property of the container.

ところで、QCMからなるセンサー2は高感度であるが、汚染物質の種類を同定する、即ち、定性分析することは不可能である。そこで、本発明に依る雰囲気分析装置に於いては、容器内の汚染物質を金属薄膜に吸着させ、その吸着された汚染物質をXPS(X−ray photoelectron spectroscopy)やSIMS(secondary ion mass spectrometry)を用いて物理分析することで同定することができる。   By the way, although the sensor 2 made of QCM has high sensitivity, it is impossible to identify the type of contaminant, that is, to perform qualitative analysis. Therefore, in the atmospheric analyzer according to the present invention, the contaminant in the container is adsorbed on the metal thin film, and the adsorbed contaminant is subjected to XPS (X-ray photoelectron spectroscopy) or SIMS (secondary ion mass spectrometry). It can be identified by physical analysis.

汚染物質の同定を行うには、金属薄膜を成膜したシリコンウェーハをセンサー装置11と同様に容器内に設置し、金属薄膜に汚染物質を吸着させ、その曝露が終了した後、容器外に取り出して、XPSやSIMSを用いて汚染物質の分析を行う。   In order to identify contaminants, a silicon wafer on which a metal thin film is formed is placed in a container in the same manner as the sensor device 11, the contaminant is adsorbed on the metal thin film, and after the exposure is completed, it is taken out of the container. The contaminants are analyzed using XPS or SIMS.

QCMからなるセンサー2を構成する水晶振動子では、その表面の汚染物質を分析することは可能であるが、水晶振動子は、その製造時に表面の清浄度を管理していないので、ミニエンバイロメントなどの容器内に曝露する前から汚染を受けているおそれがあり、分析用の試料として用いるのは適切ではない。   In the quartz crystal constituting the sensor 2 made of QCM, it is possible to analyze the contaminants on the surface, but since the quartz crystal does not control the cleanliness of the surface at the time of manufacture, the mini-environment It may be contaminated before being exposed to a container such as, and is not suitable for use as a sample for analysis.

その点、表面分析用の金属薄膜をスパッタリングなどで成膜すれば、清浄な金属薄膜表面を用意することができるので好ましい。また、基準にする為の参照用として、雰囲気に曝露しない試料を作ることができるので、分析手段としてはより望ましい。   In that respect, it is preferable to form a metal thin film for surface analysis by sputtering or the like because a clean metal thin film surface can be prepared. In addition, as a reference for making a standard, a sample that is not exposed to the atmosphere can be prepared, so that it is more desirable as an analysis means.

前記した金属薄膜付きのシリコンウェーハをセンサー装置11と共にミニエンバイロメントなどの容器内に設置するには、何らかの保持機構が必要となるが、シリコンウェーハの設置場所はセンサー装置11の近傍であって、且つ、簡単容易に着脱できる構成であることが望ましい。   In order to install the silicon wafer with the metal thin film in a container such as a mini-environment together with the sensor device 11, some holding mechanism is required, but the silicon wafer is placed in the vicinity of the sensor device 11, And it is desirable that it is the structure which can be easily attached or detached.

図3は金属薄膜付きシリコンウェーハをセンサー装置近傍にセットするのに好適な保持機構を表す要部説明図であり、図に於いて、1は発振回路基板、14は保持機構、14Aは保持機構を構成する狭幅のコ字型板、14Bは広幅のコ字型板、14Cは狭幅のコ字型板と広幅のコ字型板とを積層することで生成された溝をそれぞれ示している。   FIG. 3 is a main part explanatory view showing a holding mechanism suitable for setting a silicon wafer with a metal thin film in the vicinity of the sensor device. In the figure, 1 is an oscillation circuit board, 14 is a holding mechanism, and 14A is a holding mechanism. 14B is a wide U-shaped plate, 14C is a groove formed by laminating a narrow U-shaped plate and a wide U-shaped plate, respectively. Yes.

図3に見られる金属薄膜付きシリコンウェーハの保持機構に依れば、センサー装置11に於ける発振回路基板1にシリコンウェーハを予め取り付けておくことができる保持機構14が設けられ、ウェーハの装着及び取り外しは、ウェーハを保持機構14に形成された溝14C内を滑動させるのみで良いから、その作業は容易である。   According to the holding mechanism of the silicon wafer with the metal thin film shown in FIG. 3, a holding mechanism 14 is provided which can previously attach the silicon wafer to the oscillation circuit substrate 1 in the sensor device 11. Since the removal is only required to slide the wafer in the groove 14C formed in the holding mechanism 14, the operation is easy.

センサー及び近傍の構成を表す要部説明図である。It is principal part explanatory drawing showing the structure of a sensor and the vicinity. ミニエンバイロメントである容器にセンサー装置を設置した状態を表す要部説明図である。It is principal part explanatory drawing showing the state which installed the sensor apparatus in the container which is a mini environment. 金属薄膜付きシリコンウェーハをセンサー装置近傍にセットするのに好適な保持機構を表す要部説明図である。It is principal part explanatory drawing showing the holding mechanism suitable for setting the silicon wafer with a metal thin film to the sensor apparatus vicinity.

符号の説明Explanation of symbols

1 発振回路基板
2 水晶振動子を主体とするセンサー(QCM)
3 センサーを保護するスペーサー
4 フレキシブルフラットケーブル
5 コネクタ
6 同軸ケーブル
11 発振回路基板1及びセンサー2を含むセンサー装置
12 容器本体
13 容器底部
14 ウェーハの保持機構
14A 狭幅のコ字型板
14B 広幅のコ字型板
14C 溝
1 Oscillation circuit board 2 Sensor mainly composed of quartz crystal (QCM)
DESCRIPTION OF SYMBOLS 3 Spacer which protects a sensor 4 Flexible flat cable 5 Connector 6 Coaxial cable 11 Sensor apparatus including the oscillation circuit board 1 and the sensor 2 12 Container body 13 Container bottom 14 Wafer holding mechanism 14A Narrow U-shaped plate 14B Wide Shaped plate 14C Groove

Claims (3)

QCMをセンサーとして含むセンサー装置と、
該センサー装置が設置された底部に本体を嵌装してなり、かつ、前記底部の外側面と前記本体の内側面との間に間隙が生成された容器と、
該センサー装置から導出され且つ該センサー装置が設置された容器内から該容器の間隙を経て該容器外へ取り出されたフレキシブルフラットケーブルと、
該容器外に取り出されたフレキシブルフラットケーブルと制御回路との間を結ぶ同軸ケーブルと
を備えてなることを特徴とする雰囲気分析装置。
A sensor device including a QCM as a sensor;
A container in which a main body is fitted to a bottom portion where the sensor device is installed, and a gap is generated between an outer side surface of the bottom portion and an inner side surface of the main body;
A flexible flat cable that has been removed to the container out through the gap of the container from the sensor is derived from the device and the sensor device is installed with the vessel,
An atmosphere analyzer comprising a flexible flat cable taken out of the container and a coaxial cable connecting the control circuit.
前記センサー装置の近傍に金属薄膜付きのシリコンウェーハが設置され、前記シリコンウェーハは、狭幅のコ字型板を下側に、広幅のコ字型板を上側にして積層することで生成された溝で保持されること
を特徴とする請求項1記載の雰囲気分析装置。
A silicon wafer with a metal thin film was installed in the vicinity of the sensor device, and the silicon wafer was produced by laminating a narrow U-shaped plate on the lower side and a wide U-shaped plate on the upper side. The atmosphere analyzer according to claim 1, wherein the atmosphere analyzer is held by a groove .
請求項2記載の雰囲気分析装置を用いて容器内に於ける汚染物の分析を行う場合に於いて、In the case of analyzing the contaminant in the container using the atmosphere analyzer according to claim 2,
センサー装置の測定値に基づいて求めた汚染成分濃度の時間変化、及び、前記シリコンウェーハに於ける金属薄膜に吸着された汚染物質の分析結果に基づいて求めた汚染物質の定性情報を総合して判断することIntegrating the qualitative information of the pollutant obtained based on the analysis of the pollutant adsorbed on the metal thin film on the silicon wafer and the change over time of the pollutant concentration determined based on the measured value of the sensor device. To judge
を特徴とする雰囲気分析方法。An atmosphere analysis method characterized by
JP2006122908A 2006-04-27 2006-04-27 Atmosphere analyzer and atmosphere analysis method Active JP4899089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122908A JP4899089B2 (en) 2006-04-27 2006-04-27 Atmosphere analyzer and atmosphere analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122908A JP4899089B2 (en) 2006-04-27 2006-04-27 Atmosphere analyzer and atmosphere analysis method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011082384A Division JP5661541B2 (en) 2011-04-04 2011-04-04 Atmospheric analysis method

Publications (2)

Publication Number Publication Date
JP2007292676A JP2007292676A (en) 2007-11-08
JP4899089B2 true JP4899089B2 (en) 2012-03-21

Family

ID=38763420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122908A Active JP4899089B2 (en) 2006-04-27 2006-04-27 Atmosphere analyzer and atmosphere analysis method

Country Status (1)

Country Link
JP (1) JP4899089B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076867B2 (en) * 2007-12-20 2012-11-21 富士通株式会社 Atmosphere analysis sensor unit, atmosphere analysis apparatus, and atmosphere analysis method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636377B2 (en) * 1985-03-20 1994-05-11 日本電信電話株式会社 Flat connector for flat cable
US4917499A (en) * 1986-10-03 1990-04-17 Hughes Aircraft Company Apparatus for analyzing contamination
JP3553673B2 (en) * 1995-02-10 2004-08-11 富士通株式会社 Test pieces and test methods for environmental research
JP3643521B2 (en) * 1999-07-29 2005-04-27 株式会社日立製作所 Corrosion environment monitoring device
JP2001352654A (en) * 2000-06-08 2001-12-21 Kazuo Ebine Gap-passing cable fitted with plug, and converting repeater fitted with socket
JP2002333394A (en) * 2001-05-09 2002-11-22 Fujitsu Ltd Measuring method of concentration of molecular contamination and measuring apparatus therefor
JP2005249528A (en) * 2004-03-03 2005-09-15 Halloran Electronics Co Ltd Reference device for deciding contaminant molecule concentration sensor, and deciding method using the same

Also Published As

Publication number Publication date
JP2007292676A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US6975944B1 (en) Method and apparatus for monitoring materials used in electronics
TWI496228B (en) Semiconductor wafer monitoring apparatus and method
KR101565091B1 (en) Wafer Transfer Apparatus for Monitoring Contamination of Semiconductor Processes
US20150016926A1 (en) Pod having top cover aperture for detecting surrounding gas within the pod
US20120018347A1 (en) Reticle POD with Sensor
US5284802A (en) Container for semiconductor wafer sample and method of preparing sample
JP4899089B2 (en) Atmosphere analyzer and atmosphere analysis method
JP5479321B2 (en) Transport pod interface and analyzer
JP5682675B2 (en) Atmosphere analyzer
JP5661541B2 (en) Atmospheric analysis method
JP2004028787A (en) Total reflection fluorescent x-ray analysis method, total reflection fluorescent x-ray analysis pretreatment device, and total reflection fluorescent x-ray analyzer
JP2015017996A (en) Ambience analyzer
JP3690484B2 (en) Method for analyzing metal impurities on silicon substrate surface
JP2008175781A (en) Ultrasonic probe for high-temperature application
JP5541190B2 (en) Metal impurity concentration evaluation method for P-type silicon wafer
WO2020187473A1 (en) A substrate container, a lithographic apparatus and a method using a lithographic apparatus
JP2012237651A (en) Sensor for corrosion impact evaluation and impact evaluation device of corrosive substance
JPH1197321A (en) Method for identifying contamination source
US6734422B2 (en) Portable outgas detection apparatus
Takasu et al. New QCM Sensor for Real-time AMC Detection in SMIF Pods
CN104538326A (en) Detection device for wafer cutting notches
JP6033723B2 (en) Method for evaluating compound semiconductors
JP7533100B2 (en) Wafer contamination detection method
JP2012028367A (en) Selection method, management method and inspection method of individual packing material for individually packing semiconductor single crystal wafer
JP4741311B2 (en) Surface treatment method for sensor for measuring minute mass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4899089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3