JP4898358B2 - Distillation method and distillation apparatus - Google Patents

Distillation method and distillation apparatus Download PDF

Info

Publication number
JP4898358B2
JP4898358B2 JP2006242490A JP2006242490A JP4898358B2 JP 4898358 B2 JP4898358 B2 JP 4898358B2 JP 2006242490 A JP2006242490 A JP 2006242490A JP 2006242490 A JP2006242490 A JP 2006242490A JP 4898358 B2 JP4898358 B2 JP 4898358B2
Authority
JP
Japan
Prior art keywords
condensate
steam
distillation
charging
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006242490A
Other languages
Japanese (ja)
Other versions
JP2008062178A (en
Inventor
隆 佐無田
Original Assignee
町田酒造 株式会社
隆 佐無田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 町田酒造 株式会社, 隆 佐無田 filed Critical 町田酒造 株式会社
Priority to JP2006242490A priority Critical patent/JP4898358B2/en
Publication of JP2008062178A publication Critical patent/JP2008062178A/en
Application granted granted Critical
Publication of JP4898358B2 publication Critical patent/JP4898358B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Alcoholic Beverages (AREA)

Description

本発明は、蒸留方法に関し、より詳細には、焼酎、ウイスキー、ブランデー等の蒸留酒の蒸留に適する蒸留方法及び蒸留装置に関する。   The present invention relates to a distillation method, and more particularly to a distillation method and a distillation apparatus suitable for distillation of distilled spirits such as shochu, whiskey, and brandy.

蒸留酒を製造するためのもろみ等の蒸留方法として、原料を蒸留装置に連続的に供給し、留出液と蒸留装置の塔底液(缶出液)とを連続的に取り出す「連続蒸留」と、1回の蒸留毎に原料を蒸留装置に張り込んで蒸留を行う「回分蒸留」とがある。また、分離能の点から、還流によって高度な分離を行う「精留」と、還流を行わない「単式蒸留」とがあり、本格焼酎、ウイスキー、ブランデー等の製造には通常、単式蒸留装置が使用され、一部に回分精留機が使用されている。蒸留方法の相違により、酒税法では連続蒸留法により製造された焼酎を「連続式蒸留しょうちゅう」、連続蒸留法以外の方法で製造された焼酎を「単式蒸留しょうちゅう」と定義し、「単式蒸留しょうちゅう」の内、一定の条件を満たしたものを「本格しょうちゅう」と称している。   "Continuous distillation" as a method of distillation such as moromi to produce distilled liquor, by continuously supplying raw materials to the distillation apparatus and continuously removing the distillate and the bottom liquid (bottom liquid) of the distillation apparatus In addition, there is “batch distillation” in which a raw material is put into a distillation apparatus for each distillation and distillation is performed. In addition, from the viewpoint of separation ability, there are “rectification” that performs high-level separation by reflux and “single distillation” that does not perform reflux, and single distillation equipment is usually used for the production of authentic shochu, whiskey, brandy, etc. A batch rectifier is used in part. Due to differences in distillation methods, the liquor tax law defines shochu produced by the continuous distillation method as `` continuous distillation shochu '' and shochu produced by methods other than the continuous distillation method as `` single distillation shochu ''. Of the “distilled shochu”, those that satisfy certain conditions are called “real shochu”.

従来の「単式蒸留しょうちゅう」の製造方法は、図5に示すように、蒸留部(A)と冷却部(B)とを有する蒸留装置(100)を用いて、前記蒸留部(A)にもろみ等の仕込み液を張り込み、加熱装置で加熱して蒸気を発生させ、該蒸気をわたり(16)を経て冷却部(B)に導入し、ここで冷却水と熱交換して蒸気を凝縮し、得られた凝縮液を留出液タンク(21)に回収するものである。なお、留出液タンク(21)の留出液は、含まれるアルコール、酸、他の成分の配合量によってその風味が変化する。   As shown in FIG. 5, the conventional “single distillation shochu” manufacturing method uses a distillation apparatus (100) having a distillation section (A) and a cooling section (B), and uses the distillation section (A). Filling liquid such as mash is heated and heated by a heating device to generate steam, and the steam is passed through (16) and introduced into the cooling section (B) where heat is exchanged with cooling water to condense the steam. The obtained condensate is recovered in the distillate tank (21). In addition, the flavor of the distillate in the distillate tank (21) varies depending on the amount of alcohol, acid, and other components contained.

このような単式蒸留方法で本格焼酎を製造する場合、発酵の終了したもろみを常圧で蒸留すると蒸留末期に留出液に焦げ臭が現れ、その後徐々に強くなる場合がある。その香の特徴は「末垂れ臭」、「後留臭」等と呼ばれ、常圧蒸留法において蒸留末期に生じる欠点とされている。また、蒸留末期になると酸の濃度も高くなり、留出液の味は重くなる。現在、焦げ臭を有する物質として、フルフラール、オキシメチルフルフラール、メチルフルフラールなどのフルフラール類が知られており、焼酎ではオキシメチルフルフラールが主成分であり、蒸留の際にもろみ中の炭水化物の加熱分解により生成すると考えられている。   When producing a full-blown shochu by such a single distillation method, if the mash that has been fermented is distilled at normal pressure, a burnt odor may appear in the distillate at the end of the distillation and then gradually become stronger. The characteristics of the incense are called “end-smelling odor”, “post-scent odor”, and the like, and are regarded as defects that occur at the end of distillation in the atmospheric distillation method. In addition, at the end of distillation, the acid concentration increases and the taste of the distillate becomes heavy. At present, furfurals such as furfural, oxymethylfurfural, and methylfurfural are known as substances having a burning odor. In shochu, oxymethylfurfural is the main component, and during distillation, the carbohydrates in the mash are also decomposed by heating. It is thought to generate.

このようなフルフラールの発生を防ぎ、風味の良い焼酎を製造する方法として、焼酎原料(もろみ)を瞬間的に加熱し、瞬間的に蒸発することを特徴とする焼酎の製造方法がある(特許文献1)。特許文献1記載の発明は、従来の製造方法では加熱時間が長く、品質低下成分であるフルフラールの発生を招くため、もろみを瞬間加熱及び瞬間蒸発し、この蒸発成分を蒸留して焼酎の成分として必要なものを抽出する、というものである。連続式の瞬間加熱式の蒸発器を使用して、真空度を700Torr以下から100Torr以上、加熱温度を183℃以下から100℃以上とした条件で、もろみ中のアルコール分を蒸発させると、糖類等の熱分解を防ぐとともに、品質低下成分であるフルフラールの発生が低減され、風味の良い良好な焼酎が出来る、という。
特開平8−84581号公報
As a method for preventing the generation of furfural and producing a savory shochu, there is a method for producing a shochu characterized by instantaneously heating a shochu raw material (moromi) and evaporating it instantaneously (patent document) 1). The invention described in Patent Document 1 has a long heating time in the conventional production method and causes the generation of furfural, which is a quality-decreasing component. Therefore, the mash is instantly heated and instantly evaporated, and the evaporated component is distilled to form a component of shochu. Extract what you need. When the alcohol content in the mash is evaporated using a continuous instantaneous heating type evaporator under conditions where the degree of vacuum is from 700 Torr to 100 Torr and the heating temperature is from 183 ° C. to 100 ° C. In addition to preventing the thermal decomposition of the product, the generation of furfural, a component that degrades the quality, is reduced, and a good shochu with a good flavor can be achieved.
JP-A-8-84581

しかしながら、特許文献1に記載される瞬間加熱及び瞬間蒸発方法では、加熱した原料を噴霧させると瞬時に蒸発するため、連続蒸留装置で用いることはできても、回分蒸留では一度に全量の原料を噴霧することができないため実施することができない。   However, in the instantaneous heating and instantaneous evaporation method described in Patent Document 1, since the heated raw material is instantly evaporated, it can be used in a continuous distillation apparatus, but batch distillation can use all the raw material at once. Cannot be performed because it cannot be sprayed.

また、焼酎、ウイスキー、ブランデーなどの嗜好品は、その風味を調整できればより需要者の嗜好に適合する製品を製造することができる。   In addition, if the taste of shochu, whiskey, brandy, etc. can be adjusted, a product that better matches the taste of the consumer can be manufactured.

そこで、本発明は、焦げ臭原因物質であるフルフラールの発生を防止し、また酸の濃度も低く、風味のよい蒸留酒を製造する蒸留方法および蒸留装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a distillation method and a distillation apparatus for producing a distilled liquor that prevents the generation of furfural as a causative odor causative substance and that has a low acid concentration and has a good flavor.

本発明者は、焼酎、ウイスキー、ブランディーなどの蒸留酒の製造に際し、フルフラールの発生を防止するため仕込み液の加熱時間を短縮する方法について詳細に検討した結果、蒸留装置内で蒸気が冷却して生じる凝縮液を仕込み液に混入させることなく別個に回収すれば仕込み液の加熱時間を短縮でき、フルフラールの発生を減少できること、回収した凝縮液を加熱してもフルフラールは発生しないため、これを蒸留すれば収量を低減することなくフルフラールの発生を低減して蒸留しうること、前記凝縮液は揮発酸等の高沸点成分の濃度が低いため、これを蒸留すると、酸度の低い蒸留物を回収できることなどを見出し、本発明を完成するに到った。   The present inventor has studied in detail how to shorten the heating time of the feed liquid in order to prevent the generation of furfural when producing distilled spirits such as shochu, whiskey, brandy, etc. As a result, the steam was cooled in the distillation apparatus. If the collected condensate is collected separately without mixing it in the feed liquid, the heating time of the feed liquid can be shortened, and the occurrence of furfural can be reduced. Distillation reduces the occurrence of furfural without reducing the yield, and the condensate has a low concentration of high-boiling components such as volatile acids. The inventors have found out what can be done and have completed the present invention.

本発明の蒸留装置は、蒸留酒、特に焼酎の製造に好適な蒸留装置であって、蒸留部に仕込み部と凝縮液貯留部とを有し、蒸留塔を2基設ける場合と比較して熱効率に優れ、かつ簡便にフルフラールを低減することができる。   The distillation apparatus of the present invention is a distillation apparatus suitable for the production of distilled liquor, particularly shochu, and has a charging part and a condensate storage part in the distillation part, and is more efficient than a case where two distillation columns are provided. The furfural can be reduced easily and easily.

本発明の蒸留装置は、蒸留部に仕込み部と凝縮液貯留部とを有し、凝縮液貯留部に貯留される凝縮液を蒸留すると揮発酸等の高沸点成分の濃度が低減しているため、仕込み液の蒸留物より酸度の低い蒸留酒を製造することができる。   The distillation apparatus of the present invention has a charging part and a condensate storage part in the distillation part, and when the condensate stored in the condensate storage part is distilled, the concentration of high-boiling components such as volatile acids is reduced. A distilled liquor having a lower acidity than the distillate of the charged solution can be produced.

本発明の第一は、蒸留部と、前記蒸留部で発生した蒸気を冷却するための冷却部とを有する蒸留装置であって、前記蒸留部は、蒸留部の内部を隔壁で仕切って形成された仕込み液の仕込み部と、前記仕込み部以外の部分であって前記冷却部と連通する凝縮液貯留部とからなり、前記仕込み部の上端には、前記仕込み液の加熱により発生する蒸気を凝縮液貯留部に導入する連通部が形成され、前記凝縮液貯留部は、前記蒸気が導入されおよび凝縮されてなる凝縮液を貯留するものであり、かつ前記連通部の上端部は、前記凝縮液貯留部内の蒸気および/または凝縮液を前記仕込み部に逆流させない逆流防止機構が配設されることを特徴とする、蒸留装置である。
The first of the present invention is a distillation apparatus having a distillation part and a cooling part for cooling the steam generated in the distillation part, wherein the distillation part is formed by partitioning the inside of the distillation part with a partition wall. And a condensate reservoir that communicates with the cooling unit and is a part other than the charging unit, and condenses vapor generated by heating the charging solution at the upper end of the charging unit. A communication part to be introduced into the liquid storage part is formed, the condensate storage part stores condensate obtained by introducing and condensing the steam, and the condensate is provided at the upper end part of the communication part. The distillation apparatus is provided with a backflow prevention mechanism that prevents the steam and / or condensate in the liquid storage part from flowing back to the charging part.

前記逆流防止機構は、逆流防止弁または、前記連通部の上端部に載置された釣鐘型蓋部であってもよい。
It said backflow prevention mechanism is a check valve or may be I placed on the bell-shaped lid der an upper end portion of the communicating portion.

前記仕込み部には、仕込み液を加熱する加熱装置が設けられ、前記凝縮液貯留部には、前記凝縮液を加熱する加熱装置が設けられ、かつ前記蒸留部から留出した蒸気を前記冷却部に導入して生じた凝縮液の一部または全部を前記凝縮液貯留部に還流する還流装置が配設されていてもよい。以下、本発明の好適な実施態様を示す図を参照して、本発明を説明する。
The feed portion is provided with a heating device for heating the charge liquid, wherein the condensate reservoir, the condensate heating device for heating is provided to, and wherein the out of the distillation unit cuts the steam cooling section recirculation device may be provided for recirculating part or all of the condensate produced is introduced into the condensate reservoir in. Hereinafter, the present invention will be described with reference to the drawings showing preferred embodiments of the present invention.

(I)蒸留装置
本発明の蒸留装置(100)は、図1に示すように、蒸留部(A)と冷却部(B)とを有し、前記蒸留部(A)は、仕込み液(3)の仕込み部(A1)と前記仕込み部(A1)と連通する凝縮液貯留部(A2)とを有し、かつ前記蒸留部(A)には、前記凝縮液貯留部(A2)で発生した凝縮液を前記仕込み部(A1)に逆流させない逆流防止機構として、蓋部(8)を有する。なお、仕込み部(A1)または凝縮液貯留部(A2)で発生した蒸気が冷却部(B)に移行部位である「わたり(16)」は、蒸留部(A)の一部であり、凝縮液貯留部(A2)の一部を構成するものとする。
(I) Distillation apparatus The distillation apparatus (100) of this invention has a distillation part (A) and a cooling part (B), as shown in FIG. 1, and the said distillation part (A) is a preparation liquid (3). ) And the condensate storage part (A2) communicating with the preparation part (A1), and the distillation part (A) is generated in the condensate storage part (A2). A lid (8) is provided as a backflow prevention mechanism that prevents the condensate from flowing back to the charging section (A1). Note that “Watari (16)”, which is a transition part of the steam generated in the charging part (A1) or the condensate storage part (A2) to the cooling part (B), is a part of the distillation part (A) and is condensed. A part of the liquid reservoir (A2) shall be configured.

(1)仕込み部と凝縮液貯留部
本発明において、上記仕込み部(A1)と凝縮液貯留部(A2)とは、蒸留部(A)の内部を隔壁などで仕切って形成することができ、その際、仕込み液(3)から発生した蒸気が前記凝縮液貯留部(A2)へ導入できるように少なくとも一部に連通部(C)が設けられる。例えば、図1に示すように、蒸留部(A)の内部に筒状の仕切りを設けてその内側を仕込み部(A1)としその外周を凝縮液貯留部(A2)としてもよく、図2、図3に示すように、蒸留部(A)を上下二段に分割し、下部を仕込み部(A1)、上部を凝縮液貯留部(A2)としてもよい。
(1) Preparation part and condensate storage part In the present invention, the preparation part (A1) and the condensate storage part (A2) can be formed by partitioning the inside of the distillation part (A) with a partition wall, At that time, at least a part of the communication part (C) is provided so that the vapor generated from the charged liquid (3) can be introduced into the condensate storage part (A2). For example, as shown in FIG. 1, a cylindrical partition may be provided inside the distillation section (A), the inside of the distillation section (A) may be the charging section (A1), and the outer periphery thereof may be the condensate storage section (A2). As shown in FIG. 3, the distillation part (A) may be divided into upper and lower stages, the lower part may be a charging part (A1), and the upper part may be a condensate storage part (A2).

本発明において、仕込み部(A1)に対する凝縮液貯留部(A2)の容積は、仕込み部(A1)の容積を100とすれば、凝縮液貯留部(A2)の容積は、180〜350、より好ましくは200〜320である。また、仕込み部(A1)の蒸気は、図2または図3に示すように、蒸気通路(6)を経て凝縮液貯留部(A2)に導入されるように構成してもよい。この際、蒸気通路(6)の上端部が、凝縮液貯留部(A2)との連通部(C)となる。蒸気通路(6)は一つに限定されず、複数設けてもよく、その断面積の合計は、蒸気通路(6)以外の仕込み部断面積の5〜25%、好ましくは10〜15%である。5%を下回ると、仕込み部の圧力が上昇する場合があり、25%を超えると、凝縮液貯留部(A2)の有効な底面積が少なく、凝縮液の貯留に十分でない場合がある。ただし、図2に示すように、凝縮液貯留部(A2)の凝縮液の貯留限界は、蒸気通路(6)の高さに依存するため、1または複数の蒸気通路(6)の最も低い位置までの凝縮液貯留部(A2)の容積が、前記仕込み部(A1)の容積の80〜120%となるように、蒸気通路の高さ及び容積を調整することが好ましい。なお、図13、図14に示すように、蒸気通路(6)が、蓋部と共に凝縮液中に配設される形式の場合には、これに限定されるものではない。
In the present invention, the volume of the condensate storage part (A2) relative to the preparation part (A1) is 180 to 350, if the volume of the preparation part (A1) is 100. Preferably it is 200-320. Moreover, you may comprise so that the vapor | steam of a preparation part (A1) may be introduce | transduced into a condensate storage part (A2) through a vapor | steam channel | path (6), as shown in FIG. At this time, the upper end portion of the steam passage (6) serves as a communication portion (C) with the condensate storage portion (A2). The number of steam passages (6) is not limited to one, and a plurality of steam passages (6) may be provided, and the total cross-sectional area is 5 to 25%, preferably 10 to 15% of the charged portion cross-sectional area other than the steam passage (6). is there. If it is less than 5%, the pressure in the charging part may increase, and if it exceeds 25%, the effective bottom area of the condensate reservoir (A2) is small and may not be sufficient for condensate storage. However, as shown in FIG. 2, the condensate storage limit of the condensate storage part (A2) depends on the height of the steam passage (6), and therefore the lowest position of the one or more steam passages (6). It is preferable to adjust the height and volume of the steam passage so that the volume of the condensate storage part (A2) up to 80% to 120% of the volume of the charging part (A1). In addition, as shown to FIG. 13, FIG. 14, when a vapor | steam channel | path (6) is a type arrange | positioned in a condensate with a cover part, it is not limited to this.

本発明では、仕込み部(A1)には仕込み液(3)を加熱する加熱装置(11)を設け、凝縮液貯留部(A2)には凝縮液を加熱する加熱装置(13)が設けられる。なお、図1〜3に示すように仕込み液(3)を冷却するために仕込み部(A1)に冷却管(10)を、凝縮液貯留部(A2)には、凝縮液の蒸留を促進するための副加熱装置(14)を設けてもよい。このような冷却管(10)や副加熱装置(14)の配設によって、仕込み部(A1)における仕込み液や凝縮液貯留部(A2)における凝縮液の加熱温度を迅速に調整することができる。なお、加熱装置(11、13)や副加熱装置(14)としては、特に制限はなく、もろみの蒸留に適するものを適宜選択して使用することができる。例えば、焼酎用蒸留機におけるもろみの加熱方法として、スチームを直接もろみ中に吹き込む形式(直接加熱式)と、蛇管やジェケット内にスチームを通して加熱する形式(間接加熱方式)などがある。直接加熱方式によればスチームがもろみ中に吹き込まれるため、仕込み液(3)量が増加するが、間接加熱方式では、蒸留が進行した場合に仕込み液(3)が減少するため粘度が上昇し、焦げ付く場合がある。芋焼酎などの粘度の高いもろみの場合には、直接加熱方式と間接加熱方式とを併用することが好ましく、仕込み液(3)の性状によって適宜選択することができる。従って、加熱装置(11、13)および副加熱装置(14)はいずれが直接加熱式または間接加熱方式であってもよく、その他の方法で加熱するものであってもよい。このような加熱装置や副加熱装置は、1に限定されず、複数配設されていてもよい。なお、本発明では、凝縮液貯留部(A2)内の凝縮液を蒸留するための加熱装置が仕込み部(A1)に配置されていてもよい。例えば、図13、図14に示すように、蒸気通路(6)の下部に設けたスチーム注入器(12)によって加温されたスチームを導入し、凝縮液(5)を加熱し、蒸発させることができる。なお、図示しないが、仕込み部(A1)または凝縮液貯留部(A2)を加熱するための加熱ジャケットを併用してもよい。   In the present invention, the charging unit (A1) is provided with a heating device (11) for heating the charging solution (3), and the condensate storage unit (A2) is provided with a heating device (13) for heating the condensate. In addition, as shown to FIGS. 1-3, in order to cool a preparation liquid (3), a cooling pipe (10) is accelerated | stimulated at a preparation part (A1), and distillation of a condensate is accelerated | stimulated at a condensate storage part (A2). A sub-heating device (14) may be provided. By disposing the cooling pipe (10) and the auxiliary heating device (14), the heating temperature of the charged liquid in the charging section (A1) and the condensate liquid in the condensate storage section (A2) can be quickly adjusted. . In addition, there is no restriction | limiting in particular as a heating apparatus (11, 13) or a subheating apparatus (14), The thing suitable for distillation of mash can be selected suitably, and can be used. For example, as a method for heating the mash in the shochu distiller, there are a method in which steam is blown directly into the mash (direct heating method) and a method in which steam is heated through a steam pipe or a jett (indirect heating method). According to the direct heating method, steam is blown into the crumb, so that the amount of the charged liquid (3) increases. However, in the indirect heating method, when the distillation proceeds, the charged liquid (3) decreases and the viscosity increases. , May burn. In the case of moromi with high viscosity such as potato shochu, the direct heating method and the indirect heating method are preferably used in combination, and can be appropriately selected depending on the properties of the feed liquid (3). Therefore, any of the heating devices (11, 13) and the auxiliary heating device (14) may be a direct heating type or an indirect heating method, or may be heated by other methods. Such a heating device and sub-heating device are not limited to 1, and a plurality of heating devices and sub-heating devices may be provided. In the present invention, a heating device for distilling the condensate in the condensate reservoir (A2) may be arranged in the preparation part (A1). For example, as shown in FIG. 13 and FIG. 14, steam heated by a steam injector (12) provided at the lower part of the steam passage (6) is introduced, and the condensate (5) is heated and evaporated. Can do. In addition, although not shown in figure, you may use together the heating jacket for heating a preparation part (A1) or a condensate storage part (A2).

(2)逆流防止機構と蒸気導入機構
本発明では、連通部(C)を経て、仕込み部(A1)で発生した蒸気が凝縮液貯留部(A2)に導入される。この蒸気は、凝縮液貯留部(A2)を経て冷却部(B)に移行するが、その一部は、凝縮液貯留部(A2)の内壁に接触し、凝縮液となって凝縮液貯留部(A2)の壁面を降下する。凝縮液が、前記仕込み部(A1)の仕込み液(3)へ混入すると、仕込み液量の増加によって仕込み部(A1)での加熱時間が延長され、フルフラールが発生する場合がある。また、凝縮液貯留部(A2)内の蒸気が仕込み部(A1)に逆流した場合にも仕込み部(A1)の仕込み液(3)量が増加する。従って、本発明では、凝縮液や蒸気の前記仕込み部(A1)への逆流を防止するため、前記蒸留部(A)の前記連通部の上端部に凝縮液および/または蒸気の逆流防止機構を配設する。
(2) Backflow prevention mechanism and steam introduction mechanism In this invention, the vapor | steam which generate | occur | produced in the preparation part (A1) is introduce | transduced into a condensate storage part (A2) through a communication part (C). This steam passes through the condensate storage part (A2) and then moves to the cooling part (B), but a part of the steam comes into contact with the inner wall of the condensate storage part (A2) to become a condensate and the condensate storage part. Descent the wall of (A2). When the condensate is mixed into the charging liquid (3) of the charging part (A1), the heating time in the charging part (A1) may be extended due to an increase in the amount of the charging liquid, and furfural may be generated. Moreover, also when the vapor | steam in a condensate storage part (A2) flows back into a preparation part (A1), the amount of preparation liquids (3) of a preparation part (A1) increases. Therefore, in the present invention, in order to prevent the backflow of the condensate and steam to the charging section (A1), a condensate and / or steam backflow prevention mechanism is provided at the upper end of the communication section of the distillation section (A). Arrange.

(2−1)蓋部(浅型)
このような逆流防止機構としては、図1に示すように、連通部の上端部に設けた蓋部(8)がある。仕込み部(A1)に設けた加熱装置(11)によって仕込み液(3)を加熱し蒸気を発生させると、蒸気圧によって該蓋部(8)を上方に持ち上げ、蒸気が仕込み部(A1)から凝縮液貯留部(A2)に移行する。一方、仕込み部(A1)での加熱を停止すれば蒸気圧の発生が停止し、蓋部(8)の重量によって蓋部が仕込み部(A1)上部と液密になり、凝縮液貯留部(A2)で発生した凝縮液や蒸気の逆流を防止することができる。なお、このような蓋部(8)は、仕込み部(A1)や凝縮液貯留部(A2)での蒸気圧、温度、蒸留物に対する耐性を有するものであれば、SUS、アルミニウムなどの金属のほか、ガラス、合成樹脂などで調製することができる。また、蒸留部(A)を構成する部材と同一または異なる部材によって調製してもよい。図1の蓋部(8)は、上面(8a)と側面(8b)とから構成されるものであり、従って、側面(8b)の短い浅型蓋部(8)であるが、逆流防止機構としては、例えば、上面(8a)のみで構成したものを連通部(C)の上部にヒンジなどで一部を固定して「弁」を構成したものでもよい。
(2-1) Lid (shallow type)
As such a backflow prevention mechanism, as shown in FIG. 1, there is a lid portion (8) provided at the upper end portion of the communicating portion . When the charging liquid (3) is heated by the heating device (11) provided in the charging section (A1) to generate steam, the lid (8) is lifted upward by the vapor pressure, and the steam is discharged from the charging section (A1). It moves to a condensate storage part (A2). On the other hand, if the heating in the charging section (A1) is stopped, the generation of vapor pressure stops, and the lid becomes liquid-tight with the top of the charging section (A1) due to the weight of the lid (8), and the condensate storage section ( The backflow of the condensate and vapor generated in A2) can be prevented. In addition, if such a cover part (8) has the tolerance with respect to the vapor pressure, temperature, and distillate in a preparation part (A1) or a condensate storage part (A2), it will be made of metals, such as SUS and aluminum. In addition, it can be prepared with glass, synthetic resin or the like. Moreover, you may prepare by the same or different member as the member which comprises the distillation part (A). The lid portion (8) in FIG. 1 is composed of an upper surface (8a) and a side surface (8b), and is therefore a shallow lid portion (8) with a short side surface (8b). For example, a “valve” may be configured by fixing only a part of the upper surface (8a) to the upper part of the communication part (C) with a hinge or the like.

(2−2)釣鐘型蓋部
他の逆流防止機構として、例えば図2に示す釣鐘型蓋部(7)を使用することもできる。図2に記載される蒸留装置(100)は、蒸気通路(6)を有するものであり、前記釣鐘型蓋部(7)は、蒸気通路(6)の上部に載置されている。この蓋部(7)は、図1の蓋部(8)よりもその側面(7b)が長く、凝縮液貯留部(A2)の底部に貯留する凝縮液中に側面(7b)端部が到達する。このため、仕込み部(A1)で発生した蒸気は、蒸気通路(6)に流入後、蒸気通路(6)と前記側面(7b)とによって構成される間隙を経て凝縮液貯留部(A2)の底部に貯留される凝縮液(5)中に導入される。このように、仕込み部(A1)からの蒸気を凝縮液貯留部(A2)の凝縮液に導入して凝縮液として確保すると、蒸気の逆流を容易に防止することができる。
(2-2) Bell-shaped lid As another backflow prevention mechanism, for example, a bell-shaped lid (7) shown in FIG. 2 can be used. The distillation apparatus (100) illustrated in FIG. 2 has a steam passage (6), and the bell-shaped lid (7) is placed on the upper portion of the steam passage (6). The lid (7) has a longer side surface (7b) than the lid (8) of FIG. 1, and the end of the side surface (7b) reaches the condensate stored at the bottom of the condensate reservoir (A2). To do. For this reason, the steam generated in the charging section (A1) flows into the steam passage (6) and then passes through the gap formed by the steam passage (6) and the side surface (7b) in the condensate storage section (A2). It is introduced into the condensate (5) stored at the bottom. Thus, if the vapor | steam from a preparation part (A1) is introduce | transduced into the condensate of a condensate storage part (A2), and it ensures as a condensate, the backflow of a vapor | steam can be prevented easily.

また、前記釣鐘型蓋部(7)の前記側面(7b)には、フロート(9)が配設されていてもよい。フロート(9)を介して釣鐘型蓋部(7)が凝縮液中で浮遊すれば、凝縮液の液面高さに応じて釣鐘型蓋部(7)が浮遊し、仕込み部(A1)から凝縮液貯留部(A2)へ導入される蒸気の蒸気圧を一定に調整することができる。   Moreover, the float (9) may be arrange | positioned at the said side surface (7b) of the said bell-shaped cover part (7). If the bell-shaped lid (7) floats in the condensate via the float (9), the bell-shaped lid (7) floats according to the liquid level of the condensate, and from the charging section (A1) The vapor pressure of the vapor introduced into the condensate reservoir (A2) can be adjusted to be constant.

なお、該釣鐘型蓋部(7)は、蒸気の逆流を防止することは可能であるが、蒸気通路(6)と前記側面(7b)とによって構成される間隙から凝縮液が仕込み部(A1)に逆流する可能性がある。このため、凝縮液貯留部(A2)内の凝縮液量に応じて、例えば、図2に示すように、蒸気通路(6)の下部に設けたスチーム注入器(12)からスチームを導入するなどの装置を併用することで、蒸気のみならず凝縮液の逆流を防止することができる。   The bell-shaped lid (7) can prevent the backflow of steam, but the condensate is charged from the gap formed by the steam passage (6) and the side surface (7b) (A1). ) May flow backward. For this reason, according to the amount of condensate in the condensate reservoir (A2), for example, as shown in FIG. 2, steam is introduced from a steam injector (12) provided at the lower portion of the steam passage (6). By using this apparatus together, it is possible to prevent not only the vapor but also the back flow of the condensate.

(2−3)
他の逆流防止機構として、図13に示す蓋部(63)がある。低い蒸気通路(6)の上端に上面のみの蓋部(63)を設けたものであるが、凝縮液(5)中に没しても蓋部(63)が浮き上がらないような重さに調整され、または、その一部が蒸気通路(6)に固定されている。この蓋部(63)は、仕込み部(A1)で発生する蒸気を凝縮液貯留部(A2)に導入できるが、凝縮液の圧力によって仕込み部(A1)への逆流を防止できるため、「弁型蓋部」と称する。この弁型蓋部(63)は、凝縮液(5)の逆流を防止すると共に、仕込み部(A1)で発生した蒸気を凝縮液(5)中に導入し、バブリングさせる作用も有する。
(2-3)
As another backflow prevention mechanism, there is a lid portion (63) shown in FIG. The upper part of the lower steam passage (6) is provided with a cover part (63) only on the upper surface, but the weight is adjusted so that the cover part (63) does not rise even when immersed in the condensate (5). Or a part thereof is fixed to the steam passage (6). Although this lid part (63) can introduce the vapor generated in the charging part (A1) into the condensate storage part (A2), it can prevent back flow to the charging part (A1) due to the pressure of the condensate. This is referred to as “mold lid”. The valve-type lid (63) prevents the condensate (5) from flowing backward, and also has an effect of introducing and bubbling the vapor generated in the charging section (A1) into the condensate (5).

なお、該弁型蓋部(63)は、蒸気の逆流を防止することは可能であるが、蓋部が上面のみで構成されるため、蓋部(63)と蒸気通路(6)との間隙から凝縮液が仕込み部(A1)に逆流する可能性がある。   The valve-type lid portion (63) can prevent the backflow of steam, but since the lid portion is composed only of the upper surface, the gap between the lid portion (63) and the steam passage (6). There is a possibility that the condensate flows back to the charging part (A1).

また、弁型蓋部としては、図14に示すような浅型の弁型蓋部(60)であってもよい。図13に示す蓋部(63)と同様に、低い蒸気通路(6)の上端に浅型の蓋部を設けたものであり、凝縮液(5)中に没しても蓋部(60)が浮き上がらないような重さに調整され、または、図14に示すように、弱いバネ(61)などで蒸気通路(6)に固定される。この蓋部も、仕込み部(A1)で発生する蒸気を凝縮液貯留部(A2)に導入できるが、凝縮液の圧力によって仕込み部(A1)への逆流を防止できる。すなわち、弁型蓋部(60)は、仕込み部(A1)で蒸気が発生する場合は、蒸気を蒸気通路(6)から凝縮液貯留部(A2)内の凝縮液へ吹きこむが、仕込み部(A1)の温度が低下し、仕込み部(A1)の圧力が低下した場合には、仕込み部(A1)上部に密着し、凝縮液(5)を仕込み部(A1)に逆流させることがない。この弁型蓋部(60)によれば、凝縮液と蒸気の双方の逆流を防止することができる。   In addition, the valve-type lid portion may be a shallow valve-type lid portion (60) as shown in FIG. Similar to the lid portion (63) shown in FIG. 13, a shallow lid portion is provided at the upper end of the low steam passage (6), and the lid portion (60) even if submerged in the condensate (5). The weight is adjusted so as not to float, or as shown in FIG. 14, it is fixed to the steam passage (6) with a weak spring (61) or the like. Although this lid part can also introduce the vapor | steam which generate | occur | produces in a preparation part (A1) into a condensate storage part (A2), the backflow to a preparation part (A1) can be prevented with the pressure of a condensate. That is, when the steam is generated in the charging part (A1), the valve-type lid part (60) blows the steam from the steam passage (6) into the condensate in the condensate storage part (A2). When the temperature of (A1) decreases and the pressure of the charging part (A1) decreases, it adheres closely to the upper part of the charging part (A1) and does not cause the condensate (5) to flow back to the charging part (A1). . According to this valve-type lid part (60), it is possible to prevent the backflow of both condensate and steam.

なお、液密を確保するため、蓋部(60、63)と蒸気通路(6)との接触部にエラストマーなどのパッキン材などを使用してもよい。   In order to ensure liquid tightness, a packing material such as elastomer may be used for the contact portion between the lid portions (60, 63) and the steam passage (6).

(2−4)逆流防止弁
他の逆流防止機構として、図12に示す逆流防止弁がある。本発明では、特に蒸気通路(6)の形状に制限はなく、例えば、連通部(C)を構成する蒸気通路(6)の頂部が凝縮液(5)に向かってU字型に変形する場合であってもよい。この場合、蒸気通路(6)の出口が凝縮液(5)に挿入され、かつ該出口に上記した弁型蓋部(60,63)などが図12に示すように配設されると、凝縮液および蒸気の逆流を防止することができる。
(2-4) Backflow prevention valve As another backflow prevention mechanism, there is a backflow prevention valve shown in FIG. In the present invention, the shape of the steam passage (6) is not particularly limited. For example, the top of the steam passage (6) constituting the communication portion (C) is deformed into a U shape toward the condensate (5). It may be. In this case, when the outlet of the steam passage (6) is inserted into the condensate (5) and the above-described valve-type lid (60, 63) is disposed at the outlet as shown in FIG. The backflow of liquid and vapor can be prevented.

(2−5)蒸気導入機構
本発明の蒸留装置では、前記蒸留部(A)、特に仕込み部(A1)に、スチーム注入器(12)などの蒸気導入機構を設けることが好ましい。仕込み部(A1)に設けたスチーム注入器(12)などの蒸気導入機構によってスチームを導入すれば、凝縮液(5)を加熱し、蒸留することができる。仕込み部(A1)で発生する蒸気が複数の成分を含有する場合には、蒸気圧によって各成分の凝縮液(5)中への溶解度が相違するため、蒸気導入機構によって、蒸気を凝縮液に導入し、これによって凝縮液の組成を変化させることができるからである。このような蒸気導入機構としては、例えば前記したスチーム注入器(12)があり、本願発明における「仕込み部で発生した蒸気を前記凝縮液貯留部の凝縮液(5)に導入する蒸気導入機構」となる。
(2-5) Steam Introducing Mechanism In the distillation apparatus of the present invention, it is preferable to provide a steam introducing mechanism such as a steam injector (12) in the distillation section (A), particularly the charging section (A1 ) . If steam is introduced by a steam introduction mechanism such as a steam injector (12) provided in the charging section (A1) , the condensate (5) can be heated and distilled. When the steam generated in the charging section (A1) contains a plurality of components, the solubility of each component in the condensate (5) varies depending on the vapor pressure. It is because it can introduce | transduce and can change the composition of a condensate by this. As such a steam introduction mechanism, for example, there is the above-described steam injector (12), and “a steam introduction mechanism for introducing the steam generated in the charging section into the condensate (5) in the condensate storage section” in the present invention. It becomes.

また、このようなスチーム注入器(12)によって、前記仕込み部(A1)で発生した蒸気を前記凝縮液貯留部(A1)の凝縮液に導入することができる。例えば、図2の釣鐘型蓋部(7)からスチーム注入器(12)によってスチームを導入すると、仕込み部(A1)内の圧力を高め、仕込み部(A1)への凝縮液(5)の逆流を防止することができる。このため、前記スチーム注入器(12)は、本発明における逆流防止機構となりうる。また、前記した釣鐘型蓋部(7)も逆流防止機構と同時に蒸気導入機構となりうる。凝縮液に仕込み部(A1)で発生した蒸気またはスチームを導入して加熱・蒸発させる際に、釣鐘型蓋部(7)が蒸気通路(6)の上部に載置されると、仕込み部(A1)で発生した蒸気が、蒸気通路(6)と前記側面(7b)とによって構成される間隙を経て、凝縮液貯留部(A2)の底部に貯留する凝縮液(5)中に導入されるからである。   Moreover, the steam generated in the charging section (A1) can be introduced into the condensate in the condensate storage section (A1) by such a steam injector (12). For example, when steam is introduced from the bell-shaped lid (7) of FIG. 2 by the steam injector (12), the pressure in the charging part (A1) is increased, and the condensate (5) flows back to the charging part (A1). Can be prevented. Therefore, the steam injector (12) can be a backflow prevention mechanism in the present invention. Further, the bell-shaped lid (7) described above can be a steam introduction mechanism simultaneously with the backflow prevention mechanism. When the steam or steam generated in the charging part (A1) is introduced into the condensate and heated and evaporated, the bell-shaped lid part (7) is placed on the upper part of the steam passage (6). The steam generated in A1) is introduced into the condensate (5) stored in the bottom of the condensate storage part (A2) through a gap formed by the steam passage (6) and the side surface (7b). Because.

更に、前記した図12に示す、U字型に変形する蒸気通路(6)も、これによって仕込み部(A1)からの蒸気を凝縮液(5)に導入することができる点で、逆流防止機構であると同時に蒸気導入機構となる。従って、本発明では、その機能を有するものであれば、逆流防止機構、蒸気導入機構、蒸気導入機構などは、それぞれ別体として存在する必要はなく、一の部材が他の部材の機能を兼ね備え、またはそれらが一体として構成されていてもよい。   Further, the steam passage (6) deformed into a U-shape shown in FIG. 12 described above is also capable of introducing the steam from the charging section (A1) into the condensate (5). At the same time, it becomes a steam introduction mechanism. Accordingly, in the present invention, the backflow prevention mechanism, the steam introduction mechanism, the steam introduction mechanism and the like do not have to exist as separate bodies as long as they have the function, and one member has the function of the other member. Or they may be configured as one piece.

(3)還流装置
蒸留部(A)には、前記冷却部(B)に導入した凝縮液の一部を前記凝縮液貯留部(A2)に還流する還流装置が配設されることが好ましい。前記したように、凝縮液貯留部(A2)内の凝縮液量によって蒸留液の組成を調整することができるが、前記還流装置を配設することで、簡便に凝縮液量を調整することができるからである。
(3) Reflux device The distillation unit (A) is preferably provided with a reflux device that circulates a part of the condensate introduced into the cooling unit (B) to the condensate storage unit (A2). As described above, the composition of the distillate can be adjusted by the amount of the condensate in the condensate reservoir (A2), but the amount of the condensate can be easily adjusted by arranging the reflux device. Because it can.

このような還流装置を配設した蒸留装置(100)を図2〜図4、図13、図14に示す。凝縮液排出口(15)を有する還流管の内径、長さなどは特に制限なく、冷却部(B)から凝縮液貯留部(A2)に凝縮液が還流しうる、適度な傾斜を有すればよい。また、前記還流装置には、凝縮液を凝縮液貯留部(A2)に還流するためのコック(20)、系外に回収するためのコック(19)が備えられている。   A distillation apparatus (100) provided with such a reflux apparatus is shown in FIGS. 2 to 4, 13, and 14. FIG. The inner diameter, length, etc. of the reflux pipe having the condensate discharge port (15) are not particularly limited, as long as the condensate can flow back from the cooling part (B) to the condensate storage part (A2). Good. Further, the reflux device is provided with a cock (20) for refluxing the condensate to the condensate reservoir (A2) and a cock (19) for collecting it outside the system.

(4)バブリング型蒸留装置
本発明の蒸留装置(100)の好ましい態様の一例を、図2を参照して説明する。なお、図2の蒸留装置は、仕込み部(A1)で発生した蒸気を釣鐘型蓋部を介して凝縮液貯留部(A2)の凝縮液にバブリングできるため、本願明細書ではこれを「バブリング型蒸留装置」と称する。
(4) Bubbling type distillation apparatus An example of the preferable aspect of the distillation apparatus (100) of this invention is demonstrated with reference to FIG. 2 can bubble the steam generated in the charging section (A1) to the condensate in the condensate reservoir (A2) via the bell-shaped lid, which is referred to as “bubbling type” in the present specification. It is called a “distillation device”.

本発明で使用する蒸留装置は、蒸留部(A)には仕込み部(A1)と、その上段に凝縮液貯留部(A2)とが配設され、仕込み部(A1)で発生した蒸気を凝縮液貯留部(A2)より上方に導く1個または複数個の蒸気通路(6)とが備えられている。仕込み部(A1)容量は、予定仕込み液容積の少なくとも150%以上、より好ましくは180〜220%である。150%以上としたのは、仕込み部(A1)で仕込み液が沸騰する場合の泡立ちおよび加熱するために吹き込むスチームの凝縮による増加を考慮したものである。また、仕込み部(A1)の底部には原料液を加熱する加熱装置(11)と冷却管(10)とが導入され、前記仕込み部(A1)に張り込み予定仕込み液の液面上の空間部に、スチーム注入器(12)が備えられている。該スチーム注入器(12)からスチームを発生させ、凝縮液貯留部(A2)の凝縮液に導入することができる。なお、前記冷却管(10)は、仕込み部(A1)の蒸留が終了直後に冷水を通して仕込み部(A1)残留液を冷却するために使用するが、冷水に代えてスチームを通せば加熱にも使用できる。凝縮液貯留部(A2)容積は、仕込み部(A1)の容積を100とすれば、凝縮液貯留部(A2)の容積は、180〜350、より好ましくは200〜320である。180以上としたのは、蒸留部(A)および凝縮液貯留部(A2)内の蒸気の凝縮および還流装置による還流によって凝縮液貯留部(A2)液量が徐々に増加することを考慮したものである。なお、凝縮液貯留部(A2)の底部には凝縮液貯留部(A2)の加熱装置(13)が配置されている。凝縮液貯留部(A2)の凝縮液が増えすぎた場合等は、前記加熱装置(13)により加熱して液量を調整することができる。また、冷却部(B)には、凝縮液が凝縮液貯留部(A2)に還流される還流装置が配備されており、凝縮液の還流量によって、凝縮液貯留部(A2)内の凝縮液量を調整することができる。   The distillation apparatus used in the present invention is provided with a charging section (A1) in the distillation section (A) and a condensate storage section (A2) in the upper stage for condensing steam generated in the charging section (A1). One or a plurality of steam passages (6) leading upward from the liquid reservoir (A2) are provided. The capacity of the charged portion (A1) is at least 150% or more, more preferably 180 to 220% of the planned charged liquid volume. The reason why it is set to 150% or more is that foaming when the charged liquid boils in the charged portion (A1) and an increase due to condensation of steam blown in order to heat are taken into consideration. Further, a heating device (11) for heating the raw material liquid and a cooling pipe (10) are introduced into the bottom of the charging section (A1), and a space on the liquid surface of the planned charging liquid to be put into the charging section (A1). And a steam injector (12). Steam can be generated from the steam injector (12) and introduced into the condensate in the condensate reservoir (A2). The cooling pipe (10) is used to cool the residual liquid in the charging section (A1) through cold water immediately after the distillation of the charging section (A1) is completed. Can be used. If the volume of the condensate reservoir (A2) is 100, the volume of the condensate reservoir (A2) is 180 to 350, more preferably 200 to 320. 180 or more was taken into account that the amount of liquid in the condensate storage part (A2) gradually increases due to the condensation of the vapor in the distillation part (A) and the condensate storage part (A2) and the reflux by the reflux device. It is. In addition, the heating apparatus (13) of a condensate storage part (A2) is arrange | positioned at the bottom part of the condensate storage part (A2). When the condensate in the condensate reservoir (A2) increases too much, the amount of liquid can be adjusted by heating with the heating device (13). The cooling unit (B) is provided with a reflux device for refluxing the condensate to the condensate storage unit (A2), and the condensate in the condensate storage unit (A2) depends on the amount of reflux of the condensate. The amount can be adjusted.

上記蒸気通路(6)の上部は釣鐘型蓋部(7)で覆われるが、前記釣鐘型蓋部(7)にはフロート(9)が設けられており、凝縮液中を上下に移動することができる。凝縮液貯留部(A2)内に凝縮液が増えた場合にフロート(9)により前記釣鐘型蓋部(7)が浮上し、釣鐘型蓋部(7)の側面(7b)下端が液面から一定の深さを保つことができ、仕込み部(A1)の圧力を一定に保ちながら凝縮液貯留部(A2)の凝縮液の全部に対してバブリングしつつ蒸気を導入することができる。なお、フロート(9)を取り付けず、適当な深さに固定してもよい。釣鐘型蓋部(7)の高さを適当な高さに固定すると、凝縮液貯留部(A2)内の凝縮液が所定の高さに溜まってからバブリングが開始される。   The upper part of the steam passage (6) is covered with a bell-shaped lid (7), and the bell-shaped lid (7) is provided with a float (9), which moves up and down in the condensate. Can do. When the condensate increases in the condensate reservoir (A2), the bell-shaped lid (7) floats by the float (9), and the lower end of the side surface (7b) of the bell-shaped lid (7) extends from the liquid level. A certain depth can be maintained, and steam can be introduced while bubbling all of the condensate in the condensate reservoir (A2) while keeping the pressure in the charging section (A1) constant. In addition, you may fix to an appropriate depth, without attaching a float (9). When the height of the bell-shaped lid (7) is fixed to an appropriate height, bubbling is started after the condensate in the condensate reservoir (A2) has accumulated at a predetermined height.

なお、図2,4,13,14に示す蒸留装置もバブリング型蒸留装置である。   The distillation apparatus shown in FIGS. 2, 4, 13, and 14 is also a bubbling distillation apparatus.

(5)非バブリング型蒸留装置
本発明の蒸留装置(100)の好ましい他の態様の一例を、図3を参照して説明する。なお、図3の蒸留装置は、仕込み部(A1)の蒸気が凝縮液貯留部(A2)の凝縮液にバブリングされずに冷却部(B)に移行するため、本願明細書では、これを「非バブリング型蒸留装置」と称する。
(5) Non-Bubbling Distillation Device An example of another preferred embodiment of the distillation device (100) of the present invention will be described with reference to FIG. In the distillation apparatus of FIG. 3, the steam in the charging section (A1) is transferred to the cooling section (B) without being bubbled into the condensate in the condensate storage section (A2). This is referred to as a “non-bubbling distillation apparatus”.

図2に示す蒸留装置との相違は、蒸気通路(6)の上端に、逆流防止機構として軽くて浅い蓋部(8)が配設され、仕込み部にスチーム注入器(12)が配設されていない点である。浅型蓋部(8)を軽い材質で作ると、仕込み部(A1)で蒸気が発生しているときは、浅型蓋部(8)は蒸気圧で持ち上がり、蒸気は浅型蓋部(8)の下端から凝縮液貯留部(A2)内にストレートに流入し、更に、冷却部(B)に移行できる。なお、仕込み部(A1)における蒸気の発生が停止され、内部が陰圧になると、浅型蓋部(8)は蒸気通路(6)上端に密着するため蒸気を逆流させることがなく、すなわち、蒸気の逆流を防止することができる。   The difference from the distillation apparatus shown in FIG. 2 is that a light and shallow lid (8) is disposed at the upper end of the steam passage (6) as a backflow prevention mechanism, and a steam injector (12) is disposed at the charging section. That is not the point. When the shallow lid portion (8) is made of a light material, when steam is generated in the charging portion (A1), the shallow lid portion (8) is lifted by the vapor pressure, and the steam is shallow in the shallow lid portion (8 ) Straightly flows into the condensate storage part (A2) from the lower end, and can further shift to the cooling part (B). In addition, when generation | occurrence | production of the vapor | steam in a preparation part (A1) is stopped and an inside becomes a negative pressure, since a shallow type | mold cover part (8) will closely_contact | adhere to an upper end of a vapor | steam channel | path (6), a vapor | steam does not flow backward, Steam backflow can be prevented.

なお、仕込み部(A1)上部にコック(25)を有する外気導入用管(17)を設け、仕込み部(A1)の加熱終了後、コック(25)を開いて外部と連通すれば、仕込み部(A1)内は大気圧に等しくなり、凝縮液貯留部(A2)からの逆流を防止することができる。   If an outside air introduction pipe (17) having a cock (25) is provided at the top of the charging section (A1), and the heating of the charging section (A1) is completed, the cock (25) is opened to communicate with the outside. The inside of (A1) becomes equal to atmospheric pressure, and backflow from the condensate reservoir (A2) can be prevented.

(6)回分精留機
更に、本発明の他の態様の一例を、図4を参照して説明する。
(6) Batch rectifier Further, an example of another embodiment of the present invention will be described with reference to FIG.

図4の蒸留装置と図3に示す蒸留装置との相違は、蒸留部(A)に、前記凝縮液貯留部と連通する棚段または充填物を配設した棚段部(A3)を有する点である。最下段(1段目)は仕込み部(A1)、その上部(2段目)に凝縮液貯留部(A2)があり、1段目から2段目へ連通する蒸気通路(6)には、フロート付き釣鐘型蓋部(7)が設けられ、その他、冷却管(10)及び加熱装置(11)が配設される。3段目より上に棚段(49、50、51)が設けられ、それぞれの棚段には液量を一定に保つためのダウンカマ(52、53、54)が設けられている。さらに還流装置により塔頂から出る蒸気を冷却機(B)により冷却して得た凝縮液の一部が最上段に還流される。棚段は種々の形式が使用可能であるが、精留塔に広く用いられている多孔板トレイを好適に使用することができる。なお、多孔板トレイは還流がなければ蒸気は多孔板を通り抜けるので精留効果は低く、還流を行えば精留効果が高くなるから多様な蒸留酒製造に対応できる。この蒸留装置において、還流装置は、冷却部(B)から凝縮液貯留部(A2)に凝縮液を還流させる構造でも、図4に示すように、棚段部(A3)に還流させる構造であってもよい。また、仕込み部(A1)からの蒸気を凝縮液貯留部(A2)に導入するための蒸気通路(6)が配置され、その上部は釣鐘型蓋部(7)で覆われている。
The difference between the distillation apparatus shown in FIG. 4 and the distillation apparatus shown in FIG. 3 is that the distillation part (A) has a shelf part (A3) in which a shelf or a filler communicating with the condensate storage part is arranged. Is a point. The lowermost stage (first stage) has a charging part (A1), and the upper part (second stage) has a condensate storage part (A2). The steam passage (6) communicating from the first stage to the second stage has A bell-shaped lid (7) with a float is provided, and in addition, a cooling pipe (10) and a heating device (11) are arranged. A shelf (49, 50, 51) is provided above the third level, and a downcomer (52, 53, 54) is provided on each shelf to keep the amount of liquid constant. Further, a part of the condensate obtained by cooling the vapor coming from the top of the tower by the reflux apparatus by the cooler (B) is refluxed to the uppermost stage. Although various types of shelves can be used, perforated plate trays widely used in rectification towers can be suitably used. If the perforated plate tray is not refluxed, the steam passes through the perforated plate, so that the rectifying effect is low. If refluxed, the rectifying effect is increased, so that various distilled liquors can be produced. In this distillation apparatus, the reflux device has a structure in which the condensate is refluxed from the cooling part (B) to the condensate storage part (A2), and is returned to the shelf part (A3) as shown in FIG. May be. Further, a steam passage (6) for introducing the steam from the charging section (A1) into the condensate storage section (A2) is arranged, and the upper part thereof is covered with a bell-shaped lid section (7).

なお、本発明は、原料を張り込む仕込み部(A1)では極力凝縮をおさえて短時間に蒸留し、発生した凝縮液を仕込み部(A1)には混入させず、凝縮液貯留部(A2)に流入させて別途蒸留するものであれば、上記以外に様々な形態が可能であり、これらの装置は、連続式のほか、単式蒸留装置及び回分精留機に利用することができる。   In the present invention, the charging unit (A1) in which the raw material is put is kept in a short time by condensing as much as possible, and the generated condensate is not mixed into the charging unit (A1), but the condensate storage unit (A2). In addition to the above, various forms are possible as long as they are allowed to flow into and separately distilled, and these apparatuses can be used for a single distillation apparatus and a batch rectifier in addition to a continuous type.

(II)蒸留方法
本発明の第二は、上記蒸留装置を用いた蒸留方法であって、前記仕込み部の仕込み液を加熱して発生した蒸気を前記逆流防止機構を経て前記凝縮液貯留部に導入する工程と、前記凝縮液貯留部の蒸気を前記冷却部に導入し、前記冷却部を冷却して生じた凝縮液の一部または全部を前記凝縮液貯留部に還流し、かつ前記凝縮液の残部を留出液として得る工程と、前記凝縮液貯留部で発生および貯留する蒸気の凝縮液を加熱し、発生した蒸気を前記冷却部に導入して留出液を得る工程とを含む、蒸留方法である。本発明の蒸留方法は、連続式で行ってもよく、回分式で行うこともできる。凝縮液貯留部(A2)内で発生した蒸気の凝縮液を該貯留部において貯留することで、仕込み部(A1)への凝縮液の逆流を防止し、仕込み液量の増加を防止して加熱時間を短縮し、フルフラールの発生を防止することができる。
(II) Distillation method The second of the present invention is a distillation method using the above distillation apparatus, wherein the vapor generated by heating the charged liquid in the charged portion is transferred to the condensate reservoir via the backflow prevention mechanism. Introducing the vapor of the condensate storage unit into the cooling unit, returning a part or all of the condensate generated by cooling the cooling unit to the condensate storage unit, and the condensate And a step of obtaining a distillate by heating the condensate of the steam generated and stored in the condensate reservoir and introducing the generated steam into the cooling section . This is a distillation method. The distillation method of the present invention may be carried out continuously or batchwise. By storing the condensate of vapor generated in the condensate storage part (A2) in the storage part, the condensate is prevented from flowing back to the preparation part (A1), and the amount of preparation liquid is prevented from increasing. Time can be shortened and the occurrence of furfural can be prevented.

(1)非バブリング型蒸留方法
仕込み部(A1)からの蒸気を、凝縮液貯留部(A2)の凝縮液(5)にバブリングさせず、凝縮液貯留部(A2)の一部を構成するわたり(16)を経由して冷却部(B)にそのまま移行させるため、本願明細書では、この蒸留方法を「非バブリング型蒸留方法」と称する。
(1) Non-Bubbling Distillation Method The steam from the charging section (A1) is not bubbled into the condensate (5) of the condensate storage section (A2), and constitutes a part of the condensate storage section (A2). In order to transfer to the cooling part (B) as it is via (16), this distillation method is referred to as “non-bubbling distillation method” in the present specification.

本発明の非バブリング型蒸留方法を図1を用いて説明する。なお、該装置は、仕込み部(A1)の外周に凝縮液貯留部(A2)が配設された蒸留装置(100)である。   The non-bubbling distillation method of the present invention will be described with reference to FIG. In addition, this apparatus is the distillation apparatus (100) by which the condensate storage part (A2) was arrange | positioned in the outer periphery of the preparation part (A1).

蒸留装置(100)内に仕込み部(A1)を設け、凝縮液貯留部(A2)との連通部(C)の上を浅型蓋部(8)で覆い、仕込み部(A1)内にもろみ等を仕込み加熱装置(11)により仕込み液(3)を加熱すると、発生した蒸気は前記連通部(C)を覆った蓋部(8)を上方向へ蒸気圧で押し開け、次いで、前記蓋部(8)の側方を通って凝縮液貯留部(A2)にストレートに導入される。凝縮液貯留部(A2)内で、前記蒸気はさらに上昇し、わたり(16)をへて冷却部(B)に至り、冷却および凝縮し、留出液タンク(21)に導入される。一方、凝縮液貯留部(A2)の蒸気の一部は、凝縮液貯留部(A2)の内壁で冷却および凝縮され、内壁を流下し、凝縮液貯留部(A2)の底部に貯留する。   The charging unit (A1) is provided in the distillation apparatus (100), the upper part of the communication part (C) with the condensate storage part (A2) is covered with a shallow lid part (8), and the inside of the charging part (A1) is also melted. When the charged liquid (3) is heated by the charging device (11), the generated steam pushes the lid portion (8) covering the communicating portion (C) upward with vapor pressure, and then the lid It is introduced straight into the condensate reservoir (A2) through the side of the section (8). In the condensate storage part (A2), the steam further rises, passes through (16), reaches the cooling part (B), cools and condenses, and is introduced into the distillate tank (21). On the other hand, a part of the vapor in the condensate reservoir (A2) is cooled and condensed on the inner wall of the condensate reservoir (A2), flows down the inner wall, and is stored in the bottom of the condensate reservoir (A2).

本発明において、原料供給口(図示せず)から、仕込み液を連続的に供給し、かつ凝縮液貯留部(A2)の凝縮液を加熱装置(13)で加熱し、凝縮液を蒸留する場合には、上記方法によって連続的に蒸留を行うことができる。   In the present invention, when charging liquid is continuously supplied from a raw material supply port (not shown), the condensate in the condensate reservoir (A2) is heated by the heating device (13), and the condensate is distilled. In addition, the distillation can be continuously carried out by the above method.

一方、該装置を用いて回分式で蒸留する場合には、加熱装置(11)などにより仕込み液(3)を加熱し、蒸留の進行により仕込み部(A1)で発生する蒸気のアルコール濃度が予め定めた値、例えば10%(v/v)以下になったとき、または仕込み部(A1)の仕込み液(3)のアルコール分が予め定めた値、例えば1%(v/v)以下になったときに仕込み部(A1)液の加熱を停止する。仕込み部(A1)から一旦留出したフルフラールは蒸発しやすく製品に移行しやすいので、仕込み部(A1)の加熱停止時期は重要である。仕込み部(A1)で発生する蒸気を採取し、アルコール濃度を分析して決定することが確実であるが、仕込み部(A1)の残留液を採取してアルコール濃度の分析を行い、このアルコール濃度から蒸気のアルコール濃度を推定して仕込み部(A1)の加熱停止時期を決定してもよい。なお、本格焼酎の蒸留においては、留出液のアルコール濃度が10〜15%(v/v)程度に低下した時に留出液の採取を終了することが一般的である。   On the other hand, when the batch distillation is carried out using the apparatus, the charged liquid (3) is heated by a heating apparatus (11) or the like, and the alcohol concentration of the vapor generated in the charged part (A1) by the progress of distillation is previously determined. When it becomes a predetermined value, for example, 10% (v / v) or less, or the alcohol content of the charging liquid (3) in the charging section (A1) becomes a predetermined value, for example, 1% (v / v) or less. The heating of the charging part (A1) liquid is stopped. The furfural once distilled from the charging section (A1) is likely to evaporate and easily shift to a product, and therefore the heating stop timing of the charging section (A1) is important. It is certain that the vapor generated in the charging section (A1) is collected and the alcohol concentration is analyzed and determined, but the residual liquid in the charging section (A1) is collected and analyzed for alcohol concentration. From this, the alcohol concentration of the steam may be estimated to determine the heating stop timing of the charging section (A1). In the distillation of authentic shochu, it is common to stop collecting the distillate when the alcohol concentration of the distillate drops to about 10 to 15% (v / v).

次いで、凝縮液貯留部(A2)内の凝縮液を加熱装置(13)で加熱して蒸留し、留出液タンク(21)に回収される留出液のアルコール濃度が予め定めた値より低くなったとき蒸留を終了する。蒸気の一部は、凝縮液貯留部(A2)内で冷却されて凝縮し、凝縮液貯留部(A2)の底部に貯留されるが、この凝縮液は、仕込み部(A1)の蒸留が終了した後に、蒸留してもよく、仕込み部(A1)の蒸留と共に蒸留してもよい。同時に蒸留すれば、蒸留時間を短縮することができる。なお、凝縮液貯留部(A2)の加熱を行う際には、仕込み部(A1)内の残留液の沸騰を押さえるために、冷却管(10)などを使用して仕込み部(A1)内の残留液の沸騰を押さえることが好ましい。沸騰によるフルフラールの蒸発を防止するためである。   Next, the condensate in the condensate reservoir (A2) is distilled by heating with the heating device (13), and the alcohol concentration of the distillate recovered in the distillate tank (21) is lower than a predetermined value. When the distillation is complete, the distillation is terminated. A part of the steam is cooled and condensed in the condensate storage part (A2) and stored in the bottom of the condensate storage part (A2), but this condensate has finished distillation of the charging part (A1) Then, it may be distilled, or it may be distilled together with distillation of the charging part (A1). If distillation is performed at the same time, the distillation time can be shortened. When heating the condensate storage part (A2), in order to suppress the boiling of the residual liquid in the charging part (A1), a cooling pipe (10) or the like is used to keep the residual liquid in the charging part (A1). It is preferable to suppress boiling of the residual liquid. This is to prevent evaporation of furfural due to boiling.

本発明の非バブリング型蒸留方法は、仕込み部(A1)と凝縮液貯留部(A2)とが、上下に配置する装置でも実施することができる。例えば、図3に、仕込み部(A1)と凝縮液貯留部(A2)とを上下に配設した蒸留装置(100)を示す。図3の装置によれば、仕込み部(A1)と凝縮液貯留部(A2)とが上下に配置されるため、凝縮液貯留部(A2)の面積を広く確保することができ、凝縮液を冷却部(B)から還流装置を経て凝縮液貯留部(A2)する際に、還流装置を配設する自由度が向上する。この蒸留装置(100)の仕込み部(A1)に仕込み液(3)を張り込んで加熱すると、仕込み部(A1)で発生した蒸気は蒸気通路(6)を通って上昇し、蒸気通路(6)の上部を覆う蓋部(8)の側方を通ってストレートに凝縮液貯留部(A2)の空間部に入ってさらに上昇し、蒸気の大半はそのままわたり(16)へ流れる。仕込み部(A1)での加熱停止条件などは、図1の装置の場合と同様である。   The non-bubbling distillation method of the present invention can also be carried out with an apparatus in which the charging section (A1) and the condensate storage section (A2) are arranged one above the other. For example, FIG. 3 shows a distillation apparatus (100) in which a charging section (A1) and a condensate storage section (A2) are arranged up and down. According to the apparatus of FIG. 3, since the preparation part (A1) and the condensate storage part (A2) are arranged one above the other, the area of the condensate storage part (A2) can be secured widely, When the condensate storage unit (A2) is passed from the cooling unit (B) through the reflux device, the degree of freedom of disposing the reflux device is improved. When the charging liquid (3) is poured into the charging section (A1) of the distillation apparatus (100) and heated, the steam generated in the charging section (A1) rises through the steam passage (6), and the steam path (6 ) Through the side of the lid (8) covering the upper part of the condensate storage part (A2) and further rises straight, and most of the steam flows to (16) as it is. The heating stop conditions in the charging section (A1) are the same as those in the apparatus of FIG.

本発明の方法では、仕込み部(A1)で発生する蒸気の凝縮を抑えると、仕込み部(A1)での加熱時間が短縮され、更にフルフラールの発生量が減少する。例えば、仕込み部(A1)の外周を断熱材で被覆するなどして仕込み部(A1)と連通部(C)、蓋部(31)を外部と十分に断熱し、仕込み部(A1)内の温度を均一に保ち、蒸留操作を行うことが好ましい。なお、仕込み部(A1)での加熱を停止して残留液を冷却すると、仕込み部(A1)内が減圧となり、凝縮液貯留部(A2)から仕込み部(A1)へ向かう気流が発生する。しかしながら、蒸気通路(6)の上端に設けられた蓋部(8)の逆流防止機構によって、凝縮液の仕込み部(A1)への混入を防止することができる。   In the method of the present invention, when the condensation of the steam generated in the charging section (A1) is suppressed, the heating time in the charging section (A1) is shortened and the amount of furfural generated is further reduced. For example, the charging part (A1) and the communication part (C) and the cover part (31) are sufficiently insulated from the outside by covering the outer periphery of the charging part (A1) with a heat insulating material, and the like in the charging part (A1). It is preferable to carry out the distillation operation while keeping the temperature uniform. Note that, when the heating in the charging section (A1) is stopped and the residual liquid is cooled, the pressure in the charging section (A1) is reduced, and an air flow from the condensate storage section (A2) to the charging section (A1) is generated. However, the backflow prevention mechanism of the lid (8) provided at the upper end of the steam passage (6) can prevent the condensate from entering the charging part (A1).

本発明の非バブリング型蒸留方法において、凝縮液の還流を行うこともできる。例えば、図3に示す装置を使用する場合には、蒸留操作開始直後に還流により凝縮液貯留部(A2)の液量を予め定めた量、例えば仕込み液容積の10%まで貯留した後に、冷却部(B)の凝縮液を留出タンク(21)で回収してもよい。これによって、留出液成分の安定化を図ることができる。   In the non-bubbling distillation method of the present invention, the condensed liquid can be refluxed. For example, when the apparatus shown in FIG. 3 is used, the liquid amount in the condensate storage part (A2) is stored to a predetermined amount by reflux immediately after the start of the distillation operation, for example, 10% of the charged liquid volume, and then cooled. You may collect | recover the condensate of a part (B) with a distillation tank (21). Thereby, stabilization of the distillate component can be achieved.

本発明では、凝縮液貯留部(A2)に溜まる凝縮液の液量を制御することで留出液の組成を調整できることが判明した(実施例参照)。すなわち、非バブリング型蒸留方法によれば、仕込み部(A1)から上昇してきた蒸気の大半は凝縮液貯留部(A2)内を素通りして冷却部(B)に流入するので、従来の単式蒸留装置に近いタイプの蒸留酒を製造することができる。一方、仕込み部(A1)及び/または凝縮液貯留部(A2)の加熱時間を長くして蒸発量を増やすと留出液の味を濃厚にすることができる。また、還流液量を少なくして留出液の香味を濃厚にすることができる。逆に、仕込み部(A1)及び/または凝縮液貯留部(A2)の加熱時間を短くして蒸発量を減らすと留出液の味を淡麗にすることができ、還流液量を大きくすると香味を淡麗にすることができる。例えば、仕込み部(A1)のアルコール濃度が、蒸留の進行により予め定めた値、例えば1.0%(v/v)に低下するまで留出液を全量還流して凝縮液貯留部(A2)に凝縮液を溜め、その後仕込み部(A1)の蒸留を停止して凝縮液貯留部(A2)の蒸留を行えば、凝縮液の全量を蒸留したことになり、酸度の低い、淡麗な蒸留酒が得られる。このように、本発明の蒸留方法によれば、フルフラールの生成量を低減するのみならず、従来の風味のものから、酸度が低く、軽快な酒質の蒸留酒まで選択して製造することができる。   In the present invention, it has been found that the composition of the distillate can be adjusted by controlling the amount of the condensate accumulated in the condensate reservoir (A2) (see Examples). That is, according to the non-bubbling distillation method, most of the steam rising from the charging section (A1) passes through the condensate storage section (A2) and flows into the cooling section (B). A type of distilled liquor close to the apparatus can be produced. On the other hand, if the heating time of the charging section (A1) and / or the condensate storage section (A2) is lengthened to increase the evaporation amount, the taste of the distillate can be concentrated. Further, the amount of the reflux liquid can be reduced, and the flavor of the distillate can be increased. On the contrary, if the heating time of the charging part (A1) and / or the condensate storage part (A2) is shortened to reduce the evaporation amount, the taste of the distillate can be made lighter and the reflux liquid amount is increased. The flavor can be lightened. For example, the distillate is fully refluxed until the alcohol concentration in the charging section (A1) decreases to a predetermined value, for example, 1.0% (v / v) as the distillation proceeds, and the condensate storage section (A2). If the condensate is stored in the tank, and then the distillation of the charging part (A1) is stopped and the condensate storage part (A2) is distilled, the whole amount of the condensate is distilled, and the acidity is low. Sake is obtained. As described above, according to the distillation method of the present invention, not only the production amount of furfural can be reduced, but also from a conventional flavor to a low-acidity, light liquor-type distilled liquor. it can.

上記した蒸留方法は、常圧蒸留装置のみでなく、減圧蒸留装置にも利用できる。   The above distillation method can be used not only for the atmospheric distillation apparatus but also for the vacuum distillation apparatus.

(2)バブリング型蒸留方法
仕込み部(A1)からの蒸気を、凝縮液貯留部(A2)にバブリングしながら導入する蒸留方法を「バブリング型蒸留方法」と称する。
(2) Bubbling-type distillation method The distillation method which introduce | transduces the vapor | steam from a preparation part (A1) into a condensate storage part (A2), bubbling is called a "bubbling-type distillation method."

留出液タンク(21)に回収される留出液の組成は、凝縮液貯留部(A2)内の凝縮液の液量に依存して変化し、また、凝縮液貯留部(A2)内の凝縮液の組成の変化によっても変化する。凝縮液貯留部(A2)の凝縮液に蒸気を導入すると、凝縮液の組成を調整することができる。この蒸留方法を図2を用いて説明する。   The composition of the distillate recovered in the distillate tank (21) changes depending on the amount of the condensate in the condensate reservoir (A2), and also in the condensate reservoir (A2). It also changes with changes in the composition of the condensate. When steam is introduced into the condensate in the condensate reservoir (A2), the composition of the condensate can be adjusted. This distillation method will be described with reference to FIG.

図2の装置は、仕込み部(A1)と凝縮液貯留部(A2)とが上下に配置され、連通部(C)として機能する蒸気通路(6)の上部には、釣鐘型蓋部(7)が載置され、かつ冷却部(B)の凝縮液を凝縮液貯留部(A2)に還流する還流装置が配設され、仕込み部(A1)にはスチーム注入器(12)が配備されている。   In the apparatus of FIG. 2, the charging section (A1) and the condensate storage section (A2) are arranged one above the other, and a bell-shaped lid section (7) is provided above the steam passage (6) functioning as the communication section (C). ) And a reflux device for returning the condensate in the cooling part (B) to the condensate storage part (A2) is provided, and a steam injector (12) is provided in the charging part (A1). Yes.

該蒸留装置(100)によるバブリング型蒸留方法は、回分式で行われる。仕込み部(A1)を加熱すると発生した蒸気が蒸気通路(6)を通って上昇し、釣鐘型蓋部(7)によって釣鐘型蓋部(7)の側方から凝縮液貯留部(A2)の底部に蒸気が吹き込まれ、凝縮液となる。凝縮液が所定量存在すれば、その後導入される蒸気は、凝縮液に吹き込まれ、凝縮液との間で熱交換され、蒸気中の高沸点成分の凝縮、凝縮液中の低沸点成分の蒸発が行われる。本発明では、上記熱交換や蒸気成分の凝縮液中への導入を効果的に行うため、還流装置によって凝縮液の一部を凝縮液貯留部(A2)に還流して凝縮液量を調整する。また、仕込み部(A1)の加熱停止後は、スチーム注入器(12)からスチームを供給し、釣鐘型蓋部(7)の側方から凝縮液貯留部(A2)の底部にスチームを吹き込む。仕込み部(A1)での加熱停止条件などは、非バブリング型蒸留方法と同様である。   The bubbling type distillation method using the distillation apparatus (100) is carried out batchwise. When the charging section (A1) is heated, the generated steam rises through the steam passage (6), and the condensate storage section (A2) of the condensate storage section (A2) is formed from the side of the bell-shaped lid section (7) by the bell-shaped lid section (7). Steam is blown into the bottom and becomes a condensate. If a predetermined amount of condensate is present, the steam introduced thereafter is blown into the condensate and heat exchanged with the condensate, condensing the high-boiling components in the steam, and evaporating the low-boiling components in the condensate. Is done. In the present invention, in order to effectively introduce the heat exchange and the vapor component into the condensate, a part of the condensate is recirculated to the condensate reservoir (A2) by the reflux device to adjust the amount of the condensate. . Further, after the heating of the charging section (A1) is stopped, steam is supplied from the steam injector (12), and steam is blown into the bottom of the condensate storage section (A2) from the side of the bell-shaped lid section (7). The heating stop conditions in the charging section (A1) are the same as in the non-bubbling distillation method.

バブリング型蒸留方法では、蒸留開始時に冷却部(B)の凝縮液を凝縮液貯留部(A2)に還流し、一定量の凝縮液を凝縮液貯留部(A2)に溜めるが、凝縮液貯留部(A2)内の蒸気の凝縮によっても凝縮液貯留部(A2)の凝縮液量が徐々に増加する。しかしながら、凝縮液のフルフラール濃度は低く、凝縮液の加熱蒸留に時間を要しても、フルフラールは新たに生成しないので、フルフラールの留出液への移行を低減することができる。なお、予め凝縮液貯留部(A2)に一定量の水、目的留出物の一部などを入れて蒸留操作を開始すれば、還流液を貯留するための時間を短縮することができる。   In the bubbling type distillation method, the condensate in the cooling part (B) is returned to the condensate storage part (A2) at the start of distillation, and a certain amount of condensate is stored in the condensate storage part (A2). The amount of condensate in the condensate reservoir (A2) gradually increases due to the condensation of the vapor in (A2). However, the concentration of furfural in the condensate is low, and even if it takes time to heat-distill the condensate, no new furfural is generated, so that the transition of the furfural to the distillate can be reduced. In addition, if a predetermined amount of water, a part of the target distillate, and the like are put in the condensate storage unit (A2) in advance and the distillation operation is started, the time for storing the reflux liquid can be shortened.

上記したバブリング型蒸留方法によれば、通常の蒸留塔の1段に相当する精留効果があるため、よりアルコール濃度の高い留出液が得られる。   According to the bubbling type distillation method described above, since there is a rectification effect corresponding to one stage of a normal distillation column, a distillate having a higher alcohol concentration can be obtained.

なお、バブリング型蒸留方法によれば、蒸留開始時の凝縮液貯留部(A2)の凝縮液の液量が多いほど留出液のアルコール濃度が低くなるが、前記した非バブリング型蒸留方法では、凝縮液貯留部(A2)に溜まった液だけが後から蒸留されるため、凝縮液貯留部(A2)液量が多いほど留出液タンクに回収される蒸留酒などの留出液の香味が淡麗となる。本発明では、このように、バブリング型蒸留方法と非バブリング型蒸留方法との二つの方法によって、風味の異なる蒸留酒を製造することができる。   In addition, according to the bubbling distillation method, the alcohol concentration of the distillate decreases as the amount of the condensate in the condensate reservoir (A2) at the start of distillation decreases, but in the non-bubbling distillation method described above, Since only the liquid stored in the condensate storage part (A2) is distilled later, the more the condensate storage part (A2) liquid amount, the more the flavor of the distillate such as distilled liquor recovered in the distillate tank. It becomes pale. In the present invention, as described above, distilled liquors having different flavors can be produced by the two methods of the bubbling distillation method and the non-bubbling distillation method.

(3)棚段部付き蒸留方法
本発明の第三は、前記凝縮液貯留部に、精留機能を備えた棚段または充填物が配される蒸留装置を使用し、前記仕込み部の仕込み液を加熱し、加熱により発生した仕込み部の蒸気のアルコール濃度、または仕込み液のアルコール濃度が所定値以下となった場合に前記仕込み部の加熱を停止し、次いで、前記凝縮液貯留部の前記凝縮液を加熱し、発生した蒸気を前記冷却部に導入して留出液を得ることを特徴とする蒸留方法である。この方法は、前記したバブリング型蒸留方法に、更に棚段部が加味されたものである。
(3) Distillation method with shelf part The third aspect of the present invention uses a distillation apparatus in which a shelf or packing having a rectifying function is arranged in the condensate storage part, and the feed liquid of the preparation part When the alcohol concentration of the steam in the charging section generated by the heating or the alcohol concentration of the charging liquid falls below a predetermined value, the heating of the charging section is stopped, and then the condensation in the condensate storage section The distillation method is characterized in that the liquid is heated and the generated steam is introduced into the cooling section to obtain a distillate. In this method, a shelf portion is further added to the bubbling distillation method described above.

この蒸留方法に好適な蒸留装置を図4に示す。図4の装置は、仕込み部(A1)と凝縮液貯留部(A2)とが上下に配置され、仕込み部(A1)と凝縮液貯留部(A2)とは蒸気通路(6)で連通し、更に凝縮液貯留部(A2)の上部に棚段または充填物を配設した棚段部(A3)とが配置されている。なお、前記棚段部(A3)は、凝縮液貯留部(A2)と連通し、かつ前記冷却部(B)で生じた凝縮液の一部または全部を凝縮液貯留部に還流する還流装置が配設されている。また、仕込み部(A1)からの蒸気を凝縮液貯留部(A2)に導入するための蒸気通路(6)が配置され、その上部は釣鐘型蓋部(7)で覆われている。なお、仕込み部(A1)には、スチーム注入器(12)が配備されている。
A distillation apparatus suitable for this distillation method is shown in FIG. In the apparatus of FIG. 4, the charging part (A1) and the condensate storage part (A2) are arranged vertically, and the charging part (A1) and the condensate storage part (A2) communicate with each other through the steam passage (6). Furthermore, a shelf step (A3) in which a shelf or a filler is disposed is arranged above the condensate reservoir (A2). The shelf (A3) is connected to the condensate reservoir (A2), and a reflux device that recirculates part or all of the condensate generated in the cooling unit (B) to the condensate reservoir. It is arranged. Further, a steam passage (6) for introducing the steam from the charging section (A1) into the condensate storage section (A2) is arranged, and the upper part thereof is covered with a bell-shaped lid section (7). Note that a steam injector (12) is provided in the charging section (A1).

本発明の蒸留方法では、まず、仕込み部(A1)に仕込み液(3)を張り込んで加熱し、得られる蒸気を蒸気通路(6)の上部にある釣鐘型蓋部(7)を介して凝縮液貯留部(A2)に導入し、次いで凝縮液貯留部(A2)を経て棚段部(A3)に導入し、凝縮液貯留部(A2)および棚段部(A3)で発生し、流下する凝縮液を凝縮液貯留部(A2)に溜める。この際、還流装置により冷却部(B)で生じた凝縮液の一部または全部棚段部(A3)に還流する。蒸留の進行により仕込み部(A1)で発生する蒸気のアルコール濃度または仕込み部(A1)のアルコール濃度が、予め定めた値、例えば、1.0%(v/v)以下となったとき、仕込み部(A1)の加熱を停止し、直ちに仕込み部(A1)内の残存液を冷却管(10)で冷却して沸騰を押さえ、以後は仕込み部(A1)上部に設けたスチーム注入器(12)によりスチームを注入し、還流装置により還流を行いながら蒸留し、凝縮液の一部はバルブ(19)を開いて留出液タンク(21)へ留出させる。留出液タンク(21)に回収される留出液のアルコール濃度が予め定めた値より低くなったとき蒸留を終了する。
In the distillation method of the present invention, first, the charging liquid (3) is put into the charging section (A1) and heated, and the resulting steam is passed through the bell-shaped lid section (7) at the top of the steam passage (6). was introduced into the condensate reservoir (A2), then through the condensate reservoir and (A2) were introduced into trays portion (A3), generated in the condensate reservoir (A2) and tray portion (A3), flow down The condensate to be accumulated is stored in the condensate reservoir (A2). At this time, a part or all of the condensate produced in the cooling section (B) is returned to the shelf section (A3) by the reflux device. When the alcohol concentration of the steam generated in the charging section (A1) or the alcohol concentration of the charging section (A1) becomes a predetermined value, for example, 1.0% (v / v) or less due to the progress of distillation, the charging is performed. The heating of the part (A1) is stopped, the residual liquid in the charging part (A1) is immediately cooled by the cooling pipe (10) to suppress boiling, and thereafter the steam injector (12 provided above the charging part (A1)) ), And steam is distilled while refluxing with a reflux device, and a part of the condensate is distilled to the distillate tank (21) by opening the valve (19). When the alcohol concentration of the distillate collected in the distillate tank (21) becomes lower than a predetermined value, the distillation is terminated.

すなわち、仕込み部(A1)からの蒸気は全量凝縮液貯留部(A2)に導入し凝縮液として貯留し、仕込み部(A1)の蒸留が終わってから凝縮液貯留部(A2)の凝縮液を蒸留する。仕込み部(A1)の加熱を停止するとフルフラールは発生せず、従って、凝縮液貯留部(A2)および精留部(A3)フルフラール量は増加しないから、精留部(A3)を介して精製すれば、フルフラールを効率的に分離することができる。   That is, the vapor from the charging unit (A1) is introduced into the entire condensate storage unit (A2) and stored as condensate. After the distillation of the charging unit (A1) is finished, the condensate in the condensate storage unit (A2) is removed. Distill. When heating of the charging section (A1) is stopped, furfural is not generated, and therefore the amount of furfural in the condensate storage section (A2) and rectification section (A3) does not increase, so it is purified through the rectification section (A3). Thus, furfural can be separated efficiently.

上記蒸留方法によると、仕込み部(A1)で凝縮を極力小さくして短時間で蒸留し、その留出液を上部の精留部で精留するため、仕込み部(A1)におけるフルフラールの生成量が減少し、フルフラールの留出量を減少させることができる。   According to the above distillation method, the condensation is minimized in the charging section (A1) and distilled in a short time, and the distillate is rectified in the upper rectifying section. Therefore, the amount of furfural produced in the charging section (A1) And the amount of furfural distillate can be reduced.

なお、本発明の蒸留方法において、予め定めたアルコール量は、蒸留条件や目的とする蒸留物の風味などに応じて、適宜選択することができる。   In the distillation method of the present invention, the predetermined amount of alcohol can be appropriately selected according to the distillation conditions and the flavor of the target distillate.

次に実施例を挙げて本発明を具体的に説明するが、これらの実施例は何ら本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, these Examples do not restrict | limit this invention at all.

実施例1(バブリング型)
(1) 図2に示す蒸留装置を使用した。仕込み部(A1)は円筒状で、容量2,000mlのガラス製セパラブルフラスコ、凝縮液貯留部(A2)は円筒状で容量1,400mlのガラス製であり、内径15mm、外径35mm、高さ85mmの蒸気通路(6)が1つ設けられ、前記蒸気通路(6)の上部に、下端にガラス製フロート(9)が設けられた深さ100mm、半径50mmのアルミ製釣鐘型蓋部(7)が被覆されている。また、仕込み部(A1)の外部には、図示しない加熱ジャケットが設けられている。
Example 1 (Bubbling type)
(1) The distillation apparatus shown in FIG. 2 was used. The charging part (A1) is cylindrical and has a glass separable flask with a capacity of 2,000 ml. The condensate storage part (A2) is cylindrical and is made of glass with a capacity of 1,400 ml. The inner diameter is 15 mm, the outer diameter is 35 mm, and the height is high. One steam passage (6) having a length of 85 mm is provided, and an aluminum bell-shaped lid portion having a depth of 100 mm and a radius of 50 mm, in which a glass float (9) is provided at the upper end of the steam passage (6). 7) is coated. A heating jacket (not shown) is provided outside the charging section (A1).

(2) 仕込み部(A1)に発酵の終了したもろみ500ml(黒糖焼酎もろみ、アルコール16.2%(v/v)、酸度6.1)を入れ加熱ジャケットにより外部から緩やかに加熱し、もろみ温度が70℃に達した後、加熱装置(11)からスチームを吹き込んでもろみ温度を99℃まで加熱した。凝縮液貯留部(A2)に凝縮液が50ml溜まるまで、コック20を開、コック19を閉とし、凝縮液出口から凝縮液を凝縮液貯留部(A2)に還流し、その後、コック19を開として、留出液タンク(21)に留出液を採取した。留出液は12.5mlずつ分割採取した。また、仕込み部(A1)のもろみを5mlづつ採取してそのアルコール濃度を測定した。   (2) 500 ml of fermented moromi mash (brown sugar shochu mash, alcohol 16.2% (v / v), acidity 6.1) is placed in the charging section (A1) and gently heated from the outside with a heating jacket. After reaching 70 ° C., the mashing temperature was heated to 99 ° C. even when steam was blown from the heating device (11). The cock 20 is opened and the cock 19 is closed until 50 ml of condensate has accumulated in the condensate reservoir (A2), the condensate is returned to the condensate reservoir (A2) from the condensate outlet, and then the cock 19 is opened. As a result, the distillate was collected in the distillate tank (21). The distillate was collected in 12.5 ml portions. Further, 5 ml of mash of the preparation part (A1) was sampled and the alcohol concentration thereof was measured.

仕込み部(A1)のもろみのアルコール濃度が0.7%(v/v)となったとき(仕込み原料の17.5%が留出)、仕込み部(A1)への加熱装置(11)からのスチーム吹き込みを停止し、以後はスチーム注入器(12)より5g/minでスチームを吹き込んで凝縮液貯留部(A2)の凝縮液をバブリングしながら蒸留した。   When the mash's alcohol concentration in the charging part (A1) becomes 0.7% (v / v) (17.5% of the charged raw material is distilled), from the heating device (11) to the charging part (A1) Then, steam was blown from the steam injector (12) at a rate of 5 g / min and distilled while bubbling the condensate in the condensate reservoir (A2).

対照として図5に示す円筒状、容量2,000mlのガラス製セパラブルフラスコを使用し、仕込み部に上記と同一のもろみを500ml入れ、図示しない加熱ジャケットにより穏やかに加熱し、もろも温度を70℃に加熱した後、加熱装置(11)からスチームを吹き込んでもろみ温度を99℃に加熱および蒸留し、留出液タンク(21)から留出液を12.5mlづつ分割採取した。   As a control, a cylindrical separable flask having a volume of 2,000 ml shown in FIG. 5 was used. 500 ml of the same mash was put in the charging portion, and gently heated by a heating jacket (not shown). After heating to 0 ° C., steam was blown from the heating device (11) and the mash temperature was heated and distilled to 99 ° C., and 12.5 ml of distillate was sampled from the distillate tank (21).

(3) 実施例(バブリング型)および対照において、留出液のアルコール濃度が10.0%(v/v)を下回る最初の区分まで分取した。バブリング型における当該画分は、区分1〜10(アルコール分83.0〜9.5%(v/v))であり対照は、区分1〜13(アルコール分77.0〜9.55%(v/v))であった。   (3) In the example (bubbling type) and the control, fractionation was performed up to the first section where the alcohol concentration of the distillate was lower than 10.0% (v / v). The relevant fraction in the bubbling type is Category 1 to 10 (alcohol content 83.0 to 9.5% (v / v)), and the control is Category 1 to 13 (alcohol content 77.0 to 9.55% ( v / v)).

バブリング型の区分1〜10、および対照の区分1〜13を一定量づつ混合して「混合試料」とした。また、前記混合試料のアルコール濃度を蒸留水で25%(v/v)に調整し、アルコール濃度調整試料とした。   Bubbling-type sections 1 to 10 and control sections 1 to 13 were mixed in a fixed amount to obtain a “mixed sample”. Further, the alcohol concentration of the mixed sample was adjusted to 25% (v / v) with distilled water to obtain an alcohol concentration adjusted sample.

(4) 前記混合試料についてアルコール濃度を測定した。また、アルコール濃度調整試料について、酸度、275nm紫外部吸収、フルフラール濃度を測定した。   (4) The alcohol concentration of the mixed sample was measured. Further, the acidity, 275 nm ultraviolet absorption, and furfural concentration of the alcohol concentration adjusted sample were measured.

i)アルコール
アルコールはアルコメイト(理研計器AL−2型)で測定した。
i) Alcohol Alcohol was measured with Alcomate (Riken Keiki AL-2 type).

i)酸度
検体5mlにフェノールフタレイン指示薬を1〜2滴加え、N/100水酸化ナトリウム溶液で滴定し、その滴定数に2を乗じた値を酸度とした。
i) Acidity One to two drops of phenolphthalein indicator was added to 5 ml of a sample, titrated with an N / 100 sodium hydroxide solution, and the value obtained by multiplying the titration constant by 2 was defined as acidity.

ii)フルフラール
新たに蒸留したアニリン9.0を氷酢酸5.7mlと混和し、混合液3mlにエチルアルコールを加えて100mlとし、アニリン酢酸溶液とした。また、新たに蒸留したフルフラール1gを100mlのエチルアルコールに溶かし、この1mlを50%(v/v)アルコール100mlに溶かした。この液は、フルフラールの含量0.1mg/mlであるから、適宜水で薄めて5ml中に0.01〜0.2mgのフルフラールを含むフルフラール標準溶液系列を作った。
ii) Furfural Freshly distilled aniline 9.0 was mixed with 5.7 ml of glacial acetic acid, and ethyl alcohol was added to 3 ml of the mixed solution to make 100 ml to obtain an aniline acetic acid solution. Also, 1 g of freshly distilled furfural was dissolved in 100 ml of ethyl alcohol, and 1 ml of this was dissolved in 100 ml of 50% (v / v) alcohol. Since this liquid has a furfural content of 0.1 mg / ml, it was appropriately diluted with water to form a furfural standard solution series containing 0.01 to 0.2 mg of furfural in 5 ml.

フルフラール標準溶液5mlをとりアニリン酢酸溶液15mlを加え、よく振り混ぜて18℃に1時間放置後、505nmで吸光度を測定して検量線を作成し、同様に検体5mlをとりアニリン酢酸溶液15mlを加え、よく振り混ぜて18℃に1時間放置後、505nmで吸光度を測定し、検量線からフルフラールの濃度を求め、その数値を20倍して検体100ml中のフルフラール量(mg)とした。   Take 5 ml of furfural standard solution, add 15 ml of aniline acetic acid solution, shake well and leave at 18 ° C. for 1 hour, then measure the absorbance at 505 nm to prepare a calibration curve. Similarly, take 5 ml of sample and add 15 ml of aniline acetic acid solution. The mixture was shaken well and allowed to stand at 18 ° C. for 1 hour, and then the absorbance was measured at 505 nm. The concentration of furfural was obtained from a calibration curve, and the value was multiplied by 20 to obtain the amount of furfural (mg) in 100 ml of the sample.

iii)275nm紫外部吸収
フルフラール濃度は275nmにおける紫外部吸収と相関するため、試料をメンブラランフィルター(ミリポア0.45μm)でろ過した後、10mmセルを用いて分光光度計(日立U−2001型)により275nmにおける紫外部吸収測定した。
iii) 275 nm UV absorption Since the furfural concentration correlates with the UV absorption at 275 nm, the sample was filtered with a membrane run filter (Millipore 0.45 μm), and then a spectrophotometer (Hitachi U-2001 type) was used. ), The ultraviolet absorption at 275 nm was measured.

(5) 結果
(i) アルコールの濃度
仕込み部(A1)の仕込み液及び分割採取した留出液のアルコール濃度を図6に示す。留出液のアルコール濃度は対照と比較し高めに推移し、仕込み部(A1)への加熱装置(11)からのスチーム吹込み停止後にアルコール濃度は急激に低下した。
(5) Results (i) Concentration of alcohol The alcohol concentration of the charged solution of the charging portion (A1) and the distillate collected separately is shown in FIG. The alcohol concentration of the distillate was higher than that of the control, and the alcohol concentration rapidly decreased after stopping the steam blowing from the heating device (11) to the charging section (A1).

(ii) 紫外部吸収(275nm)
図7に示すように、蒸留開始からスチーム停止時までは、バブリング型および対照とは、紫外部吸収(275nm)が略同じように推移した。しかし、バブリング型では、仕込み部(A1)で加熱装置(11)からのスチーム供給を停止した後、留出液8区分から留出液中の紫外部吸収(275nm)が急激に減少したが、対照では急激に増加した。
(Ii) UV absorption (275 nm)
As shown in FIG. 7, from the start of distillation to the stop of steam, the bubbling type and the control showed substantially the same ultraviolet absorption (275 nm). However, in the bubbling type, after the steam supply from the heating device (11) was stopped at the charging unit (A1), the ultraviolet absorption (275 nm) in the distillate rapidly decreased from the 8 fractions of distillate, The control increased rapidly.

(iii) 留出液の酸度
酸度の測定結果を図8に示す。バブリング型における留出液の酸度は最初から対照より低く推移し、仕込み部(A1)での加熱装置(11)からのスチームの吹き込みを停止した後、さらに酸度は低下した。
(Iii) Acidity of the distillate The measurement results of the acidity are shown in FIG. The acidity of the distillate in the bubbling type was lower than that of the control from the beginning, and the acidity further decreased after stopping the blowing of steam from the heating device (11) in the charging section (A1).

(iv) 採取試料の組成
バブリング型および対照における混合試料のアルコール濃度、酸度、フルフラール、紫外部吸収(275nm)の測定結果を表1に示す。
(Iv) Composition of collected sample Table 1 shows the measurement results of alcohol concentration, acidity, furfural, and ultraviolet absorption (275 nm) of the mixed sample in the bubbling type and the control.

バブリング型のアルコール濃度調整試料は、対照よりアルコール濃度が13.6ポイントと大幅に高く、アルコール回収率は対照と比較し3ポイント低かった。フルフラール及び紫外部吸収(275nm)は、バブリング型は対照と比較し大幅に低く、また酸度もバブリング型が対照に比べ大幅に低かった。以上より、バブリング型の蒸留方法は、従来の単式蒸留機と比較しフルフラール及び酸度の減少に効果的であった。   The bubbling-type alcohol concentration-adjusted sample had a significantly higher alcohol concentration of 13.6 points than the control, and the alcohol recovery rate was 3 points lower than the control. The furfural and ultraviolet absorption (275 nm) of the bubbling type was significantly lower than that of the control, and the acidity of the bubbling type was significantly lower than that of the control. From the above, the bubbling type distillation method was effective in reducing furfural and acidity as compared with the conventional single-type distiller.

Figure 0004898358
実施例2(非バブリング型)
(1) 図3に示す蒸留装置を使用した。仕込み部(A1)は円筒状で、容量2,000mlのガラス製セパラブルフラスコ、凝縮液貯留部(A2)は円筒状で容量1,400mlのガラス製であり、内径15mm、外径33mm、高さ85mmの蒸気通路(6)が1つ設けられ、前記蒸気通路(6)の上部に、ガラス製の浅い蓋部(8)が被覆されている。実施例1と同様に、仕込み部(A1)の外部には、図示しない加熱ジャケットが設けられている。
Figure 0004898358
Example 2 (non-bubbling type)
(1) The distillation apparatus shown in FIG. 3 was used. The charging part (A1) is cylindrical and has a glass separable flask with a capacity of 2,000 ml. The condensate storage part (A2) is cylindrical and is made of glass with a capacity of 1,400 ml. The inner diameter is 15 mm, the outer diameter is 33 mm, and the height is high. One steam passage (6) having a length of 85 mm is provided, and a shallow lid portion (8) made of glass is covered on the upper portion of the steam passage (6). Similar to the first embodiment, a heating jacket (not shown) is provided outside the charging section (A1).

(2) 仕込み部(A1)に発酵の終了したもろみ400ml(黒糖焼酎もろみ、アルコール16.3%(v/v)、酸度6.6)を入れ加熱ジャケットで外部から緩やかに加熱し、もろみ温度が70℃に達した後、加熱装置(11)からスチームを吹き込んでもろみ温度を99℃まで加熱および蒸留し、留出液タンク(21)から留出液を10mlずつ分割採取した。実施例1と同様に、留出液量が仕込み原料の17.5%(区分7)となるまで仕込み部(A1)へ加熱装置(11)からスチーム吹き込みを行った後停止し、それ以後は凝縮液貯留部(A2)の凝縮液(5)に加熱装置(14)からスチームを吹き込んで蒸留した。   (2) 400 ml of moromi mash that has been fermented in the charging section (A1) (brown sugar shochu mash, alcohol 16.3% (v / v), acidity 6.6) is slowly heated from the outside with a heating jacket, After reaching 70 ° C., steam was blown from the heating device (11) and the mash temperature was heated and distilled to 99 ° C., and 10 ml of the distillate was sampled from the distillate tank (21). As in Example 1, steam was blown from the heating device (11) into the charging section (A1) until the amount of the distillate reached 17.5% (Section 7) of the charged raw material, and thereafter, Steam was blown into the condensate (5) in the condensate reservoir (A2) from the heating device (14) and distilled.

対照として図5に示す円筒状、容量2,000mlのガラス製セパラブルフラスコを使用し、仕込み部に上記と同一のもろみを400ml入れ、図示しない加熱ジャケットにより穏やかに加熱し、もろも温度を70℃に加熱した後、加熱装置(11)からスチームを吹き込んでもろみ温度を99℃まで加熱および蒸留し、留出液タンク(21)から留出液を10mlづつ分割採取した。   As a control, a cylindrical separable flask having a volume of 2,000 ml shown in FIG. 5 was used, and 400 ml of the same mash as above was placed in the charging portion, and gently heated by a heating jacket (not shown). After heating to ° C., steam was blown from the heating device (11) and the mash temperature was heated to 99 ° C. and distilled, and 10 ml of distillate was sampled from the distillate tank (21).

(3) 分割採取した試料のアルコール濃度が10.0%(v/v)を下回る最初の区分まで分取した。非バブリング型における当該画分は、区分1〜12(アルコール分80.00〜8.45%(v/v))であり対照は、区分1〜13(アルコール分79.50〜10.00%(v/v))であった。   (3) Sorted samples were collected up to the first section where the alcohol concentration was below 10.0% (v / v). The fraction in the non-bubbling type is Category 1-12 (alcohol content 80.00-8.45% (v / v)) and the control is Category 1-13 (alcohol content 79.50-10.00% (V / v)).

非バブリング型の区分1〜12、および対照の区分1〜13を一定量づつ混合して「混合試料」とした。また、前記混合試料のアルコール濃度を蒸留水で25%(v/v)に調整し、アルコール濃度調整試料とした。この試料について、実施例1と同様に分析を行った。   Non-bubbling sections 1 to 12 and control sections 1 to 13 were mixed in a fixed amount to form a “mixed sample”. Further, the alcohol concentration of the mixed sample was adjusted to 25% (v / v) with distilled water to obtain an alcohol concentration adjusted sample. This sample was analyzed in the same manner as in Example 1.

(4) 結果
(i) アルコールの濃度
アルコールの濃度の推移を図9に示す。非バブリング型の蒸留初期(区分1〜4)のアルコール濃度は、対照とほぼ同様に推移したが、区分5〜7は対照よりアルコール濃度が低下した。また、加熱装置(11)からのスチーム吹き込みの停止後、凝縮液貯留部(A2)の凝縮液の蒸留を開始した直後のアルコール濃度は対照より12.5ポイント高くなった。
(4) Results (i) Concentration of alcohol The transition of the concentration of alcohol is shown in FIG. The alcohol concentration at the beginning of the non-bubbling distillation (sections 1 to 4) was almost the same as that of the control, but the alcohol concentrations of sections 5 to 7 were lower than those of the control. In addition, after stopping the steam blowing from the heating device (11), the alcohol concentration immediately after starting the distillation of the condensate in the condensate reservoir (A2) was 12.5 points higher than the control.

(ii) 紫外部吸収(275nm)
図10に示すように、非バブリング型では、加熱装置(11)からのスチーム吹き込みの停止後、留出液の紫外部吸収(275nm)は急激に減少した。
(Ii) UV absorption (275 nm)
As shown in FIG. 10, in the non-bubbling type, the ultraviolet absorption (275 nm) of the distillate rapidly decreased after the stop of steam blowing from the heating device (11).

(iii) 留出液の酸度
酸度の測定結果を図11に示した。非バブリング型では、加熱装置(11)からのスチーム吹き込みの停止後、対照と比較し酸度も急激に減少した。なお、図8と図11とを比較すると、バブリング型は非バブリング型と異なり最初から凝縮液を蒸留するため、非バブリング型よりも酸度が低くなっている。
(Iii) Acidity of the distillate The measurement results of the acidity are shown in FIG. In the non-bubbling type, after stopping the steam blowing from the heating device (11), the acidity also decreased sharply compared to the control. 8 and 11, the bubbling type has a lower acidity than the non-bubbling type because the condensate is distilled from the beginning unlike the non-bubbling type.

(iv) 採取試料の組成
非バブリング型および対照における混合試料のアルコール濃度、酸度、フルフラール、紫外部吸収(275nm)の測定結果を表2に示す。
(Iv) Composition of collected sample Table 2 shows the measurement results of alcohol concentration, acidity, furfural, and ultraviolet absorption (275 nm) of the mixed sample in the non-bubbling type and the control.

非バブリング型のアルコール濃度調整試料は、フルフラール濃度、紫外部吸収(275nm)及び酸度は対照に比べ大幅に低かった。一方、アルコール回収率及び混合試料のアルコール濃度には大きな差はなかった。以上のことから、非バブリング型の蒸留方法は、フルフラール及び酸度の減少に効果的であった。   The non-bubbling type alcohol concentration-adjusted sample had significantly lower furfural concentration, ultraviolet absorption (275 nm) and acidity than the control. On the other hand, there was no big difference in the alcohol recovery rate and the alcohol concentration of the mixed sample. From the above, the non-bubbling distillation method was effective in reducing furfural and acidity.

Figure 0004898358
Figure 0004898358

本発明の原理を示す回分蒸留装置を示す図である。It is a figure which shows the batch distillation apparatus which shows the principle of this invention. 本発明の実施形態を示すバブリング型回分蒸留装置を示す図である。It is a figure which shows the bubbling type | mold batch distillation apparatus which shows embodiment of this invention. 本発明の実施形態を示す非バブリング型回分蒸留装置を示す図である。It is a figure which shows the non-bubbling type | mold batch distillation apparatus which shows embodiment of this invention. 本発明の実施形態を示す棚段を配設した蒸留装置を示す図である。It is a figure which shows the distillation apparatus which arrange | positioned the shelf which shows embodiment of this invention. 従来の本格焼酎製造用単式蒸留装置を示す図である。It is a figure which shows the conventional single distillation apparatus for full scale shochu manufacture. 実施例1における仕込み部(A1)液及び分割採取した留出液のアルコールの濃度を示す図である。It is a figure which shows the density | concentration of the alcohol of the preparation part (A1) liquid in Example 1, and the distillate collected by division | segmentation. 実施例1における分割採取した留出液の紫外部吸収(275nm)を示す図である。It is a figure which shows the ultraviolet part absorption (275 nm) of the distillate collected by division in Example 1. 実施例1における分割採取した留出液の酸度を示す図である。It is a figure which shows the acidity of the distillate collected by division | segmentation in Example 1. FIG. 実施例2における分割採取した留出液のアルコール濃度を示す図である。It is a figure which shows the alcohol density | concentration of the distillate collected in Example 2 by division | segmentation. 実施例2における分割採取した留出液の紫外部吸収(275nm)を示す図である。It is a figure which shows the ultraviolet part absorption (275 nm) of the distillate collected by division in Example 2. 実施例2における分割採取した留出液の酸度を示す図である。It is a figure which shows the acidity of the distillate collected by division | segmentation in Example 2. FIG. 蒸気導入機構の態様を示す図である。It is a figure which shows the aspect of a steam introduction mechanism. 本発明の実施形態を示すバブリング型回分蒸留装置の一例を示す図である。It is a figure which shows an example of the bubbling type | mold batch distillation apparatus which shows embodiment of this invention. 本発明の実施形態を示すバブリング型回分蒸留装置の一例を示す図である。It is a figure which shows an example of the bubbling type | mold batch distillation apparatus which shows embodiment of this invention.

符号の説明Explanation of symbols

A・・・蒸留部、
A1・・・仕込み部、
A2・・・凝縮液貯留部、
A3・・・棚段部、
B・・・冷却部、
C・・・連通部、
3・・・仕込み液、
5・・・凝縮液、
6・・・蒸気通路、
7・・・蓋部(釣鐘型)、
8・・・蓋部(浅型)、
9・・・フロート、
10・・・冷却管、
11、13・・・加熱装置、
14・・・副加熱装置
12・・・スチーム注入器、
15・・・還流液出口、
16・・・わたり、
17・・・外気導入用管、
19、20、25・・・バルブ、
21・・・留出液タンク、
49、50、51・・・棚段、
52、53、54・・・ダウンカマ、
60、63・・・弁型蓋部、
61・・・バネ、
100・・・蒸留装置。
A: Distillation part,
A1 ... Preparation section,
A2 ... Condensate reservoir,
A3 ... shelf step ,
B ... Cooling unit,
C: Communication part
3 ... Feeding liquid,
5 ... Condensate,
6 ... steam passage,
7: Lid (bell type),
8: Lid (shallow type),
9 ... float,
10 ... cooling pipe,
11, 13 ... heating device,
14 ... Sub-heating device 12 ... Steam injector,
15 ... reflux outlet,
16 ...
17 ... Tube for introducing outside air,
19, 20, 25 ... valve,
21 ... Distillate tank,
49, 50, 51 ... shelf,
52, 53, 54 ... Downcomer,
60, 63 ... Valve-type lid,
61 ... spring,
100: distillation apparatus.

Claims (9)

蒸留部と、前記蒸留部で発生した蒸気を冷却するための冷却部とを有する蒸留装置であって、
前記蒸留部は、蒸留部の内部を隔壁で仕切って形成された仕込み液の仕込み部と、前記仕込み部以外の部分であって前記冷却部と連通する凝縮液貯留部とからなり、
前記仕込み部の上端には、前記仕込み液の加熱により発生する蒸気を凝縮液貯留部に導入する連通部が形成され、
前記凝縮液貯留部は、前記蒸気が導入されおよび凝縮されてなる凝縮液を貯留するものであり、
かつ前記連通部の上端部は、前記凝縮液貯留部内の蒸気および/または凝縮液を前記仕込み部に逆流させない逆流防止機構が配設されることを特徴とする、蒸留装置。
A distillation apparatus having a distillation section and a cooling section for cooling the steam generated in the distillation section,
The distillation unit is composed of a charging liquid charging unit formed by partitioning the inside of the distillation unit with a partition, and a condensate storage unit that is a part other than the charging unit and communicates with the cooling unit,
At the upper end of the charging part, a communication part for introducing steam generated by heating the charging liquid into the condensate storage part is formed,
The condensate storage unit stores a condensate formed by the vapor being introduced and condensed,
And an upper end portion of the communicating portion, characterized in that steam and / or condensate to not flow back into the charging unit backflow prevention mechanism of the condensate in the reservoir is disposed, the distillation apparatus.
前記逆流防止機構は、逆流防止弁または、前記連通部の上端部に載置された釣鐘型蓋部である、請求項1記載の蒸留装置。 The distillation apparatus according to claim 1, wherein the backflow prevention mechanism is a backflow prevention valve or a bell-shaped lid portion placed on an upper end portion of the communication portion . 前記蒸留部には、前記仕込み部で発生した蒸気を前記凝縮液貯留部に導入する蒸気導入機構が設けられていることを特徴とする、請求項1または2記載の蒸留装置。   The distillation apparatus according to claim 1 or 2, wherein the distillation section is provided with a steam introduction mechanism for introducing the steam generated in the charging section into the condensate storage section. 前記仕込み部には、仕込み液を加熱する加熱装置が設けられ、前記凝縮液貯留部には、前記凝縮液を加熱する加熱装置が設けられ、かつ前記蒸留部から留出した蒸気を前記冷却部に導入して生じた凝縮液の一部または全部を前記凝縮液貯留部に還流する還流装置が配設されることを特徴とする、請求項1〜3のいずれかに記載の蒸留装置。   The charging unit is provided with a heating device for heating the charged liquid, the condensate storage unit is provided with a heating device for heating the condensate, and the steam distilled from the distillation unit is supplied to the cooling unit. The distillation apparatus according to any one of claims 1 to 3, further comprising a reflux device configured to recirculate a part or all of the condensate produced by introducing into the condensate reservoir. 前記凝縮液貯留部には、精留機能を備えた棚段または充填物が配されることを特徴とする、請求項1〜4のいずれかに記載の蒸留装置。   The distillation apparatus according to any one of claims 1 to 4, wherein the condensate storage unit is provided with a shelf or a packing having a rectifying function. 請求項1〜5のいずれかに記載の蒸留装置を用いた蒸留方法であって、
前記仕込み部の仕込み液を加熱して発生した蒸気を前記逆流防止機構を経て前記凝縮液貯留部に導入する工程と、
前記凝縮液貯留部の蒸気を前記冷却部に導入し、前記冷却部を冷却して生じた凝縮液の一部または全部を前記凝縮液貯留部に還流し、かつ前記凝縮液の残部を留出液として得る工程と、
前記凝縮液貯留部で発生および貯留する蒸気の凝縮液を加熱し、発生した蒸気を前記冷却部に導入して留出液を得る工程とを含む、蒸留方法。
A distillation method using the distillation apparatus according to claim 1,
Introducing the steam generated by heating the charging liquid of the charging unit into the condensate storage unit via the backflow prevention mechanism;
Steam of the condensate storage part is introduced into the cooling part, and part or all of the condensate generated by cooling the cooling part is returned to the condensate storage part, and the remainder of the condensate is distilled off. Obtaining as a liquid;
Heating the condensate of the steam generated and stored in the condensate storage part, and introducing the generated steam into the cooling part to obtain a distillate.
前記仕込み液は、前記仕込み部容量の67%以下である、請求項6記載の蒸留方法。   The said charging liquid is a distillation method of Claim 6 which is 67% or less of the said charging part capacity | capacitance. 前記仕込み部の仕込み液の加熱が、前記仕込み部の下部に配置された蒸気導入機構によってスチームを導入して行うものである、請求項6または7記載の蒸留方法。   The distillation method according to claim 6 or 7, wherein the heating of the charging liquid in the charging unit is performed by introducing steam by a steam introduction mechanism arranged at a lower part of the charging unit. 前記仕込み部の仕込み液を加熱し、加熱により発生した仕込み部の蒸気のアルコール濃度、または仕込み液のアルコール濃度が所定値以下となった場合に前記仕込み部の加熱を停止し、次いで、前記凝縮液貯留部の前記凝縮液を加熱し、発生した蒸気を前記冷却部に導入して留出液を得ることを特徴とする、請求項6〜8のいずれかに記載の蒸留方法。   The charging liquid in the charging section is heated, and the heating of the charging section is stopped when the alcohol concentration of the steam in the charging section generated by the heating or the alcohol concentration of the charging liquid is equal to or lower than a predetermined value. The distillation method according to any one of claims 6 to 8, wherein the condensate in a liquid storage part is heated, and the generated steam is introduced into the cooling part to obtain a distillate.
JP2006242490A 2006-09-07 2006-09-07 Distillation method and distillation apparatus Expired - Fee Related JP4898358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242490A JP4898358B2 (en) 2006-09-07 2006-09-07 Distillation method and distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242490A JP4898358B2 (en) 2006-09-07 2006-09-07 Distillation method and distillation apparatus

Publications (2)

Publication Number Publication Date
JP2008062178A JP2008062178A (en) 2008-03-21
JP4898358B2 true JP4898358B2 (en) 2012-03-14

Family

ID=39285341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242490A Expired - Fee Related JP4898358B2 (en) 2006-09-07 2006-09-07 Distillation method and distillation apparatus

Country Status (1)

Country Link
JP (1) JP4898358B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898733B2 (en) * 2013-10-17 2016-04-06 星野科学株式会社 Steam distillation equipment
KR101619592B1 (en) 2014-07-07 2016-05-12 이현구 Alcohol distillation device
JP5860563B1 (en) * 2015-07-31 2016-02-16 株式会社Ibコンサルタント Complex liquid separation and purification equipment
FI127521B (en) * 2016-11-29 2018-08-15 Winemill Oy Apparatus and method for alcoholic beverage dealcoholization
CN111153543A (en) * 2020-02-25 2020-05-15 中国华能集团清洁能源技术研究院有限公司 Energy-saving zero-emission low-temperature normal-pressure evaporative crystallization system and working method thereof
CN111500401B (en) * 2020-04-28 2023-01-17 重庆盛山酒业有限公司 Spray type internal cooling distillation device
CN113198195B (en) * 2021-04-27 2024-05-07 浏阳高朗烈酒酿造有限公司 Wine liquid distillation device
CN115888161B (en) * 2022-11-07 2023-07-28 宿迁新亚科技有限公司 N-methyl formamide continuous rectification purification device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR436420A (en) * 1911-11-15 1912-03-27 Charles Coyac Still
US3417000A (en) * 1965-10-23 1968-12-17 Peter G. Chaconas Multi-stage still
FR2204655B1 (en) * 1972-10-31 1976-01-30 Rhone Poulenc Ind Fr
WO1999028434A2 (en) * 1997-12-03 1999-06-10 Pedro Cezar De Paula Multifunctional and compact device for the production of distillates in general with emphasis on aguardiente production
JP3500331B2 (en) * 1999-08-06 2004-02-23 アクトファイブ株式会社 Distillation regenerator

Also Published As

Publication number Publication date
JP2008062178A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4898358B2 (en) Distillation method and distillation apparatus
US5955135A (en) Low temperature vacuum distillation and concentration process
RU2745225C2 (en) Distillation apparatus containing a chamber for containing the material to be extracted, and a corresponding method
JP2020040058A (en) Distillation apparatus and distillation method
KR20180104640A (en) Methods for separating materials by an extractive distillation process
JP2007236210A (en) Distillation apparatus
CN113214952A (en) Sectional distillation device and method for white spirit
US7967946B2 (en) Ethanol continuous flow boiler
CN110835584A (en) Simultaneous nitrogen-blowing extraction device and essential oil fidelity extraction method
KR101619592B1 (en) Alcohol distillation device
SE460972B (en) SYSTEM AND METHOD FOR REDUCING WINE ALCOHOL AND ALCOHOL REDUCED WINE
KR102317378B1 (en) Alcohol distillation device
US2290209A (en) Distillation apparatus
KR102507081B1 (en) distiller for alcoholic beverages
CN1113959C (en) Fruit wine distilling equipment and technology
US1507108A (en) Process and apparatus for the continuous distillation of alcohol
EP0049676B1 (en) Solvent extraction process and apparatus
RU2393347C1 (en) Oil treatment method
RU2006108272A (en) UNIVERSAL DEVICE FOR CLEANING high-boiling solvents Vacuum rectification and vacuum rectification method for purifying AT HER ethylene glycol, monoethanolamine, methyl cellosolve, ethyl cellosolve, butyl cellosolve, N-methylpyrrolidone, and benzyl alcohol
US2104243A (en) Process fob manufacture of spirit
SU1557156A1 (en) Method of obtaining brandy spirit
US851286A (en) Process for the exhaustion of head products in distilling.
US2880143A (en) Process for producing whisky
US1169122A (en) Distilling apparatus.
US2104244A (en) Process for manufacture of spirituous liquors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees