JP4897952B2 - DC coaxial cable connection for power - Google Patents

DC coaxial cable connection for power Download PDF

Info

Publication number
JP4897952B2
JP4897952B2 JP2006154139A JP2006154139A JP4897952B2 JP 4897952 B2 JP4897952 B2 JP 4897952B2 JP 2006154139 A JP2006154139 A JP 2006154139A JP 2006154139 A JP2006154139 A JP 2006154139A JP 4897952 B2 JP4897952 B2 JP 4897952B2
Authority
JP
Japan
Prior art keywords
cable
conductor
return
return conductor
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006154139A
Other languages
Japanese (ja)
Other versions
JP2007325443A (en
Inventor
健彦 水野
真一 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Fujikura Ltd
Viscas Corp
Original Assignee
Electric Power Development Co Ltd
Fujikura Ltd
Viscas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006154139A priority Critical patent/JP4897952B2/en
Application filed by Electric Power Development Co Ltd, Fujikura Ltd, Viscas Corp filed Critical Electric Power Development Co Ltd
Priority to CN2011100520125A priority patent/CN102170053B/en
Priority to CN2007800050583A priority patent/CN101385211B/en
Priority to RU2008123855/07A priority patent/RU2404498C2/en
Priority to EP16173784.6A priority patent/EP3096427B1/en
Priority to CN2011100520144A priority patent/CN102255213B/en
Priority to CN2011100520356A priority patent/CN102170054B/en
Priority to EP07744273.9A priority patent/EP2026439B1/en
Priority to PCT/JP2007/060839 priority patent/WO2007142069A1/en
Publication of JP2007325443A publication Critical patent/JP2007325443A/en
Priority to NO20081510A priority patent/NO344663B1/en
Application granted granted Critical
Publication of JP4897952B2 publication Critical patent/JP4897952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、中心の主導体と同軸状に帰路導体を有する電力用直流同軸ケーブルの接続部に関し、特に帰路導体断面積が異なる電力用直流同軸ケーブルの接続部に関するものである。   The present invention relates to a connecting portion of a power DC coaxial cable having a return conductor coaxially with a central main conductor, and more particularly to a connecting portion of a power DC coaxial cable having a different return conductor cross-sectional area.

図6に電力用直流同軸ケーブルの一例を示す。この直流同軸ケーブルは、中心に主導体1を有し、その外側に、内部半導電層2、主絶縁層3、外部半導電層4、帰路導体5、帰路内部半導電層6、帰路絶縁層7、帰路外部半導電層8、鉛被9、防食層10を、順次同軸状に設けたものである(特許文献1の図1参照)。   FIG. 6 shows an example of a direct current coaxial cable for power. This DC coaxial cable has a main conductor 1 in the center, and an outer side of the inner semiconductive layer 2, a main insulating layer 3, an outer semiconductive layer 4, a return conductor 5, a return inner semiconductive layer 6, and a return insulating layer. 7, a return external semiconductive layer 8, a lead coating 9, and an anticorrosion layer 10 are sequentially provided coaxially (see FIG. 1 of Patent Document 1).

帰路導体5は、外部半導電層4の外周に多数の帰路導体素線(銅線)を同心撚りすることにより形成される。帰路導体素線の撚り方には、撚り方向が変わらない一方向撚りと、一定のピッチで撚り方向が反転するSZ撚り(特許文献1の図2参照)とがある。   The return conductor 5 is formed by concentrically twisting a large number of return conductor strands (copper wires) around the outer periphery of the outer semiconductive layer 4. There are two ways of twisting the return conductor element: one-way twisting in which the twisting direction does not change and SZ twisting (see FIG. 2 of Patent Document 1) in which the twisting direction is reversed at a constant pitch.

電力用直流同軸ケーブルの主導体と帰路導体の断面積は、ケーブルが布設される環境に応じて設計され、主導体と帰路導体に定格電流を流した時にケーブル全長にわたって主導体の最高許容温度(例えば90℃)及び帰路導体の最高許容温度(例えば75℃)を超えないように決定される。   The cross-sectional area of the main conductor and return conductor of the DC coaxial cable for power is designed according to the environment where the cable is laid, and when the rated current is passed through the main conductor and return conductor, For example 90 ° C) and the maximum allowable temperature of the return conductor (eg 75 ° C).

直流同軸ケーブルの接続部は、接続部中心の主導体接続部、その外側のケーブル主絶縁層同士を接続する補強主絶縁体、その外側の帰路導体接続部、その外側のケーブル帰路絶縁層同士を接続する補強帰路絶縁体、その外側の金属外被接続部等で構成される。   The connection part of the DC coaxial cable consists of a main conductor connection part at the center of the connection part, a reinforcing main insulator that connects the cable main insulation layers on the outside, a return conductor connection part on the outside, and a cable return insulation layer on the outside. It is composed of a reinforced return insulator to be connected, a metal jacket connecting portion on the outside thereof, and the like.

特開平11−111071号公報JP 11-1111071 A

接続部の補強主絶縁体及び補強帰路絶縁体はそれぞれ、ケーブル部の主絶縁層及び帰路絶縁層の厚さより厚く形成される。このため、直流同軸ケーブル接続部における半径方向の熱抵抗は、ケーブル部における半径方向の熱抵抗より大きくなる。例えば、直流同軸ケーブル同士をケーブル部とほぼ同径(準同径)に仕上げた工場内接続部(FJ:Factory Joint)は、ケーブル部とほぼ同じ構造であるが、それでも接続部の半径方向の熱抵抗はケーブル部よりも大きくなる。   The reinforcing main insulator and the reinforcing return insulator of the connection part are formed thicker than the main insulating layer and the return insulating layer of the cable part, respectively. For this reason, the thermal resistance in the radial direction at the DC coaxial cable connecting portion is larger than the thermal resistance in the radial direction at the cable portion. For example, a factory joint (FJ) in which DC coaxial cables are finished to have the same diameter (quasi-same diameter) as that of the cable part has almost the same structure as the cable part, but it is still in the radial direction of the connection part. The thermal resistance is larger than that of the cable portion.

また直流同軸ケーブル接続部において、外側に金属製又はプラスチック製の接続管(又は保護管)を設ける場合には、通常、ケーブル帰路絶縁層及び補強帰路絶縁体と接続管との間に防水用(又は絶縁用)のコンパウンドが充填される。このような形態の接続部では、半径方向の熱抵抗がより一層増大する。   Further, when a metal or plastic connection pipe (or protective pipe) is provided on the outside of the DC coaxial cable connection portion, it is usually used for waterproofing between the cable return insulation layer and the reinforced return insulation and the connection pipe ( Or an insulating compound). In the connection portion having such a configuration, the thermal resistance in the radial direction is further increased.

直流同軸ケーブルでは、主導体のほかに帰路導体にも定格電流が流れるため、主導体と帰路導体の双方が発熱源となり、直流同軸ケーブル接続部での半径方向の熱抵抗の増大は、接続部の温度上昇を高める要因となる。   In DC coaxial cables, the rated current flows in the return conductor in addition to the main conductor, so both the main conductor and the return conductor serve as heat sources, and the increase in radial thermal resistance at the DC coaxial cable connection is It becomes the factor which raises the temperature rise of.

さらに、直流同軸ケーブルの接続では、工場内接続部のように同一構造の直流同軸ケーブルを接続する場合の他に、異なる構造の直流同軸ケーブルを接続する場合がある。例えば、海底に布設する海底用直流同軸ケーブルと、陸上に布設する陸上用直流同軸ケーブルは、布設環境が異なるため、主導体断面積及び帰路導体断面積がそれぞれ異なる。このような海底用直流同軸ケーブルと陸上用直流同軸ケーブルを接続すると(通常、渚で接続されるため渚接続部と呼ばれる)、接続部内での主導体及び帰路導体の発熱量が接続部長手方向で異なり、主導体断面積及び帰路導体断面積が小さい方のケーブル側で発熱量が大きくなる。このため、直流同軸ケーブル接続部での半径方向の熱抵抗の増大は、接続部内での著しい温度上昇を引き起こす懸念がある。   Furthermore, in the connection of the DC coaxial cable, there is a case where a DC coaxial cable having a different structure is connected in addition to the case where the DC coaxial cable having the same structure is connected as in the connection part in the factory. For example, a submarine DC coaxial cable laid on the seabed and a land DC coaxial cable laid on land have different installation environments, and therefore have different main conductor cross-sectional areas and return conductor cross-sectional areas. When such a submarine DC coaxial cable and a land-use DC coaxial cable are connected (usually called a dredging connection because they are connected by dredging), the amount of heat generated by the main conductor and the return conductor in the connecting portion is in the longitudinal direction of the connection. However, the amount of heat generated is larger on the cable side having the smaller main conductor cross-sectional area and return conductor cross-sectional area. For this reason, there is a concern that an increase in the thermal resistance in the radial direction at the DC coaxial cable connecting portion may cause a significant temperature increase in the connecting portion.

本発明の目的は、電力用直流同軸ケーブルの接続部における温度上昇を抑制することにあり、特に、帰路導体の断面積が異なる電力用直流同軸ケーブルの接続部における温度上昇を抑制することにある。   An object of the present invention is to suppress a temperature rise at a connection portion of a power DC coaxial cable, and particularly to suppress a temperature rise at a connection portion of a power DC coaxial cable having a different cross-sectional area of a return conductor. .

この目的を達成するため本発明は、帰路導体の断面積が異なる電力用直流同軸ケーブルの接続部において、帰路導体断面積が大きい方のケーブルの帰路導体が接続部の補強主絶縁体の外周を通過するように配置され、双方のケーブルの帰路導体の接続部が、帰路導体断面積が小さい方のケーブルの外部半導電層の外周に位置していることを特徴とするものである。   To achieve this object, according to the present invention, in the connecting portion of the power DC coaxial cable having a different cross-sectional area of the return conductor, the return conductor of the cable having the larger return conductor cross-sectional area extends around the outer periphery of the reinforcing main insulator of the connecting portion. The connecting portions of the return conductors of both cables are positioned on the outer periphery of the outer semiconductive layer of the cable having the smaller return conductor cross-sectional area.

上記の発明においては、帰路導体断面積が小さい方のケーブルの外部半導電層と、双方のケーブルの帰路導体の接続部との間に熱的緩衝層を設けることが好ましい。   In the above invention, it is preferable to provide a thermal buffer layer between the outer semiconductive layer of the cable having the smaller return conductor cross-sectional area and the connection portion of the return conductors of both cables.

また上記目的を達成するため本発明は、帰路導体の断面積が異なる電力用直流同軸ケーブルの接続部において、帰路導体断面積が小さい方のケーブル(以下第一のケーブルという)の帰路導体と帰路導体断面積が大きい方のケーブル(以下第二のケーブルという)の帰路導体とが、前記第二のケーブルの帰路導体断面積以上の断面積を有する中継ぎ導体を介して接続され、この中継ぎ導体は接続部の補強主絶縁体の外周を通過するように配置され、第一のケーブルの帰路導体と中継ぎ導体との接続部が第一のケーブルの外部半導電層の外周に位置し、第二のケーブルの帰路導体と中継ぎ導体との接続部が第二のケーブルの外部半導電層の外周に位置している構成とすることもできる。   In order to achieve the above object, the present invention provides a return conductor and a return path of a cable having a smaller return conductor cross-sectional area (hereinafter referred to as a first cable) in a connecting portion of a power DC coaxial cable having a different return conductor cross-sectional area. A return conductor of a cable having a larger conductor cross-sectional area (hereinafter referred to as a second cable) is connected via a relay conductor having a cross-sectional area equal to or larger than the return conductor cross-sectional area of the second cable. The connecting portion is disposed so as to pass through the outer periphery of the reinforcing main insulator, and the connecting portion between the return conductor and the relay conductor of the first cable is located on the outer periphery of the outer semiconductive layer of the first cable, A connection portion between the return conductor and the intermediate conductor of the cable may be located on the outer periphery of the outer semiconductive layer of the second cable.

上記の発明においては、第一のケーブルの帰路導体と中継ぎ導体との接続部と第一のケーブルの外部半導電層との間に熱的緩衝層を設け、第二のケーブルの帰路導体と中継ぎ導体との接続部と第二のケーブルの外部半導電層との間に熱的緩衝層を設けることが好ましい。   In the above invention, a thermal buffer layer is provided between the connection between the return conductor and the relay conductor of the first cable and the outer semiconductive layer of the first cable, and the return conductor and the relay of the second cable are provided. Preferably, a thermal buffer layer is provided between the connection with the conductor and the outer semiconductive layer of the second cable.

本発明によれば、直流同軸ケーブル接続部の長手方向の大部分で帰路導体の断面積が大きくなる(帰路導体抵抗が小さくなる)ので、接続部内での帰路導体の通電による発熱量が少なくなり、接続部の温度上昇を抑制することができる。なお、上記熱的緩衝層を設けた場合は、導体を溶接するときの熱や、接続作業時のミスで、ケーブルの外部半導電層や主絶縁層が損傷するのを防止できる。   According to the present invention, since the cross-sectional area of the return conductor is large (the return conductor resistance is small) in most of the longitudinal direction of the DC coaxial cable connection portion, the amount of heat generated by energization of the return conductor in the connection portion is reduced. And the temperature rise of a connection part can be suppressed. In addition, when the said thermal buffer layer is provided, it can prevent that the external semiconductive layer and main insulation layer of a cable are damaged by the heat | fever at the time of welding a conductor, and the mistake at the time of a connection operation.

〔実施形態1〕図1は本発明に係る電力用直流同軸ケーブル接続部の一実施形態を示す。接続すべき直流同軸ケーブルA、Bはそれぞれ、防食層10、鉛被9、帰路絶縁層7(その内外の半導電層は図示省略)を順次段剥ぎして帰路導体5を露出させ、さらに外部半導電層4、主絶縁層3、内部半導電層(図示省略)を順次段剥ぎして先端に主導体1を露出させてある。一方の直流同軸ケーブルAの帰路導体5の断面積は、他方の直流同軸ケーブルBの帰路導体5の断面積よりも小さい。以下、帰路導体5の断面積が小さい方の直流同軸ケーブルAを第一のケーブルA、大きい方の直流同軸ケーブルBを第二のケーブルBと記す。   [Embodiment 1] FIG. 1 shows an embodiment of a DC power cable connecting portion for power according to the present invention. The direct current coaxial cables A and B to be connected are respectively stripped of the anticorrosion layer 10, the lead sheath 9, and the return insulation layer 7 (the inner and outer semiconductive layers are not shown) in order to expose the return conductor 5, and further to the outside The semiconductive layer 4, the main insulating layer 3, and the internal semiconductive layer (not shown) are sequentially stripped to expose the main conductor 1 at the tip. The cross-sectional area of the return conductor 5 of one DC coaxial cable A is smaller than the cross-sectional area of the return conductor 5 of the other DC coaxial cable B. Hereinafter, the DC coaxial cable A having a smaller cross-sectional area of the return conductor 5 is referred to as a first cable A, and the DC coaxial cable B having a larger cross-sectional area is referred to as a second cable B.

第一のケーブルAの主導体1と第二のケーブルBの主導体1は、異径導体接続用スリーブ21で圧縮接続されている。22はスリーブ21とその両側のケーブルA、Bの主絶縁層3、3に跨るように形成された補強主絶縁体、23は第一のケーブルAの外部半導電層4上に設けられた熱的緩衝層である。   The main conductor 1 of the first cable A and the main conductor 1 of the second cable B are compression-connected by a different diameter conductor connecting sleeve 21. Reference numeral 22 denotes a reinforcing main insulator formed so as to straddle the sleeve 21 and the main insulating layers 3 and 3 of the cables A and B on both sides thereof, and 23 denotes heat provided on the outer semiconductive layer 4 of the first cable A. Buffer layer.

第二のケーブルBの帰路導体5は、補強主絶縁体22の外周を通過して熱的緩衝層23上に達し、熱的緩衝層23上で第一のケーブルAの帰路導体5と溶接により接続されている。24はその溶接接続部である。   The return conductor 5 of the second cable B passes through the outer periphery of the reinforcing main insulator 22 and reaches the thermal buffer layer 23, and is welded to the return conductor 5 of the first cable A on the thermal buffer layer 23. It is connected. Reference numeral 24 denotes the weld connection.

熱的緩衝層23は、帰路導体溶接時の熱で第一のケーブルAの外部半導電層4及び主絶縁層3が損傷を受けるのを防止するものである。この熱的緩衝層23は、外部半導電層4から接続部の外部半導電層(図示省略)にかけて半導電性クッションテープを外径が補強主絶縁体とほぼ同径になるように巻き上げることにより形成することが好ましい。この熱的緩衝層23は帰路導体溶接作業時における第一のケーブルAの外部半導電層4及び主絶縁層3の外傷防止にも役立つ。   The thermal buffer layer 23 prevents the outer semiconductive layer 4 and the main insulating layer 3 of the first cable A from being damaged by the heat generated during the return conductor welding. The thermal buffer layer 23 is formed by winding up the semiconductive cushion tape from the external semiconductive layer 4 to the external semiconductive layer (not shown) of the connecting portion so that the outer diameter is substantially the same as that of the reinforcing main insulator. It is preferable to form. The thermal buffer layer 23 is also useful for preventing the outer semiconductive layer 4 and the main insulating layer 3 of the first cable A from being damaged during the return conductor welding operation.

帰路導体5を溶接接続する場合には、帰路導体素線を1本ずつ溶接してもよいが、帰路導体素線を複数本ずつの束にして、束同士を溶接接続してもよい。束同士で溶接した方が、溶接回数が少なくて済み、溶接作業を効率よく行うことができる。   When the return conductor 5 is connected by welding, the return conductor strands may be welded one by one, or a plurality of return conductor strands may be bundled and the bundles may be welded together. If the bundles are welded together, the number of times of welding can be reduced, and the welding operation can be performed efficiently.

上記のようにして帰路導体5を溶接接続した後は、両ケーブルの帰路絶縁層7に跨るように補強帰路絶縁体25を形成し、鉛被26及び防食層27を設ければよい。なお、補強帰路絶縁体25の内側には、両ケーブルの帰路内部半導電層に跨るように接続部の帰路内部半導電層が設けられ、補強帰路絶縁体25の外側には、両ケーブルの帰路外部半導電層に跨るように接続部の帰路外部半導電層が設けられるが、図示を省略してある。   After the return conductor 5 is welded and connected as described above, the reinforced return insulator 25 is formed so as to straddle the return insulation layer 7 of both cables, and the lead coating 26 and the anticorrosion layer 27 may be provided. A return internal semiconductive layer of the connecting portion is provided inside the reinforced return insulator 25 so as to straddle the return internal semiconductive layer of both cables, and the return paths of both cables are provided outside the reinforced return insulator 25. A return external semiconductive layer of the connecting portion is provided so as to straddle the external semiconductive layer, but the illustration is omitted.

上記のように構成された直流同軸ケーブルの接続部では、接続部の長手方向の大部分で帰路導体の断面積が大きくなる(帰路導体抵抗が小さくなる)ので、接続部内での帰路導体5の通電による発熱量を少なく抑えることができ、したがって接続部の温度上昇を抑制することができる。   In the connecting portion of the DC coaxial cable configured as described above, the cross-sectional area of the return conductor becomes large (the return conductor resistance becomes small) in most of the longitudinal direction of the connecting portion, so that the return conductor 5 in the connecting portion The amount of heat generated by energization can be suppressed to a low level, and therefore the temperature rise of the connecting portion can be suppressed.

図1に示す電力用直流同軸ケーブル接続部のさらに具体的な構成を説明すると、次のとおりである。第一のケーブルAは、例えば主導体断面積400mm、帰路導体断面積215mm(銅素線φ2.6mm×55本同心撚り)であり、第二のケーブルBは、例えば主導体断面積500mm、帰路導体断面積463mm(銅素線φ5.0mm×30本同心撚り)である。両ケーブルA、Bの主導体1は銅撚線、主絶縁層3は架橋ポリエチレン、帰路絶縁層7は非架橋ポリエチレンである。補強主絶縁体22は絶縁テープ巻き後に加熱モールド処理して形成されている。熱的緩衝層23は半導電性クッションテープ巻きにより形成され、厚さ約13mmである。両ケーブルA、Bの帰路導体5、5は、複数の帰路導体素線束毎に突き合わせ溶接され、帰路導体素線束の溶接箇所は13箇所である。第一のケーブルAの帰路導体素線束の構成は、φ2.6mm×5本束が4組、φ2.6mm×4本束が8組、φ2.6mm×3本束が1組である。第二のケーブルBの帰路導体素線束の構成は、φ5.0mm×3本束が4組、φ5.0mm×2本束が9組である。溶接する帰路導体素線束の組合せは、φ2.6mm×5本束とφ5.0mm×3本束の組合せが4箇所、φ2.6mm×4本束とφ5.0mm×2本束の組合せが8箇所、φ2.6mm×3本束とφ5.0mm×2本束の組合せが1箇所である。 A more specific configuration of the power direct-current coaxial cable connecting portion shown in FIG. 1 will be described as follows. The first cable A has, for example, a main conductor cross-sectional area of 400 mm 2 and a return conductor cross-sectional area of 215 mm 2 (copper strand φ2.6 mm × 55 concentric strands), and the second cable B has a main conductor cross-sectional area of 500 mm, for example. 2. Return conductor cross-sectional area of 463 mm 2 (copper element wire φ5.0 mm × 30 concentric strands). The main conductor 1 of both cables A and B is a copper twisted wire, the main insulating layer 3 is a crosslinked polyethylene, and the return insulating layer 7 is a non-crosslinked polyethylene. The reinforcing main insulator 22 is formed by heat molding after winding the insulating tape. The thermal buffer layer 23 is formed by winding a semiconductive cushion tape and has a thickness of about 13 mm. The return conductors 5 and 5 of both the cables A and B are butt welded for each of the plurality of return conductor strands, and the number of welded portions of the return conductor strands is 13. The configuration of the return conductor strand of the first cable A is 4 sets of φ2.6 mm × 5 bundles, 8 sets of φ2.6 mm × 4 bundles, and 1 set of φ2.6 mm × 3 bundles. The configuration of the return conductor strand bundle of the second cable B is 4 sets of φ5.0 mm × 3 bundles and 9 sets of φ5.0 mm × 2 bundles. The combinations of return conductor bundles to be welded are 4 combinations of φ2.6 mm × 5 bundles and φ5.0 mm × 3 bundles, and 8 combinations of φ2.6 mm × 4 bundles and φ5.0 mm × 2 bundles. The combination of the location, φ2.6 mm × 3 bundle and φ5.0 mm × 2 bundle is one location.

上記の構成で、帰路導体の接続部を、第一のケーブルAの外部半導電層の外周に位置させた場合(本発明の実施例)と、第二のケーブルBの外部半導電層の外周に位置させた場合(比較例)について、主導体と帰路導体にそれぞれ700A通電したときの、主導体温度分布及び帰路導体温度分布を計算した結果を、それぞれ図2(a)及び(b)に示す。この計算結果によれば、直流同軸ケーブル接続部における主導体の到達温度は、本発明の実施例では約70℃(図2a)、比較例では約80℃(図2b)であった。このように本発明によれば、接続部内での帰路導体の通電による発熱量が少なく抑えられるため、主導体温度上昇を約10℃低下させられることが分かる。   In the above configuration, the connection portion of the return conductor is positioned on the outer periphery of the outer semiconductive layer of the first cable A (the embodiment of the present invention), and the outer periphery of the outer semiconductive layer of the second cable B. 2 (a) and 2 (b) show the results of calculating the main conductor temperature distribution and the return conductor temperature distribution when the main conductor and the return conductor are each energized with 700A for the case (comparative example). Show. According to this calculation result, the temperature reached by the main conductor in the DC coaxial cable connection portion was about 70 ° C. (FIG. 2a) in the example of the present invention, and about 80 ° C. (FIG. 2b) in the comparative example. As described above, according to the present invention, the amount of heat generated by energization of the return conductor in the connecting portion can be suppressed to a small value, so that it is understood that the main conductor temperature rise can be reduced by about 10 ° C.

〔実施形態2〕図3は本発明の他の実施形態を示す。この直流同軸ケーブル接続部では、帰路導体断面積が小さい方の第一のケーブルAの帰路導体5と、帰路導体断面積が大きい方の第二のケーブルBの帰路導体5とが、中継ぎ導体28を介して接続されている。中継ぎ導体28は、帰路導体5と同じく銅線で構成され、その断面積は第二のケーブルBの帰路導体断面積以上に設定されている。中継ぎ導体28は、接続部の補強主絶縁体22の外周を通過するように配置されており、これにより第一のケーブルAの帰路導体5と中継ぎ導体28との接続部24Aは第一のケーブルAの外部半導電層4の外周に位置し、第二のケーブルBの帰路導体5と中継ぎ導体28との接続部24Bは第二のケーブルBの外部半導電層4の外周に位置している。なお、両ケーブルA、Bの外部半導電層4上にはそれぞれ熱的緩衝層23が設けられ、帰路導体5と中継ぎ導体28の接続部24A、24Bはこれらの熱的緩衝層23上に位置している。帰路導体と中継ぎ導体との接続は、実施形態1と同様に、導体素線を複数本ずつの束にして、導体素線束同士を突き合わせ溶接することにより行うことが好ましい。   [Embodiment 2] FIG. 3 shows another embodiment of the present invention. In this DC coaxial cable connecting portion, the return conductor 5 of the first cable A having the smaller return conductor cross-sectional area and the return conductor 5 of the second cable B having the larger return conductor cross-sectional area are connected to the relay conductor 28. Connected through. The relay conductor 28 is made of a copper wire like the return conductor 5, and its cross-sectional area is set to be equal to or larger than the return conductor cross-sectional area of the second cable B. The relay conductor 28 is disposed so as to pass through the outer periphery of the reinforcing main insulator 22 of the connection portion, whereby the connection portion 24A between the return conductor 5 of the first cable A and the relay conductor 28 is connected to the first cable. A connection portion 24B between the return conductor 5 and the relay conductor 28 of the second cable B is positioned on the outer periphery of the outer semiconductive layer 4 of the second cable B. . A thermal buffer layer 23 is provided on each of the outer semiconductive layers 4 of the cables A and B, and the connection portions 24A and 24B of the return conductor 5 and the relay conductor 28 are located on these thermal buffer layers 23. is doing. As in the first embodiment, the return conductor and the relay conductor are preferably connected by bundling a plurality of conductor strands and butting the conductor strand bundles together.

上記以外の構成は実施形態1と同じであるので、同一部分には同一符号を付して説明を省略する。このような構成でも実施形態1と同様な効果が得られる。また中継ぎ導体28の断面積を第二のケーブルBの帰路導体5の断面積よりも大きくすれば、接続部の温度上昇を実施形態1よりもさらに低く抑えることができる。   Since the configuration other than the above is the same as that of the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted. Even with such a configuration, the same effect as in the first embodiment can be obtained. Further, if the cross-sectional area of the intermediate conductor 28 is made larger than the cross-sectional area of the return conductor 5 of the second cable B, the temperature rise of the connecting portion can be further suppressed to be lower than that of the first embodiment.

〔実施形態3〕図4は本発明のさらに他の実施形態を示す。この直流同軸ケーブル接続部が実施形態1と異なる点は、熱的緩衝層が省略され、両ケーブルA、Bの帰路導体5の溶接接続部24が、第一のケーブルAの外部半導電層4上に位置していることである。帰路導体5の溶接作業を注意深く行えば、このような構成にすることも可能である。それ以外の構成は実施形態1と同じであるので、同一部分には同一符号を付して説明を省略する。   [Third Embodiment] FIG. 4 shows still another embodiment of the present invention. The DC coaxial cable connection portion is different from the first embodiment in that the thermal buffer layer is omitted, and the weld connection portion 24 of the return conductor 5 of both cables A and B is connected to the outer semiconductive layer 4 of the first cable A. It is located above. If the return conductor 5 is welded carefully, such a configuration is possible. Since the other configuration is the same as that of the first embodiment, the same portions are denoted by the same reference numerals and the description thereof is omitted.

関連技術1〕図5は本発明の関連技術を示す。この関連技術が図3に示した実施形態2と異なる点は、帰路導体5の断面積が同じケーブルA同士を接続している点である。中継ぎ導体28には帰路導体5より断面積の大きなものを使用している。それ以外の構成は、実施形態2と同様であるので、同一部分には同一符号を付して説明を省略する。この関連技術によれば、ケーブル接続部の温度上昇を、帰路導体5同士を接続した場合より、抑制できる。 [ Related Art 1 ] FIG. 5 shows a related art of the present invention. This related technology is different from the second embodiment shown in FIG. 3 in that cables A having the same cross-sectional area of the return conductor 5 are connected to each other. The intermediate conductor 28 has a larger cross-sectional area than the return conductor 5. Since the other configuration is the same as that of the second embodiment, the same portions are denoted by the same reference numerals and the description thereof is omitted. According to this related technique , the temperature rise of the cable connecting portion can be suppressed as compared with the case where the return conductors 5 are connected.

本発明に係る電力用直流同軸ケーブル接続部の一実施形態を示す、(a)は縦断面図、(b)は一部切開平面図。1 shows an embodiment of a power direct-current coaxial cable connecting portion according to the present invention, (a) is a longitudinal sectional view, (b) is a partially cut plan view. (a)は本発明の実施例の温度分布を、(b)は本発明の比較例の温度分布を示すグラフ。(A) is a graph which shows the temperature distribution of the Example of this invention, (b) is a graph which shows the temperature distribution of the comparative example of this invention. 本発明の他の実施形態を示す、(a)は縦断面図、(b)は一部切開平面図。The other embodiment of this invention is shown, (a) is a longitudinal cross-sectional view, (b) is a partially cutaway plan view. 本発明のさらに他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of this invention. 本発明の関連技術を示す縦断面図。The longitudinal cross-sectional view which shows the related technique of this invention. 電力用直流同軸ケーブルの一例を示す横断面図。The cross-sectional view which shows an example of the direct current | flow coaxial cable for electric power.

符号の説明Explanation of symbols

A、B:電力用直流同軸ケーブル
1:主導体
3:主絶縁層
4:外部半導電層
5:帰路導体
7:帰路絶縁層
21:異径導体接続用スリーブ
22:補強主絶縁体
23:熱的緩衝層
24、24A、24B:溶接接続部
25:補強帰路絶縁体
28:中継ぎ導体
A, B: DC coaxial cable for power 1: Main conductor 3: Main insulating layer 4: External semiconductive layer 5: Return conductor 7: Return insulating layer 21: Different diameter conductor connection sleeve 22: Reinforced main insulator 23: Heat Buffer layer 24, 24A, 24B: welded connection 25: reinforced return insulator 28: relay conductor

Claims (2)

帰路導体の断面積が異なる電力用直流同軸ケーブルの接続部において、帰路導体断面積が大きい方のケーブルの帰路導体が接続部の補強主絶縁体の外周を通過するように配置され、双方のケーブルの帰路導体の接続部が、帰路導体断面積が小さい方のケーブルの外部半導電層の外周に位置していることを特徴とする電力用直流同軸ケーブルの接続部。   In the connection part of the DC coaxial cable for power with different return conductor cross-sectional areas, the return conductor of the cable with the larger return conductor cross-sectional area is arranged so that it passes through the outer periphery of the reinforcing main insulator of the connection part. The connection portion of the return DC conductor is located on the outer periphery of the outer semiconductive layer of the cable having the smaller return conductor cross-sectional area. 帰路導体の断面積が異なる電力用直流同軸ケーブルの接続部において、帰路導体断面積が小さい方のケーブル(以下第一のケーブルという)の帰路導体と帰路導体断面積が大きい方のケーブル(以下第二のケーブルという)の帰路導体とが、前記第二のケーブルの帰路導体断面積以上の断面積を有する中継ぎ導体を介して接続され、この中継ぎ導体は接続部の補強主絶縁体の外周を通過するように配置され、第一のケーブルの帰路導体と中継ぎ導体との接続部が第一のケーブルの外部半導電層の外周に位置し、第二のケーブルの帰路導体と中継ぎ導体との接続部が第二のケーブルの外部半導電層の外周に位置していることを特徴とする電力用直流同軸ケーブルの接続部。   In the connection portion of the DC coaxial cable for power with different return conductor cross sections, the return conductor of the cable with the smaller return conductor cross section (hereinafter referred to as the first cable) and the cable with the larger return conductor cross section (hereinafter referred to as the first conductor) And a return conductor of the second cable) via a relay conductor having a cross-sectional area greater than or equal to the return conductor cross-sectional area of the second cable, and this relay conductor passes through the outer periphery of the reinforcing main insulator of the connecting portion. The connection portion between the return conductor and the relay conductor of the first cable is located on the outer periphery of the outer semiconductive layer of the first cable, and the connection portion between the return conductor and the relay conductor of the second cable. Is located on the outer periphery of the outer semiconductive layer of the second cable.
JP2006154139A 2006-06-02 2006-06-02 DC coaxial cable connection for power Active JP4897952B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006154139A JP4897952B2 (en) 2006-06-02 2006-06-02 DC coaxial cable connection for power
PCT/JP2007/060839 WO2007142069A1 (en) 2006-06-02 2007-05-28 Method for connecting return conductors of power supply dc coaxial cables and connection portion between power supply dc coaxial cables
RU2008123855/07A RU2404498C2 (en) 2006-06-02 2007-05-28 Method for connection of counter conductor in supply coaxial dc cable and connecting area of supply coaxial dc cable
EP16173784.6A EP3096427B1 (en) 2006-06-02 2007-05-28 Connection of return conductors in a connecting portion of power direct-current coaxial cable
CN2011100520144A CN102255213B (en) 2006-06-02 2007-05-28 Method for connecting return conductors of power supply DC coaxial cables
CN2011100520356A CN102170054B (en) 2006-06-02 2007-05-28 Connection portion of power supply DC coaxial cables
CN2011100520125A CN102170053B (en) 2006-06-02 2007-05-28 Connection portion between power supply DC coaxial cables
CN2007800050583A CN101385211B (en) 2006-06-02 2007-05-28 Method for connecting return conductors of power supply DC coaxial cables and connection portion between power supply dc coaxial cables
EP07744273.9A EP2026439B1 (en) 2006-06-02 2007-05-28 Connection of return conductors in a connection portion of power direct-current coaxial cables
NO20081510A NO344663B1 (en) 2006-06-02 2008-03-27 Procedure for connecting return conductors to DC coaxial power supply cables and connecting part between DC coaxial power supply cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154139A JP4897952B2 (en) 2006-06-02 2006-06-02 DC coaxial cable connection for power

Publications (2)

Publication Number Publication Date
JP2007325443A JP2007325443A (en) 2007-12-13
JP4897952B2 true JP4897952B2 (en) 2012-03-14

Family

ID=38857738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154139A Active JP4897952B2 (en) 2006-06-02 2006-06-02 DC coaxial cable connection for power

Country Status (1)

Country Link
JP (1) JP4897952B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192778A1 (en) 2015-06-02 2016-12-08 Abb Schweiz Ag A rigid joint assembly
CN110364902B (en) * 2019-08-12 2021-05-11 江苏亨通电力电缆有限公司 Medium-voltage fireproof cable connection method and medium-voltage fireproof cable

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822331B2 (en) * 1997-10-09 2006-09-20 株式会社フジクラ Neutral wire composite DC power cable and DC power cable line
JP3690948B2 (en) * 1999-10-04 2005-08-31 電源開発株式会社 Submarine cable connection method

Also Published As

Publication number Publication date
JP2007325443A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
WO2012035811A1 (en) Wire harness waterproof structure
DK3224837T3 (en) CONNECTED POWER CABLE AND PROCEDURE FOR PRODUCING SAME
JP4904090B2 (en) Return conductor connection method for DC coaxial cable for electric power
KR20220108066A (en) AC Submarine Power Cable with Reduced Loss
JP2014183619A (en) Connection method of power cable and external conductor thereof
JP6012790B2 (en) Manufacturing method of power distribution cables and cables
JP2016152089A (en) Cable with branches
JP4897952B2 (en) DC coaxial cable connection for power
WO2007142069A1 (en) Method for connecting return conductors of power supply dc coaxial cables and connection portion between power supply dc coaxial cables
WO2016080306A1 (en) Wiring harness
JP4795123B2 (en) Return conductor connection method for DC coaxial cable for electric power
JP5052824B2 (en) DC coaxial cable connection for power
JP4927794B2 (en) Superconducting cable former connection method and superconducting cable former connection structure
JP5003942B2 (en) Superconducting cable and superconducting cable connection
JP3795203B2 (en) DC power coaxial cable
JPH11111071A (en) Submarine power cable
JP5137623B2 (en) DC coaxial cable connection for power
KR102581557B1 (en) Joint, termination or cross connection arrangement for cables and method for providing joint, termination or cross connection arrangement
JP5100245B2 (en) DC coaxial cable connection for power
JP5496592B2 (en) Underground cable connection protection tube
JP5348511B2 (en) Superconducting cable and superconducting cable connection
RU2404498C2 (en) Method for connection of counter conductor in supply coaxial dc cable and connecting area of supply coaxial dc cable
CA2456687C (en) Tension-resistant connection between a shielded heating cable and a power supply cable
JP4544433B2 (en) Intermediate connection of superconducting cable
KR20210009107A (en) Transmission cable and method of transmission cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111223

R150 Certificate of patent or registration of utility model

Ref document number: 4897952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250