JP4897949B2 - Transformer winding - Google Patents

Transformer winding Download PDF

Info

Publication number
JP4897949B2
JP4897949B2 JP2005350608A JP2005350608A JP4897949B2 JP 4897949 B2 JP4897949 B2 JP 4897949B2 JP 2005350608 A JP2005350608 A JP 2005350608A JP 2005350608 A JP2005350608 A JP 2005350608A JP 4897949 B2 JP4897949 B2 JP 4897949B2
Authority
JP
Japan
Prior art keywords
winding
conductor
conductors
dislocation
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005350608A
Other languages
Japanese (ja)
Other versions
JP2007157987A (en
Inventor
誠 高橋
徹 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2005350608A priority Critical patent/JP4897949B2/en
Publication of JP2007157987A publication Critical patent/JP2007157987A/en
Application granted granted Critical
Publication of JP4897949B2 publication Critical patent/JP4897949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の導体を並列に巻回した多重円筒巻線構造をなす変圧器巻線の転位構造に関する。   The present invention relates to a transformer winding dislocation structure having a multiple cylindrical winding structure in which a plurality of conductors are wound in parallel.

従来から、複数の導体を並列に巻回して変圧器の巻線を構成した場合、各導体のインピーダンスが異なることがある。このような場合、各導体には大きさの異なる負荷電流(以下、アンバランスな電流という)が流れ、その結果、発生する負荷損が、電流が各導体に均一に流れる場合よりも増大することになる。   Conventionally, when a transformer winding is formed by winding a plurality of conductors in parallel, the impedance of each conductor may be different. In such a case, load currents of different sizes (hereinafter referred to as unbalanced currents) flow in each conductor, and as a result, the generated load loss is increased compared to the case where the current flows uniformly in each conductor. become.

前記負荷損を低減するためには、並列に巻回した前記導体を所定位置において互いに交差させて、各導体の位置を入れ替える、所謂、転位を行うという方法がある。つまり、前記導体を所定位置で転位させることにより、各導体のインピーダンスを等しくし、各導体に流れる電流値を等しくすることで負荷損を低減することができる。   In order to reduce the load loss, there is a so-called dislocation method in which the conductors wound in parallel cross each other at a predetermined position and the positions of the conductors are switched. That is, by shifting the conductor at a predetermined position, the impedance of each conductor is made equal, and the current value flowing through each conductor is made equal, thereby reducing the load loss.

電力用の変圧器に用いられている巻線は種々の構造があり、中でも多重円筒巻線は、導体層間の対向面積が大きく、巻線の直列静電容量が大きいため、雷インパルス電圧印加時の巻線の電位分布が良好である等の理由から、電力用変圧器の巻線として広く利用されている。   The windings used in power transformers have various structures, especially the multi-cylindrical winding has a large opposing area between the conductor layers and a large series capacitance of the windings, so when lightning impulse voltage is applied It is widely used as a winding for power transformers because of its good potential distribution.

そして、前記多重円筒巻線において、前記転位を行う場合は、下記特許文献1記載の図6に示すように、導体層11´,12´,13´,14´,15´の中央付近にて、導体の巻線径方向の配置の順番を逆にして導体の転位を行ったり、また、前記特許文献1記載の図6に示す転位方法の抱える問題点、すなわち、導体の転位回数が多いことに起因した作業性の悪さ、および、加工工数が増加するといった問題の招来を解決すべく、同特許文献1記載の図1〜図5に示す巻線構造が提案されている。
特開2000−21652号公報
And when performing the said dislocation in the said multiple cylindrical winding, as shown in FIG. 6 of the following patent document 1, near the center of conductor layer 11 ', 12', 13 ', 14', 15 '. Conductor dislocation by reversing the order of arrangement of the conductors in the winding radial direction, or the problem of the dislocation method shown in FIG. 6 described in Patent Document 1, that is, the number of dislocations of the conductor is large. The winding structure shown in FIGS. 1 to 5 described in Patent Document 1 has been proposed in order to solve the problem of poor workability caused by the above-described problem and the increase in processing man-hours.
Japanese Patent Laid-Open No. 2000-21625

前記特許文献1記載の図1〜図4に示す巻線構造によれば、導体の転位は、導体層の端部で行われており、また、前述した図6に示す巻線構造における同一巻回数の変圧器巻線と比較して、その転位回数を減少させていることから、作業性の向上および加工工数の減少を確実に実現することができる。   According to the winding structure shown in FIGS. 1 to 4 of Patent Document 1, the dislocation of the conductor is performed at the end of the conductor layer, and the same winding in the winding structure shown in FIG. 6 described above. Since the number of shifts is reduced compared to the number of transformer windings, the workability can be improved and the number of processing steps can be reliably reduced.

また、前記特許文献1記載の図5に示す巻線構造によれば、導体の転位こそ導体層の中央部で行われ、前記図6に示す巻線構造と同様であるが、転位回数について言えば、同一巻回数の変圧器巻線と比較して減少させることができ、作業性の向上と加工工数の減少を良好に達成することができる。   Further, according to the winding structure shown in FIG. 5 described in Patent Document 1, the dislocation of the conductor is performed at the central portion of the conductor layer, and is the same as the winding structure shown in FIG. For example, the number of turns can be reduced as compared with the transformer winding having the same number of turns, and improvement in workability and reduction in the number of processing steps can be achieved satisfactorily.

然るに、上記特許文献1記載の図1〜図5に示すいづれの従来技術においても、導体層毎に転位が必要となることは共通しており、図1,2に示す導体層が5層の構造においては、4回の転位が必要になる。   However, in any of the conventional techniques shown in FIGS. 1 to 5 described in Patent Document 1, it is common that dislocations are required for each conductor layer, and the conductor layers shown in FIGS. In the structure, four dislocations are required.

また、特許文献1記載の図3に示す巻線構造においては、その転位回数は2回必要であり、図4に示す巻線構造においては、2回の転位が必要となる。   Further, in the winding structure shown in FIG. 3 described in Patent Document 1, the number of times of dislocation is required two times, and in the winding structure shown in FIG. 4, two times of dislocation are required.

さらに、特許文献1記載の図5に示す巻線構造によれば、変圧器巻線の18ターン毎に1回の転位が必要となることに加え、複数の導体52a、52bを巻線径方向に並べて巻回する導体層の巻回作業において各導体層52、54、56の中央付近で導体の転位を行う必要があるので、巻回作業を一時中断しなければならないことは特許文献1記載の図6に示す場合と同様であり、作業性の悪さと加工工数の増加という特許文献1記載の図6に示す巻線構造が抱えていた問題を良好に解決できるものとは言い難かった。   Further, according to the winding structure shown in FIG. 5 described in Patent Document 1, in addition to the necessity of one dislocation every 18 turns of the transformer winding, the plurality of conductors 52a and 52b are arranged in the winding radial direction. In the winding work of the conductor layers wound side by side, it is necessary to dispose the conductors near the center of each of the conductor layers 52, 54, and 56. Therefore, it is described in Patent Document 1 that the winding work must be temporarily interrupted. 6, and it was difficult to say that the problem of the winding structure shown in FIG. 6 described in Patent Document 1, which is poor workability and increased man-hours, could be solved satisfactorily.

そこで、本発明は、前述した問題点を可能な限り解消して、変圧器巻線の巻回作業における作業性の改善と、加工工数の低減を実現することのできる変圧器巻線の巻線構造を提供することを目的とする。   Therefore, the present invention eliminates the above-mentioned problems as much as possible, and improves the workability in the winding work of the transformer winding and realizes the reduction of the processing man-hours. The purpose is to provide a structure.

請求項1記載の発明は、複数の導体を巻線径方向に並べて巻回した導体層を複数有する多重円
筒巻線において、変圧器巻線の等価回路を表す回路方程式を利用して低圧巻線と高圧巻線の導
体の自己インダクタンスと相互インダクタンスを算出後、インダクタンスマトリクスを作成し、
前記導体の転位位置を指定することによりこれをインピーダンス行列に変換し、該インピーダン
ス行列を利用して前記導体に流れる電流が同一となる位置を各導体に流れる電流のアンバランス
が解消される転位位置として特定し、1つの巻線に対して一箇所備えて変圧器巻線を構成した。
Invention of claim 1, wherein, in a multi-cylinder winding having a plurality of conductor layers formed by winding side by side a plurality of conductors in the windings radially by utilizing the circuit equations representing an equivalent circuit of the transformer windings, low-voltage Wire and high voltage winding
After calculating the body's self-inductance and mutual inductance, create an inductance matrix,
By designating the dislocation position of the conductor, this is converted into an impedance matrix, and the impedance
Unbalance of currents flowing through each conductor at the same current flowing through the conductors
As a dislocation position that eliminates the above, a transformer winding is configured by providing one location for one winding.

請求項2記載の発明は、請求項1記載の変圧器巻線において、前記転位を行った導体層の軸方向の高さを他の導体層の軸方向の高さと同一となる巻回数で構成した According to a second aspect of the present invention, in the transformer winding according to the first aspect , the axial height of the conductor layer subjected to the dislocation is configured by the number of turns equal to the axial height of the other conductor layers. did

請求項1記載の発明によれば、各導体に流れる電流のアンバランスを解消するために導体の位置を巻線途中で入れ換える転位が一つの巻線に対して一箇所でよいので、導体の巻回作業時の加工工数を低減して、工期の短縮を図り、以って作業性を飛躍的に向上させることができ、非常に有効である。   According to the first aspect of the present invention, since the dislocation for changing the position of the conductor in the middle of the winding in order to eliminate the imbalance of the current flowing through each conductor may be at one place with respect to one winding, It is very effective because it reduces the number of man-hours required for revolving work, shortens the work period, and can dramatically improve workability.

また、請求項1記載の発明によれば、変圧器巻線の等価回路を表す回路方程式において、複数の導体各々のインピーダンスが互いに同一となるように転位位置を調節することによって、容易に最適な転位位置を特定することができる。 According to the first aspect of the present invention, in the circuit equation representing the equivalent circuit of the transformer winding, the optimum position can be easily obtained by adjusting the dislocation position so that the impedances of the plurality of conductors are the same. The dislocation position can be specified.

請求項2記載の発明によれば、転位を行った導体層の軸方向の高さが転位を行っていない他の導体層の軸方向の高さと同一となる巻回数で転位を行った導体層を構成したので、例えば、耐電圧試験時に巻線端部で電界が高くなる等の不具合が発生することを確実に防止することができ、さらに絶縁補強や絶縁距離を増加させるといった特別な措置を講じる必要性を排除することができ、非常に効果的である。 According to the invention of claim 2, the conductor layer subjected to the dislocation with the number of windings in which the height in the axial direction of the conductor layer subjected to the dislocation is the same as the height in the axial direction of the other conductor layer not subjected to the dislocation. For example, it is possible to reliably prevent the occurrence of problems such as an increase in the electric field at the winding end during a withstanding voltage test, and to take special measures such as increasing insulation reinforcement and insulation distance. It can eliminate the need to take and is very effective.

以下、本発明の実施の形態について図1ないし図5により説明する。図1は本発明の変圧器巻線を示す部分側断面図であり、図1において、1は鉄心、2は鉄心1に巻回した低圧巻線であり、3は該低圧巻線2と同心状に前記鉄心1に巻回された高圧巻線を示している。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 is a partial side sectional view showing a transformer winding of the present invention. In FIG. 1, 1 is an iron core, 2 is a low-voltage winding wound around the iron core 1, and 3 is concentric with the low-voltage winding 2. A high-voltage winding wound around the iron core 1 is shown.

前記低圧巻線2は、絶縁被覆した1本の導体l5を巻線軸方向に規定巻回数螺旋状に巻回することにより鉄心1に多重円筒巻して、4つの導体層2a〜2dからなる積層導体部を構成しており、一方、高圧巻線3は、3本の導体l1〜l3を巻線径方向に並べてこれを1組とし、該1組の導体を巻線の軸方向に規定巻回数螺旋状に巻回することによって、前記低圧巻線2の外周にこれと同心状に巻回される6つの導体層3a〜3fからなる主巻線3Aと、該主巻線3Aに接続される1本の導体l4を巻線の軸方向に規定回数螺旋状に巻回して形成した2つの導体層3g,3hを備えたタップ巻線3Bからなる積層導体部を構成している。 The low-voltage winding 2 is composed of four conductor layers 2a to 2d, in which a single insulated conductor 15 is wound spirally around the iron core 1 by winding it in a spiral manner in the winding axis direction. On the other hand, the high-voltage winding 3 is composed of three conductors l 1 to l 3 arranged in the winding radial direction to form one set, and the one set of conductors in the axial direction of the winding. The main winding 3A comprising six conductor layers 3a to 3f wound concentrically on the outer periphery of the low-voltage winding 2 by being wound spirally around the prescribed number of turns, and the main winding 3A A laminated conductor portion composed of a tap winding 3B provided with two conductor layers 3g and 3h formed by spirally winding a single conductor l 4 connected to the winding in the axial direction of the winding a prescribed number of times Yes.

図2は図1に示す変圧器巻線の等価回路を示している。図2において、L5は低圧巻線2を構成する導体l5の自己インダクタンスであり、R5は前記導体l5の抵抗を、また、i5は前記導体l5に流れる電流を示している。 FIG. 2 shows an equivalent circuit of the transformer winding shown in FIG. In FIG. 2, L 5 is the self-inductance of the conductor l 5 constituting the low-voltage winding 2, R 5 is the resistance of the conductor l 5 , and i 5 is the current flowing through the conductor l 5 . .

1〜L3は、高圧巻線の主巻線3Aを構成する巻線径方向に並列に並べた3本の導体l1〜l3の自己インダクタンスであり、R1〜R3は前記導体l1〜l3の抵抗を示している。 L 1 to L 3 are self-inductances of the three conductors l 1 to l 3 arranged in parallel in the radial direction of the main winding 3A of the high-voltage winding, and R 1 to R 3 are the conductors Resistance of l 1 to l 3 is shown.

1〜i3は、前記導体l1〜l3に流れる電流であり、i4はタップ巻線4を構成する導体l4に流れる電流を示している。L4は前記導体l4の自己インダクタンスを示しており、R4は当該導体l4の抵抗を示している。 i 1 to i 3 are currents flowing through the conductors l 1 to l 3 , and i 4 is a current flowing through the conductor l 4 constituting the tap winding 4. L 4 indicates the self-inductance of the conductor l 4 , and R 4 indicates the resistance of the conductor l 4 .

また、Vは高圧巻線3に電力を供給する交流電源であり、M15は高圧巻線3の導体l1の低圧巻線2の導体l5に対する相互インダクタンスである。M25は高圧巻線3の導体l2の低圧巻線2の導体l5に対する相互インダクタンスを、M35は高圧巻線3の導体l3の低圧巻線2の導体l5に対する相互インダクタンスを示している。 Also, V is an AC power source for supplying power to the high-voltage winding 3, M 15 is the mutual inductance relative to the conductor l 5 of the low voltage winding 2 conductors l 1 of high voltage winding 3. M 25 indicates the mutual inductance of the conductor l 2 of the high voltage winding 3 with respect to the conductor l 5 of the low voltage winding 2, and M 35 indicates the mutual inductance of the conductor l 3 of the high voltage winding 3 with respect to the conductor l 5 of the low voltage winding 2. ing.

23は高圧巻線3の導体l2の導体l3に対する相互インダクタンスであり、M12は高圧巻線3の導体l1の導体l2に対する相互インダクタンスを、また、M13は高圧巻線3の導体l1の導体l3に対する相互インダクタンスを示している。 M 23 is the mutual inductance of the conductor l 2 of the high voltage winding 3 with respect to the conductor l 3 , M 12 is the mutual inductance of the conductor l 1 of the high voltage winding 3 with respect to the conductor l 2 , and M 13 is the high voltage winding 3. The mutual inductance of the conductor l 1 with respect to the conductor l 3 is shown.

さらに、M14は高圧巻線3の導体l1のタップ巻線3Bの導体l4に対する相互インダクタンスを、M24は高圧巻線3の導体l2のタップ巻線3Bの導体l4に対する相互インダクタンスであり、M34は高圧巻線の導体l3のタップ巻線3Bの導体l4に対する相互インダクタンスを示している。 Furthermore, M 14 mutual inductance for the mutual inductance relative to the conductor l 4 taps winding 3B conductors l 1 of high voltage winding 3, M 24 is conductive l 4 taps winding 3B of conductor l 2 of the high-voltage winding 3 in and, M 34 represents a mutual inductance with respect to the conductor l 4 taps winding 3B of conductor l 3 of the high voltage winding.

次に、本発明の変圧器巻線の転位位置について説明する。図1に示す変圧器巻線の転位位置を決定する場合、図2に示す等価回路の各導体l1〜l5に流れる電流は次式によって与えられる。 Next, the dislocation position of the transformer winding of the present invention will be described. When determining the dislocation position of the transformer winding shown in FIG. 1, the currents flowing in the conductors l 1 to l 5 of the equivalent circuit shown in FIG.

Figure 0004897949
Figure 0004897949

したがって、前記[数1]式によって高圧巻線3の導体l1〜l3に流れる電流i1〜i3の値が同一となる位置で導体l1〜l3の転位を行えば、電流i1〜i3のアンバランスは解消され、負荷損の増加を防止することができる。 Therefore, if the dislocations of the conductors l 1 to l 3 are performed at positions where the values of the currents i 1 to i 3 flowing in the conductors l 1 to l 3 of the high-voltage winding 3 are the same according to the formula [1], the current i The imbalance of 1 to i 3 is eliminated, and an increase in load loss can be prevented.

そこで、前記[数1]式によって導体l1〜l3に流れる電流i1〜i3の値を算出する場合、まず最初に、各導体l1〜l5の1ターンごとの自己インダクタンスおよび相互インダクタンスを算出する。 Therefore, when the values of the currents i 1 to i 3 flowing in the conductors l 1 to l 3 are calculated by the above [Equation 1], first, the self-inductance for each turn of each of the conductors l 1 to l 5 and the mutual Calculate the inductance.

前記自己,相互インダクタンスの算出は、当該インダクタンスが鉄心1の影響が少ない密結合のリーケージ(漏れ)であることから、空心コイルの自己,相互インダクタンスとして算定する。つまり、前記自己インダクタンスLおよび相互インダクタンスMは次式であらわされる。   The self and mutual inductances are calculated as the self and mutual inductance of the air-core coil since the inductance is a tightly coupled leakage (leakage) with little influence of the iron core 1. That is, the self inductance L and the mutual inductance M are expressed by the following equations.

Figure 0004897949
Figure 0004897949

なお、前記[数2]式で、μ0=4π×10-7(H/m)であり、Nは各導体l1〜l5の巻数をあらわしている。また、D0〜D2,a〜cは図3に示す寸法を示している。ここで図3(a)は、前記導体l1〜l5の各導体の寸法をあらわしており、D0は各導体l1〜l5を鉄心1周りに巻回したときの巻回半径であり、aは各導体l1〜l5の高さ寸法を、また、bは前記各導体l1〜l5の幅寸法をあらわしている。 In the above [Expression 2], μ 0 = 4π × 10 −7 (H / m), and N represents the number of turns of each of the conductors l 1 to l 5 . D 0 to D 2 and ac represent the dimensions shown in FIG. Here, FIG. 3 (a) represents the size of each conductor of said conductor l 1 to l 5, D 0 is wound radius when wound each conductor l 1 to l 5 around the iron core 1 Yes, a represents the height of each of the conductors l 1 to l 5 , and b represents the width of each of the conductors l 1 to l 5 .

一方、図3(b)は各導体l1〜l5のうち2本の導体の位置関係を示す図であり、D1,D2は、2本の導体を鉄心1に巻回した際のそれぞれの巻回半径であり、cは2本の導体間の間隔を示している。 On the other hand, FIG. 3B is a diagram showing the positional relationship of two of the conductors l 1 to l 5 , and D 1 and D 2 are the results when the two conductors are wound around the iron core 1. Each of the winding radii, c indicates the distance between the two conductors.

すなわち、図3に示す各導体l1〜l5のそれぞれの寸法(a〜c,D0〜D2)および定数μ0と巻数Nを前記[数2]式に入力することによって、各導体l1〜l5の自己インダクタンスと相互インダクタンスを算出することができ、この計算結果の例では、1938×1938のインダクタンスマトリクスが作成される。 That is, by inputting the respective dimensions (ac to c, D 0 to D 2 ), the constant μ 0, and the number of turns N of the conductors l 1 to l 5 shown in FIG. The self inductance and the mutual inductance of l 1 to l 5 can be calculated. In the example of the calculation result, an inductance matrix of 1938 × 1938 is created.

そして、転位位置の変更により、上記インダクタンスマトリクスの要素を入替え、その後、以下に示すように5×5のインピーダンス行列Zに変換される。   Then, by changing the dislocation position, the elements of the inductance matrix are replaced, and then converted into a 5 × 5 impedance matrix Z as shown below.

Figure 0004897949
Figure 0004897949

次に、前記[数1]式をこの変換した5×5のインピーダンス行列で計算することによって各導体l1〜l3に流れる電流i1〜i3が計算される。したがって、前記各導体l1〜l3に流れる電流i1〜i3のアンバランスを解消するためには、前記[数1]式で計算される電流i1〜i3のアンバランスが解消される転位位置を求めれば良く、これには転位位置を様々に調節して各導体l1〜l3間のインピーダンスが同一となる位置を探し出せば良いことになる。 Then, the current i 1 through i 3 flowing through each conductor l 1 to l 3 by the Expression 1 is calculated by the impedance matrix of the converted 5 × 5 is calculated. Therefore, in order to eliminate the imbalance of the current i 1 through i 3 flowing to the each conductor l 1 to l 3 is unbalance current i 1 through i 3 calculated by the Expression 1 is eliminated What is necessary is just to find the position where the impedance between the conductors l 1 to l 3 is the same by adjusting the dislocation position variously.

このようにして、探し出した転位位置(例えば、図4に示す位置)は各導体l1〜l3に流れる電流i1〜i3のアンバランスが解消される最適な位置であるので、負荷損の増加を確実に回避することが可能となる。 In this way, the searched dislocation position (for example, the position shown in FIG. 4) is an optimum position where the unbalance of the currents i 1 to i 3 flowing through the conductors l 1 to l 3 is eliminated. It is possible to surely avoid the increase.

しかもその転位位置は一箇所に限定することができるので、変圧器巻線の巻回作業時における作業性の改善と、加工工数の低減に対して、非常に有効である。   Moreover, since the dislocation position can be limited to one place, it is very effective for improving workability during the winding work of the transformer winding and reducing the number of processing steps.

また、本発明の変圧器巻線の巻線構造によれば、転位させた導体層が転位を行うことによって他の導体層と、巻線軸方向の長さ(導体層の高さ)が異なることに起因して、例えば、耐電圧試験時において、巻線端部の電界が高くなる等の問題の発生を防止するために、転位させた導体層においては、その巻回数を減少させることによって、転位させた導体層の高さが他の転位させていない導体層と同一になるように構成している。   Moreover, according to the winding structure of the transformer winding of the present invention, the length of the winding axis direction (the height of the conductor layer) differs from the other conductor layers due to the dislocation of the dislocated conductor layer. For example, in the withstand voltage test, in order to prevent the occurrence of problems such as an increase in the electric field at the end of the winding, in the conductor layer that has been displaced, by reducing the number of turns, The height of the dislocated conductor layer is configured to be the same as that of other conductor layers that are not dislocated.

これにより、巻線端部の電界が高くなることに起因して発生する弊害に対して、例えば、絶縁補強や絶縁距離を増大させるといった特別な対策を講じる必要がなくなり、構造の簡素化が図れるとともに、外部短絡故障時においても、変圧器巻線に発生する電磁力の増大を良好に阻止することができる。   As a result, it is not necessary to take special measures such as insulation reinforcement and increase of the insulation distance against the harmful effects caused by the electric field at the winding end being increased, and the structure can be simplified. At the same time, an increase in electromagnetic force generated in the transformer winding can be satisfactorily prevented even when an external short circuit failure occurs.

図5(a)は、以上のようにして特定した位置(図4参照)で導体を転位させた場合における各導体l1〜l3に流れる電流i1〜i3の計算値を示すグラフであり、前記転位位置を調節することにより、導体l1〜l3に流れる電流i1〜i3(正弦波形)の振幅が等しくなる位置を最適な転位位置として特定することができる。 FIG. 5A is a graph showing calculated values of the currents i 1 to i 3 flowing in the conductors l 1 to l 3 when the conductor is transposed at the position specified as described above (see FIG. 4). Yes, by adjusting the dislocation position, the position where the amplitudes of the currents i 1 to i 3 (sinusoidal waveforms) flowing in the conductors l 1 to l 3 are equal can be specified as the optimum dislocation position.

一方、同図(b)は、前記[数1]式を利用して特定した最適な転位位置で各導体を転位させた場合に、各導体l1〜l3に実際に流れる電流i1〜i3を測定した結果を示すグラフであり、図5(a)に示す計算値と比較して良く一致しており、このことから、前記転位位置の特定手法の正確性と有効性および妥当性を確認することができる。 On the other hand, FIG. 6B shows the current i 1 that actually flows in each of the conductors l 1 to l 3 when the conductors are transposed at the optimum dislocation position specified by using the formula [1]. It is a graph which shows the result of measuring i 3 , and is in good agreement with the calculated value shown in FIG. 5 (a). From this, the accuracy, validity and validity of the above-mentioned method for specifying the dislocation position Can be confirmed.

つづいて、本発明の他の実施例について図6ないし図8を利用して説明する。図6に示す電力用変圧器の巻線構造は、低圧巻線4および高圧巻線5ともに複数本(本実施例では3本)の導体巻線径方向に並列に並べて1組とし、最初に、低圧巻線4を鉄心1に対して、巻線軸方向に規定巻回数螺旋状に巻回することにより、4つの導体層4a〜4dを構成し、つづいて、高圧巻線5を前記低圧巻線4の外側に、これと同心状に規定巻回数螺旋状に巻回することによって4つの導体層5a〜5dを構成している。   Next, another embodiment of the present invention will be described with reference to FIGS. The winding structure of the power transformer shown in FIG. 6 is a set of a plurality of low-voltage windings 4 and high-voltage windings 5 arranged in parallel in the radial direction of the conductor windings (three in this embodiment). By winding the low-voltage winding 4 around the iron core 1 in a spiral manner in the winding axis direction, four conductor layers 4a to 4d are formed, and then the high-voltage winding 5 is connected to the low-voltage winding 5 Four conductor layers 5a to 5d are formed on the outside of the wire 4 by being spirally wound with a predetermined number of turns concentrically therewith.

図7に図6の変圧器巻線の等価回路を示す。図7において、L4〜L6は低圧巻線4を構成する導体l4〜l6の各々の自己インダクタンスであり、R4〜R6は各導体l4〜l6の抵抗を示している。 FIG. 7 shows an equivalent circuit of the transformer winding of FIG. In FIG. 7, L4 to L6 are each a self-inductance of the conductor l 4 to l 6 constituting the low-voltage winding 4, R 4 ~R 6 shows the resistance of each conductor l 4 to l 6.

また、i4〜i6は前記導体l4〜l6に流れる電流であり、L1〜L3は高圧巻線5を構成する導体l1〜l3の各々の自己インダクタンスを、R1〜R3は各導体l1〜l3の抵抗を示している。 I 4 to i 6 are currents flowing through the conductors l 4 to l 6 , and L 1 to L 3 are the self-inductances of the conductors l 1 to l 3 constituting the high-voltage winding 5, and R 1 to R 3. Indicates the resistance of each of the conductors l 1 to l 3 .

1〜i3は、前記導体l1〜l3に流れる電流であり、Vは高圧巻線5に電力を供給する交流電源を示している。M46は低圧巻線4の導体l4とl6間の相互インダクタンスであり、M56は低圧巻線4の導体l5とl6間の相互インダクタンスを示している。 i 1 to i 3 are currents flowing through the conductors l 1 to l 3 , and V denotes an AC power supply that supplies power to the high-voltage winding 5. M 46 is a mutual inductance between the conductors l 4 and l 6 of the low-voltage winding 4, and M 56 is a mutual inductance between the conductors l 5 and l 6 of the low-voltage winding 4.

45は低圧巻線4の導体l4とl5間の相互インダクタンスであり、M13は高圧巻線5の導体l1とl3間の相互インダクタンスを示している。M23は高圧巻線5の導体l2とl3間の相互インダクタンスであり、M12は高圧巻線5の導体l1とl2間の相互インダクタンスを示している。 M 45 is a mutual inductance between the conductors l 4 and l 5 of the low voltage winding 4, and M 13 is a mutual inductance between the conductors l 1 and l 3 of the high voltage winding 5. M 23 is the mutual inductance between the conductors l 2 and l 3 of the high voltage winding 5, and M 12 is the mutual inductance between the conductors l 1 and l 2 of the high voltage winding 5.

また、M14,M15,M16は、高圧巻線5の導体l1と低圧巻線4の導体l4,l5,l6間の各々の相互インダクタンスであり、M24,M25,M26は高圧巻線5の導体l2と低圧巻線4の導体l4,l5,l6間のそれぞれの相互インダクタンスを、M34,M35,M36は高圧巻線5の導体l3と低圧巻線4の導体l4,l5,l6間の各々の相互インダクタンスを示している。 M 14 , M 15 , and M 16 are mutual inductances between the conductor l 1 of the high-voltage winding 5 and the conductors l 4 , l 5 , and l 6 of the low-voltage winding 4, and M 24 , M 25 , M 26 is the mutual inductance between the conductor l 2 of the high voltage winding 5 and the conductors l 4 , l 5 and l 6 of the low voltage winding 4 , and M 34 , M 35 and M 36 are the conductors l of the high voltage winding 5. 3 and the mutual inductances between the conductors l 4 , l 5 and l 6 of the low-voltage winding 4 are shown.

このように構成した変圧器巻線の導体l1,l2,l3に流れる電流l1〜l3は、図1に示す変圧器巻線と同様に、前記[数1]式であらわされ、図6に示す変圧器巻線の転位は、各導体l1〜l6間のインピーダンスが同一となる位置で転位させることにより、前記導体l1〜l6に流れる電流のアンバランスが解消されて、負荷損の増大を防止することができる。 Current l 1 to l 3 flowing through the conductor l 1, l 2, l 3 of thus constituted transformer winding, like the transformer winding as shown in FIG. 1, represented by the Expression 1 The transformer winding shown in FIG. 6 is dislocated at a position where the impedances between the conductors l 1 to l 6 are the same, thereby eliminating the unbalance of the current flowing through the conductors l 1 to l 6. Thus, an increase in load loss can be prevented.

そして、前記転位位置の特定方法も図1に示す変圧器巻線の場合と同様、まず最初に、低圧巻線4の導体l4〜l6と高圧巻線5の導体l1〜l3の自己インダクタンスと相互インダクタンスを算出する。 In the same way as the transformer winding shown in FIG. 1, the method for specifying the dislocation position is first of all of the conductors l 4 to l 6 of the low voltage winding 4 and the conductors l 1 to l 3 of the high voltage winding 5. Calculate self-inductance and mutual inductance.

前記自己インダクタンスと相互インダクタンスの算出は、前記[数2]式によって求められるものであり、前記[数2]式のμ0=4π×10-7[H/m]、Nは各導体l1〜l5の巻回数を、また、a〜cおよびD0〜D2は図3に示す導体l1〜l5の寸法を代入して計算すれば良い。 The calculation of the self-inductance and the mutual inductance is obtained by the above [Equation 2], where μ 0 = 4π × 10 −7 [H / m] in the above [Equation 2], and N is each conductor l 1. the number of turns of to l 5, also, a to c and D 0 to D 2 may be calculated by substituting the dimensions of the conductor l 1 to l 5 shown in FIG.

以上の数値を前記[数2]式に代入して算出することにより、所定のインダクタンスマトリクスが作成されるので、つづいて、前記導体l1〜l5の転位位置を指定することにより、前記インダクタンスマトリクスの要素を入替えた後、前記インダクタンスマトリクスは、次式に示す6×6のインピーダンス行列Zに変換される。 A predetermined inductance matrix is created by substituting the above numerical values into the [Equation 2] and calculating, so that the inductance is determined by designating the dislocation positions of the conductors l 1 to l 5. After replacing the elements of the matrix, the inductance matrix is converted into a 6 × 6 impedance matrix Z shown in the following equation.

Figure 0004897949
Figure 0004897949

したがって、この[数4]式であらわされるインピーダンス行列Zを前記[数1]式に代入して、各導体l1〜l3に流れる電流i1〜i3が同一となる転位位置を特定すれば、その転位位置が各導体l1〜l3間のインピーダンスが同一となり、該導体l1〜l3に流れる電流i1〜i3のアンバランスが解消される最適な転位位置となる。 Therefore, by specifying the [number 4] The impedance matrix Z of the formula are substituted into the Expression 1, the dislocation position current i 1 through i 3 flowing through each conductor l 1 to l 3 are the same in its impedance between the dislocation position each conductor l 1 to l 3 is the same, imbalance of current i 1 through i 3 flowing through the conductor l 1 to l 3 is the optimum dislocation position is eliminated.

このようにして特定した転位位置(図8参照)で導体l1〜l6の転位を行えば、当然、導体l1〜l3に流れる電流i1〜i3のアンバランスが存在しないため、電流のアンバランスによる損失増大の無い巻線構造を有する変圧器巻線の提供が可能となる。 If dislocations of the conductors l 1 to l 6 are performed at the dislocation positions specified in this way (see FIG. 8), naturally, there is no imbalance between the currents i 1 to i 3 flowing in the conductors l 1 to l 3 . It is possible to provide a transformer winding having a winding structure that does not increase loss due to current imbalance.

なお、この場合にあっても、転位させた導体層は転位させていない導体層との間で巻線軸方向の高さが相違する問題点が発生するため、これを解消するために転位させた導体層においてはその巻回数を減少させることにより、転位させていない他の導体層の巻線軸方向の高さと同一として、耐電圧試験時等において、巻線端部の電界が高くなる等の問題の発生を阻止することができることは、図4に示す巻線構造と同様である。   Even in this case, the dislocated conductor layer has a problem in that the height in the winding axis direction differs from that of the conductor layer that has not been dislocated. Therefore, the dislocation was performed to eliminate this problem. By reducing the number of turns in the conductor layer, the electric field at the end of the winding becomes high during a withstand voltage test, etc., with the same height in the winding axis direction of the other conductor layers that are not displaced. In the same manner as the winding structure shown in FIG.

以上説明したように、本発明の変圧器巻線の巻線構造によれば、変圧器巻線を構成する各導体に流れる電流のアンバランスを解消できる転位位置を当該変圧器巻線の等価回路によって簡単に計算して特定することができ、損失の発生を確実に防止できる巻線構造の提供が可能となるとともに、その転位位置は一つの巻線に一箇所でよいので、巻線の巻回作業時における作業性の向上と加工工数の低減を良好に図ることができる。   As described above, according to the winding structure of the transformer winding of the present invention, the dislocation position that can eliminate the imbalance of the current flowing through each conductor constituting the transformer winding is equivalent to the equivalent circuit of the transformer winding. Therefore, it is possible to provide a winding structure that can reliably prevent the occurrence of loss, and the dislocation position may be one in one winding. It is possible to satisfactorily improve workability and reduce processing man-hours during turning operations.

また、転位させた導体層の巻回数を転位させていない導体層の巻回数と比較して減少させることにより、全ての導体層の巻線軸方向の高さを同一として、耐電圧試験時における巻線端部の電界の増大と、外部短絡故障時における電磁力の同大を確実に阻止することができる。   Further, by reducing the number of turns of the dislocated conductor layer compared to the number of turns of the conductor layer that has not been dislocated, the height in the winding axis direction of all the conductor layers is made the same, and the winding in the withstand voltage test is performed. It is possible to reliably prevent an increase in the electric field at the line end and the same magnitude of electromagnetic force at the time of external short circuit failure.

本発明によれば、変圧器巻線の等価回路によって簡単に特定可能な、前記変圧器巻線を構成する導体に流れる電流のアンバランスを解消できる1の転位箇所(1つの巻線に対して)にて転位させた変圧器巻線の提供が可能となる。   According to the present invention, one dislocation point (for one winding) that can be easily identified by an equivalent circuit of the transformer winding and that can eliminate the imbalance of the current flowing through the conductors constituting the transformer winding. ), It is possible to provide transformer windings that have been displaced.

本発明の変圧器巻線の巻線構造を示す部分側断面図である。It is a fragmentary sectional side view which shows the winding structure of the transformer winding of this invention. 前記変圧器巻線の等価回路である。It is an equivalent circuit of the transformer winding. 前記変圧器巻線を構成する導体の寸法および各導体間の位置関係を示す縦断面図である。It is a longitudinal cross-sectional view which shows the dimension of the conductor which comprises the said transformer winding, and the positional relationship between each conductor. 前記変圧器巻線の転位位置を示す部分側断面図である。It is a fragmentary sectional side view which shows the dislocation position of the said transformer winding. 最適な転位位置で転位させた場合の各導体に流れる電流の波形図である。It is a wave form diagram of the electric current which flows into each conductor at the time of making it transfer at an optimal dislocation position. 本発明の他の実施例における変圧器巻線の巻線構造を示す部分側断面図である。It is a fragmentary sectional side view which shows the winding structure of the transformer winding in the other Example of this invention. 他の実施例における変圧器巻線の等価回路である。It is an equivalent circuit of the transformer winding in another Example. 他の実施例における変圧器巻線の最適な転位位置を示す部分側断面図である。It is a fragmentary sectional side view which shows the optimal dislocation position of the transformer winding in another Example.

符号の説明Explanation of symbols

1 鉄心
2,4 低圧巻線
3,5 高圧巻線
2a〜2d,3a〜3h,4a〜4d,5a〜5d 導体層
3A 主巻線
3B タップ巻線
1〜i6 電流
1〜L6 自己インダクタンス
1〜R6 抵抗
V 交流電源
M 相互インダクタンス
1 core 2,4 low voltage winding 3,5 high voltage winding 2a~2d, 3a~3h, 4a~4d, 5a~5d conductive layer 3A main winding 3B tap winding i 1 through i 6 current L 1 ~L 6 self-inductance R 1 to R 6 resistor V AC power source M mutual inductance

Claims (2)

複数の導体を巻線径方向に並べて巻回した導体層を複数有する多重円筒巻線において、変圧器
巻線の等価回路を表す回路方程式を利用して、低圧巻線と高圧巻線の導体の自己インダクタンス
と相互インダクタンスを算出後、インダクタンスマトリクスを作成し、前記導体の転位位置を指
定することによりこれをインピーダンス行列に変換し、該インピーダンス行列を利用して前記導
体に流れる電流が同一となる位置を各導体に流れる電流のアンバランスが解消される転位位置と
して特定し、1つの巻線に一箇所備えて構成することを特徴とする変圧器巻線。
In multi-cylinder winding having a plurality a plurality of conductor layers wound side by winding radially conductors, transformers using the circuit equations representing the equivalent circuit of the winding, the low voltage winding and high voltage winding of the conductor Self-inductance
After calculating the mutual inductance, create an inductance matrix and specify the dislocation position of the conductor.
This is converted into an impedance matrix, and the impedance matrix is used to convert the derived
The position where the current flowing through the body is the same as the dislocation position where the unbalance of the current flowing through each conductor is eliminated
The transformer winding is characterized by being configured to have one location in one winding.

前記転位を行った導体層の軸方向の高さが他の導体層の軸方向の高さと同一となる巻回数で前
記導体の転位を行った導体層を構成したことを特徴とする請求項1記載の変圧器巻線。

2. The conductor layer in which the dislocation of the conductor is performed with the number of turns so that the axial height of the conductor layer in which the dislocation has been performed is the same as the axial height of another conductor layer is configured. The described transformer winding.
JP2005350608A 2005-12-05 2005-12-05 Transformer winding Active JP4897949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350608A JP4897949B2 (en) 2005-12-05 2005-12-05 Transformer winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350608A JP4897949B2 (en) 2005-12-05 2005-12-05 Transformer winding

Publications (2)

Publication Number Publication Date
JP2007157987A JP2007157987A (en) 2007-06-21
JP4897949B2 true JP4897949B2 (en) 2012-03-14

Family

ID=38241961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350608A Active JP4897949B2 (en) 2005-12-05 2005-12-05 Transformer winding

Country Status (1)

Country Link
JP (1) JP4897949B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258455B2 (en) * 2008-08-25 2013-08-07 三菱電機株式会社 Sorashin reactor
CN102723167A (en) * 2012-06-27 2012-10-10 华宏千 Audio-frequency transformer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551518A (en) * 1978-10-12 1980-04-15 Toshiba Corp Preparation of resin mold coil
JPS56149414A (en) * 1980-04-21 1981-11-19 Mitsubishi Rayon Co Ltd Production of impact-resistant resin
JPH0666203B2 (en) * 1987-06-26 1994-08-24 株式会社日立製作所 Resin mold coil
JPH01246807A (en) * 1988-03-29 1989-10-02 Fuji Electric Co Ltd Disc winding
JPH0367414A (en) * 1989-08-04 1991-03-22 Hitachi Cable Ltd Manufacture of flat cable
JPH03145708A (en) * 1989-11-01 1991-06-20 Toshiba Corp Resin-molded coil
JPH03209804A (en) * 1990-01-12 1991-09-12 Toshiba Corp Manufacture of resin-molded coil
JP3093301B2 (en) * 1991-03-06 2000-10-03 株式会社東芝 Resin molded coil and manufacturing method thereof
JPH05299264A (en) * 1992-04-24 1993-11-12 Mitsubishi Electric Corp Transformer
JPH0620852A (en) * 1992-07-02 1994-01-28 Hitachi Ltd Molded transformer
JP2602283Y2 (en) * 1992-10-22 2000-01-11 株式会社明電舎 Transformer winding
JP2000021652A (en) * 1998-06-30 2000-01-21 Hitachi Ltd Transformer winding

Also Published As

Publication number Publication date
JP2007157987A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
US8497755B2 (en) Hybrid transformer with transformation and improved harmonics functions, unbalanced current, and a power supply system thereof
CN106876123A (en) Multiphase reactor
JP5673252B2 (en) Resin mold coil
CN103503091B (en) Continuous print transposed conductor
US6191673B1 (en) Current transformer
CN103477403A (en) Continuously transposed conductor
JP4897949B2 (en) Transformer winding
CN102136365A (en) Method for interchanging windings by single spiral mode of three parallel-connected lead wires
JPH10172824A (en) Superconducting coil for induction electric equipment
JP5597372B2 (en) Electric power reactor and its test method
Gradinger et al. Managing high currents in litz-wire-based medium-frequency transformers
US3466584A (en) Winding for a stationary induction electrical apparatus
CN112117102A (en) Split coil structure and transformer
US8487732B2 (en) Coil transformer composed of unit configuration
EP3220503B1 (en) Shunt compensation of long hvac cables
CN112652470B (en) Transformer
JP5405327B2 (en) Single-phase transformer and power distribution system using the same
US3621428A (en) Electrical windings and method of constructing same
US4270111A (en) Electrical inductive apparatus
US20210118600A1 (en) Linear variable differential transducer
EP3648126B1 (en) Electrical component, especially transfomer or inductor
AU2020273556B2 (en) High voltage transformer, method for producing a high voltage transformer and test system and test signal device comprising a high voltage transformer
CN116933696B (en) Current distribution calculation method for multi-strand multi-wire parallel structure of transformer
JPH04364011A (en) Helical coil
CN110828145A (en) Foil type lead angle connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111223

R150 Certificate of patent or registration of utility model

Ref document number: 4897949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3