JP4897334B2 - Surface inspection method and surface inspection apparatus - Google Patents

Surface inspection method and surface inspection apparatus Download PDF

Info

Publication number
JP4897334B2
JP4897334B2 JP2006100144A JP2006100144A JP4897334B2 JP 4897334 B2 JP4897334 B2 JP 4897334B2 JP 2006100144 A JP2006100144 A JP 2006100144A JP 2006100144 A JP2006100144 A JP 2006100144A JP 4897334 B2 JP4897334 B2 JP 4897334B2
Authority
JP
Japan
Prior art keywords
detection
inspection
light
light intensity
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006100144A
Other languages
Japanese (ja)
Other versions
JP2007273879A5 (en
JP2007273879A (en
Inventor
一宏 宮川
陽一郎 岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2006100144A priority Critical patent/JP4897334B2/en
Priority to US11/725,849 priority patent/US7477373B2/en
Publication of JP2007273879A publication Critical patent/JP2007273879A/en
Publication of JP2007273879A5 publication Critical patent/JP2007273879A5/ja
Application granted granted Critical
Publication of JP4897334B2 publication Critical patent/JP4897334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8867Grading and classifying of flaws using sequentially two or more inspection runs, e.g. coarse and fine, or detecting then analysing
    • G01N2021/887Grading and classifying of flaws using sequentially two or more inspection runs, e.g. coarse and fine, or detecting then analysing the measurements made in two or more directions, angles, positions

Description

本発明は、半導体ウェーハ等基板表面に付いた微細な傷、異物を検出する為の表面検査方法及び表面検査装置に関するものである。   The present invention relates to a surface inspection method and a surface inspection apparatus for detecting fine scratches and foreign matters on a substrate surface such as a semiconductor wafer.

従来より、表面に付着した微細な異物、或は微細な傷を検出する場合、レーザ光線を検査表面に照射して、異物、傷からの散乱光を検出することで異物、傷の検出を行っていた。   Conventionally, when detecting fine foreign matter or fine scratches attached to the surface, a foreign object or scratch is detected by irradiating the inspection surface with a laser beam and detecting scattered light from the foreign matter or scratches. It was.

図8は、表面検査装置の概略を示すものであり、被検査物としてシリコンウェーハ1を示している。   FIG. 8 shows an outline of the surface inspection apparatus, and shows a silicon wafer 1 as an object to be inspected.

該シリコンウェーハ1は基板チャック2により水平姿勢に保持され、該基板チャック2はモータ3により所定回転速度で回転される。   The silicon wafer 1 is held in a horizontal posture by a substrate chuck 2, and the substrate chuck 2 is rotated by a motor 3 at a predetermined rotational speed.

前記シリコンウェーハ1の検査面4に対して、検査光照射系5及び散乱光受光系6が設けられ、前記検査光照射系5は前記検査面4に光源部からの検査光、例えばレーザ光線7を所要の入射角で照射し、該レーザ光線7が前記検査面4で反射された反射光7′は反射光検出器8によって検出される。該反射光検出器8で検出されたレーザ光線7の反射光7′の光強度は前記レーザ光線7の照射強度を一定にする為にフィードバックされる。   An inspection light irradiation system 5 and a scattered light receiving system 6 are provided on the inspection surface 4 of the silicon wafer 1, and the inspection light irradiation system 5 is provided with inspection light from a light source unit, for example, a laser beam 7 on the inspection surface 4. Is reflected at a required incident angle, and the reflected light 7 ′ reflected by the inspection surface 4 is detected by the reflected light detector 8. The light intensity of the reflected light 7 ′ of the laser beam 7 detected by the reflected light detector 8 is fed back to make the irradiation intensity of the laser beam 7 constant.

又、前記散乱光受光系6は前記検査光照射系5の光軸とは交差する光軸を有し、該光軸上に側方散乱光検出器9、前方散乱光検出器11が設けられ、前記側方散乱光検出器9と前記前方散乱光検出器11とは交差する方向、交差する角度が異なっている。前記側方散乱光検出器9、前記前方散乱光検出器11は、前記レーザ光線7が異物、傷に当って散乱した光を検出するものである。   The scattered light receiving system 6 has an optical axis that intersects the optical axis of the inspection light irradiation system 5, and a side scattered light detector 9 and a forward scattered light detector 11 are provided on the optical axis. The side scattered light detector 9 and the forward scattered light detector 11 are different in the intersecting direction and the intersecting angle. The side scattered light detector 9 and the forward scattered light detector 11 detect light scattered by the laser beam 7 hitting a foreign object or scratch.

前記検査面4の検査は前記レーザ光線7を前記検査面4に照射した状態で、前記モータ3により回転させ、更に所定ピッチ(所定速度)で前記シリコンウェーハ1の半径方向に前記検査面4を移動させる。前記レーザ光線7の照射点は、回転しつつ半径方向に移動して前記検査面4全面を走査する。前記レーザ光線7が異物、傷を通過すると、反射光が散乱し、前記側方散乱光検出器9、前記前方散乱光検出器11は散乱光12を受光する。   The inspection surface 4 is inspected by rotating the inspection surface 4 in the radial direction of the silicon wafer 1 at a predetermined pitch (predetermined speed) by rotating the motor 3 with the laser beam 7 applied to the inspection surface 4. Move. The irradiation point of the laser beam 7 moves in the radial direction while rotating to scan the entire inspection surface 4. When the laser beam 7 passes through a foreign object or scratch, reflected light is scattered, and the side scattered light detector 9 and the forward scattered light detector 11 receive the scattered light 12.

受光された前記散乱光12は、光電変換素子により電気信号に変換され、更に増幅器で増幅され異物信号として処理され、所要の記憶装置に検査結果として記憶される。   The received scattered light 12 is converted into an electrical signal by a photoelectric conversion element, further amplified by an amplifier, processed as a foreign matter signal, and stored as a test result in a required storage device.

前記側方散乱光検出器9、前記前方散乱光検出器11の出力信号の一例が図9に示される。通常、出力信号には信号成分Sと直流成分Dとを含んでおり、前記検査面4が研磨されている等滑面であり、該検査面4自体の散乱反射が少ない場合は、直流成分Dは小さく、前記検査面4が粗面である場合、該検査面4自体の散乱反射が大きい場合は直流成分Dは多く現れる。   An example of output signals of the side scattered light detector 9 and the forward scattered light detector 11 is shown in FIG. Normally, the output signal includes a signal component S and a DC component D, and the inspection surface 4 is an even smooth surface that is polished. When the inspection surface 4 is rough and the scattering reflection of the inspection surface 4 itself is large, a large amount of direct current component D appears.

次に、図10は前記側方散乱光検出器9、前記前方散乱光検出器11が受光した場合の、検出光強度と信号出力レベルとの関係を示しており、通常、検出光強度と信号出力レベルとは図10中、曲線Aに見られる様に比例関係にあり、又検出光強度が所定値を超え、信号出力レベルが比例限度(測定限度)に達すると、出力信号は線形が崩れ、飽和状態となる。従って、比例関係を保っている範囲Iが検出器の測定範囲(ダイナミックレンジ)となる。   Next, FIG. 10 shows the relationship between the detected light intensity and the signal output level when the side scattered light detector 9 and the forward scattered light detector 11 receive light. The output level is proportional to the curve A in FIG. 10, and when the detected light intensity exceeds a predetermined value and the signal output level reaches the proportional limit (measurement limit), the output signal is not linear. , Become saturated. Therefore, the range I maintaining the proportional relationship is the measurement range (dynamic range) of the detector.

ところが、検査面4が粗面(ウェーハ裏面)、或は金属膜が生成されたウェーハ表面である場合は、表面自体での乱反射が多くなり、図9で示される直流成分Dが多くなり、検出光強度が測定範囲を超える場合が考えられ、実質的な測定ができなくなってしまう。   However, when the inspection surface 4 is a rough surface (wafer back surface) or a wafer surface on which a metal film is generated, irregular reflection on the surface itself increases, and the direct current component D shown in FIG. It is conceivable that the light intensity exceeds the measurement range, and substantial measurement cannot be performed.

この為、測定範囲を拡大する方法として、対数増幅器を用いて対数増幅する方法がある。対数増幅器を用いて増幅した場合の信号出力レベルを図10中、曲線Bで示す。   For this reason, as a method of expanding the measurement range, there is a method of logarithmic amplification using a logarithmic amplifier. The signal output level when amplified using a logarithmic amplifier is shown by curve B in FIG.

対数増幅した場合、曲線Aと曲線Bの比較で分る様に、検出光強度が大きくなる程信号レベルの増加率が減少し、測定限度に達する迄検出光強度はIA だけ増大する。即ち、測定範囲はIA だけ拡大する。   In the case of logarithmic amplification, as can be seen from comparison between curve A and curve B, the increase rate of the signal level decreases as the detected light intensity increases, and the detected light intensity increases by IA until the measurement limit is reached. That is, the measurement range is expanded by IA.

ところが、対数増幅すると、検出光強度が低レベルの出力信号は強調される。例えば、光強度がPの場合、曲線Aに対して曲線BはΔSだけ信号出力レベルが大きく、従って、低レベルのノイズが大きく感知され、S/N比が減少する傾向を有する。又、検出信号帯域が高周波である場合は、対数増幅器が高いS/N比、高応答性を要求され、高価なものとなる。   However, when logarithmic amplification is performed, an output signal having a low detection light intensity is emphasized. For example, when the light intensity is P, the curve B has a signal output level that is larger by ΔS than the curve A, and therefore, low level noise is perceived greatly, and the S / N ratio tends to decrease. Further, when the detection signal band is a high frequency, the logarithmic amplifier is required to have a high S / N ratio and high responsiveness, and is expensive.

尚、表面検査装置として特許文献1に示されるものがあり、対数増幅を行いダイナミックレンジを広げるものとして特許文献2、非特許文献1に示されるものがある。   In addition, there exist some which are shown by patent document 1 as a surface inspection apparatus, and there are some which are shown by patent document 2 and nonpatent literature 1 as what expands a dynamic range by logarithmic amplification.

特開2004−271519号公報JP 2004-271519 A

特表2005−526239号公報JP 2005-526239 A

藤田晢也監修,河田聡編集、「新しい光学顕微鏡(第一巻)レーザ顕微鏡の理論と実際」、学際企画株式会社、平成7年3月28日、p.116Supervised by Shinya Fujita, edited by Kei Kawada, “Theory and Practice of New Optical Microscope (Volume 1) Laser Microscope”, Interdisciplinary Planning, Inc., March 28, 1995, p. 116

本発明は斯かる実情に鑑み、簡単な構成で広いダイナミックレンジを有し、検査面自体の散乱光が多い場合でも、高いS/N比で表面検査が可能な表面検査方法及び表面検査装置を提供するものである。   In view of such circumstances, the present invention provides a surface inspection method and a surface inspection apparatus that have a simple configuration and a wide dynamic range, and can perform surface inspection with a high S / N ratio even when the inspection surface itself has a large amount of scattered light. It is to provide.

本発明は、検査面にレーザ光線を照射、走査して前記検査面の異物等を検出する表面検査方法に於いて、前記レーザ光線の照射部位を所要数の検出領域に分け、各検出領域間で検出光強度が変化する様に受光器で受光し、検査部位について検出光強度の異なる所要数の出力信号を取得し、所要数の出力信号の内、飽和していない最大値を示す出力信号を表面検査信号として選択する表面検査方法に係り、又照射部位で光強度が変化する光強度分布となる様に前記レーザ光線を照射し、検出光強度が異なる様に所要数の検出領域を設定した表面検査方法に係り、又検出領域間で検出光強度が異なる様に光学フィルタで光量調整する表面検査方法に係るものである。   The present invention provides a surface inspection method in which a laser beam is irradiated and scanned on an inspection surface to detect foreign matter or the like on the inspection surface, and the laser beam irradiation site is divided into a required number of detection regions, In order to change the detected light intensity, the receiver receives the light and obtains the required number of output signals with different detected light intensities for the examination site. Of the required number of output signals, the output signal indicates the maximum value that is not saturated. Is selected as the surface inspection signal, and the laser beam is irradiated so that the light intensity distribution changes at the irradiated part, and the required number of detection areas are set so that the detected light intensity is different. In addition, the present invention relates to a surface inspection method in which the amount of light is adjusted by an optical filter so that the detection light intensity differs between detection regions.

又本発明は、検査面にレーザ光線を照射する検査光照射系と、散乱光を検出する散乱光受光系と、該散乱光受光系の散乱光検出出力に基づき異物を検出する為の演算処理を行う演算装置とを具備し、前記散乱光受光系は前記レーザ光線の照射部位を所要数の検出領域に区分し、各検出領域間で受光する散乱光光強度が異なる様に検出光を検出し、前記演算装置は同一部位について得られる複数の散乱光検出出力の内、飽和していない最大値の散乱光検出出力を表面検査信号として選択し、該表面検査信号に基づき異物等を検査する様構成した表面検査装置に係り、又前記検査光照射系は、照射部位で光強度が変化する光強度分布となる様に前記レーザ光線を照射し、検査領域は検出光強度が異なる様に設定された表面検査装置に係り、更に又前記散乱光受光系は、検査領域間で検出光強度が異なる様に、光学フィルタが設けられた表面検査装置に係るものである。   The present invention also provides an inspection light irradiation system for irradiating the inspection surface with a laser beam, a scattered light receiving system for detecting scattered light, and an arithmetic processing for detecting foreign matter based on the scattered light detection output of the scattered light receiving system. And the scattered light receiving system divides the laser beam irradiation part into a required number of detection areas, and detects the detection light so that the intensity of the scattered light received varies between the detection areas. Then, the arithmetic unit selects the scattered light detection output of the maximum value that is not saturated among the plurality of scattered light detection outputs obtained for the same part as the surface inspection signal, and inspects foreign matter or the like based on the surface inspection signal. The inspection light irradiation system irradiates the laser beam so as to obtain a light intensity distribution in which the light intensity changes at the irradiated part, and the inspection region is set so that the detected light intensity is different. Related surface inspection equipment, and also Serial scattered light receiving system, the detected light intensity is different as between the examination region, but according to the surface inspection apparatus in which the optical filter is provided.

本発明によれば、検査面にレーザ光線を照射、走査して前記検査面の異物等を検出する表面検査方法に於いて、前記レーザ光線の照射部位を所要数の検出領域に分け、各検出領域間で検出光強度が変化する様に受光器で受光し、検査部位について検出光強度の異なる所要数の出力信号を取得し、所要数の出力信号の内、飽和していない最大値を示す出力信号を表面検査信号として選択するので、従来と機器構成を変更することなく、簡単な構成で、散乱光検出についてダイナミックレンジを拡大でき、而もS/N比の大きい散乱光検出を可能とする。   According to the present invention, in the surface inspection method for detecting a foreign matter or the like on the inspection surface by irradiating and scanning the inspection surface with a laser beam, the laser beam irradiation site is divided into a required number of detection regions, and each detection is performed. The receiver receives light so that the detected light intensity varies between regions, and obtains the required number of output signals with different detected light intensities for the examination site, and shows the maximum value that is not saturated among the required number of output signals. Since the output signal is selected as the surface inspection signal, the dynamic range of the scattered light detection can be expanded with a simple configuration without changing the configuration of the device as before, and the scattered light detection with a large S / N ratio is possible. To do.

更に又本発明によれば、検査面にレーザ光線を照射する検査光照射系と、散乱光を検出する散乱光受光系と、該散乱光受光系の散乱光検出出力に基づき異物を検出する為の演算処理を行う演算装置とを具備し、前記散乱光受光系は前記レーザ光線の照射部位を所要数の検出領域に区分し、各検出領域間で受光する散乱光光強度が異なる様に検出光を検出し、前記演算装置は同一部位について得られる複数の散乱光検出出力の内、飽和していない最大値の散乱光検出出力を表面検査信号として選択し、該表面検査信号に基づき異物等を検査する様構成したので、従来と機器構成を変更することなく、簡単な構成で、散乱光検出についてダイナミックレンジを拡大でき、而もS/N比の大きい散乱光検出を可能とするという優れた効果を発揮する。   Furthermore, according to the present invention, the inspection light irradiation system for irradiating the inspection surface with a laser beam, the scattered light receiving system for detecting scattered light, and the detection of foreign matter based on the scattered light detection output of the scattered light receiving system. And the scattered light receiving system divides the laser beam irradiation area into a required number of detection areas, and detects the scattered light intensity received between the detection areas. The light is detected, and the arithmetic unit selects a scattered light detection output of the maximum value that is not saturated among a plurality of scattered light detection outputs obtained for the same part as a surface inspection signal, and a foreign object or the like based on the surface inspection signal. Therefore, it is possible to expand the dynamic range of scattered light detection with a simple configuration without changing the device configuration from the conventional one, and to enable detection of scattered light with a large S / N ratio. Show the effect

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1、図2に於いて本発明に係る表面検査方法の第1の実施の形態について説明する。   A first embodiment of a surface inspection method according to the present invention will be described with reference to FIGS.

尚、本発明に係る表面検査方法が実施される表面検査装置の基本的構成は、図8と同様である。又、図8に於いて側方散乱光検出器9と前方散乱光検出器11による表面検査は同様にして行われるので、以下は図8を参照し、側方散乱光検出器9による表面検査が行われた場合を説明する。   The basic configuration of the surface inspection apparatus for performing the surface inspection method according to the present invention is the same as that shown in FIG. In FIG. 8, the surface inspection by the side scattered light detector 9 and the forward scattered light detector 11 is performed in the same manner. Therefore, the surface inspection by the side scattered light detector 9 will be described below with reference to FIG. A case where the above is performed will be described.

検査光照射系5から発せられるレーザ光線7が検査面4を照射する光束断面は、図1に示される様に、長楕円形状とし、長径がビームの走査方向に対して直交、即ちシリコンウェーハ1の回転方向Rと直交する様になっている。前記側方散乱光検出器9の受光領域は、長径方向(ビームの送り方向Q)に所要数、図示でCH1 ,CH2 ,CH3 ,CH4 の4検出領域が設定され、各検出領域毎に独立して受光が可能となっている。又、各検出領域は隣接していると共に各検出領域間のピッチは、前記シリコンウェーハ1が1回転した場合にビームが半径方向に移動する距離(送りピッチp)と等しくなっている。   As shown in FIG. 1, the cross section of the light beam that the laser beam 7 emitted from the inspection light irradiation system 5 irradiates the inspection surface 4 has an elliptical shape, and the long diameter is orthogonal to the beam scanning direction, that is, the silicon wafer 1. The rotation direction R is perpendicular to the rotation direction R. The required number of light receiving areas of the side scattered light detector 9 is set in the major axis direction (beam feeding direction Q), and four detection areas of CH1, CH2, CH3, and CH4 in the figure are set, and each detection area is independent. Light reception is possible. The detection areas are adjacent to each other, and the pitch between the detection areas is equal to the distance (feed pitch p) that the beam moves in the radial direction when the silicon wafer 1 rotates once.

又、前記レーザ光線7が照射する点での照射光強度分布は、例えば、ビームの送り方向の先頭側にピークを有し、後方に向って漸次減少する分布を有している。   Further, the irradiation light intensity distribution at the point irradiated with the laser beam 7 has, for example, a distribution having a peak at the head side in the beam feeding direction and gradually decreasing toward the rear.

従って、前記レーザ光線7を照射した場合の同一反射条件では、前記各検出領域CH1 ,CH2 ,CH3 ,CH4 に対応する検出光強度S1 ,S2 ,S3 ,S4 はS1 >S2 >S3 >S4 となっており、又検出光強度の比をS1 :S2 :S3 :S4 =α:β:γ:δとすると、各検出光強度S1 ,S2 ,S3 ,S4 と信号出力レベルとの関係は、図2に示される様になる。   Therefore, under the same reflection conditions when the laser beam 7 is irradiated, the detected light intensities S1, S2, S3, S4 corresponding to the respective detection regions CH1, CH2, CH3, CH4 are S1> S2> S3> S4. If the ratio of detected light intensities is S1: S2: S3: S4 = α: β: γ: δ, the relationship between the detected light intensities S1, S2, S3, S4 and the signal output level is shown in FIG. As shown in

尚、図中、縦軸Iは検出領域CH1 で検出するとした場合の検出光強度を示し、Lは検出光強度Iと出力信号レベルSの比例限度(測定限度)を示している。   In the figure, the vertical axis I indicates the detected light intensity when detection is performed in the detection region CH1, and L indicates the proportional limit (measurement limit) between the detected light intensity I and the output signal level S.

表面検査は、図1で示される前記レーザ光線7を前記検査面4に照射し、前記シリコンウェーハ1を所定の定速で回転し、更に該シリコンウェーハ1を半径方向に所定の定速度で移動させる。該シリコンウェーハ1の移動速度は前述した様に、前記レーザ光線7が送りピッチpで半径方向に送られる様にする。   The surface inspection is performed by irradiating the inspection surface 4 with the laser beam 7 shown in FIG. 1, rotating the silicon wafer 1 at a predetermined constant speed, and further moving the silicon wafer 1 at a predetermined constant speed in the radial direction. Let As described above, the moving speed of the silicon wafer 1 is set so that the laser beam 7 is sent in the radial direction at the feed pitch p.

前記レーザ光線7を前記検査面4全面に亘って走査すると、前記検出領域CH1 ,CH2 ,CH3 ,CH4 それぞれが前記検査面4全面を走査することになる。即ち、該検査面4は前記検出領域CH1 ,CH2 ,CH3 ,CH4 によって4回走査されることとなる。   When the laser beam 7 is scanned over the entire inspection surface 4, each of the detection regions CH1, CH2, CH3, and CH4 scans the entire inspection surface 4. That is, the inspection surface 4 is scanned four times by the detection areas CH1, CH2, CH3, and CH4.

又、前記シリコンウェーハ1が定速で回転され、該シリコンウェーハ1が定速で移動されると、送りピッチpの移動時間はΔtと一定となり、更にΔt後は隣接する後方側の検出領域が先頭側の検出領域に置換わった状態となる。例えば、図1の状態を基準として、Δt後はCH2 がCH1 の位置に移動し、2Δt後はCH3 がCH1 の位置に移動し、3Δt後はCH4 がCH1 の位置に移動することになる。従って、CH1 での受光信号、Δt後のCH2 の受光信号、2Δt後のCH3 の受光信号、3Δt後のCH4 の受光信号は前記検査面4上の同じ部位についての受光信号となり、又出力信号の比はS1 :S2 :S3 :S4 =α:β:γ:δとなっている。   When the silicon wafer 1 is rotated at a constant speed and the silicon wafer 1 is moved at a constant speed, the moving time of the feed pitch p becomes constant at Δt. The state is replaced with the detection area on the head side. For example, with reference to the state of FIG. 1, CH2 moves to the position of CH1 after Δt, CH3 moves to the position of CH1 after 2Δt, and CH4 moves to the position of CH1 after 3Δt. Therefore, the light reception signal at CH1, the light reception signal at CH2 after Δt, the light reception signal at CH3 after 2Δt, and the light reception signal at CH4 after 3Δt are the light reception signals for the same part on the inspection surface 4, and the output signal The ratio is S1: S2: S3: S4 = α: β: γ: δ.

従って、同一部位について、4種の出力信号が得られ、それぞれS1 ,S2 ,S3 ,S4 が出力され、各出力信号はS1 =αI、S2 =βI、S3 =γI、S4 =δIで表される線上に位置され、出力信号S1 ,S2 ,S3 ,S4 の内1つが、表面検査信号として選択される。 Table Therefore, for the same site, obtained four output signals are respectively S1, S2, S3, S4 is output, the output signal S1 = αI, S2 = βI, in S3 = γ I, S4 = δ I One of the output signals S1, S2, S3, S4 is selected as the surface inspection signal.

選択される信号は、比例限度(測定限度)Lを超えていない、最も大きな値を示す出力信号が選択される。例えば、出力信号S1 ,S2 が比例限度を超え、出力信号S3 が比例限度内にある場合は、出力信号S3 が表面検査信号として選択される。   As the selected signal, the output signal showing the largest value that does not exceed the proportional limit (measurement limit) L is selected. For example, if the output signals S1 and S2 exceed the proportional limit and the output signal S3 is within the proportional limit, the output signal S3 is selected as the surface inspection signal.

従って、得られる出力信号は鋸歯の曲線で表されることとなる。 Therefore, the output signal obtained becomes that represented by the sawtooth curve.

又、S1 =αI、S2 =βI、S3 =γI、S4 =δIに対して、傷の大きさ、異物の大きさとの関係を予めデータとして取っておけば、選択された出力信号Sと、信号の出力値で直ちに傷、異物についてのデータが得られる。 Further, S1 = αI, S2 = βI , relative S3 = γ I, S4 = δ I, wound size, if taking the relationship between the size of the foreign object in advance as data, and an output signal S selected The data on the scratches and foreign matters can be obtained immediately by the output value of the signal.

而して、前記検査面4を前記検出領域CH1 ,CH2 ,CH3 ,CH4 で全面走査した結果につき、前記検出領域CH1 ,及びΔt後のCH2 ,2Δt後のCH3 ,3Δt後のCH4 それぞれの検出結果を組合わせて取得し、前記検査面4の全面の検査部位について、データの選択を行えば、0〜I4 の検出光強度の範囲でも表面検査を実施でき、粗面等直流成分の大きな検査面についての表面検査が実施できる。   Thus, with respect to the result of scanning the entire inspection surface 4 with the detection regions CH1, CH2, CH3, CH4, the detection results of the detection region CH1, CH2 after Δt, CH3 after 2Δt, and CH4 after 3Δt, respectively. If the data is selected for the entire inspection area of the inspection surface 4, the surface inspection can be carried out even in the range of the detected light intensity of 0 to I4, and the inspection surface having a large DC component such as a rough surface is obtained. Surface inspection can be performed.

而して、本発明では、測定範囲(ダイナミックレンジ)が検出光強度I1 〜I4 迄拡大する。又、表面検査装置としても従来と同様の構成で特殊な増幅器を用いる必要がない。又、測定範囲の拡大に伴い、低レベルのノイズ信号が誇張されることがなく、0〜I4 の検出光強度の範囲で高いS/N比が得られる。   Thus, in the present invention, the measurement range (dynamic range) is expanded to the detected light intensities I1 to I4. Moreover, it is not necessary to use a special amplifier with the same configuration as the conventional surface inspection apparatus. Further, as the measurement range is expanded, low level noise signals are not exaggerated, and a high S / N ratio can be obtained in the range of detected light intensity of 0 to I4.

図1、図3を参照して第2の実施の形態について説明する。   A second embodiment will be described with reference to FIGS.

尚、レーザ光線7と検出領域CH1 ,CH2 ,CH3 ,CH4 との関係、検出光強度の比をS1 :S2 :S3 :S4 =α:β:γ:δ、縦軸Iは検出領域CH1 で検出するとした場合の検出光強度、Lは検出光強度Iと出力信号レベルSの比例限度(測定限度)、検査条件等については、上記第1の実施の形態と同様である。   The relationship between the laser beam 7 and the detection regions CH1, CH2, CH3, CH4, and the ratio of the detected light intensity are S1: S2: S3: S4 = α: β: γ: δ, and the vertical axis I is detected in the detection region CH1. In this case, the detected light intensity, L, is the same as the first embodiment with respect to the proportional limit (measurement limit) of the detected light intensity I and the output signal level S, the inspection conditions, and the like.

該第2の実施の形態では、検出光強度の増大に対応して信号出力レベルが増大する様にしたものである。   In the second embodiment, the signal output level is increased in response to an increase in detected light intensity.

検出領域CH1 で受光した検出光の出力信号とS1 が比例限度(測定限度)Lを超えていた場合は、検出領域CH2 で受光した検出光の出力信号S2 が選択され、検出領域CH2 で受光した検出光の出力信号とS2 が、比例限度(測定限度)Lを超えていた場合は、検出領域CH3 で受光した検出光の出力信号S3 が選択され、検出領域CH3 で受光した検出光の出力信号S3 が、比例限度(測定限度)Lを超えていた場合は、検出領域CH4 で受光した検出光の出力信号S4 が選択される。   When the output signal of the detection light received in the detection region CH1 and S1 exceed the proportional limit (measurement limit) L, the output signal S2 of the detection light received in the detection region CH2 is selected and received in the detection region CH2. If the detection light output signal and S2 exceed the proportional limit (measurement limit) L, the detection light output signal S3 received in the detection region CH3 is selected, and the detection light output signal received in the detection region CH3. When S3 exceeds the proportional limit (measurement limit) L, the output signal S4 of the detection light received in the detection region CH4 is selected.

又、検出光強度の増大に対応して信号出力レベルが増大する様にする為、出力信号S2 にはS1 が比例限度(測定限度)Lに達した時のS2 との偏差ΔS1 が加算され、出力信号S2 ′とされる。   In order to increase the signal output level corresponding to the increase in the detected light intensity, the output signal S2 is added with a deviation ΔS1 from S2 when S1 reaches the proportional limit (measurement limit) L, The output signal is S2 '.

又出力信号S3 が選択される場合は、S2 が比例限度(測定限度)Lに達した時のS3 との偏差ΔS2 が更に加算され、出力信号S3 ′とされる。   When the output signal S3 is selected, the deviation .DELTA.S2 from S3 when S2 reaches the proportional limit (measurement limit) L is further added to obtain an output signal S3 '.

同様にして、出力信号S4 が選択される場合は、S3 が比例限度(測定限度)Lに達した時のS4 との偏差ΔS3 が更に加算され、出力信号S4 ′とされる。   Similarly, when the output signal S4 is selected, the deviation .DELTA.S3 from S4 when S3 reaches the proportional limit (measurement limit) L is further added to obtain the output signal S4 '.

第2の実施の形態では、検出光強度の増大に対応して信号出力レベルが増大するので、信号出力レベルの大きさにより、傷の大きさ、異物の大きさを判別可能となる。   In the second embodiment, the signal output level increases in response to the increase in the detection light intensity, so that the size of the flaw and the size of the foreign matter can be determined based on the size of the signal output level.

又、第2の実施の形態でも、見かけ上、測定範囲(ダイナミックレンジ)が検出光強度I1 〜I4 迄拡大する。又、表面検査装置としても従来と同様の構成で特殊な増幅器を用いる必要がない。又、低レベルでのノイズ信号が誇張されることもない。   Also in the second embodiment, the measurement range (dynamic range) is apparently expanded to the detected light intensities I1 to I4. Moreover, it is not necessary to use a special amplifier with the same configuration as the conventional surface inspection apparatus. Also, the noise signal at the low level is not exaggerated.

次に、図4はレーザ光線7の照射光強度分布の変形例を示すものである。   Next, FIG. 4 shows a modification of the irradiation light intensity distribution of the laser beam 7.

該照射光強度分布では略中央にピークを有するガウシアン分布となっている場合である。本例に於いても、前記レーザ光線7の照射範囲中に検出領域CH1 ,CH2 ,CH3 ,CH4 を設定し、各検出領域で受光した場合の検出光強度について検出光強度の比を予め求めておく。上記実施の形態と同様に検査を実施すれば、同一部位について4の検査信号が得られ、選択される信号は、比例限度(測定限度)Lを超えていない、最も大きな値を示す出力信号が選択される。   This is a case where the irradiation light intensity distribution is a Gaussian distribution having a peak at substantially the center. Also in this example, detection areas CH1, CH2, CH3, and CH4 are set in the irradiation range of the laser beam 7, and the ratio of the detection light intensity to the detection light intensity when light is received in each detection area is obtained in advance. deep. If the inspection is performed in the same manner as in the above embodiment, four inspection signals are obtained for the same part, and the selected signal does not exceed the proportional limit (measurement limit) L, and the output signal indicating the largest value is Selected.

図5は、他の異なる照射光強度分布を有するレーザ光線7を示している。   FIG. 5 shows a laser beam 7 having another different irradiation light intensity distribution.

図5に示す照射光強度分布では、ピークがなく台形状の分布となっている。この場合、検出領域CH1 ,CH2 ,CH3 ,CH4 を設定しても、各検出領域間で受光強度差が生じないので、所要の受光強度差が生じる様に、各検出領域CH1 ,CH2 ,CH3 ,CH4 に対応する光路中に光学的なフィルタを設ける。或は、電気的に出力差が生じる様に検出領域CH1 ,CH2 ,CH3 ,CH4 からの信号の増幅率を異ならせる等する。   The irradiation light intensity distribution shown in FIG. 5 has a trapezoidal distribution without a peak. In this case, even if the detection areas CH1, CH2, CH3, and CH4 are set, no difference in received light intensity occurs between the detection areas, so that each detection area CH1, CH2, CH3, An optical filter is provided in the optical path corresponding to CH4. Alternatively, the amplification factors of the signals from the detection regions CH1, CH2, CH3, and CH4 are made different so that an output difference is electrically generated.

検出領域CH1 ,CH2 ,CH3 ,CH4 からの出力信号に所要の比で出力差を設けた場合、上記したと同様に検査が可能となる。   When an output difference is provided at a required ratio in the output signals from the detection regions CH1, CH2, CH3, and CH4, the inspection can be performed in the same manner as described above.

図6は本発明に係る表面検査装置の信号処理部15の概略構成図を示している。尚、表面検査装置の主たる構成は図8に示した構成と同様である。   FIG. 6 shows a schematic configuration diagram of the signal processing unit 15 of the surface inspection apparatus according to the present invention. The main configuration of the surface inspection apparatus is the same as that shown in FIG.

図6中、16は側方散乱光検出器9に用いられている受光器16を示している。   In FIG. 6, reference numeral 16 denotes a light receiver 16 used for the side scattered light detector 9.

該受光器16はエリアCCDの様な、受光素子の集合体であり、受光素子それぞれが個別に受光信号を発する様になっている。   The light receiver 16 is an aggregate of light receiving elements such as an area CCD, and each light receiving element individually emits a light receiving signal.

前記受光器16の受光面がビーム送り方向に沿って所要等分され、各分体がそれぞれ検出領域CH1 〜CHn を形成し、各検出領域CH1 〜CHn は、それぞれ独立して検出光強度に対応した出力信号S1 〜Sn (図示せず)を出力する。   The light receiving surface of the light receiver 16 is equally divided along the beam feeding direction, and each segment forms detection regions CH1 to CHn. The detection regions CH1 to CHn independently correspond to the detection light intensity. Output signals S1 to Sn (not shown) are output.

各出力信号S1 〜Sn は増幅器AM1 〜AMn 、A/D変換器AD1 〜ADn 、記憶器M1 〜Mn を介して演算装置17に入力される。又該演算装置17にはシリコンウェーハ1の回転位置(基板チャック2の回転位置)を検出する回転位置検出器18からの信号と、前記シリコンウェーハ1の半径方向の位置(基板チャック2送り方向の位置)を検出する送り位置検出器19からの信号、クロック信号発生器21からのクロック信号が入力される。   The output signals S1 to Sn are input to the arithmetic unit 17 via amplifiers AM1 to AMn, A / D converters AD1 to ADn, and memories M1 to Mn. The arithmetic unit 17 also includes a signal from a rotational position detector 18 for detecting the rotational position of the silicon wafer 1 (rotational position of the substrate chuck 2) and the radial position of the silicon wafer 1 (in the direction of the substrate chuck 2 feed direction). A signal from the feed position detector 19 for detecting the position) and a clock signal from the clock signal generator 21 are input.

又前記演算装置17には半導体記憶装置、HDD等の記憶装置22、表示装置23が接続され、前記記憶装置22には前記出力信号S1 〜Sn を基に表面検査を実行するプログラム、検査結果をイメージ化して前記表示装置23に表示するプログラム等のプログラムが格納され、又出力信号と傷、異物との対比判断の為のデータ、或は検査結果等のデータが格納される。尚、前記記憶器M1 〜Mn は前記記憶装置22の一部が割当てられてもよい。   The arithmetic device 17 is connected to a semiconductor memory device, a memory device 22 such as an HDD, and a display device 23. The memory device 22 receives a program for executing a surface inspection based on the output signals S1 to Sn and an inspection result. A program such as a program that is imaged and displayed on the display device 23 is stored, and data for comparison between the output signal and scratches and foreign matter, or data such as inspection results are stored. A part of the storage device 22 may be allocated to the storage devices M1 to Mn.

レーザ光線7を照射し、前記シリコンウェーハ1を回転しつつ、定速度で送掛けられ、前記レーザ光線7により検査面4全面が走査される。   The laser beam 7 is irradiated, and the silicon wafer 1 is rotated while being fed at a constant speed, and the entire inspection surface 4 is scanned by the laser beam 7.

前記受光器16は前記レーザ光線7の照射部位からの散乱光を受光する。受光は前記検出領域CH1 〜CHn に分割されて行われ、検出光強度に対応した出力信号S1 〜Sn を出力する。又、検出光強度は前記検出領域CH1 〜CHn 毎に異なる様に設定される。検出光強度を異ならせる手段としては、上記した様に照射光強度分布を変化させる。或は、光学的にフィルタ等を使用して減光する。或は照射光強度分布を変化させ、更に光学的にフィルタ等を用いて前記各検出領域CH1 〜CHn の出力信号が所要の比率になる様に設定する。   The light receiver 16 receives scattered light from the irradiated portion of the laser beam 7. The received light is divided into the detection regions CH1 to CHn, and output signals S1 to Sn corresponding to the detected light intensity are output. The detection light intensity is set to be different for each of the detection regions CH1 to CHn. As means for varying the detection light intensity, the irradiation light intensity distribution is changed as described above. Alternatively, the light is optically reduced using a filter or the like. Alternatively, the irradiation light intensity distribution is changed, and the output signals of the detection regions CH1 to CHn are set to a required ratio by optically using a filter or the like.

前記検出領域CH1 〜CHn は前記検査面4全面をそれぞれ走査し、前記記憶器M1 〜Mn には前記各検出領域CH1 〜CHn からのそれぞれの出力信号S1 〜Sn が、前記回転位置検出器18からの回転角度、前記送り位置検出器19からの送り位置に関連付けて記憶される。従って、例えば検出領域CH1 の全ての信号は、前記検査面4上の位置が特定される。   The detection areas CH1 to CHn respectively scan the entire inspection surface 4, and the storage devices M1 to Mn receive output signals S1 to Sn from the detection areas CH1 to CHn from the rotational position detector 18, respectively. , And the rotation position is stored in association with the feed position from the feed position detector 19. Therefore, for example, the position on the inspection surface 4 is specified for all signals in the detection region CH1.

前記演算装置17は前記検査面4の任意の位置pについて、該位置pに対応する出力信号Spを出力信号S1 〜Sn から抽出すると、n個の信号群が得られる。n個の信号群から、検査信号として1つが選択される。選択される信号は、図2に於いて説明した様に、比例限度Lを超えていない最大の値を有する出力信号が選択される。尚、選択した出力信号は前記記憶器M1 〜Mn のどこに記憶されたものであったかで特定され、従って、例えば選択した信号が図2中、S2 =βIで表される1点であることが判断され、予め取得していたS2 =βIと傷の大きさ、異物の大きさとの関係のデータから、検出した出力信号に基づき傷、異物の判断がなされ、検査データとして前記記憶装置22に格納される。   When the arithmetic unit 17 extracts the output signal Sp corresponding to the arbitrary position p on the inspection surface 4 from the output signals S1 to Sn, n signal groups are obtained. One test signal is selected from the n signal groups. As described with reference to FIG. 2, the output signal having the maximum value not exceeding the proportional limit L is selected as the selected signal. It should be noted that the selected output signal is specified where it was stored in the memories M1 to Mn. Therefore, for example, it is determined that the selected signal is one point represented by S2 = .beta.I in FIG. Based on the detected output signal, scratches and foreign matter are determined based on the previously obtained data on the relationship between S2 = βI, the size of the scratch, and the size of the foreign matter, and are stored in the storage device 22 as inspection data. The

前記検査面4の全ての点について、上記データの抽出、選択が実行されることで、前記検査面4全面に亘る検査データが取得できる。全ての検査データは前記記憶装置22に格納され、表示プログラムによって検査結果がイメージ化されて前記表示装置23に表示される。   By extracting and selecting the above data for all points on the inspection surface 4, inspection data over the entire inspection surface 4 can be acquired. All the inspection data is stored in the storage device 22, and the inspection result is imaged by the display program and displayed on the display device 23.

尚、検査データの取得は、図2を参照すると、検出光強度が0〜In迄となり、見かけ上大幅に拡大されたダイナミックレンジでの表面検査となる。   In addition, referring to FIG. 2, the acquisition of inspection data is a surface inspection with a dynamic range that is apparently greatly expanded from 0 to In detected light intensity.

又、出力信号S1 〜Sn の関連付けをする場合、送り速度は検出領域CHm ,CHm+1 間でΔtであるので、前記記憶器M1 〜Mn に記録される出力信号S1 〜Sn を時間と関連付け、検出領域CHm ,CHm+1 間でΔtずつ時間遅れのデータを抽出すれば、前記検査面4の任意の位置pについて、該位置pに対応するn個の出力信号Sp群が得られる。   When the output signals S1 to Sn are associated, the feed rate is Δt between the detection areas CHm and CHm + 1. Therefore, the output signals S1 to Sn recorded in the memories M1 to Mn are associated with time. If data with a time delay of Δt is extracted between the detection regions CHm and CHm + 1, n output signal Sp groups corresponding to the position p can be obtained for an arbitrary position p on the inspection surface 4.

出力信号群から1つの信号を選択することについては前述したと同様であるので説明を省略する。   Since selecting one signal from the output signal group is the same as described above, the description thereof is omitted.

尚、上記実施の形態では、検査領域の配置を走査方向に直交する方向に並ぶ様にしたが、走査方向と一致する方向に配置してもよい。又、複数の部位に光量の異なるレーザ光線を分離して照射し、各部位での散乱光を個別に検出する様にしてもよい。この場合も、各部位で検出して得られた出力信号が、各部位間で関連付けが行われ、同一部位で光強度の異なる複数の出力信号が取得できればよい。   In the above embodiment, the inspection areas are arranged in a direction orthogonal to the scanning direction, but may be arranged in a direction that coincides with the scanning direction. Alternatively, a plurality of portions may be irradiated with laser beams having different light amounts, and scattered light at each portion may be individually detected. In this case as well, it is only necessary that output signals obtained by detection at each part are associated with each other and a plurality of output signals having different light intensities can be obtained at the same part.

本発明の第1の実施の形態に於けるレーザ光線の照射範囲と検出領域、照射光強度分布と検出領域との関係を示す説明図である。It is explanatory drawing which shows the relationship between the irradiation range of a laser beam and a detection area | region in the 1st Embodiment of this invention, and irradiation light intensity distribution and a detection area | region. 第1の実施の形態に於ける各検出領域毎の検出光強度と出力信号レベルとの関係を示す図である。It is a figure which shows the relationship between the detection light intensity | strength and output signal level for each detection area | region in 1st Embodiment. 第2の実施の形態に於ける各検出領域毎の検出光強度と出力信号レベルとの関係を示す図である。It is a figure which shows the relationship between the detection light intensity | strength and output signal level for each detection area | region in 2nd Embodiment. 異なる照射光強度分布に於けるレーザ光線の照射範囲と検出領域、照射光強度分布と検出領域との関係を示す説明図である。It is explanatory drawing which shows the relationship between the irradiation range and detection area | region of a laser beam in different irradiation light intensity distribution, and irradiation light intensity distribution and a detection area. 更に異なる照射光強度分布に於けるレーザ光線の照射範囲と検出領域、照射光強度分布と検出領域との関係を示す説明図である。Furthermore, it is explanatory drawing which shows the relationship between the irradiation range and detection area | region of a laser beam in different irradiation light intensity distribution, and irradiation light intensity distribution and a detection area | region. 本発明の実施の形態に係る表面検査装置に於ける信号処理部についての概略ブロック図である。It is a schematic block diagram about the signal processing part in the surface inspection apparatus which concerns on embodiment of this invention. 本発明で使用される受光器の一例を示す図である。It is a figure which shows an example of the light receiver used by this invention. 表面検査装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of a surface inspection apparatus. 従来の散乱光検出器からの出力信号の一例を示す図である。It is a figure which shows an example of the output signal from the conventional scattered light detector. 従来の検出光強度と出力信号レベルとの関係を示す図である。It is a figure which shows the relationship between the conventional detection light intensity and an output signal level.

符号の説明Explanation of symbols

1 シリコンウェーハ
2 基板チャック
3 モータ
4 検査面
5 検査光照射系
7 レーザ光線
9 側方散乱光検出器
11 前方散乱光検出器
12 散乱光
15 信号処理部
16 受光器
17 演算装置
18 回転位置検出器
19 送り位置検出器
21 クロック信号発生器
22 記憶装置
23 表示装置
DESCRIPTION OF SYMBOLS 1 Silicon wafer 2 Substrate chuck 3 Motor 4 Inspection surface 5 Inspection light irradiation system 7 Laser beam 9 Side scattered light detector 11 Forward scattered light detector 12 Scattered light 15 Signal processor 16 Light receiver 17 Arithmetic device 18 Rotation position detector 19 Feed position detector 21 Clock signal generator 22 Storage device 23 Display device

Claims (6)

検査面にレーザ光線を照射、走査して前記検査面の異物等を検出する表面検査方法に於いて、前記レーザ光線の照射部位を所要数の検出領域に分け、各検出領域間で検出光強度が変化する様に受光器で受光し、検査部位について検出光強度の異なる所要数の出力信号を取得し、所要数の出力信号の内、飽和していない最大値を示す出力信号を表面検査信号として選択することを特徴とする表面検査方法。   In a surface inspection method in which a laser beam is irradiated and scanned on an inspection surface to detect foreign matter or the like on the inspection surface, the irradiated portion of the laser beam is divided into a required number of detection regions, and the detected light intensity between the detection regions The required number of output signals with different detection light intensities are acquired for the inspection site, and the output signal indicating the maximum value that is not saturated among the required number of output signals is obtained as a surface inspection signal. Surface inspection method characterized by selecting as 照射部位で光強度が変化する光強度分布となる様に前記レーザ光線を照射し、検出光強度が異なる様に所要数の検出領域を設定した請求項1の表面検査方法。   The surface inspection method according to claim 1, wherein the laser beam is irradiated so as to obtain a light intensity distribution in which the light intensity varies at the irradiation site, and a required number of detection regions are set so that the detected light intensity is different. 検出領域間で検出光強度が異なる様に光学フィルタで光量調整する請求項1の表面検査方法。   The surface inspection method according to claim 1, wherein the amount of light is adjusted by an optical filter so that the detection light intensity differs between detection regions. 検査面にレーザ光線を照射する検査光照射系と、散乱光を検出する散乱光受光系と、該散乱光受光系の散乱光検出出力に基づき異物を検出する為の演算処理を行う演算装置とを具備し、前記散乱光受光系は前記レーザ光線の照射部位を所要数の検出領域に区分し、各検出領域間で受光する散乱光光強度が異なる様に検出光を検出し、前記演算装置は同一部位について得られる複数の散乱光検出出力の内、飽和していない最大値の散乱光検出出力を表面検査信号として選択し、該表面検査信号に基づき異物等を検査する様構成したことを特徴とする表面検査装置。   An inspection light irradiation system for irradiating the inspection surface with a laser beam, a scattered light receiving system for detecting scattered light, and an arithmetic device for performing arithmetic processing for detecting foreign matter based on the scattered light detection output of the scattered light receiving system; The scattered light receiving system divides the laser beam irradiation site into a required number of detection areas, detects the detection light so that the intensity of the scattered light received between the detection areas is different, and the arithmetic unit Is selected as the surface inspection signal from the scattered light detection output that is not saturated among the plurality of scattered light detection outputs obtained for the same part, and configured to inspect foreign matter based on the surface inspection signal. A featured surface inspection device. 前記検査光照射系は、照射部位で光強度が変化する光強度分布となる様に前記レーザ光線を照射し、検査領域は検出光強度が異なる様に設定された請求項4の表面検査装置。   The surface inspection apparatus according to claim 4, wherein the inspection light irradiation system irradiates the laser beam so as to obtain a light intensity distribution in which the light intensity changes at an irradiation site, and the inspection region is set to have a different detection light intensity. 前記散乱光受光系は、検査領域間で検出光強度が異なる様に、光学フィルタが設けられた請求項4の表面検査装置。   The surface inspection apparatus according to claim 4, wherein the scattered light receiving system is provided with an optical filter so that the detection light intensity differs between inspection regions.
JP2006100144A 2006-03-31 2006-03-31 Surface inspection method and surface inspection apparatus Expired - Fee Related JP4897334B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006100144A JP4897334B2 (en) 2006-03-31 2006-03-31 Surface inspection method and surface inspection apparatus
US11/725,849 US7477373B2 (en) 2006-03-31 2007-03-20 Surface inspection method and surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100144A JP4897334B2 (en) 2006-03-31 2006-03-31 Surface inspection method and surface inspection apparatus

Publications (3)

Publication Number Publication Date
JP2007273879A JP2007273879A (en) 2007-10-18
JP2007273879A5 JP2007273879A5 (en) 2009-05-14
JP4897334B2 true JP4897334B2 (en) 2012-03-14

Family

ID=38558389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100144A Expired - Fee Related JP4897334B2 (en) 2006-03-31 2006-03-31 Surface inspection method and surface inspection apparatus

Country Status (2)

Country Link
US (1) US7477373B2 (en)
JP (1) JP4897334B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107812B2 (en) * 2005-09-23 2012-01-31 Honeywell International Inc. Dynamic range measurement and calculation of optical keyless entry sensor
US9637147B2 (en) 2009-03-17 2017-05-02 General Electronic Company Data communication system and method
US9379775B2 (en) 2009-03-17 2016-06-28 General Electric Company Data communication system and method
US8935022B2 (en) 2009-03-17 2015-01-13 General Electric Company Data communication system and method
US7826049B2 (en) * 2008-02-11 2010-11-02 Applied Materials South East Asia Pte. Ltd. Inspection tools supporting multiple operating states for multiple detector arrangements
JP2009236791A (en) 2008-03-28 2009-10-15 Hitachi High-Technologies Corp Defect inspecting method and defect inspecting device
US7973921B2 (en) * 2008-06-25 2011-07-05 Applied Materials South East Asia Pte Ltd. Dynamic illumination in optical inspection systems
US10144440B2 (en) 2010-11-17 2018-12-04 General Electric Company Methods and systems for data communications
US9513630B2 (en) 2010-11-17 2016-12-06 General Electric Company Methods and systems for data communications
JP6441252B2 (en) * 2016-03-16 2018-12-19 東芝メモリ株式会社 Thermal laser stimulation apparatus, thermal laser stimulation method, and recording medium

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468120A (en) * 1981-02-04 1984-08-28 Nippon Kogaku K.K. Foreign substance inspecting apparatus
US4922308A (en) * 1986-06-27 1990-05-01 Hitachi, Ltd. Method of and apparatus for detecting foreign substance
US6411377B1 (en) * 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
US6104481A (en) * 1997-11-11 2000-08-15 Kabushiki Kaisha Topcon Surface inspection apparatus
US6774991B1 (en) * 1999-05-27 2004-08-10 Inspex Incorporated Method and apparatus for inspecting a patterned semiconductor wafer
JP4644329B2 (en) * 2000-02-24 2011-03-02 株式会社トプコン Surface inspection device
US6797975B2 (en) * 2000-09-21 2004-09-28 Hitachi, Ltd. Method and its apparatus for inspecting particles or defects of a semiconductor device
US6833913B1 (en) 2002-02-26 2004-12-21 Kla-Tencor Technologies Corporation Apparatus and methods for optically inspecting a sample for anomalies
JP2004271519A (en) 2003-02-18 2004-09-30 Topcon Corp Surface inspection device
JP4641143B2 (en) * 2003-06-30 2011-03-02 株式会社トプコン Surface inspection device
US7297921B2 (en) * 2003-11-21 2007-11-20 Olympus Corportion Photodetection circuit and confocal microscope that has it
JP4996856B2 (en) * 2006-01-23 2012-08-08 株式会社日立ハイテクノロジーズ Defect inspection apparatus and method

Also Published As

Publication number Publication date
US20070229813A1 (en) 2007-10-04
JP2007273879A (en) 2007-10-18
US7477373B2 (en) 2009-01-13

Similar Documents

Publication Publication Date Title
JP4897334B2 (en) Surface inspection method and surface inspection apparatus
JP4755054B2 (en) Surface inspection method and surface inspection apparatus
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
JP5463943B2 (en) Image data processing method and image creation method
US7557913B2 (en) Optical apparatus for defect inspection
JP5544176B2 (en) Inspection apparatus and inspection method
JP2014048269A (en) Tire shape inspection method and tire shape inspection device
US20140009756A1 (en) Surface inspecting apparatus and surface inspecting method
JP2005024327A (en) Surface inspection method and surface inspection device
JP5564807B2 (en) Defect inspection apparatus and defect inspection method
JP5655045B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
EP4027374A1 (en) Semiconductor sample inspection device and inspection method
JP2010236968A (en) Examining method and examining apparatus
JP4313322B2 (en) Defective particle measuring apparatus and defective particle measuring method
US8547547B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JPH11153549A (en) Surface inspection method and apparatus using the same
JP5295160B2 (en) Surface inspection apparatus and surface inspection method
JP2006226706A (en) Defect detection method and program therefor
US20130286386A1 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
US7990529B2 (en) Detection circuit and foreign matter inspection apparatus for semiconductor wafer
JP5010881B2 (en) Inspection apparatus and inspection method
JP5292268B2 (en) Hard disk surface inspection apparatus and surface inspection method for patterned media
JP2004061447A (en) Substrate inspection method and selection means of substrate inspection method
JP2007163261A (en) Defect inspection device and defect inspection method
JP2013164357A (en) Detection device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees