JP4896497B2 - Liquid crystalline compound and ionic conductor using the same - Google Patents

Liquid crystalline compound and ionic conductor using the same Download PDF

Info

Publication number
JP4896497B2
JP4896497B2 JP2005323443A JP2005323443A JP4896497B2 JP 4896497 B2 JP4896497 B2 JP 4896497B2 JP 2005323443 A JP2005323443 A JP 2005323443A JP 2005323443 A JP2005323443 A JP 2005323443A JP 4896497 B2 JP4896497 B2 JP 4896497B2
Authority
JP
Japan
Prior art keywords
acid
liquid crystal
compound
ionic conductor
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005323443A
Other languages
Japanese (ja)
Other versions
JP2006152290A (en
Inventor
隆史 加藤
正史 吉尾
健史 岸本
豊 岸井
修平 村田
敬介 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
University of Tokyo NUC
Original Assignee
Nitto Denko Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, University of Tokyo NUC filed Critical Nitto Denko Corp
Priority to JP2005323443A priority Critical patent/JP4896497B2/en
Publication of JP2006152290A publication Critical patent/JP2006152290A/en
Application granted granted Critical
Publication of JP4896497B2 publication Critical patent/JP4896497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、液晶性化合物、およびこれを用いたイオン伝導体に関する。本発明は、より具体的には、リチウムおよびリチウムイオン電池、キャパシタ、光電気化学電池、イオンセンサ、フォトクロミック素子、燃料電池等の各種デバイスに適した特性を有するイオン伝導体に関する。   The present invention relates to a liquid crystal compound and an ionic conductor using the same. More specifically, the present invention relates to an ion conductor having characteristics suitable for various devices such as lithium and lithium ion batteries, capacitors, photoelectrochemical cells, ion sensors, photochromic elements, and fuel cells.

従来知られているイオン伝導体としては、無機材料を用いた無機固体電解質、有機高分子を用いた高分子固体電解質、水または非水溶媒を用いた液状電解質が挙げられる。高分子固体電解質は、液漏れのおそれがなく不揮発性であり、次世代リチウム二次電池用の電解質等として注目を集めている。しかし、高分子固体電解質は、現段階ではイオン伝導率が十分に高くはない。   Conventionally known ion conductors include inorganic solid electrolytes using inorganic materials, polymer solid electrolytes using organic polymers, and liquid electrolytes using water or non-aqueous solvents. The polymer solid electrolyte is non-volatile without risk of liquid leakage, and has attracted attention as an electrolyte for next-generation lithium secondary batteries. However, the solid polymer electrolyte is not sufficiently high in ionic conductivity at this stage.

イオン伝導率の向上のため、液状電解質をゲル化剤で固化させたゲル電解質も検討されている。しかし、ゲル電解質には揮発しやすい液状成分が残存しているため、デバイスの安全性を十分に確保できない。   In order to improve the ionic conductivity, a gel electrolyte obtained by solidifying a liquid electrolyte with a gelling agent has been studied. However, since a liquid component that easily volatilizes remains in the gel electrolyte, the safety of the device cannot be sufficiently ensured.

近年、固体と液体の中間的性質を有する液晶性化合物を用い、液晶性化合物が有する配向性を利用したイオン伝導体が提案されている(特許文献1〜特許文献3)。
特開2001−338527号 特開2002−105033号 特開2002−358821号
In recent years, an ionic conductor using a liquid crystalline compound having an intermediate property between a solid and a liquid and utilizing the orientation of the liquid crystalline compound has been proposed (Patent Documents 1 to 3).
JP 2001-338527 A JP 2002-105033 A JP 2002-358821 A

実用に供される条件を考慮すると、電極間に配置されるイオン伝導体は、室温下で、電極間の方向に高いイオン伝導率を示すことが望まれる。しかし、従来の液晶性化合物は、このような特性を得るには適していない。例えば、特許文献2,3に開示されている液晶性化合物は、各化合物(分子)が電極の表面に対して垂直に配向したスメクチック液晶相を有するが、スメクチック液晶相では、有効なイオンのパスが電極の表面に平行に形成されるため、電極間の方向についてのイオン伝導率が十分に高くならない。また例えば、特許文献1に開示されている液晶性化合物は、イオンのパスが電極の表面に垂直方向に形成されるディスコチック液晶相を有するが、ディスコチック液晶相では、電極間の方向についてのイオン伝導率が高くはならない。   Considering the conditions for practical use, it is desirable that the ionic conductor disposed between the electrodes exhibits high ionic conductivity in the direction between the electrodes at room temperature. However, conventional liquid crystal compounds are not suitable for obtaining such characteristics. For example, the liquid crystalline compounds disclosed in Patent Documents 2 and 3 have a smectic liquid crystal phase in which each compound (molecule) is aligned perpendicular to the surface of the electrode. In the smectic liquid crystal phase, an effective ion path is used. Is formed parallel to the surface of the electrodes, the ion conductivity in the direction between the electrodes is not sufficiently high. Further, for example, the liquid crystalline compound disclosed in Patent Document 1 has a discotic liquid crystal phase in which an ion path is formed in a direction perpendicular to the surface of the electrode. Ionic conductivity should not be high.

そこで、本発明は、下記一般式により示される液晶性化合物を提供する。   Therefore, the present invention provides a liquid crystal compound represented by the following general formula.

Figure 0004896497
Figure 0004896497

ただし、nは1から5の整数であり、R1はCN基またはFであり、R2は炭素数が5から10のアルキル基またはアルキルオキシ基であり、Xは無しまたはCOO基であり、Yは炭素数が1から5のアルキル基である。Xが「無し」の場合、上記液晶性化合物は、3つのベンゼン環が連続して結合した構造を有することになる。R2およびYは、好ましくは直鎖アルキル(オキシ)基である。なお、慣用に従い、上記一般式では記載を簡略化したが、側鎖におけるnが付された繰り返し単位は、オキシエチレン単位(OCH2CH2)である。 However, n is an integer of 1 to 5, R 1 is a CN group or F, R 2 is an alkyl group or an alkyloxy group having 5 to 10 carbon atoms, X is none or a COO group, Y is an alkyl group having 1 to 5 carbon atoms. When X is “none”, the liquid crystalline compound has a structure in which three benzene rings are continuously bonded. R 2 and Y are preferably straight chain alkyl (oxy) groups. Incidentally, according to conventional, has been simplified description above general formula, the repeating unit n is attached at the side chain, an oxyethylene unit (OCH 2 CH 2).

本発明は、さらに、上記液晶性化合物と、電解質とを含むイオン伝導体を提供する。   The present invention further provides an ionic conductor containing the liquid crystalline compound and an electrolyte.

本発明による液晶性化合物を用いると、互いに相対するように配置した電極間の方向について高いイオン伝導率を有するイオン伝導体を提供できる。本発明によるイオン伝導体は、室温下で、電極間の方向について良好なイオン伝導率を示すものとなる。   When the liquid crystalline compound according to the present invention is used, it is possible to provide an ionic conductor having high ionic conductivity in the direction between the electrodes arranged to face each other. The ionic conductor according to the present invention exhibits good ionic conductivity in the direction between the electrodes at room temperature.

上記一般式により示される液晶性化合物は、3つのベンゼン環を含むメソゲン基を有する。そして、この液晶性化合物を含むイオン伝導体は、メソゲン基が電極の表面に対して垂直に配向したときに、電極間の方向について高いイオン伝導率を示す。これは、メソゲン基が電極の表面に垂直に配向したときに、オキシエチレン単位を含む側鎖が電極間の方向に沿って伸長する領域に集まり、この領域がイオンのパスになるためと考えられる。   The liquid crystalline compound represented by the above general formula has a mesogenic group containing three benzene rings. And the ionic conductor containing this liquid crystalline compound shows high ionic conductivity in the direction between the electrodes when the mesogenic group is aligned perpendicular to the surface of the electrodes. This is because when the mesogenic group is oriented perpendicular to the surface of the electrode, the side chain containing oxyethylene units gathers in a region extending along the direction between the electrodes, and this region becomes an ion path. .

本発明によるイオン伝導体には、上記一般式(化1)により示される液晶性化合物(A)とともに、これとは異なる液晶性化合物であってネマチック液晶相を示す液晶性化合物(B)をさらに含ませるとよい。イオン伝導体を構成する液晶性化合物を電極間の方向に配向させることが容易となるためである。   In addition to the liquid crystal compound (A) represented by the above general formula (Formula 1), the ionic conductor according to the present invention further includes a liquid crystal compound (B) which is a different liquid crystal compound and exhibits a nematic liquid crystal phase. It should be included. This is because it becomes easy to align the liquid crystalline compound constituting the ionic conductor in the direction between the electrodes.

液晶性化合物(B)は、下記一般式(化2)〜(化6)から選ばれるいずれかにより示されるものとするとよい。これら液晶性化合物は、ITO(indium tin oxide)膜を形成したガラス電極に代表される電極基板に対して垂直に配向する特性を有する。   The liquid crystal compound (B) may be represented by any one selected from the following general formulas (Chemical Formula 2) to (Chemical Formula 6). These liquid crystalline compounds have the property of being aligned perpendicular to an electrode substrate typified by a glass electrode on which an ITO (indium tin oxide) film is formed.

Figure 0004896497
Figure 0004896497

Figure 0004896497
Figure 0004896497

Figure 0004896497
Figure 0004896497

Figure 0004896497
Figure 0004896497

Figure 0004896497
Figure 0004896497

ただし、R0は炭素数が2から8の直鎖アルキル基であり、R3〜R6は炭素数が2から10の直鎖アルキル基である。 However, R 0 is a linear alkyl group having 2 to 8 carbon atoms, and R 3 to R 6 are linear alkyl groups having 2 to 10 carbon atoms.

液晶性化合物(B)は2種以上含ませてもよい。液晶相を示す温度範囲を拡張できるからである。なお、本明細書では、同じ一般式により示すことができても、直鎖アルキル基の炭素数が異なれば同じ化合物ではないとして取り扱う。   Two or more liquid crystalline compounds (B) may be included. This is because the temperature range showing the liquid crystal phase can be expanded. Note that in this specification, even if they can be represented by the same general formula, they are treated as not being the same compound as long as the carbon number of the linear alkyl group is different.

本発明のイオン伝導体は、液晶性化合物(B)に加え、下記一般式(化7)〜(化11)から選ばれるいずれかにより示される液晶性化合物を添加してもよい。液晶相を示す温度範囲を高温側に拡張できるからである。   In addition to the liquid crystalline compound (B), the ionic conductor of the present invention may contain a liquid crystalline compound represented by any one selected from the following general formulas (Chemical Formula 7) to (Chemical Formula 11). This is because the temperature range showing the liquid crystal phase can be extended to the high temperature side.

Figure 0004896497
Figure 0004896497

Figure 0004896497
Figure 0004896497

Figure 0004896497
Figure 0004896497

Figure 0004896497
Figure 0004896497

Figure 0004896497
Figure 0004896497

ただし、R7およびR8は炭素数が3から6の直鎖アルキル基であり、R9はエチル基であり、R10は炭素数がエチル基またはプロピル基であり、R11はヘキシル基である。 R 7 and R 8 are straight chain alkyl groups having 3 to 6 carbon atoms, R 9 is an ethyl group, R 10 is an ethyl group or a propyl group, and R 11 is a hexyl group. is there.

本発明のイオン伝導体では、液晶性化合物(A)と液晶性化合物(B)とのモル比を、5:95〜50:50とするとよい。また、液晶性化合物全体に対する電解質の含有率を、1〜30モル%とするとよい。電解質が不足すると伝導性の発現に必要なイオンが不足し、電解質が過剰となると液晶相の発現が阻害されて高いイオン伝導率を得にくくなることがある。   In the ionic conductor of the present invention, the molar ratio of the liquid crystal compound (A) to the liquid crystal compound (B) is preferably 5:95 to 50:50. Moreover, it is good to make the content rate of the electrolyte with respect to the whole liquid crystalline compound into 1-30 mol%. When the electrolyte is insufficient, the ions necessary for the expression of conductivity are insufficient, and when the electrolyte is excessive, the expression of the liquid crystal phase is inhibited and it may be difficult to obtain high ionic conductivity.

本発明のイオン伝導体は、オリゴマーをさらに含んでいてもよい。オリゴマーを添加したイオン伝導体とすると、イオン伝導率がさらに向上する場合がある。オリゴマーとしては、例えば、エチレンオキシドオリゴマー、プロピレンオキシドオリゴマー、側鎖にオキシエチレン単位を含むシロキサンオリゴマーを例示できる。オリゴマーとは、重合度が低い重合体、具体的には重合度が2〜20の範囲にある重合体をいう。イオン伝導体に添加するオリゴマーとしては、不揮発性のオリゴマーが好ましい。   The ionic conductor of the present invention may further contain an oligomer. If the ion conductor is added with an oligomer, the ion conductivity may be further improved. Examples of oligomers include ethylene oxide oligomers, propylene oxide oligomers, and siloxane oligomers containing oxyethylene units in the side chain. An oligomer refers to a polymer having a low degree of polymerization, specifically a polymer having a degree of polymerization in the range of 2-20. As the oligomer added to the ionic conductor, a nonvolatile oligomer is preferable.

イオン伝導率の向上のためには、オリゴマーとして、エチレンオキシドオリゴマーを添加することが好ましい。エチレンオキシドオリゴマーは、様々な分子量および末端基を有するものが市販されているが、オキシエチレン単位の数が10以下のものを選択するとよい。オキシエチレン単位の数が10を超えると、液晶性化合物との間で相分離が生じやすくなり、均一な電解質を得ることが困難となるためである。一方、オキシエチレン単位の数が2以下ではオリゴマーが揮発性になる。以上を考慮すると、オキシエチレン単位は、3〜10が好適である。エチレンオキシドオリゴマーは、その末端に、メトキシ基を有するものが好ましい。   In order to improve the ionic conductivity, it is preferable to add an ethylene oxide oligomer as the oligomer. Ethylene oxide oligomers having various molecular weights and end groups are commercially available, and those having 10 or less oxyethylene units may be selected. This is because if the number of oxyethylene units exceeds 10, phase separation tends to occur between the liquid crystalline compounds and it becomes difficult to obtain a uniform electrolyte. On the other hand, when the number of oxyethylene units is 2 or less, the oligomer becomes volatile. Considering the above, 3 to 10 is preferable as the oxyethylene unit. The ethylene oxide oligomer preferably has a methoxy group at its end.

エチレンオキシドオリゴマー等のオリゴマーは、イオン伝導体全体の20モル%以下、例えば3〜15モル%を占めるように添加するとよい。オリゴマーの比率が高すぎると相分離する場合があり、オリゴマーの比率が低すぎるとオリゴマー添加によるイオン伝導率向上の効果が十分に得られない。   The oligomer such as ethylene oxide oligomer may be added so as to occupy 20 mol% or less, for example, 3 to 15 mol% of the entire ion conductor. If the ratio of the oligomer is too high, phase separation may occur. If the ratio of the oligomer is too low, the effect of improving the ionic conductivity by adding the oligomer cannot be obtained sufficiently.

電解質としては、アルカリ金属塩、特にリチウム塩が好適であり、具体的には、LiPF6、LiBF4、LiN(C25SO22、LiAsF6、LiSbF6、LiAlF4、LiGaF4、LiInF4、LiClO4、LiN(CF3SO22、LiCF3SO3、LiSiF6、LiN(CF3SO2)(C49SO2)等を用いることができる。 As the electrolyte, alkali metal salts, are particularly suitable lithium salt, specifically, LiPF 6, LiBF 4, LiN (C 2 F 5 SO 2) 2, LiAsF 6, LiSbF 6, LiAlF 4, LiGaF 4, LiInF 4 , LiClO 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSiF 6 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) or the like can be used.

電解質はデバイスに応じて適宜選択するとよい。リチウム塩以外の電解質としては、LiI、NaI、KI、CsI、CaI2等の金属ヨウ化物、4級イミダゾリウム化合物のヨウ素塩、テトラアルキルアンモニウム化合物のヨウ素塩、LiBr、NaBr、KBr、CsBr、CaBr2等の金属臭化物を例示できる。 The electrolyte may be appropriately selected according to the device. As an electrolyte other than lithium salt, LiI, NaI, KI, CsI, metal iodide such as CaI 2, iodine salt of a quaternary imidazolium compound, an iodine tetraalkylammonium compounds Motoshio, LiBr, NaBr, KBr, CsBr, CaBr Examples thereof include metal bromides such as 2 .

電解質の別の好ましい例はプロトン酸である。プロトン酸は無機酸でも有機酸でもよい。無機酸としては、硝酸、硫酸、亜硫酸、重亜硫酸、燐酸、亜燐酸、次燐酸、メタ燐酸、次亜燐酸、アミド燐酸、炭酸、重炭酸、塩酸、臭化水素酸、ヨウ化水素酸、オルトホウ酸、メタホウ酸、アルミン酸、アミド硫酸、ヒドラジノ硫酸、スルファミン酸を例示できる。また、有機酸としては、イソ吉草酸、イソ酪酸、オクタン酸、シクロヘキサンカルボン酸、乳酸、酢酸、酪酸、クロトン酸、アゼライン酸、クエン酸、コハク酸、シュウ酸、酒石酸、フマル酸、マロン酸、リンゴ酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アニス酸、安息香酸、p−アミノ安息香酸、ナフトエ酸、テレフタル酸、ピロメリット酸、アスパラギン、アスパラギン酸、4−アミノ酪酸、アラニン、アルギニン、イソロイシン、グリシン、グルタミン酸、システイン、セリン、バリン、ヒスチジン、メチオニン、ロイシン、安息香酸、安息香酸−2−燐酸、アデノシン−2’−燐酸、フェノール−3−燐酸、ガラクトース−1−燐酸、ベンゼンホスホン酸、2−アミノエチルホスホン酸、2−ブロム−p−トリルホスホン酸、2−メトキシフェニルホスホン酸、t−ブチルホスフィン酸、o−クレゾール、m−クレゾール、p−クレゾール、4−アミノ−m−クレゾール、2,4−ジニトロフェノール、o−ブロモフェノール、p−フェノールスルホン酸、p−アセチルフェノール、アスコルビン酸、レダクチン、3−ヒドロキシフェニルホウ酸、3−アミノフェニルホウ酸、β−フェニルエチルボロン酸、ヒドラジン−N,N−ジ酢酸、ヒドラジン−N,N’−ジ酢酸を例示できる。プロトン酸は、上記に限らず、例えば、スルフォニルイミド酸、その誘導体等であってもよい。   Another preferred example of the electrolyte is a protonic acid. The proton acid may be an inorganic acid or an organic acid. Inorganic acids include nitric acid, sulfuric acid, sulfurous acid, bisulfite, phosphoric acid, phosphorous acid, hypophosphoric acid, metaphosphoric acid, hypophosphorous acid, amidophosphoric acid, carbonic acid, bicarbonate, hydrochloric acid, hydrobromic acid, hydroiodic acid, orthoboron. Examples thereof include acid, metaboric acid, aluminate, amidosulfuric acid, hydrazinosulfuric acid and sulfamic acid. Organic acids include isovaleric acid, isobutyric acid, octanoic acid, cyclohexanecarboxylic acid, lactic acid, acetic acid, butyric acid, crotonic acid, azelaic acid, citric acid, succinic acid, oxalic acid, tartaric acid, fumaric acid, malonic acid, Malic acid, lauric acid, myristic acid, palmitic acid, stearic acid, anisic acid, benzoic acid, p-aminobenzoic acid, naphthoic acid, terephthalic acid, pyromellitic acid, asparagine, aspartic acid, 4-aminobutyric acid, alanine, arginine , Isoleucine, glycine, glutamic acid, cysteine, serine, valine, histidine, methionine, leucine, benzoic acid, benzoic acid-2-phosphate, adenosine-2'-phosphate, phenol-3-phosphate, galactose-1-phosphate, benzenephosphone Acid, 2-aminoethylphosphonic acid, 2-bromo-p-tri Phosphonic acid, 2-methoxyphenylphosphonic acid, t-butylphosphinic acid, o-cresol, m-cresol, p-cresol, 4-amino-m-cresol, 2,4-dinitrophenol, o-bromophenol, p- Phenolsulfonic acid, p-acetylphenol, ascorbic acid, reductin, 3-hydroxyphenylboric acid, 3-aminophenylboric acid, β-phenylethylboronic acid, hydrazine-N, N-diacetic acid, hydrazine-N, N ′ -Diacetate can be exemplified. The proton acid is not limited to the above, and may be, for example, sulfonylimide acid, a derivative thereof, or the like.

本発明のイオン伝導体は、上記液晶性化合物、電解質以外に、ゲル化剤その他成分を含んでいてもよいが、その他成分の含有率は、20モル%以下とすることが好ましい。   The ionic conductor of the present invention may contain a gelling agent and other components in addition to the liquid crystalline compound and the electrolyte, but the content of other components is preferably 20 mol% or less.

本発明のイオン伝導体は、基板、特にITO膜を形成したガラス電極等の電極基板に対して容易に垂直配向する。しかし、垂直配向性を高める必要があれば、レシチン、ヘキサデシルアミン等の垂直配向剤を添加してもよい。電極基板間に電場や磁場を印加して液晶性化合物の垂直配向性を高めてもよい。   The ion conductor of the present invention is easily vertically aligned with respect to a substrate, particularly an electrode substrate such as a glass electrode on which an ITO film is formed. However, if it is necessary to improve the vertical alignment, a vertical alignment agent such as lecithin or hexadecylamine may be added. The electric field or magnetic field may be applied between the electrode substrates to enhance the vertical alignment of the liquid crystalline compound.

本発明のイオン伝導体は、リチウムイオン電池、燃料電池等各種デバイスへの適用が可能である。例えば色素増感型太陽電池では不揮発性のイオン伝導体が求められているが、本発明のイオン伝導体は十分に要求特性を満たす。   The ion conductor of the present invention can be applied to various devices such as lithium ion batteries and fuel cells. For example, in a dye-sensitized solar cell, a nonvolatile ion conductor is required, but the ion conductor of the present invention sufficiently satisfies the required characteristics.

以下、実施例により本発明をより具体的に説明する。まず、イオン伝導率の測定方法について説明する。
(垂直方向イオン伝導率の測定方法)
図1に、イオン伝導率の測定に用いたセルを示す。このセルを作製するために、まず、アルゴングローブボックス内にて、予め透明導電膜としてITO膜3を形成した縦15mm、横10mmのガラス板(ITO膜付きガラス電極)4に、試料充填部1として直径(r)6mmの円を打ち抜いた厚み25μmの粘着剤付きポリイミドフィルム(図2参照)をスペーサー2として貼り付けた。次いで、試料充填部1に、加熱して等方性液体状態とした試料(イオン伝導体)を充填し、その後、もう1枚のITO膜付きガラス電極4をITO膜3が充填部1側となるように配置した。
Hereinafter, the present invention will be described more specifically with reference to examples. First, a method for measuring ion conductivity will be described.
(Measurement method of vertical ionic conductivity)
FIG. 1 shows a cell used for measurement of ionic conductivity. In order to produce this cell, first, in the argon glove box, a sample filling unit 1 is placed on a glass plate 4 (a glass electrode with an ITO film) 4 mm in length and 10 mm in which an ITO film 3 is previously formed as a transparent conductive film. As a spacer 2, a polyimide film with an adhesive (see FIG. 2) having a thickness of 25 μm obtained by punching a circle having a diameter (r) of 6 mm was attached. Next, the sample filling portion 1 is filled with a sample (ion conductor) heated to an isotropic liquid state, and then the ITO film 3 is connected to the filling portion 1 side of another glass electrode 4 with an ITO film. Arranged to be.

こうして得た垂直方向イオン伝導率測定用セルは、室温(23℃)まで自然冷却し、インピーダンス測定装置(横河ヒューレットパッカード製4284A)を用い、複素インピーダンス法により、高周波数側の円弧と低周波数側の直線との交点の実数成分インピーダンスを求め、以下の式に基づいて伝導率σ(S/cm)を算出した。   The vertical ion conductivity measurement cell thus obtained was naturally cooled to room temperature (23 ° C), and using an impedance measurement device (Yokogawa Hewlett Packard 4284A), the complex impedance method was used to determine the high frequency arc and low frequency. The real component impedance at the intersection with the straight line on the side was determined, and the conductivity σ (S / cm) was calculated based on the following equation.

σv=d/(R×A)
d:スペーサー厚み(cm)、R:実数成分インピーダンス(Ω)、A:極板面積(cm2
σ v = d / (R × A)
d: spacer thickness (cm), R: real component impedance (Ω), A: electrode plate area (cm 2 )

(水平方向イオン伝導率の測定方法)
図3に、水平方向イオン伝導率の測定に用いた櫛型電極を示す。この櫛型電極11は、ガラス板上に、ITOを厚み30nmとなるように蒸着し、さらにAgとAuとからなる合金を総厚みが0.8μmとなるように蒸着することにより形成した。互いに対向するように配置した櫛型電極11は、それぞれ3つの櫛部12を有し、各櫛部12の幅Wは2mm、櫛部12の間隔Dは3mm、対向する櫛部の重複幅Vは7mmとした。この櫛型電極11の櫛部12の間に、測定対象とする試料を等方性状態となるように加熱してから塗布し、この試料を覆う領域に縦10mm、横25mmのガラス板を重ねてこの領域(測定領域13)でのみ試料を保持した。その後、垂直方向イオン伝導率の測定と同様にして伝導率σpを求めた。なお、伝導率σpの絶対値は、試料が等方性液体状態のときの測定値で補正した。
(Measurement method of ionic conductivity in the horizontal direction)
FIG. 3 shows the comb-shaped electrode used for the measurement of horizontal ionic conductivity. The comb-shaped electrode 11 was formed by vapor-depositing ITO on a glass plate so as to have a thickness of 30 nm and further depositing an alloy composed of Ag and Au so that the total thickness becomes 0.8 μm. The comb electrodes 11 arranged so as to face each other have three comb portions 12, each comb portion 12 has a width W of 2 mm, a distance D between the comb portions 12 is 3 mm, and an overlapping width V of the facing comb portions is 7 mm. . A sample to be measured is heated between the comb portions 12 of the comb-shaped electrode 11 so as to be in an isotropic state and then applied, and a glass plate having a length of 10 mm and a width of 25 mm is overlapped on a region covering the sample. The sample was held only in this region (measurement region 13). Thereafter, the conductivity σ p was determined in the same manner as the measurement of the ionic conductivity in the vertical direction. The absolute value of the conductivity σ p was corrected with the measured value when the sample was in an isotropic liquid state.

(配向状態観察)
偏光顕微鏡(オリンパス製)を用い、液晶相の観察を行なった。
(Orientation observation)
The liquid crystal phase was observed using a polarizing microscope (manufactured by Olympus).

(合成例1)
一般式(化1)において、n=3、R1=CN基、R2=オクチルオキシ基、X=COO基に相当する液晶性化合物を、図4に示したスキームに従って合成した。化合物の同定は1Hおよび13C NMR測定により行なった。以下、各化合物は、図4に付した数字により、「化合物1」等と表記する。
(Synthesis Example 1)
A liquid crystal compound corresponding to n = 3, R 1 = CN group, R 2 = octyloxy group, and X = COO group in the general formula (Chemical Formula 1) was synthesized according to the scheme shown in FIG. The compound was identified by 1 H and 13 C NMR measurements. Hereinafter, each compound is expressed as “Compound 1” or the like by the numbers given in FIG.

[化合物3の合成]
2,4−ジヒドロキシ安息香酸(3.02g,19.6mmol)のジメチルホルムアミド(DMF)10mL溶液に炭酸水素ナトリウム(5.00g,59.5mmol)を加え、アルゴン雰囲気にした後、70℃で1時間激しく攪拌した。この溶液にベンジルブロマイド(4.01g,23.4mmol)を加え、さらに70℃で10時間激しく攪拌した。反応溶液を室温に冷ました後、酢酸エチルおよび飽和塩化アンモニウム水溶液を加えて有機層を抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄した。硫酸マグネシウムを加え、有機層を乾操し、ろ過した後、ロータリーエバポレーターを用いて溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ジクロロメタン)によって精製し、白色固体の化合物3を収率89%(4.26g,17.4mmol)で得た。
[Synthesis of Compound 3]
To a 10 mL solution of 2,4-dihydroxybenzoic acid (3.02 g, 19.6 mmol) in dimethylformamide (DMF) was added sodium hydrogen carbonate (5.00 g, 59.5 mmol), and the mixture was brought to an argon atmosphere. Stir vigorously for hours. Benzyl bromide (4.01 g, 23.4 mmol) was added to this solution, and the mixture was further stirred vigorously at 70 ° C. for 10 hours. After the reaction solution was cooled to room temperature, ethyl acetate and a saturated aqueous ammonium chloride solution were added to extract the organic layer, and the organic layer was washed with a saturated aqueous sodium chloride solution. Magnesium sulfate was added, the organic layer was dried and filtered, and then the solvent was distilled off under reduced pressure using a rotary evaporator. The residue was purified by silica gel chromatography (developing solvent: dichloromethane) to obtain Compound 3 as a white solid in 89% yield (4.26 g, 17.4 mmol).

[化合物4の合成]
化合物3(4.26g,17.4mmol)とオクチルブロマイド(3.69g,19.1mmol)のDMF50mL溶液に炭酸カリウム(8.00g,57.9mmol)を加え、アルゴン雰囲気にした後、70℃で5時間激しく攪拌した。反応溶液に酢酸エチルおよび飽和塩化アンモニウム水溶液を加えて有機層を抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄した。硫酸マグネシウムを加え、有機層を乾焼し、ろ過した後、ロータリーエバポレーターを用いて溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン)によって精製し、白色固体の化合物4を収率68%(4.19g, 11.8mmol)で得た。
[Synthesis of Compound 4]
To a solution of compound 3 (4.26 g, 17.4 mmol) and octyl bromide (3.69 g, 19.1 mmol) in 50 mL of DMF was added potassium carbonate (8.00 g, 57.9 mmol), and the mixture was brought to an argon atmosphere. Stir vigorously for 5 hours. Ethyl acetate and saturated aqueous ammonium chloride solution were added to the reaction solution to extract the organic layer, and the organic layer was washed with saturated aqueous sodium chloride solution. Magnesium sulfate was added, the organic layer was dried and filtered, and then the solvent was distilled off under reduced pressure using a rotary evaporator. The residue was purified by silica gel chromatography (developing solvent: hexane) to obtain Compound 4 as a white solid in 68% yield (4.19 g, 11.8 mmol).

[化合物5の合成]
化合物4(1.01g,2.83mmol)とトリエチレングリコールモノメチルエーテルモノトシレート(1.06g,3.33mmol)のDMF50mL溶液に炭酸カリウム(1.28g,9.26mmol)を加え、アルゴン雰囲気にした後、70℃で3時間激しく攪拌した。反応溶液に酢酸エチルおよび飽和塩化アンモニウム水溶液を加えて有機層を抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄した。硫酸マグネシウムを加え、有機層を乾焼し、ろ過した後、ロータリーエバボレーターを用いて溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=5/1)によって精製し、無色粘性液体の化合物5を収率96%(1.37g,2.73mmol)で得た。
[Synthesis of Compound 5]
To a solution of compound 4 (1.01 g, 2.83 mmol) and triethylene glycol monomethyl ether monotosylate (1.06 g, 3.33 mmol) in 50 mL of DMF was added potassium carbonate (1.28 g, 9.26 mmol), and the mixture was placed in an argon atmosphere. Then, the mixture was vigorously stirred at 70 ° C. for 3 hours. Ethyl acetate and saturated aqueous ammonium chloride solution were added to the reaction solution to extract the organic layer, and the organic layer was washed with saturated aqueous sodium chloride solution. Magnesium sulfate was added, the organic layer was dried and filtered, and then the solvent was distilled off under reduced pressure using a rotary evaporator. The residue was purified by silica gel chromatography (developing solvent: hexane / ethyl acetate = 5/1) to obtain Compound 5 as a colorless viscous liquid in a yield of 96% (1.37 g, 2.73 mmol).

1H NMR(CDCl3, 400MHz):δ=0.89(t, J=6.8Hz, 3H), 1.25-1.46(m, 10H), 1.74-1.81(m, 2H), 3.36(s, 3H), 3.51-3.70(m, 8H), 3.84(t, J=5.1Hz, 2H), 3.96(t, J=6.6Hz, 2H), 4.16(t, J=5.1Hz, 2H), 5.30(s, 2H), 6.46-6.49(m, 2H), 7.27-7.45(m, 5H), 7.87(d, J=4.6Hz, 1H). 13C NMR(CDCl3, 100MHz):δ=13.95, 22.48, 25.80, 28.94, 29.05, 29.15, 31.62, 58.83, 65.95, 68.07, 68.54, 69.23, 70.31, 70.47, 70.72, 71.74, 100.42, 105.63, 112.15, 127.76, 127.90, 128.27, 133.80, 136.40, 160.52, 163.68, 165.36. 1 H NMR (CDCl 3 , 400 MHz): δ = 0.89 (t, J = 6.8 Hz, 3H), 1.25-1.46 (m, 10H), 1.74-1.81 (m, 2H), 3.36 (s, 3H), 3.51 -3.70 (m, 8H), 3.84 (t, J = 5.1Hz, 2H), 3.96 (t, J = 6.6Hz, 2H), 4.16 (t, J = 5.1Hz, 2H), 5.30 (s, 2H) , 6.46-6.49 (m, 2H), 7.27-7.45 (m, 5H), 7.87 (d, J = 4.6Hz, 1H) 13 C NMR (CDCl 3, 100MHz):. δ = 13.95, 22.48, 25.80, 28.94 , 29.05, 29.15, 31.62, 58.83, 65.95, 68.07, 68.54, 69.23, 70.31, 70.47, 70.72, 71.74, 100.42, 105.63, 112.15, 127.76, 127.90, 128.27, 133.80, 136.40, 160.52, 163.68, 165.36.

[化合物6の合成]
化合物5(1.37g,2.73mmol)のエタノール50mL溶液に水酸化ナトリウム(0.63g,15.8mmol)を加え、3時間還流攪拌した。反応溶液を室温に冷ました後、5%塩酸水溶液を加えて中和した。ロータリーエバポレーターを用いて溶媒を減圧留去し、残渣に酢酸エチルと水を加え、有機層を抽出した。有機層に硫酸マグネシウムを加えて乾焼し、ろ過した後、ロータリーエバポレーターを用いて溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=5/1)によって精製し、無色粘性液体の化合物6を収率71%(0.80g,1.94mmol)で得た。
[Synthesis of Compound 6]
Sodium hydroxide (0.63 g, 15.8 mmol) was added to a solution of compound 5 (1.37 g, 2.73 mmol) in 50 mL of ethanol and stirred at reflux for 3 hours. The reaction solution was cooled to room temperature and neutralized by adding 5% aqueous hydrochloric acid. The solvent was distilled off under reduced pressure using a rotary evaporator, ethyl acetate and water were added to the residue, and the organic layer was extracted. Magnesium sulfate was added to the organic layer, dried and filtered, and then the solvent was distilled off under reduced pressure using a rotary evaporator. The residue was purified by silica gel chromatography (developing solvent: hexane / ethyl acetate = 5/1) to obtain Compound 6 as a colorless viscous liquid in a yield of 71% (0.80 g, 1.94 mmol).

1H NMR(CDCl3, 400MHz):δ=0.89, (t, J=6.8Hz, 3H), 1.25-1.49(m, 10H), 1.76-1.83(m, 2H), 3.37(s, 3H), 3.53-3.55(m, 2H), 3.64-3.75(m, 6H), 3.92(d, J=4.4Hz, 2H), 4.00(d, J=6.6Hz, 2H), 4.33(d, J=4.6Hz, 2H), 6.51(d, J=2.0Hz, 1H), 6.61-6.64(m, 1H), 8.09(d, J=8.8Hz, 1H), 10.82(S, 1H). 13C NMR(CDCl3, 100MHz):δ=14.05, 22.59, 22.88, 28.97, 29,14, 29.23, 31.71, 58.94, 68.51, 68.56, 68.93, 70.51, 70.53, 70.71, 71.79, 100.26, 107.55, 110,83, 135.23, 158.74, 164.42, 165.48. 1 H NMR (CDCl 3 , 400 MHz): δ = 0.89, (t, J = 6.8Hz, 3H), 1.25-1.49 (m, 10H), 1.76-1.83 (m, 2H), 3.37 (s, 3H), 3.53-3.55 (m, 2H), 3.64-3.75 (m, 6H), 3.92 (d, J = 4.4Hz, 2H), 4.00 (d, J = 6.6Hz, 2H), 4.33 (d, J = 4.6Hz , 2H), 6.51 (d, J = 2.0Hz, 1H), 6.61-6.64 (m, 1H), 8.09 (d, J = 8.8Hz, 1H), 10.82 (S, 1H). 13 C NMR (CDCl 3 , 100MHz): δ = 14.05, 22.59, 22.88, 28.97, 29,14, 29.23, 31.71, 58.94, 68.51, 68.56, 68.93, 70.51, 70.53, 70.71, 71.79, 100.26, 107.55, 110,83, 135.23, 158.74, 164.42, 165.48.

[化合物1の合成]
化合物6(2.64g,6.40mmol)、4’−ヒドロキシ−4−シアノビフェニル(1.58g,8.09mmol)、4−ジメチルアミノピリジン(DMAP)(8.4g, 0.069mmol)、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸(ECD)(1.42g,7.41mmol)のジクロロメタン50mL溶液を室温で3時間攪拌した。反応溶液に酢酸エチルと飽和塩化ナトリウム水溶液を加え、有機層を抽出した。有機層に硫酸マグネシウムを加えて乾燥し、ろ過した後、ロータリーエバポレーターを用いて溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=4/1)によって精製し、白色固体の化合物1を収率55%(2.06g,3.50mmol)で得た。
[Synthesis of Compound 1]
Compound 6 (2.64 g, 6.40 mmol), 4′-hydroxy-4-cyanobiphenyl (1.58 g, 8.09 mmol), 4-dimethylaminopyridine (DMAP) (8.4 g, 0.069 mmol), 1 A solution of ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride (ECD) (1.42 g, 7.41 mmol) in dichloromethane (50 mL) was stirred at room temperature for 3 hours. Ethyl acetate and saturated aqueous sodium chloride solution were added to the reaction solution, and the organic layer was extracted. Magnesium sulfate was added to the organic layer, dried and filtered, and then the solvent was distilled off under reduced pressure using a rotary evaporator. The residue was purified by silica gel chromatography (developing solvent: hexane / ethyl acetate = 4/1) to obtain Compound 1 as a white solid in a yield of 55% (2.06 g, 3.50 mmol).

1H NMR(CDCl3, 400MHz):δ=0.81(t, J=6.8Hz, 3H), 1.17-1.42(m, 10H), 1.69-1.76(m, 2H) ,3,25(s, 3H), 3.41-3.43(m, 2H), 3.51-3.55(m, 4H), 3.65-3.68(m, 2H),3.83(t, J=5.1Hz, 2H), 3.94(t, J=6.6Hz, 2H), 4.13(t, J=5.1Hz, 2H), 6.45-6.49(m, 2H), 7.23(d, J=8.8Hz, 2H), 7.53(d, J=6.8Hz, 2H), 7.59(d, J=8, 3Hz, 2H), 7.64(d, J=8.3Hz, 2H), 7.96(d, J=8.3Hz, 1H). 13C NMR(CDCl3, 100MHz):δ=13.57, 22.11, 25.43, 28.54, 28.67, 28.76, 31.25, 58.45, 67.86, 68.26, 68.94, 69.94, 70.10, 70.45, 71.34, 99.99, 105.47, 110.32, 110.50, 118.37, 122.19, 127.11, 127.72, 132.08, 133.90, 135.88, 144.41, 151.16, 160.87, 163.19,164.06. 1 H NMR (CDCl 3 , 400 MHz): δ = 0.81 (t, J = 6.8 Hz, 3H), 1.17-1.42 (m, 10H), 1.69-1.76 (m, 2H), 3,25 (s, 3H) , 3.41-3.43 (m, 2H), 3.51-3.55 (m, 4H), 3.65-3.68 (m, 2H), 3.83 (t, J = 5.1Hz, 2H), 3.94 (t, J = 6.6Hz, 2H ), 4.13 (t, J = 5.1Hz, 2H), 6.45-6.49 (m, 2H), 7.23 (d, J = 8.8Hz, 2H), 7.53 (d, J = 6.8Hz, 2H), 7.59 (d , J = 8, 3Hz, 2H ), 7.64 (d, J = 8.3Hz, 2H), 7.96 (d, J = 8.3Hz, 1H) 13 C NMR (CDCl 3, 100MHz):. δ = 13.57, 22.11, 25.43, 28.54, 28.67, 28.76, 31.25, 58.45, 67.86, 68.26, 68.94, 69.94, 70.10, 70.45, 71.34, 99.99, 105.47, 110.32, 110.50, 118.37, 122.19, 127.11, 127.72, 132.08, 133.90, 135.88, 144.41, 151.16, 160.87, 163.19,164.06.

得られた化合物を、示差走査熱量測定および偏光顕微鏡観察により、熱相転移挙動を調べた。融点は67℃であり、冷却時に−37℃〜8℃でネマチック液晶相が観察された。   The obtained compound was examined for thermal phase transition behavior by differential scanning calorimetry and observation with a polarizing microscope. The melting point was 67 ° C., and a nematic liquid crystal phase was observed at −37 ° C. to 8 ° C. during cooling.

(合成例2)
一般式(化1)において、n=2、R1=CN基、R2=オクチルオキシ基、X=COO基に相当する液晶性化合物を、トリエチレングリコールモノメチルエーテルモノトシレートに代えて、ジエチレングリコールモノメチルエーテルモノトシレートを使用した以外は、合成例1と同様、図4に示したスキームに従って合成した。化合物の同定は1Hおよび13C NMR測定により行なった。
(Synthesis Example 2)
Instead of triethylene glycol monomethyl ether monotosylate, the liquid crystalline compound corresponding to n = 2, R 1 = CN group, R 2 = octyloxy group, X = COO group in the general formula (Chemical Formula 1) is replaced by diethylene glycol The compound was synthesized according to the scheme shown in FIG. 4 in the same manner as in Synthesis Example 1 except that monomethyl ether monotosylate was used. The compound was identified by 1 H and 13 C NMR measurements.

以下に化合物2の1Hおよび13C NMRについてのみ記載する。 Only the 1 H and 13 C NMR of compound 2 is described below.

1H NMR(CDCl3, 400MHz):δ=0.89(t, J=6.8Hz, 3H), 1.26-1.48(m, 10H), 1.78-1.83(m ,2H), 3.35(s, 3H), 3.51-3.53(m, 2H), 3.73-3.75(m, 2H), 3.92-3.94(m, 2H), 4.02(t, J=6.4Hz, 2H), 4.24(t, J=5.2Hz, 2H), 6.54-6.58(m, 2H), 7.32(d, J=8.8KHz, 2H), 7.62(d, J=8.8H, 2H), 7.68(d, J=8.4Hz, 2H), 7.74(d, J=8.4Hz, 2H), 8.05(d, J=8.8Hz, 1H). 13C NMR(CDCl3, 100MHz):δ=14.09, 22.63, 25.95, 29.07, 29.19, 29.30, 31.77, 57.70, 59.00, 68.40, 68.81, 69.50, 70.90, 71.92, 100.50, 106.07, 110.85, 110.99, 118.90, 122.71, 127.64, 128.25, 132.61, 134.43, 136.43, 144.95, 151.67, 161.40, 163.72, 164.60. 1H NMR (CDCl3, 400MHz): δ = 0.89 (t, J = 6.8Hz, 3H), 1.26-1.48 (m, 10H), 1.78-1.83 (m, 2H), 3.35 (s, 3H), 3.51-3.53 (m, 2H), 3.73-3.75 (m, 2H), 3.92-3.94 (m, 2H), 4.02 (t, J = 6.4Hz, 2H), 4.24 (t, J = 5.2Hz, 2H), 6.54- 6.58 (m, 2H), 7.32 (d, J = 8.8KHz, 2H), 7.62 (d, J = 8.8H, 2H), 7.68 (d, J = 8.4Hz, 2H), 7.74 (d, J = 8.4 . Hz, 2H), 8.05 ( d, J = 8.8Hz, 1H) 13 C NMR (CDCl 3, 100MHz): δ = 14.09, 22.63, 25.95, 29.07, 29.19, 29.30, 31.77, 57.70, 59.00, 68.40, 68.81 , 69.50, 70.90, 71.92, 100.50, 106.07, 110.85, 110.99, 118.90, 122.71, 127.64, 128.25, 132.61, 134.43, 136.43, 144.95, 151.67, 161.40, 163.72, 164.60.

得られた化合物を、示差走査熱量測定および偏光顕微鏡観察により、熱相転移挙動を調べた。融点は84℃であり、冷却時に43℃以下でネマチック液晶相が観察された。   The obtained compound was examined for thermal phase transition behavior by differential scanning calorimetry and observation with a polarizing microscope. The melting point was 84 ° C., and a nematic liquid crystal phase was observed at 43 ° C. or lower during cooling.

(実施例1)
合成例1により得た液晶化合物と、LiN(CF3SO22(キシダ化学製、LiTFSi)とを、モル比で95:5となるように混合した。
Example 1
The liquid crystal compound obtained in Synthesis Example 1 and LiN (CF 3 SO 2 ) 2 (manufactured by Kishida Chemical Co., Ltd., LiTFSi) were mixed at a molar ratio of 95: 5.

こうして得たイオン伝導体を用い、垂直方向イオン伝導率測定用セルを作製した。このとき、イオン伝導体は100℃で溶解させた。このセルの室温での偏光顕微鏡観察により、イオン伝導体は等方性液体状態にあることが確認された。室温における垂直方向についての(即ち、電極間の)イオン伝導率は1.0×10-7S/cmであった。 Using the ionic conductor thus obtained, a vertical ionic conductivity measurement cell was prepared. At this time, the ion conductor was dissolved at 100 ° C. By observing this cell with a polarizing microscope at room temperature, it was confirmed that the ionic conductor was in an isotropic liquid state. The ionic conductivity in the vertical direction at room temperature (ie, between the electrodes) was 1.0 × 10 −7 S / cm.

(実施例2)
合成例1により得た液晶化合物と、一般式(化3)においてR3がペンチル基に相当する4’−ペンチルオキシ−ビフェニル−4−カルボニトリル(ワコーケミカル製、5OCB)と、一般式(化3)においてR3がヘプチル基に相当する4’−ヘプチルオキシ−ビフェニル−4−カルボニトリル(ワコーケミカル製、7OCB)と、一般式(化8)においてR8がペンチル基に相当する4’−(4−ペンチルシクロヘキシル)−ビフェニル−4−カルボニトリル(Valiant Fine Chemicals製、BCH5)と、LiTFSi(キシダ化学製)とを、モル比で、50:21.4:21.4:4.75:5となるように混合した。
(Example 2)
The liquid crystal compound obtained in Synthesis Example 1, 4′-pentyloxy-biphenyl-4-carbonitrile (5OCB, manufactured by Wako Chemical Co., Ltd.) in which R 3 corresponds to a pentyl group in the general formula (Formula 3), 3) 4'-heptyloxy-biphenyl-4-carbonitrile (7OCB, manufactured by Wako Chemical Co., Ltd.) in which R 3 corresponds to a heptyl group, and 4'- in which R 8 in the general formula (Chemical Formula 8) corresponds to a pentyl group (4-Pentylcyclohexyl) -biphenyl-4-carbonitrile (manufactured by Valiant Fine Chemicals, BCH5) and LiTFSi (manufactured by Kishida Chemical) in a molar ratio of 50: 21.4: 21.4: 4.75: 5 so as to be mixed.

こうして得たイオン伝導体を用い、垂直方向イオン伝導率測定用セルを作製した。このとき、イオン伝導体は100℃で溶解させた。このセルの室温での偏光顕微鏡観察により、ネマチック液晶相のシュリーレン組織が観察された。室温における垂直方向についての(即ち、電極間の)イオン伝導率は2.3×10-7S/cmであり、実施例1よりも高い値が得られた。 Using the ionic conductor thus obtained, a vertical ionic conductivity measurement cell was prepared. At this time, the ion conductor was dissolved at 100 ° C. By observing the cell with a polarizing microscope at room temperature, a schlieren structure of a nematic liquid crystal phase was observed. The ionic conductivity in the vertical direction at room temperature (that is, between the electrodes) was 2.3 × 10 −7 S / cm, which was higher than that in Example 1.

(実施例3)
合成例2により得た液晶化合物と、一般式(化3)においてR3がペンチル基に相当する5OCB(ワコーケミカル製)と、一般式(化3)においてR3がヘプチル基に相当する7OCBと、LiTFSi(キシダ化学製)とを、モル比で、9.5:42.75:42.75:5となるように混合した。
(Example 3)
A liquid crystal compound obtained by Synthesis Example 2, 5OCB (manufactured by Wako Chemical) in which R 3 corresponds to a pentyl group in the general formula (Chemical Formula 3), and 7OCB in which R 3 in the general formula (Chemical Formula 3) corresponds to a heptyl group LiTFSi (manufactured by Kishida Chemical Co., Ltd.) was mixed so that the molar ratio was 9.5: 42.75: 42.75: 5.

こうして得たイオン伝導体を用い、垂直方向イオン伝導率測定用セルを作製した。このとき、イオン伝導体は100℃で溶解させた。このセルの室温での偏光顕微鏡観察により、オルソスコープ観察にて暗視野、コノスコープ観察にてアイソジャイヤが観察された。室温における垂直方向についての(即ち、電極間の)イオン伝導率は3.8×10-6S/cmであった。また、このイオン伝導体の水平方向についてのイオン伝導率は3.0×10-6S/cmであり、垂直方向についてのイオン伝導率よりもやや低い値となった。 Using the ionic conductor thus obtained, a vertical ionic conductivity measurement cell was prepared. At this time, the ion conductor was dissolved at 100 ° C. When the cell was observed with a polarizing microscope at room temperature, dark field was observed by orthoscope observation, and isogyre was observed by conoscopic observation. The ionic conductivity in the vertical direction at room temperature (ie, between the electrodes) was 3.8 × 10 −6 S / cm. In addition, the ionic conductivity in the horizontal direction of this ionic conductor was 3.0 × 10 −6 S / cm, which was slightly lower than the ionic conductivity in the vertical direction.

(実施例4)
合成例2により得た液晶化合物と、一般式(化3)においてR3がペンチル基に相当する5OCB(ワコーケミカル製)と、一般式(化3)においてR3がヘプチル基に相当する7OCBと、末端にメトキシ基を有するオキシエチレン単位数が4であるエチレンオキシドオリゴマーに相当するテトラエチレングリコールジメチルエーテル(東京化成製)と、LiTFSi(キシダ化学製)とを、モル比で、3.8:43.7:43.7:3.8:5となるように混合した。
Example 4
A liquid crystal compound obtained by Synthesis Example 2, 5OCB (manufactured by Wako Chemical) in which R 3 corresponds to a pentyl group in the general formula (Chemical Formula 3), and 7OCB in which R 3 in the general formula (Chemical Formula 3) corresponds to a heptyl group , Tetraethylene glycol dimethyl ether corresponding to an ethylene oxide oligomer having 4 oxyethylene units having a methoxy group at the terminal (manufactured by Tokyo Chemical Industry) and LiTFSi (manufactured by Kishida Chemical Co., Ltd.) in a molar ratio of 3.8: 43. 7: 43.7: 3.8: 5 The mixture was mixed.

こうして得たイオン伝導体を用い、垂直方向イオン伝導率測定用セルを作製した。このとき、イオン伝導体は100℃で溶解させた。このセルの室温での偏光顕微鏡観察により、オルソスコープ観察にて暗視野、コノスコープ観察にてアイソジャイヤが観察された。室温における垂直方向についての(即ち、電極間の)イオン伝導率は1.0×10-5S/cmであり、実施例1〜3よりも高い値となった。 Using the ionic conductor thus obtained, a vertical ionic conductivity measurement cell was prepared. At this time, the ion conductor was dissolved at 100 ° C. When the cell was observed with a polarizing microscope at room temperature, dark field was observed by orthoscope observation, and isogyre was observed by conoscopic observation. The ionic conductivity in the vertical direction at room temperature (that is, between the electrodes) was 1.0 × 10 −5 S / cm, which was higher than those in Examples 1 to 3.

本発明のイオン伝導体は、不揮発性であって、実用面で重要となる電極間の伝導率が大きい。本発明のイオン伝導体は、リチウムイオン電池、燃料電池に代表される各種デバイスの材料として多大な利用価値を有する。   The ionic conductor of the present invention is non-volatile and has a high conductivity between electrodes which is important in practical use. The ion conductor of the present invention has a great utility value as a material for various devices represented by lithium ion batteries and fuel cells.

本発明の実施例で用いたイオン伝導率測定用セルの断面図である。It is sectional drawing of the cell for ion conductivity measurement used in the Example of this invention. 図1のセルに用いたスペーサーの平面図である。It is a top view of the spacer used for the cell of FIG. 本発明の実施例で用いた水平方向イオン伝導率測定用セルにおける櫛型電極を示す平面図である。It is a top view which shows the comb-shaped electrode in the cell for horizontal direction ionic conductivity measurement used in the Example of this invention. 本発明の実施例で合成した液晶性化合物の構造式およびその合成スキームである。1 is a structural formula of a liquid crystal compound synthesized in an example of the present invention and a synthesis scheme thereof.

符号の説明Explanation of symbols

1 試料充填部
2 スペーサー
3 ITO膜
4 ITO膜付きガラス電極
11 櫛型電極
12 櫛部
13 測定領域
DESCRIPTION OF SYMBOLS 1 Sample filling part 2 Spacer 3 ITO film 4 Glass electrode with ITO film 11 Comb electrode 12 Comb part 13 Measurement area

Claims (6)

下記一般式(化1)により示される液晶性化合物。
Figure 0004896497
ただし、nは1から5の整数であり、R1はCN基またはFであり、R2は炭素数が5から10のアルキル基またはアルキルオキシ基であり、Xは無しまたはCOO基であり、Yは炭素数が1から5のアルキル基である。
A liquid crystal compound represented by the following general formula (Formula 1).
Figure 0004896497
However, n is an integer of 1 to 5, R 1 is a CN group or F, R 2 is an alkyl group or an alkyloxy group having 5 to 10 carbon atoms, X is none or a COO group, Y is an alkyl group having 1 to 5 carbon atoms.
請求項1に記載の液晶性化合物(A)と、電解質とを含むイオン伝導体。   An ionic conductor comprising the liquid crystalline compound (A) according to claim 1 and an electrolyte. 前記液晶性化合物(A)とは異なる液晶性化合物であってネマチック液晶相を示す液晶性化合物(B)をさらに含む請求項2に記載のイオン伝導体。   The ionic conductor according to claim 2, further comprising a liquid crystal compound (B) which is a liquid crystal compound different from the liquid crystal compound (A) and exhibits a nematic liquid crystal phase. 前記液晶性化合物(B)が、下記一般式(化2)〜(化6)のいずれかにより示される請求項3に記載のイオン伝導体。
Figure 0004896497
Figure 0004896497
Figure 0004896497
Figure 0004896497
Figure 0004896497
ただし、R2は炭素数が2から8の直鎖アルキル基であり、R3〜R6は炭素数が2から10の直鎖アルキル基である。
The ionic conductor according to claim 3, wherein the liquid crystal compound (B) is represented by any one of the following general formulas (Chemical Formula 2) to (Chemical Formula 6).
Figure 0004896497
Figure 0004896497
Figure 0004896497
Figure 0004896497
Figure 0004896497
However, R 2 is a linear alkyl group having 2 carbon atoms 8, R 3 ~R 6 is a straight-chain alkyl group having 2 to 10 carbon atoms.
前記液晶性化合物(B)を2種以上含む請求項3または4に記載のイオン伝導体。   The ionic conductor according to claim 3 or 4, comprising two or more liquid crystalline compounds (B). エチレンオキシドオリゴマーをさらに含む請求項2〜5のいずれか1項に記載のイオン伝導体。   The ionic conductor according to claim 2, further comprising an ethylene oxide oligomer.
JP2005323443A 2004-11-08 2005-11-08 Liquid crystalline compound and ionic conductor using the same Expired - Fee Related JP4896497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323443A JP4896497B2 (en) 2004-11-08 2005-11-08 Liquid crystalline compound and ionic conductor using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004324255 2004-11-08
JP2004324255 2004-11-08
JP2005323443A JP4896497B2 (en) 2004-11-08 2005-11-08 Liquid crystalline compound and ionic conductor using the same

Publications (2)

Publication Number Publication Date
JP2006152290A JP2006152290A (en) 2006-06-15
JP4896497B2 true JP4896497B2 (en) 2012-03-14

Family

ID=36630947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323443A Expired - Fee Related JP4896497B2 (en) 2004-11-08 2005-11-08 Liquid crystalline compound and ionic conductor using the same

Country Status (1)

Country Link
JP (1) JP4896497B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839780B1 (en) * 2015-03-31 2018-03-19 주식회사 엘지화학 Liquid crystal device
US10663825B2 (en) 2015-03-31 2020-05-26 Lg Chem, Ltd. Liquid crystal device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032582A1 (en) 2015-08-26 2017-03-02 Evonik Degussa Gmbh Use of certain polymers as a charge store
KR101989727B1 (en) 2015-08-26 2019-06-14 에보니크 데구사 게엠베하 Use of specific polymers as charge carriers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338527A (en) * 2000-05-30 2001-12-07 Canon Inc Electrolyte and secondary cell
JP3619174B2 (en) * 2000-07-24 2005-02-09 キヤノン株式会社 Polymer liquid crystalline compounds, electrolytes containing them, and secondary batteries
JP4033678B2 (en) * 2001-03-30 2008-01-16 独立行政法人科学技術振興機構 Liquid crystalline ion conductor and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839780B1 (en) * 2015-03-31 2018-03-19 주식회사 엘지화학 Liquid crystal device
US10663825B2 (en) 2015-03-31 2020-05-26 Lg Chem, Ltd. Liquid crystal device
US10663828B2 (en) 2015-03-31 2020-05-26 Lg Chem, Ltd. Liquid crystal device

Also Published As

Publication number Publication date
JP2006152290A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
KR101473039B1 (en) Electrolyte Preparations For Energy Stores Based On Ionic Liquids
Lee et al. Ionic conductivity of a polymer electrolyte with modified carbonate as a plasticizer for poly (ethylene oxide)
ES2244958T3 (en) LIQUID HYDROPHOBIC SALTS, ITS PREPRATION AND ITS APPLICATION IN ELECTROCHEMISTRY.
KR100579650B1 (en) Liquid crystalline ion conductor and method for preparation thereof
US20120129045A1 (en) Liquid electrolyte filled polymer electrolyte
JP4896497B2 (en) Liquid crystalline compound and ionic conductor using the same
CN106318402B (en) A kind of negative liquid crystal compound, composition and its application
Cospito et al. Mesomorphism and electrochemistry of thienoviologen liquid crystals
JP3619174B2 (en) Polymer liquid crystalline compounds, electrolytes containing them, and secondary batteries
Jeong et al. Liquid crystalline PEDOT derivatives exhibiting reversible anisotropic electrochromism and linearly and circularly polarized dichroism
Bhowmik et al. Ionic liquid crystals: Synthesis and characterization via NMR, DSC, POM, X-ray diffraction and ionic conductivity of asymmetric viologen bistriflimide salts
Ohtake et al. Liquid-crystalline complexes of a lithium salt with twin oligomers containing oxyethylene spacers. An approach to anisotropic ion conduction
JP2005239639A (en) Ion conductor
Eisele et al. Structure and ionic conductivity of liquid crystals having propylene carbonate units
KR100716969B1 (en) Vertical Alignment Liquid Crystalline Compound and Liquid Crystalline Composition comprising the Same
JP2007194150A (en) Ion conductor
US20130306907A1 (en) Dicarboxylate gemini surfactant that forms a lyotropic liquid crystal
JPWO2019221267A1 (en) Liquid crystal compounds, ionic conductors, electrolyte films and secondary batteries
CA2888325C (en) Ionic liquid
KR101586356B1 (en) New imidazolium salts having liquid crystal characteristics, useful as electrolytes
KR102139215B1 (en) Organic ionic plastic crystals comprising bis-pyrollidinium salt compound, method of manufacturing same, electrolyte for secondary battery comprising same and device comprising electrolyte for secondary battery
JP2007194151A (en) Ion conductor
JP2005243449A (en) Ionic conductor
KR102139216B1 (en) Organic ionic plastic crystals comprising bis-piperidinium salt compound, method of manufacturing same, electrolyte for secondary battery comprising same and device comprising electrolyte for secondary battery
Qian et al. The influence of pendent anions on electrochemical and electrochromic properties of thiophene-triphenylamine-based polymeric ionic liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees