JP4896433B2 - Extra fine melt anisotropic aromatic polyester fiber - Google Patents

Extra fine melt anisotropic aromatic polyester fiber Download PDF

Info

Publication number
JP4896433B2
JP4896433B2 JP2005162112A JP2005162112A JP4896433B2 JP 4896433 B2 JP4896433 B2 JP 4896433B2 JP 2005162112 A JP2005162112 A JP 2005162112A JP 2005162112 A JP2005162112 A JP 2005162112A JP 4896433 B2 JP4896433 B2 JP 4896433B2
Authority
JP
Japan
Prior art keywords
fiber
aromatic polyester
yarn
melt
anisotropic aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005162112A
Other languages
Japanese (ja)
Other versions
JP2006336147A (en
Inventor
祐二 荻野
洋一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2005162112A priority Critical patent/JP4896433B2/en
Publication of JP2006336147A publication Critical patent/JP2006336147A/en
Application granted granted Critical
Publication of JP4896433B2 publication Critical patent/JP4896433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融異方性芳香族ポリエステル繊維、特に単糸繊度が0.01〜1.5dtexの極細繊度にも関わらず、高強度、高弾性率である溶融異方性芳香族ポリエステル繊維に関し、例えば防弾服、防刃、防アイスピック服などの防護材に用いることができ、かつ衣服等にしたときの風合いも良好な溶融異方性芳香族ポリエステル繊維とその製造方法に関するものである。   The present invention relates to a melt-anisotropic aromatic polyester fiber, particularly a melt-anisotropic aromatic polyester fiber having a high strength and a high elastic modulus in spite of an ultrafine fineness having a single yarn fineness of 0.01 to 1.5 dtex. The present invention relates to a melt-anisotropic aromatic polyester fiber that can be used as a protective material such as a bulletproof garment, a blade-proof garment, and an ice-proof garment, and also has a good texture when made into a garment or the like, and a production method thereof.

溶融異方性芳香族ポリエステル繊維に対して無機微粒子を付与させるという技術としては、モース硬度4以下のケイ酸とマグネシウムを主成分とする、平均粒径0.01〜15μmの無機微粒子を単糸繊度2〜10dtexの繊維表面に付着させてなる溶融異方性芳香族ポリエステル繊維が知られている(例えば、特許文献1参照。)。特許文献1は溶融異方性芳香族ポリエステル繊維の剛直さゆえの耐屈曲疲労性、耐磨耗性の改善に効果がある他に、熱処理後のヤーンの膠着回避にも効果的である。   As a technique for imparting inorganic fine particles to melt-anisotropic aromatic polyester fibers, inorganic fine particles having an average particle diameter of 0.01 to 15 μm, which are mainly composed of silicic acid having a Mohs hardness of 4 or less and magnesium, are used as a single yarn. A melt-anisotropic aromatic polyester fiber is known which is adhered to a fiber surface having a fineness of 2 to 10 dtex (see, for example, Patent Document 1). Patent Document 1 is effective in improving the bending fatigue resistance and wear resistance due to the rigidity of the melt-anisotropic aromatic polyester fiber, and is also effective in avoiding yarn sticking after heat treatment.

一般的に溶融異方性芳香族ポリエステル繊維は紡糸直後の原糸段階では十分な強度が得られない。これを窒素などの不活性ガス雰囲気下において熱処理することで固相重合反応が進行して高強度が得られるのであるが、それと同時に単繊維同士が膠着しやすく、ヤーンが硬くなる欠点を有している。無機微粒子を付与させるという特許文献1の技術はこの単繊維間に微粒子が存在させることで互いの膠着を防ぐ効果を持っており、さらには単糸の分繊性が良いと単にヤーンが軟らかくなる以外に結節強度等の物性が向上することにもなる。   In general, melt anisotropic aromatic polyester fibers cannot provide sufficient strength at the raw yarn stage immediately after spinning. By heat-treating this in an inert gas atmosphere such as nitrogen, the solid-phase polymerization reaction proceeds and high strength is obtained, but at the same time, the single fibers tend to stick together and the yarn becomes hard. ing. The technique of Patent Document 1 that imparts inorganic fine particles has the effect of preventing mutual sticking by allowing fine particles to exist between the single fibers, and further, if the single yarn has good fineness, the yarn is simply softened. In addition, physical properties such as nodule strength are improved.

しかしながら、従来の溶融異方性芳香族ポリエステル繊維は単糸繊度2〜10dtexのものがほとんどであり、特許文献1で記載されているような粒径の無機微粒子ではさらに単糸繊度の細い、例えば繊度2.0dtex未満の細繊度の繊維に対しては粒径が大きすぎてローラータッチあるいはカラス口等で付与しても粒子はヤーンの表面にのみ存在するだけで、単糸間に入り込むことができず、熱処理時の膠着が回避できないという問題があった。   However, most conventional melt anisotropic aromatic polyester fibers have a single yarn fineness of 2 to 10 dtex, and inorganic fine particles having a particle size as described in Patent Document 1 have a finer single yarn fineness. For fine fibers with a fineness of less than 2.0 dtex, the particle size is too large, and even if applied by roller touch or crow mouth, the particles are present only on the surface of the yarn and can enter between the yarns. There was a problem that it was not possible to avoid sticking during heat treatment.

特開2004−107826号公報JP 2004-107826 A

本発明の目的は、熱処理後も単糸同士が膠着することなく単糸分繊性に優れ、非常にしなやかで従来よりも結節強度の高い極細繊度の溶融異方性芳香族ポリエステル繊維を得ることにある。   The object of the present invention is to obtain a melt anisotropic aromatic polyester fiber having excellent ultrafineness and high knot strength compared to the prior art, which is excellent in single yarn splitting properties without sticking to each other even after heat treatment. It is in.

上記目的を達成すべく本願発明者等は鋭意検討を重ねた結果、繊維表面に平均粒径0.001〜1μmの無機微粒子を付与することにより熱処理後も単糸同士が膠着することなく単糸分繊性に優れ、非常にしなやかで従来よりも結節強度の高い極細の溶融異方性芳香族ポリエステル繊維が得られることを見出した。   As a result of intensive investigations by the inventors of the present invention to achieve the above object, the single yarn does not stick to each other even after heat treatment by applying inorganic fine particles having an average particle size of 0.001 to 1 μm to the fiber surface. It has been found that an extremely fine melt-anisotropic aromatic polyester fiber is obtained that has excellent fiber separation properties, is very flexible, and has a higher knot strength than conventional ones.

すなわち本発明は、水溶性ポリマーあるいは易アルカリ溶解性ポリマーを海成分、溶融異方性芳香族ポリエステルを島成分にした海島複合繊維を紡糸し、熱水あるいはアルカリ減量処理後の繊維において平均粒径0.001〜1μmの膨潤性層状粘土鉱物が単繊維表面に0.05〜2質量%付着されてなり、単糸繊度が0.01〜1.5dtex、熱処理後の強度が15cN/dtex以上である溶融異方性芳香族ポリエステル繊維である。 That is, the present invention spins a sea-island composite fiber containing a water-soluble polymer or an easily alkali-soluble polymer as a sea component and a melt-anisotropic aromatic polyester as an island component, and the average particle size of the fiber after hot water or alkali weight reduction treatment 0.001 to 1 μm of a swellable layered clay mineral is adhered to the surface of a single fiber in an amount of 0.05 to 2% by mass, the single yarn fineness is 0.01 to 1.5 dtex, and the strength after heat treatment is 15 cN / dtex or more. Ru is melted anisotropic aromatic polyester fiber der.

本発明の無機微粒子を繊維表面に付着させた溶融異方性芳香族ポリエステル繊維は高強度でかつ単繊度が細く、単糸同士の膠着もないことから、結節強力、屈曲疲労性が優れるので、ロープ、ケーブル、テンションメンバー、FRP、防弾チョッキ等幅広い用途に使用可能である。   Since the melt anisotropic aromatic polyester fiber having the inorganic fine particles of the present invention attached to the fiber surface is high in strength and thin, and has no sticking between single yarns, it has excellent knot strength and flex fatigue, It can be used for a wide range of applications such as ropes, cables, tension members, FRP, bulletproof vests.

本発明にいう溶融異方性芳香族ポリエステルとは、溶融相において光学的異方性(液晶性)を示す芳香族ポリエステルであり、例えば試料をホットステージに載せ窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。本発明で用いる溶融異方性ポリエステルは芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸の反復構成単位を主成分とするものであるが、下記化1に示す反復構成単位群の組合せからなるものが好ましい。   The melt anisotropic aromatic polyester referred to in the present invention is an aromatic polyester that exhibits optical anisotropy (liquid crystallinity) in the melt phase. For example, a sample is placed on a hot stage and heated at a high temperature in a nitrogen atmosphere. It can be identified by observing the transmitted light of the sample. The melt anisotropic polyester used in the present invention is composed mainly of repeating structural units of aromatic diol, aromatic dicarboxylic acid, and aromatic hydroxycarboxylic acid. Is preferred.

Figure 0004896433
Figure 0004896433

特に好ましくは下記化2に示す反復構成単位の組合せからなるポリマーが好ましく、さらに好ましいのは(A)および(B)の反復構成単位からなる部分が65%以上であるポリマーであり、特に(B)の成分が4〜45モル%である芳香族ポリエステルであることが好ましい。   Particularly preferred is a polymer comprising a combination of repeating constitutional units represented by the following chemical formula 2, and more preferred is a polymer having a portion comprising (A) and (B) repeating constitutional units of 65% or more, particularly (B ) Is preferably an aromatic polyester having a content of 4 to 45 mol%.

Figure 0004896433
Figure 0004896433

本発明で好適に用いる溶融異方性芳香族ポリエステルの融点(MP)は260〜380℃であることが好ましく、より好ましくは270〜350℃である。ここでいう融点とは、JIS K7121試験法に準拠し、示差走差熱量計(DSC;メトラー社製「TA3000」)で測定し、観察される主吸収ピーク温度である。具体的には、DSC装置にて測定する際、測定サンプルを10〜20mg取り、アルミ製パンへ封入した後、キャリアガスとして窒素を流量100cc/minで流し、20℃/minで昇温したときの吸収ピークを測定する。ポリマーの種類により上記の1st runで明確な吸収ピークが出現しない場合には、50℃/minの昇温速度で予想される流れ温度より50℃高い温度まで昇温し、その温度で3分間以上保持し、完全に溶解した後、80℃/minの速度で50℃まで冷却し、しかる後、20℃/minの昇温速度で吸熱ピークを測定するとよい。   It is preferable that melting | fusing point (MP) of the melt anisotropic aromatic polyester used suitably by this invention is 260-380 degreeC, More preferably, it is 270-350 degreeC. The melting point here is the main absorption peak temperature measured and observed with a differential scanning calorimeter (DSC; “TA3000” manufactured by METTLER) according to JIS K7121 test method. Specifically, when measuring with a DSC apparatus, 10 to 20 mg of a measurement sample is taken and sealed in an aluminum pan, then nitrogen is supplied as a carrier gas at a flow rate of 100 cc / min, and the temperature is increased at 20 ° C./min. The absorption peak of is measured. If a clear absorption peak does not appear in the above-mentioned 1st run depending on the type of polymer, the temperature is raised to a temperature 50 ° C. higher than the expected flow temperature at a temperature increase rate of 50 ° C./min, and at that temperature for 3 minutes or more. After being held and completely dissolved, it is cooled to 50 ° C. at a rate of 80 ° C./min, and then an endothermic peak is measured at a rate of temperature increase of 20 ° C./min.

溶融異方性芳香族ポリエステルには、本発明の効果を損なわない範囲で、ポリエチレンナフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等を添加してもよい。また、酸化チタン、シリカ、硫酸バリウム等の無機物、カーボンブラック、染料や顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤等の各種添加剤を含んでいてもよい。   Addition of polyethylene naphthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyetheretherketone, fluororesin, etc. to the melt anisotropic aromatic polyester within the range that does not impair the effects of the present invention May be. Further, it may contain various additives such as inorganic substances such as titanium oxide, silica and barium sulfate, carbon black, colorants such as dyes and pigments, antioxidants, ultraviolet absorbers and light stabilizers.

次に本発明の極細繊度の溶融異方性芳香族ポリエステル繊維を得る方法については、水溶性ポリマーや易アルカリ溶解性ポリマーを海成分、溶融異方性芳香族ポリエステルを島成分にした海島複合繊維を紡糸し、熱水やアルカリ減量処理により0.01〜1.5dtexの細繊度繊維を得る方法が採用される。
Next, regarding the method for obtaining a melt anisotropic aromatic polyester fiber having ultrafineness according to the present invention, a sea-island composite fiber having a water-soluble polymer or an easily alkali-soluble polymer as a sea component and a melt anisotropic aromatic polyester as an island component. Is used to obtain 0.01 to 1.5 dtex fine fiber by hot water or alkali weight loss treatment.

紡糸原糸は熱処理することにより強度、弾性率をさらに向上させることが可能である。熱処理は(MP−80℃)からMPの範囲の温度条件で行うのが好ましい。本発明の溶融異方性芳香族ポリエステル繊維の融点は熱処理温度を上げるに従い上昇するので、熱処理方法としては段階的に温度を上昇させながら熱処理するのが好ましい。熱処理雰囲気としては窒素、アルゴン等の不活性ガスや空気等の活性ガス、あるいはそれらを組み合わせた雰囲気等が好適に用いられる。
また、上記熱処理を減圧下で行っても何等差し支えない。
The spinning yarn can be further improved in strength and elastic modulus by heat treatment. The heat treatment is preferably performed under a temperature condition ranging from (MP-80 ° C.) to MP. Since the melting point of the melt-anisotropic aromatic polyester fiber of the present invention increases as the heat treatment temperature is raised, it is preferable that the heat treatment is carried out while raising the temperature stepwise. As the heat treatment atmosphere, an inert gas such as nitrogen or argon, an active gas such as air, or a combination thereof is preferably used.
Moreover, there is no problem even if the heat treatment is performed under reduced pressure.

本発明における重要な点は溶融異方性芳香族ポリエステル繊維の表面に無機微粒子を付着させることであるが、特に重要なのは単糸繊度が0.01〜1.5dtexの細繊度の溶融異方性芳香族ポリエステル繊維の表面に、平均粒径0.001〜1μmの無機微粒子を付着させることにある。
従来の溶融異方性芳香族ポリエステル繊維の単糸繊度は2〜10dtexが一般的であるが、単糸繊度が0.01〜1.5dtexと細くなるとマルチフィラメントヤーンとしたときの充填密度も高くなる。そうなると微粒子を単繊維表面に付着させようとしても、その粒子径も小さくしなければ微粒子といえどもヤーンの表面にのみ存在するだけで単繊維間に入り込むことができず、熱処理時の単糸同士の膠着を防止する効果が得られなくなる。本発明の微粒子の粒子径は0.001〜1μmであることが必要であり、0.01〜0.1μmであることが好ましい。
An important point in the present invention is to adhere inorganic fine particles to the surface of the melt-anisotropic aromatic polyester fiber, but particularly important is a melt anisotropy having a fineness of 0.01 to 1.5 dtex. The purpose is to attach inorganic fine particles having an average particle diameter of 0.001 to 1 μm to the surface of the aromatic polyester fiber.
Conventional melt anisotropic aromatic polyester fibers usually have a single yarn fineness of 2 to 10 dtex. However, when the single yarn fineness is reduced to 0.01 to 1.5 dtex, the packing density when a multifilament yarn is used is high. Become. Then, even if it tries to adhere the fine particles to the surface of the single fiber, if the particle diameter is not reduced, even if the fine particles are present only on the surface of the yarn, they cannot enter between the single fibers, and the single yarns at the time of heat treatment The effect of preventing the sticking of the film cannot be obtained. The particle diameter of the fine particles of the present invention is required to be 0.001 to 1 μm, and preferably 0.01 to 0.1 μm.

また本発明において、さらに重要なのは、微粒子の糸に対する付着量である。特に微粒子がスメクタイトなどの膨潤性層状粘土鉱物である場合、水に分散したときに粒子は鱗片状にへき開して沈降することなく均一な溶液となる。これを繊維に付着させると鱗片状の微粒子が表面を覆うようになる。ここで、付着量が多すぎると熱処理の際、繊維表面を被覆した微粒子が固相重合反応に伴う副生成物の発生を抑えてしまうため、固相重合反応が充分に進行しなくなり、その結果単糸の分繊性は良くても繊維強度が充分に向上しない恐れがある。本発明者等はこの膨潤性層状粘土鉱物の付着量と単糸分繊性、および繊維強度の関係を鋭意検討した結果、付着量は0.05〜2質量%が必要であることを見出した。付着量が0.05質量%未満であると単繊維同士の膠着が激しく、一方2質量%よりも多いと繊維強度が著しく低下する。好ましくは0.07〜1.5質量%であり、より好ましくは0.1〜1質量%である。   In the present invention, more important is the amount of fine particles attached to the yarn. In particular, when the fine particles are a swellable lamellar clay mineral such as smectite, when dispersed in water, the particles are cleaved in a scaly shape and become a uniform solution without settling. When this is adhered to the fiber, the scaly fine particles come to cover the surface. Here, if the adhesion amount is too large, the fine particles coated on the fiber surface during the heat treatment suppress the generation of by-products accompanying the solid-phase polymerization reaction, so that the solid-phase polymerization reaction does not proceed sufficiently. Even if the single yarn is finely divided, the fiber strength may not be sufficiently improved. As a result of intensive studies on the relationship between the adhesion amount of the swellable layered clay mineral, the single-fiber separation property, and the fiber strength, the present inventors have found that the adhesion amount needs to be 0.05 to 2% by mass. . If the adhesion amount is less than 0.05% by mass, the single fibers are strongly stuck, while if more than 2% by mass, the fiber strength is remarkably lowered. Preferably it is 0.07-1.5 mass%, More preferably, it is 0.1-1 mass%.

本発明の無機微粒子の繊維表面への付着方法は特に限定されるものではなく、繊維に均一に付着可能な方法であれば、何等限定されない。ただ無機微粒子は熱処理による単糸の膠着防止が主な目的であるため、熱処理前に繊維表面に付着させておくことが好ましい。
例えば紡糸段階で付着させる場合は、ポリマーがノズルから吐出してから、糸が巻き取られる間に水に無機微粒子を分散させたものをローラータッチあるいはカラス口等を用いて付着させる方法が簡便で好ましい。また海島複合繊維を紡糸した後、海成分を減量処理して極細糸を得る場合は糸を巻き返す工程にてローラータッチ、あるいはカラス口等を用いて付着させる方法も考えられる。また無機微粒子を分散させる水溶液中には通常の紡糸油剤に用いるような界面活性剤の成分が含まれていても何等差し支えない。
The method for attaching the inorganic fine particles to the fiber surface of the present invention is not particularly limited, and is not particularly limited as long as it is a method capable of uniformly attaching to the fiber. However, since inorganic fine particles mainly have the purpose of preventing sticking of single yarns by heat treatment, it is preferable that they be adhered to the fiber surface before heat treatment.
For example, when attaching at the spinning stage, a method in which inorganic fine particles are dispersed in water while the yarn is wound after the polymer is discharged from the nozzle is easy to attach using a roller touch or a crow mouth. preferable. In addition, after spinning the sea-island composite fiber, if the sea component is reduced in weight to obtain ultrafine yarn, a method of attaching it using a roller touch or a crow mouth in a step of winding the yarn is also conceivable. Further, the aqueous solution in which the inorganic fine particles are dispersed may contain a surfactant component used in a normal spinning oil.

以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何等限定されるものではない。なお以下の実施例において、溶融粘度、対数粘度、繊維強度は下記の方法により測定したものを示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this Example. In the following Examples, melt viscosity, logarithmic viscosity, and fiber strength are those measured by the following methods.

[溶融粘度MV poise]
300℃、剪断速度r=1000sec−1の条件で東洋精機製キャピログラフ1B型を用いて測定した。
[Melt viscosity MV poison]
The measurement was performed using a Capillograph Type 1B manufactured by Toyo Seiki under the conditions of 300 ° C. and shear rate r = 1000 sec −1 .

[対数粘度ηinh dl/g]
試料をペンタフルオロフェノールに温度60〜80℃の条件下で0.1質量%溶解し、60℃の恒温槽中でウッペローデ型粘度計を用いて相対粘度(ηrel)を測定し、下式により算出した。
ηinh=ln(ηrel)/c なお、cはポリマー濃度(g/dl)
[Logarithmic viscosity η inh dl / g]
The sample was dissolved in pentafluorophenol at 0.1% by mass under conditions of 60 to 80 ° C., and the relative viscosity (η rel ) was measured using a Upperode viscometer in a constant temperature bath at 60 ° C. Calculated.
η inh = ln (η rel ) / c where c is the polymer concentration (g / dl)

[繊維強度 cN/dex]
JIS−L1013に準拠し、試長20cm、初荷重0.1g/d、引張速度10cm/minの条件で破断強伸度を求め、5点以上の平均値を採用した。
[Fiber strength cN / dex]
Based on JIS-L1013, the breaking strength and elongation were determined under the conditions of a test length of 20 cm, an initial load of 0.1 g / d, and a tensile speed of 10 cm / min, and an average value of 5 or more points was adopted.

[実施例1]
(1)海成分のポリマーには、5−ナトリウムスルホイソフタル酸ジメチル(I)が共重合ポリエステルを構成する全酸成分の2.5モル%、分子量2000のポリエチレングリコール(II)及び下記化3で表されるポリオキシエチレングリシジルエーテル(III)が全共重合ポリエステルのそれぞれ10重量%を占め、残りがテレフタル酸、エチレングリコールである共重合ポリエステル(固有粘度0.58dl/g)、島成分のポリマーには、前記化2で示した構成単位(A)と(B)が(A)/(B)=73/27(モル比)である溶融異方性芳香族ポリエステル(MP=281℃、MV=420poise、ηinh=4.34dl/g)を用いた。なお海成分の共重合ポリエステルは、該ポリエチレングリコールとポリオキシエチレングリシジルエーテルの合計量に対して5質量%の酸化分解防止剤(アメリカンサイアミッド社製「サイアノックス1790」)を含むものである。なお島成分のポリマーと海成分のポリマーの分解速度比は5800であった。
[Example 1]
(1) For the polymer of the sea component, dimethyl (I) 5-sodium sulfoisophthalate is 2.5 mol% of the total acid component constituting the copolymer polyester, polyethylene glycol (II) having a molecular weight of 2000, and The polyoxyethylene glycidyl ether (III) represented represents 10% by weight of the total copolymer polyester, and the remainder is terephthalic acid and ethylene glycol copolymer polyester (inherent viscosity 0.58 dl / g), island component polymer The melt anisotropic aromatic polyester (MP = 281 ° C., MV) in which the structural units (A) and (B) shown in the chemical formula 2 are (A) / (B) = 73/27 (molar ratio). = 420 poise, η inh = 4.34 dl / g). The sea component copolymer polyester contains 5% by mass of an oxidative degradation inhibitor (“Sianox 1790” manufactured by American Siamid) based on the total amount of the polyethylene glycol and polyoxyethylene glycidyl ether. The decomposition rate ratio of the polymer of the island component and the polymer of the sea component was 5800.

Figure 0004896433
Figure 0004896433

(2)各ポリマーを2台の押出し機より溶融し、ギアポンプから溶融異方性芳香族ポリエステル:易アルカリ減量性ポリエステル=70:30(質量比)で紡糸ヘッドに導き、図1の断面形状を有するノズル径0.15mmφ、24ホールからなる口金より紡糸温度315℃、巻取速度1000mm/分で紡糸し、274dtex/24fの海島型複合繊維を得た。この繊維を穴空きステンレス製ボビンに巻き、95℃の水酸化ナトリウム溶液に30分間浸漬処理した。この処理による質量減少は31%であり、易減量性ポリマーは完全に除去されていた。処理後の島成分の繊維の強度は9.1cN/dtex、単糸繊度は0.5dtexであった。
(3)上記(2)で得られた繊維に膨潤性層状粘土鉱物の微粒子(コープケミカル社製合成スメクタイト「SWN」)をポリエチレングリコールラウリレートを主成分とする紡糸油剤に2質量%の濃度になるよう分散させた。SWNは膨潤してへき開し、平均粒子径は0.01〜0.1μmとなった。これをカラス口にてSWNを糸に対して0.5質量%付着させた。得られた繊維を乾燥窒素雰囲気中にて260℃で2時間熱処理、次いで280℃で12時間熱処理した後ココナツ油を主成分とする仕上げ油剤を糸に付着させて熱処理糸を得た。得られた熱処理糸の各物性の測定結果を表1に示す。
(2) Each polymer is melted from two extruders, and is guided from the gear pump to the spinning head with melt anisotropic aromatic polyester: easy alkali weight loss polyester = 70: 30 (mass ratio). Spinning was performed from a nozzle having a nozzle diameter of 0.15 mmφ and 24 holes at a spinning temperature of 315 ° C. and a winding speed of 1000 mm / min to obtain a sea-island type composite fiber of 274 dtex / 24 f. This fiber was wound around a perforated stainless steel bobbin and immersed in a sodium hydroxide solution at 95 ° C. for 30 minutes. The mass loss due to this treatment was 31%, and the easily-reducible polymer was completely removed. The fiber strength of the island component after the treatment was 9.1 cN / dtex, and the single yarn fineness was 0.5 dtex.
(3) Swellable layered clay mineral fine particles (synthetic smectite “SWN” manufactured by Coop Chemical Co., Ltd.) in the fiber obtained in (2) above are added to a spinning oil mainly composed of polyethylene glycol laurate at a concentration of 2% by mass. Was dispersed. SWN swelled and cleaved, and the average particle size became 0.01 to 0.1 μm. This was made to adhere 0.5 mass% of SWN to the yarn at the crow mouth. The obtained fiber was heat-treated at 260 ° C. for 2 hours in a dry nitrogen atmosphere, then heat-treated at 280 ° C. for 12 hours, and then a finishing oil mainly composed of coconut oil was adhered to the yarn to obtain a heat-treated yarn. Table 1 shows the measurement results of the physical properties of the obtained heat-treated yarn.

参考例1
SWNの付着量を3質量%にした以外は実施例1と同様にして熱処理糸を作製した。得られた熱処理糸の各物性の測定結果を表1に示す。
[ Reference Example 1 ]
A heat treated yarn was produced in the same manner as in Example 1 except that the amount of SWN deposited was 3% by mass. Table 1 shows the measurement results of the physical properties of the obtained heat-treated yarn.

[実施例
SWNの付着量を0.1質量%にした以外は実施例1と同様にして熱処理糸を作製した。得られた熱処理糸の各物性の測定結果を表1に示す。
[Example 2 ]
A heat treated yarn was produced in the same manner as in Example 1 except that the amount of SWN deposited was 0.1% by mass. Table 1 shows the measurement results of the physical properties of the obtained heat-treated yarn.

[比較例1]
紡糸油剤に膨潤性層状粘土鉱物の微粒子を添加しなかった以外は実施例1と同様にして熱処理糸を作製した。得られた熱処理糸の各物性の測定結果を表1に示す。
[Comparative Example 1]
A heat treated yarn was prepared in the same manner as in Example 1 except that the fine particles of the swellable layered clay mineral were not added to the spinning oil. Table 1 shows the measurement results of the physical properties of the obtained heat-treated yarn.

[比較例2]
無機微粒子にコープケミカル社製合成雲母「ソマシフME−100」を用いて、糸に対して0.5質量%付着させた以外は実施例1と同様にして熱処理糸を作製した。この合成雲母も水で膨潤してへき開し、平均粒子径は1〜10μmであった。得られた熱処理糸の各物性の測定結果を表1に示す。
[Comparative Example 2]
A heat treated yarn was produced in the same manner as in Example 1 except that 0.5 mass% of the fine particles were attached to the inorganic fine particles using synthetic mica “Somasif ME-100” manufactured by Co-op Chemical. This synthetic mica also swelled and cleaved with water, and the average particle size was 1 to 10 μm. Table 1 shows the measurement results of the physical properties of the obtained heat-treated yarn.

Figure 0004896433
Figure 0004896433

表1に示すように、実施例1〜2の平均粒径0.01〜0.1μmの膨潤性層状粘土鉱物の微粒子を糸に0.1〜0.5質量%付与した溶融異方性芳香族ポリエステル繊維は比較例1よりも単糸間同士での膠着がないかあるいは少なく、また結節強度も向上していた。一方同じ膨潤性の微粒子であっても、平均粒子径が1〜10μmと大きいと、結節強度は少し向上しても単糸間同士の膠着が改善されなかった。
As shown in Table 1, a melt anisotropic fragrance in which 0.1 to 0.5 mass% of fine particles of a swellable layered clay mineral having an average particle diameter of 0.01 to 0.1 μm of Examples 1 and 2 was imparted to a yarn The group polyester fiber had less or less sticking between single yarns than Comparative Example 1, and the knot strength was also improved. On the other hand, even with the same swellable fine particles, when the average particle size was as large as 1 to 10 μm, the sticking between single yarns was not improved even if the knot strength was slightly improved.

本発明の溶融異方性芳香族ポリエステル繊維は、高強度・高弾性かつ耐薬品性に優れ、その単繊維繊度は1.5dtex以下であり、さらに単糸分繊性が良いために風合も良いので、一般産業資材、衣料などにおいて広く用いられる。具体的には衣料用途として、例えば各種作業服、スポーツ衣料、防護衣等、また産業資材用途としては、ロープ、ゴム補強、ジオテキスタイル、FRC用途、コンピューターリボン、プリント基板用基布、エアーバック、バッグフィルター、スクリーン紗等が挙げられる。本発明の繊維は特に手袋、前掛け等の防護衣、スポーツ衣料、濾過材の他、特に防弾服、防刃、防アイスピック服等に適している。   The melt-anisotropic aromatic polyester fiber of the present invention has high strength, high elasticity and excellent chemical resistance, its single fiber fineness is 1.5 dtex or less, and has a good single yarn splitting property, so its texture is Because it is good, it is widely used in general industrial materials and clothing. Specifically, as clothing, for example, various work clothes, sports clothing, protective clothing, etc., and as industrial materials, rope, rubber reinforcement, geotextile, FRC, computer ribbon, printed circuit board base, air bag, bag Examples include filters and screen jars. The fiber of the present invention is particularly suitable for protective clothing such as gloves and aprons, sports clothing, filter materials, and particularly for bulletproof clothing, blade-proof clothing, and ice-proof pick clothing.

本発明の繊維の紡糸に用いられるノズル口金の断面形状の一例を示す図。The figure which shows an example of the cross-sectional shape of the nozzle cap used for spinning of the fiber of this invention.

Claims (1)

水溶性ポリマーあるいは易アルカリ溶解性ポリマーを海成分、溶融異方性芳香族ポリエステルを島成分にした海島複合繊維を紡糸し、熱水あるいはアルカリ減量処理後の繊維において平均粒径0.001〜1μmの膨潤性層状粘土鉱物が単繊維表面に0.05〜2質量%付着されてなり、単糸繊度が0.01〜1.5dtex、熱処理後の強度が15cN/dtex以上である溶融異方性芳香族ポリエステル繊維。 A sea-island composite fiber containing a water-soluble polymer or an easily alkali-soluble polymer as a sea component and a melt anisotropic aromatic polyester as an island component is spun, and the average particle size is 0.001 to 1 μm in the hot water or the fiber after alkali weight loss treatment. Swellable layered clay mineral of 0.05 to 2% by mass is attached to the surface of the single fiber, the single yarn fineness is 0.01 to 1.5 dtex, and the strength after heat treatment is 15 cN / dtex or more. Aromatic polyester fiber.
JP2005162112A 2005-06-02 2005-06-02 Extra fine melt anisotropic aromatic polyester fiber Active JP4896433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162112A JP4896433B2 (en) 2005-06-02 2005-06-02 Extra fine melt anisotropic aromatic polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162112A JP4896433B2 (en) 2005-06-02 2005-06-02 Extra fine melt anisotropic aromatic polyester fiber

Publications (2)

Publication Number Publication Date
JP2006336147A JP2006336147A (en) 2006-12-14
JP4896433B2 true JP4896433B2 (en) 2012-03-14

Family

ID=37556947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162112A Active JP4896433B2 (en) 2005-06-02 2005-06-02 Extra fine melt anisotropic aromatic polyester fiber

Country Status (1)

Country Link
JP (1) JP4896433B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255535A (en) * 2007-04-09 2008-10-23 Kuraray Co Ltd High-tenacity conjugated fiber and method for producing the same
JP5239439B2 (en) * 2008-03-25 2013-07-17 東レ株式会社 Liquid crystal polyester fiber and method for producing the same
JP2011168930A (en) * 2010-02-22 2011-09-01 Kuraray Co Ltd High-strength conjugate fiber, and method for producing the same
JP6183210B2 (en) * 2011-12-27 2017-08-23 東レ株式会社 Liquid crystalline polyester multifilament
JP6085504B2 (en) * 2013-03-28 2017-02-22 株式会社クラレ Earphone cord
JP6617626B2 (en) * 2016-03-18 2019-12-11 東レ株式会社 Liquid crystal polyester multifilament and method for producing the same
JP6715656B2 (en) * 2016-04-06 2020-07-01 株式会社アドマテックス Easy-open fiber material and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137535A (en) * 1983-01-24 1984-08-07 帝人株式会社 Stretching of synthetic fiber
DE3465353D1 (en) * 1983-07-04 1987-09-17 Akzo Nv Aromatic polyamide yarn impregnated with lubricating particles, a process for the manufacture of such a yarn, and packing material or rope containing this yarn
JPH0814043B2 (en) * 1985-08-23 1996-02-14 住友化学工業株式会社 Heat treatment method for aromatic polyester fiber
US4721587A (en) * 1985-06-12 1988-01-26 E. I. Du Pont De Nemours And Company Process of making heat-strengthened yarn
JPH07197320A (en) * 1993-12-28 1995-08-01 Kuraray Co Ltd Fiber and production of ultra-fine fiber of thermotropic aromatic polyester
JP3923398B2 (en) * 2002-09-19 2007-05-30 株式会社クラレ High strength polyarylate fiber
JP2005002517A (en) * 2003-06-13 2005-01-06 Teijin Techno Products Ltd Method for producing thermoplastic synthetic fiber

Also Published As

Publication number Publication date
JP2006336147A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4896433B2 (en) Extra fine melt anisotropic aromatic polyester fiber
JP6183210B2 (en) Liquid crystalline polyester multifilament
KR20090115227A (en) Liquid crystalline polyester fiber and process for production of the same
JP5098693B2 (en) Liquid crystal polyester fiber
JP5470930B2 (en) Method for producing liquid crystal polyester fiber
JP6855683B2 (en) Liquid crystal polyester multifilament
JP6428421B2 (en) Liquid crystalline polyester multifilament
JP2010242246A (en) Method for producing liquid crystal polyester fiber
JP4983689B2 (en) Method for producing liquid crystal polyester fiber
JP2013133576A (en) Liquid crystal polyester multifilament
JP5239439B2 (en) Liquid crystal polyester fiber and method for producing the same
JP5298597B2 (en) Method for producing liquid crystal polyester fiber
JP2013133575A (en) Liquid crystal polyester multifilament for filament separation
JP6395054B2 (en) Liquid crystalline polyester multifilament
JP5301249B2 (en) rope
JP5327116B2 (en) Liquid crystal polyester fiber and method for producing the same
JP6834270B2 (en) Liquid crystal polyester multifilament
JP6753231B2 (en) Liquid crystal polyester multifilament
JP2006299474A (en) Ultrafine melt-anisotropic aromatic polyester fiber
JPH11269737A (en) Monofilament and screen gauze therefrom
JP3923398B2 (en) High strength polyarylate fiber
JP7239410B2 (en) Method for producing liquid crystal polyester fiber
TW202045578A (en) Liquid-crystal polyester multifilament, and high-level processed product comprising same
JP2008255535A (en) High-tenacity conjugated fiber and method for producing the same
JP2002020932A (en) Conjugate fiber and its woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4896433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3