JP4894955B2 - Surface light source device - Google Patents

Surface light source device Download PDF

Info

Publication number
JP4894955B2
JP4894955B2 JP2010542827A JP2010542827A JP4894955B2 JP 4894955 B2 JP4894955 B2 JP 4894955B2 JP 2010542827 A JP2010542827 A JP 2010542827A JP 2010542827 A JP2010542827 A JP 2010542827A JP 4894955 B2 JP4894955 B2 JP 4894955B2
Authority
JP
Japan
Prior art keywords
light
light source
guide plate
point
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010542827A
Other languages
Japanese (ja)
Other versions
JPWO2010070823A1 (en
Inventor
剛大 倉田
和英 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2010542827A priority Critical patent/JP4894955B2/en
Application granted granted Critical
Publication of JP4894955B2 publication Critical patent/JP4894955B2/en
Publication of JPWO2010070823A1 publication Critical patent/JPWO2010070823A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は面光源装置に関し、特に、光源の厚みよりも薄い導光板本体に効率良く光を入射させるための面光源装置の構造に関する。   The present invention relates to a surface light source device, and more particularly, to a structure of a surface light source device for efficiently making light incident on a light guide plate body thinner than the thickness of the light source.

面光源装置では、輝度が均一であること、高輝度であること、コストが低廉であることのほか、発光面積が大きいこと(発光面以外の面積が小さいこと)や厚みの薄いことが求められる。特に、携帯用の機器に組み込まれる場合には、携帯用機器の薄型化に伴って面光源装置の薄型化の要求もますます高くなっている。   The surface light source device is required to have uniform brightness, high brightness, low cost, a large light emitting area (small area other than the light emitting surface), and a small thickness. . In particular, when it is incorporated into a portable device, the demand for thinning the surface light source device is increasing as the portable device is thinned.

しかし、エッジライト型の面光源装置では、導光板の端面に点光源を対向させて配置しているので、導光板の厚みを点光源の光出射窓の高さよりも薄くすると、点光源から出射された光のうち導光板に入射しない光が増加し、面光源装置の光利用効率が低下する。そのため、導光板の厚みは点光源の光出射窓の高さによって制約を受け、導光板の厚みを点光源の光出射窓の高さよりも薄くすることが困難であった。同様に、光源が冷陰極管の場合には、導光板の厚みを冷陰極管の直径よりも薄くすることは困難であった。   However, in the edge light type surface light source device, since the point light source is arranged to face the end face of the light guide plate, if the thickness of the light guide plate is made thinner than the height of the light emission window of the point light source, the light is emitted from the point light source. Of the emitted light, the light that does not enter the light guide plate increases, and the light use efficiency of the surface light source device decreases. Therefore, the thickness of the light guide plate is restricted by the height of the light exit window of the point light source, and it is difficult to make the thickness of the light guide plate thinner than the height of the light exit window of the point light source. Similarly, when the light source is a cold cathode tube, it is difficult to make the thickness of the light guide plate thinner than the diameter of the cold cathode tube.

(特許文献1について)
特開平5−53111号公報(特許文献1)に開示された液晶表示装置では、蛍光管よりも厚みの薄い導光板に蛍光管からの光を効率よく入射させるため、導光板の厚みの薄い部分、すなわち導光板本体の端部にテーパー部を設けている。テーパー部の端面は蛍光管の直径にほぼ等しい高さを有しており、当該端面に蛍光管が対向している。
(Regarding Patent Document 1)
In the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 5-53111 (Patent Document 1), a light guide plate having a thin thickness is used to efficiently cause light from the fluorescent tube to enter a light guide plate having a thickness smaller than that of the fluorescent tube. That is, the taper part is provided in the edge part of the light-guide plate main body. The end surface of the tapered portion has a height substantially equal to the diameter of the fluorescent tube, and the fluorescent tube faces the end surface.

このような液晶表示装置では、導光板本体の厚みを蛍光管の直径よりも薄くでき、テーパー部の端面から入射した光は、テーパー部の表裏面で全反射することにより導光板本体へ導かれ、導光板本体の上面から液晶パネルへ向けて出射される。   In such a liquid crystal display device, the thickness of the light guide plate body can be made thinner than the diameter of the fluorescent tube, and the light incident from the end face of the tapered portion is totally reflected on the front and back surfaces of the tapered portion to be guided to the light guide plate body. The light is emitted from the upper surface of the light guide plate body toward the liquid crystal panel.

しかしながら、特許文献1のような液晶表示装置では、テーパー部における光の漏れを防止できないため、テーパー部から漏れた光が観察者側から光って見え、液晶表示装置の表示部(画面)の縁が高輝度で発光し、表示部の品質を劣化させるという問題があった。仮に、光の漏れを防止できたとしても、その場合には、導光板本体の厚みをテーパー部の厚みに対してあまり薄くすることができないか、あるいは、テーパー部の長さを非常に長くしなければならないために発光面積が狭くなり、根本的な解決に至らなかった。   However, in the liquid crystal display device as disclosed in Patent Document 1, light leakage from the tapered portion cannot be prevented, so that the light leaking from the tapered portion appears to shine from the viewer side, and the edge of the display portion (screen) of the liquid crystal display device. However, there is a problem that the display emits light with high luminance and deteriorates the quality of the display unit. Even if light leakage can be prevented, in that case, the thickness of the light guide plate body cannot be made very thin relative to the thickness of the tapered portion, or the length of the tapered portion is made very long. As a result, the light emitting area is reduced, and a fundamental solution has not been achieved.

(特許文献2、3について)
特開2004−69751号公報(特許文献2)、特開2005−285389号公報(特許文献3)にもそれぞれ面光源装置が開示されている。しかし、特許文献2に記載された面光源装置では、導光板から外部へ漏れる光を十分に抑制することができず、漏れた光が液晶表示装置の表示面で光って液晶表示装置の品質を悪化させる。また、特許文献3に記載された面光源装置では、光反射板で光が吸収されたり、光反射板で反射した光が光入射端面から漏れたりするために光の利用効率が悪かった。
なお、特許文献1、2、3の面光源装置の技術的課題については、特許文献4において詳細に説明している。
(Regarding Patent Documents 2 and 3)
Japanese Unexamined Patent Application Publication No. 2004-69751 (Patent Document 2) and Japanese Unexamined Patent Application Publication No. 2005-285389 (Patent Document 3) each disclose a surface light source device. However, in the surface light source device described in Patent Document 2, light leaking from the light guide plate to the outside cannot be sufficiently suppressed, and the leaked light shines on the display surface of the liquid crystal display device to improve the quality of the liquid crystal display device. make worse. Moreover, in the surface light source device described in Patent Document 3, the light utilization efficiency is low because light is absorbed by the light reflecting plate or light reflected by the light reflecting plate leaks from the light incident end face.
The technical problems of the surface light source devices of Patent Documents 1, 2, and 3 are described in detail in Patent Document 4.

(特許文献4について)
そのため、本発明の出願人は、先に提出したPCT出願(PCT/JP2008/60610;特許文献4)において、導光板本体の厚みを光入射端面の高さに比べて十分に小さくすることができ、しかも、テーパーの付いた光導入部からの光漏れをより少なくすることができるようにした面光源装置を開示した。
(Regarding Patent Document 4)
Therefore, the applicant of the present invention can make the thickness of the light guide plate main body sufficiently smaller than the height of the light incident end face in the previously filed PCT application (PCT / JP2008 / 60610; Patent Document 4). And the surface light source device which enabled it to reduce the light leakage from the light introduction part with a taper was disclosed.

図1に示すように、この面光源装置31は、LEDを用いた点光源32と、導光板33とからなる。導光板33は、導光板本体34の端部に光導入部35を設けたものであって、高屈折率の透明樹脂によって成形されている。光導入部35は、導光板本体34よりも厚みが厚く、その端面には点光源32が対向配置されている。光導入部35においては、導光板本体34の光出射面39と同じ側の面に、円錐台形状のほぼ半分の形状をした突部が突出して光導入部35の厚みが大きくなっており、当該突部の外周面が傾斜面37となり、この傾斜面37に指向性変換パターン38が形成されている。指向性変換パターン38は、微細なV溝構造41を傾斜面37に沿って配列したものである。導光板33の光出射面39に垂直な方向から見たとき、指向性変換パターン38は点光源32の光出射窓の中央(光源中心付近)を中心とする円弧状の領域となっており、各V溝構造41の延びている方向の延長線(長軸)は、光源中心付近に集まっている。なお、導光板本体34の光出射面39と反対側の面(裏面)には、導光板本体34内を導光する光を反射させて光出射面39から出射させるためのプリズム状をした光出射手段40(図2を参照)が同心円状に多数形成されている。   As shown in FIG. 1, the surface light source device 31 includes a point light source 32 using LEDs and a light guide plate 33. The light guide plate 33 is provided with a light introducing portion 35 at an end portion of the light guide plate main body 34, and is formed of a transparent resin having a high refractive index. The light introduction part 35 is thicker than the light guide plate main body 34, and the point light source 32 is disposed opposite to the end face. In the light introducing part 35, a protrusion having a half of a truncated cone shape protrudes on the same side as the light emitting surface 39 of the light guide plate body 34, and the thickness of the light introducing part 35 is increased. The outer peripheral surface of the protrusion is an inclined surface 37, and a directivity conversion pattern 38 is formed on the inclined surface 37. The directivity conversion pattern 38 is obtained by arranging fine V-groove structures 41 along the inclined surface 37. When viewed from the direction perpendicular to the light exit surface 39 of the light guide plate 33, the directivity conversion pattern 38 is an arc-shaped region centered at the center of the light exit window of the point light source 32 (near the light source center), An extension line (long axis) in the extending direction of each V-groove structure 41 is gathered near the light source center. In addition, the light on the side opposite to the light emitting surface 39 of the light guide plate main body 34 (back surface) is a prism-shaped light for reflecting the light guided through the light guide plate main body 34 and emitting it from the light emitting surface 39. A number of emission means 40 (see FIG. 2) are formed concentrically.

しかして、図2に示すように、この面光源装置31にあっては、点光源32から出射された光Lは光入射端面36から光導入部35内に入射し、指向性変換パターン38や光導入部35の下面で全反射され、あるいは光導入部35を通過して厚みの薄い導光板本体34へ導光される。導光板本体34へ導光された光は、光出射手段40によって全反射または拡散されて光出射面39からほぼ均一に出射される。   As shown in FIG. 2, in this surface light source device 31, the light L emitted from the point light source 32 enters the light introduction part 35 from the light incident end face 36, and the directivity conversion pattern 38 or The light is totally reflected on the lower surface of the light introduction part 35 or is guided to the light guide plate body 34 having a small thickness through the light introduction part 35. The light guided to the light guide plate body 34 is totally reflected or diffused by the light emitting means 40 and is emitted almost uniformly from the light emitting surface 39.

そして、このような構造の面光源装置31においては、例えば、
導光板33の屈折率 n=1.59
指向性変換パターン38の山部の頂角 φ=120°
光導入部35の端面の厚み T=0.31mm
導光板本体34の厚み t=0.18mm
光導入部35の上面の長さ s1=2.50mm
光導入部35の長さ s2=3.19mm
傾斜面37の傾斜角 θ=15.3°
とすれば、光出射面39に垂直な面内においては導光板33からの光の漏れを無くすことができる。
In the surface light source device 31 having such a structure, for example,
Refractive index of light guide plate 33 n = 1.59
The apex angle of the peak of the directivity conversion pattern 38 φ = 120 °
Thickness of the end face of the light introduction part T = 0.31 mm
Light guide plate body 34 thickness t = 0.18 mm
Length of upper surface of light introducing part 35 s1 = 2.50 mm
Length of light introducing part 35 s2 = 3.19 mm
Inclination angle of inclined surface 37 θ = 15.3 °
If so, light leakage from the light guide plate 33 can be eliminated in a plane perpendicular to the light emitting surface 39.

また、図3(a)に示す光導入部35の平面図では、点光源32の光出射窓32aの一方の端Aと指向性変換パターン38の内周側の縁の中央Pとを結ぶ線分APと、光出射窓32aの中央Cと指向性変換パターン38の内周側の縁の中央Pとを結ぶ線分CPとのなす角度(以下、片側見込み角という。)∠APCを20°としている。また、点光源32の光出射窓32aの他方の端Bと指向性変換パターン38の内周側の縁の中央Pとを結ぶ線分BPと、光出射窓32aの中央Cと指向性変換パターン38の内周側の縁の中央Pとを結ぶ線分CPとのなす角度(片側見込み角)∠BPCも20°としている。この例では、光導入部35の占有面積が大きくなるので、導光板33のデッドスペースSが大きくなる。しかし、指向性変換パターン38の中央Pに入射する光の横方向の広がりは中心線CPの両側でそれぞれ20°となり、指向性変換パターン38の中央Pから外れた箇所では光の横方向の拡がりがそれよりも小さくなり、指向性変換パターン38の全体で光の漏れを防止することができるので、光出射面39と平行な面内での漏れ光が非常に少なくなり、最大漏れ光の比率を2%(すなわち、漏れ光/入力光≦2%)とすることができる。   3A, a line connecting one end A of the light exit window 32a of the point light source 32 and the center P of the inner peripheral edge of the directivity conversion pattern 38 is shown. The angle formed by the segment AP and the line segment CP connecting the center C of the light exit window 32a and the center P of the inner peripheral edge of the directivity conversion pattern 38 (hereinafter referred to as one-side expected angle) ∠ APC is 20 °. It is said. The line segment BP connecting the other end B of the light exit window 32a of the point light source 32 and the center P of the inner peripheral edge of the directivity conversion pattern 38, the center C of the light exit window 32a, and the directivity conversion pattern. The angle (one-side expected angle) ∠ BPC formed with the line segment CP connecting the center P of the edge on the inner peripheral side of 38 is also set to 20 °. In this example, since the area occupied by the light introducing portion 35 is increased, the dead space S of the light guide plate 33 is increased. However, the lateral spread of the light incident on the center P of the directivity conversion pattern 38 is 20 ° on each side of the center line CP, and the lateral spread of the light is away from the center P of the directivity conversion pattern 38. Is smaller than that, and light leakage can be prevented in the entire directivity conversion pattern 38, so that the amount of light leaking in a plane parallel to the light emitting surface 39 becomes very small, and the ratio of the maximum light leakage Can be 2% (ie, leakage light / input light ≦ 2%).

よって、特許文献4に開示された面光源装置31では、傾斜面37の傾斜角θが15.3°といった大きな角度である場合でも、光導入部35の片側見込み角が20°以下であれば、導光板33からの光の漏れを非常に小さくできる。また、片側見込み角が20°よりも大きくなる場合でも、片側見込み角がなるべく小さい方が漏れ光を小さくすることが可能になる。   Therefore, in the surface light source device 31 disclosed in Patent Document 4, even when the inclination angle θ of the inclined surface 37 is a large angle such as 15.3 °, if the one-side expected angle of the light introducing portion 35 is 20 ° or less. The light leakage from the light guide plate 33 can be made very small. Even when the one-sided prospective angle is larger than 20 °, it is possible to reduce the leakage light when the one-sided expected angle is as small as possible.

しかしながら、面光源装置の市場においては、薄型化の要求とともに、デッドスペースの小さな導光板に対する要求が強まっている。そのため、面光源装置の実製品化にあたっては、光導入部の占有面積が小さくなるように配慮することが求められる。   However, in the market of surface light source devices, a demand for a light guide plate with a small dead space is increasing along with a demand for thinning. Therefore, when the surface light source device is commercialized, it is required to consider so that the area occupied by the light introducing portion is reduced.

光導入部35の占有面積を小さくするには、片側見込み角が大きくなるように指向性変換パターン38を設計すればよい。例えば図3(b)に示す光導入部35では、点光源32の光出射窓32aの一方の端Aと指向性変換パターン38の内周側の縁の中央Pとを結ぶ線分APと、光出射窓32aの中央Cと指向性変換パターン38の内周側の縁の中央Pとを結ぶ線分CPとのなす片側見込み角が∠APC=30°となっている。同様に、片側見込み角∠BPCも30°となっている。片側見込み角∠APC、∠BPCが30°である図3(b)の場合と、20°である図3(a)の場合とを比べると、片側見込み角が30°の場合には光導入部35によるデッドスペースSを小さくすることができるが、その反面、漏れ光が増加して最大漏れ光の比率が15%(漏れ光/入力光≦15%)となる。   In order to reduce the occupied area of the light introducing portion 35, the directivity conversion pattern 38 may be designed so that the one-side expected angle is increased. For example, in the light introducing portion 35 shown in FIG. 3B, a line segment AP connecting one end A of the light exit window 32a of the point light source 32 and the center P of the inner peripheral edge of the directivity conversion pattern 38; A one-sided prospective angle formed by a line segment CP connecting the center C of the light exit window 32a and the center P of the inner peripheral edge of the directivity conversion pattern 38 is ∠APC = 30 °. Similarly, the one-sided prospective angle ∠BPC is 30 °. Comparing the case of FIG. 3 (b) where the one-sided prospective angle ∠APC and ∠BPC are 30 ° and the case of FIG. 3 (a) where the one-sided expected angle is 30 °, light introduction is performed when the one-sided expected angle is 30 °. Although the dead space S by the part 35 can be reduced, on the other hand, the leakage light increases and the ratio of the maximum leakage light becomes 15% (leakage light / input light ≦ 15%).

さらには、片側見込み角を40°とした場合には、30°の場合よりもデッドスペースを小さくすることができるが、漏れ光は30°の場合よりも増加し、最大漏れ光の比率が15%よりも一層大きくなる。   Furthermore, when the one-side prospective angle is set to 40 °, the dead space can be made smaller than in the case of 30 °, but the leakage light increases compared to the case of 30 °, and the ratio of the maximum leakage light is 15. % Even greater.

実際の面光源装置では多少の漏れ光を犠牲にしてもデッドスペースを小さくすることが望まれるが、漏れ光が15%程度に達すると、面光源装置の光利用効率が低下して発光面(光出射面39)の輝度低下をもたらすと共に、図4に示すように、指向性変換パターン38から漏れた光によって光導入部35の縁に輝度の高い発光領域Jが発生し、面光源装置31の品質を低下させる。そのため、実用的には漏れ光は15%程度が限度であり、特許文献4の面光源装置31では、片側見込み角が30°の場合よりも光導入部35の占有面積を小さくしてデッドスペースSを小さくすることできなかった。   In an actual surface light source device, it is desirable to reduce the dead space even at the expense of some leakage light. However, when the leakage light reaches about 15%, the light use efficiency of the surface light source device decreases and the light emitting surface ( As shown in FIG. 4, a light emitting area J having a high luminance is generated at the edge of the light introducing portion 35 due to the light leaked from the directivity conversion pattern 38 as shown in FIG. Reduce the quality. Therefore, practically, the leakage light is limited to about 15%, and in the surface light source device 31 of Patent Document 4, the area occupied by the light introducing portion 35 is made smaller than that in the case where the one-side prospective angle is 30 °, thereby dead space. S could not be reduced.

特許文献1: 特開平5−53111号公報
特許文献2: 特開2004−69751号公報
特許文献3: 特開2005−285389号公報
特許文献4: PCT/JP2008/60610
Patent Document 1: JP-A-5-53111 Patent Document 2: JP-A-2004-69751 Patent Document 3: JP-A-2005-285389 Patent Document 4: PCT / JP2008 / 60610

本発明は、特許文献4に開示した面光源装置の改良に関するものであり、その目的とするところは、光の漏れをより少なくして面光源装置における光の利用効率をより向上させることにある。特に、光導入部によるデッドスペースが同じであれば、光の漏れをより少なくして光の利用効率を向上させることのできる面光源装置を提供することにある。   The present invention relates to an improvement of the surface light source device disclosed in Patent Document 4, and an object thereof is to further reduce the light leakage and further improve the light use efficiency in the surface light source device. . In particular, it is an object of the present invention to provide a surface light source device capable of improving light utilization efficiency by reducing light leakage if the dead space by the light introducing section is the same.

本発明の面光源装置は、点光源と、前記点光源の光を光入射面から導入し光出射面から外部へ出射させる導光板とを備えた面光源装置であって、前記点光源は、前記導光板の光入射面と対向する位置に設けられ、前記導光板は、光入射面から入射した点光源からの光を閉じ込めるための光導入部と、前記光導入部の最大の厚みよりも小さな厚みで、前記光導入部と連続するように設けられていて閉じ込めた光を光出射手段によって光出射面から外部へ出射させるようにした導光板本体とを備え、前記光導入部は、前記導光板本体よりも厚みの大きな部分の表面から前記導光板本体の表面の端に向けて傾斜した傾斜面を、前記導光板の光出射側の面またはその反対面に有し、前記導光板は、前記光導入部に入射した光の前記導光板の厚み方向における指向性広がりを導光板の面方向と平行な方向に向けて傾いた指向特性に変換させるための指向性変換パターンを、前記光出射側の面またはその反対面に有し、前記指向性変換パターンは、それぞれ一方向に延びた凹又は凸の単位パターンが複数配列したものであり、前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内にあり、かつ前記点光源の中心線を挟んで一方の側に位置する前記単位パターンのそれぞれの長軸を平均化した第1の直線が前記中心線と交差する第1交点と、前記光入射面から導光板内に入射した光が到達する領域内にあり、かつ前記点光源の中心線を挟んで他方の側に位置する前記単位パターンのそれぞれの長軸を平均化した第2の直線が前記中心線と交差する第2交点とは、いずれも前記点光源の光源中心よりも後方に位置していることを特徴としている。   The surface light source device of the present invention is a surface light source device including a point light source and a light guide plate that introduces light from the point light source from a light incident surface and emits the light from the light emission surface to the outside. The light guide plate is provided at a position facing the light incident surface of the light guide plate, and the light guide plate has a light introducing portion for confining light from a point light source incident from the light incident surface, and a maximum thickness of the light introducing portion. A light guide plate body that is provided in a small thickness so as to be continuous with the light introducing portion and that allows the confined light to be emitted from the light emitting surface to the outside by the light emitting means, and the light introducing portion includes the light introducing portion, The light guide plate has an inclined surface inclined from the surface of the thicker portion than the light guide plate body toward the end of the surface of the light guide plate body on the light emitting side surface of the light guide plate or the opposite surface, In the thickness direction of the light guide plate of the light incident on the light introducing portion A directivity conversion pattern for converting the spread of directivity into a directivity characteristic inclined toward a direction parallel to the surface direction of the light guide plate, on the light emitting side surface or the opposite surface, and The pattern is a plurality of concave or convex unit patterns each extending in one direction, and enters the light guide plate from the light incident surface when the light guide plate is viewed from a direction perpendicular to the light output surface. A first straight line obtained by averaging the major axes of the unit patterns located on one side of the center line of the point light source and intersecting the center line. An average of the long axes of the unit patterns that are located on the other side of one intersection point and in the region where the light incident on the light guide plate from the light incident surface arrives and across the center line of the point light source The second straight line is the center line The second intersection points difference, is characterized in that it is positioned behind the both light source center of the point light source.

ここで、点光源の光源中心とは、点光源の光出射窓における両端間の中央をいう。点光源の中心線とは、光出射窓の両端を結ぶ方向に垂直で、光源中心を通過する軸線をいう。単位パターンの長軸とは、単位パターンが延びている長さ方向の直線ないしその延長線をいう。また、点光源の光源中心よりも後方とは、光出射窓に関して指向性変換パターンと反対側をいう。   Here, the light source center of the point light source refers to the center between both ends of the light emission window of the point light source. The center line of the point light source is an axis that is perpendicular to the direction connecting both ends of the light exit window and passes through the center of the light source. The long axis of the unit pattern refers to a straight line in the length direction in which the unit pattern extends or an extension thereof. Further, “behind the light source center of the point light source” means the side opposite to the directivity conversion pattern with respect to the light exit window.

また、単位パターンのそれぞれの長軸を平均化した直線は、つぎのように定義する。導光板の光出射面に垂直な方向から見て、光源中心を座標原点とし、点光源の前面に平行な方向にX座標軸を定め、点光源の前面に垂直な方向にY座標軸を定める。このとき、各単位パターンの長軸が、
X=an・Y+bn
で表されるとすると、平均化した直線は、
X=〔(Σan)/N〕・Y+〔(Σbn)/N〕
で表される。添字のnは各単位パターンを識別する指標であって、Σで表した総和は対象としているすべての単位パターンについて行われる。Nは対象としている単位パターンの数であって、N=Σ1である。
さらに、この平均化した直線が中心線と交差する交点のY座標は、
−(Σbn)/(Σan)
となる。
A straight line obtained by averaging the major axes of the unit patterns is defined as follows. When viewed from the direction perpendicular to the light exit surface of the light guide plate, the light source center is the coordinate origin, the X coordinate axis is defined in a direction parallel to the front surface of the point light source, and the Y coordinate axis is defined in a direction perpendicular to the front surface of the point light source. At this time, the long axis of each unit pattern is
X = an · Y + bn
, The averaged straight line is
X = [(Σan) / N] · Y + [(Σbn) / N]
It is represented by The subscript n is an index for identifying each unit pattern, and the sum represented by Σ is performed for all target unit patterns. N is the number of target unit patterns, and N = Σ1.
Furthermore, the Y coordinate of the intersection where this averaged straight line intersects the center line is
-(Σbn) / (Σan)
It becomes.

本発明の面光源装置にあっては、光入射面から導光板内に入射した光が到達する領域内にある大部分の単位パターンにおいて、点光源から単位パターンに入射する光の広がりが単位パターンの長軸に関してほぼ等しくなるので、光導入部によるデッドスペースが同じであれば特許文献4に開示された面光源装置よりもより一層光の利用効率が向上する。よって、同じ効率の光導入部であれば、光導入部によるデッドスペースを小さくでき、発光面積の比率を大きくできる。また、光導入部からの光の漏れを小さくして光導入部又はその近傍が光るのを防止することができる。   In the surface light source device of the present invention, in most unit patterns in the region where light incident on the light guide plate from the light incident surface reaches, the spread of light incident on the unit pattern from the point light source is the unit pattern. Therefore, if the dead space by the light introduction part is the same, the light utilization efficiency is further improved as compared with the surface light source device disclosed in Patent Document 4. Therefore, if the light introduction part has the same efficiency, the dead space by the light introduction part can be reduced, and the ratio of the light emission area can be increased. In addition, light leakage from the light introducing portion can be reduced to prevent the light introducing portion or the vicinity thereof from shining.

本発明にかかる面光源装置のある実施態様は、前記第1交点と前記光源中心との間の距離が、前記点光源の光出射窓の幅の6倍以下であり、前記第2交点と前記光源中心との間の距離が、前記点光源の光出射窓の幅の6倍以下であることを特徴としている。かかる実施態様によれば、最大漏れ光の比率を最適かつ許容限度である15%以下にすることができる。   In an embodiment of the surface light source device according to the present invention, a distance between the first intersection and the light source center is not more than 6 times a width of a light emission window of the point light source, and the second intersection and the light source The distance from the light source center is not more than 6 times the width of the light exit window of the point light source. According to such an embodiment, the ratio of the maximum leakage light can be set to 15% or less which is an optimum and allowable limit.

本発明にかかる面光源装置の別な実施態様は、前記第1交点と前記第2交点とが一致していることを特徴としている。かかる実施態様によれば、点光源の中心線を挟んで一方の領域と他方の領域とで光入射部の光学的特性が等しくなるので、中心線の両側で面光源装置の輝度を等しくすることができる。   Another embodiment of the surface light source device according to the present invention is characterized in that the first intersection and the second intersection coincide with each other. According to such an embodiment, since the optical characteristics of the light incident part are equal in one region and the other region across the center line of the point light source, the luminance of the surface light source device is made equal on both sides of the center line. Can do.

本発明にかかる面光源装置のさらに別な実施態様は、前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置するそれぞれの前記単位パターンの長軸が、前記点光源の光源中心よりも後方に位置する或る一点の付近に集束することを特徴としている。かかる実施態様によれば、光入射面から導光板内に入射した光が到達する領域内にあるほぼすべての単位パターンにおいて、点光源から単位パターンに入射する光の広がりが単位パターンの長軸に関してほぼ等しくなるので、特許文献4に開示された面光源装置よりもより一層光の利用効率が向上する。よって、同じ効率の光導入部であれば、光導入部によるデッドスペースを小さくでき、発光面積の比率を大きくできる。また、光導入部からの光の漏れを小さくして光導入部又はその近傍が光るのを防止することができる。   In another embodiment of the surface light source device according to the present invention, when the light guide plate is viewed from a direction perpendicular to the light emitting surface, the light incident on the light guide plate from the light incident surface is within a region where the light reaches. The long axis of each of the unit patterns positioned is focused near a certain point located behind the light source center of the point light source. According to such an embodiment, in almost all unit patterns in the region where the light incident on the light guide plate from the light incident surface reaches, the spread of light incident on the unit pattern from the point light source is related to the long axis of the unit pattern. Since they are substantially equal, the light utilization efficiency is further improved as compared with the surface light source device disclosed in Patent Document 4. Therefore, if the light introduction part has the same efficiency, the dead space by the light introduction part can be reduced, and the ratio of the light emission area can be increased. In addition, light leakage from the light introducing portion can be reduced to prevent the light introducing portion or the vicinity thereof from shining.

本発明にかかる面光源装置のさらに別な実施態様は、前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置する前記単位パターンの長軸が前記点光源の中心線と交差する点が、いずれも前記点光源の光源中心よりも後方に位置していることを特徴としている。かかる実施態様によれば、光入射面から導光板内に入射した光が到達する領域内にあるほぼすべての単位パターンにおいて、点光源から単位パターンに入射する光の広がりが単位パターンの長軸に関してほぼ等しくなるので、特許文献4に開示された面光源装置よりもより一層光の利用効率が向上する。よって、同じ効率の光導入部であれば、光導入部によるデッドスペースを小さくでき、発光面積の比率を大きくできる。また、光導入部からの光の漏れを小さくして光導入部又はその近傍が光るのを防止することができる。   In another embodiment of the surface light source device according to the present invention, when the light guide plate is viewed from a direction perpendicular to the light emitting surface, the light incident on the light guide plate from the light incident surface is within a region where the light reaches. The point where the long axis of the unit pattern positioned intersects the center line of the point light source is located behind the light source center of the point light source. According to such an embodiment, in almost all unit patterns in the region where the light incident on the light guide plate from the light incident surface reaches, the spread of light incident on the unit pattern from the point light source is related to the long axis of the unit pattern. Since they are substantially equal, the light utilization efficiency is further improved as compared with the surface light source device disclosed in Patent Document 4. Therefore, if the light introduction part has the same efficiency, the dead space by the light introduction part can be reduced, and the ratio of the light emission area can be increased. In addition, light leakage from the light introducing portion can be reduced to prevent the light introducing portion or the vicinity thereof from shining.

本発明にかかる面光源装置のさらに別な実施態様は、前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置するそれぞれの前記単位パターンの長軸が前記中心線と交差する点と光源中心との間の距離が、前記点光源の光出射窓の幅の6倍以下であることを特徴としている。かかる実施態様によれば、最大漏れ光の比率を最適かつ許容限度である15%以下にすることができる。   In another embodiment of the surface light source device according to the present invention, when the light guide plate is viewed from a direction perpendicular to the light emitting surface, the light incident on the light guide plate from the light incident surface is within a region where the light reaches. The distance between the point where the long axis of each of the unit patterns positioned intersects the center line and the light source center is not more than 6 times the width of the light exit window of the point light source. According to such an embodiment, the ratio of the maximum leakage light can be set to 15% or less which is an optimum and allowable limit.

本発明にかかる面光源装置のさらに別な実施態様は、前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置する前記単位パターンの長軸が前記中心線と交差する点が、前記中心線から離れた単位パターンほど前記点光源の光源中心に近くなることを特徴としている。特に、この場合には、前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内にある指向性変換パターンは円弧状に形成されており、円弧状に形成された前記指向性変換パターンに内接する円の中心が、前記点光源の光源中心と一致していることが望ましい。かかる実施態様によれば、光入射面から導光板内に入射した光が到達する領域内にあるほぼすべての単位パターンにおいて、点光源から単位パターンに入射する光の広がりが単位パターンの長軸に関してほぼ等しくなるので、特許文献4に開示された面光源装置よりもより一層光の利用効率が向上する。よって、同じ効率の光導入部であれば、光導入部によるデッドスペースを小さくでき、発光面積の比率を大きくできる。また、光導入部からの光の漏れを小さくして光導入部又はその近傍が光るのを防止することができる。   In another embodiment of the surface light source device according to the present invention, when the light guide plate is viewed from a direction perpendicular to the light emitting surface, the light incident on the light guide plate from the light incident surface is within a region where the light reaches. The point where the long axis of the unit pattern positioned intersects the center line is closer to the light source center of the point light source as the unit pattern is farther from the center line. In particular, in this case, when viewed from a direction perpendicular to the light emitting surface, the directivity conversion pattern in the region where the light incident on the light guide plate from the light incident surface reaches is formed in an arc shape. In addition, it is desirable that the center of a circle inscribed in the directivity conversion pattern formed in an arc shape coincides with the light source center of the point light source. According to such an embodiment, in almost all unit patterns in the region where the light incident on the light guide plate from the light incident surface reaches, the spread of light incident on the unit pattern from the point light source is related to the long axis of the unit pattern. Since they are substantially equal, the light utilization efficiency is further improved as compared with the surface light source device disclosed in Patent Document 4. Therefore, if the light introduction part has the same efficiency, the dead space by the light introduction part can be reduced, and the ratio of the light emission area can be increased. In addition, light leakage from the light introducing portion can be reduced to prevent the light introducing portion or the vicinity thereof from shining.

本発明にかかる面光源装置のさらに別な実施態様は、前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置するそれぞれの前記単位パターンの長軸が、前記点光源の光源中心よりも背後において、前記中心線上の或る一点を通過することを特徴としている。かかる実施態様によれば、光入射面から導光板内に入射した光が到達する領域内にあるほぼすべての単位パターンにおいて、点光源から単位パターンに入射する光の広がりが単位パターンの長軸に関してほぼ等しくなるので、特許文献4に開示された面光源装置よりもより一層光の利用効率が向上する。よって、同じ効率の光導入部であれば、光導入部によるデッドスペースを小さくでき、発光面積の比率を大きくできる。また、光導入部からの光の漏れを小さくして光導入部又はその近傍が光るのを防止することができる。   In another embodiment of the surface light source device according to the present invention, when the light guide plate is viewed from a direction perpendicular to the light emitting surface, the light incident on the light guide plate from the light incident surface is within a region where the light reaches. The long axis of each of the unit patterns positioned passes a certain point on the center line behind the light source center of the point light source. According to such an embodiment, in almost all unit patterns in the region where the light incident on the light guide plate from the light incident surface reaches, the spread of light incident on the unit pattern from the point light source is related to the long axis of the unit pattern. Since they are substantially equal, the light utilization efficiency is further improved as compared with the surface light source device disclosed in Patent Document 4. Therefore, if the light introduction part has the same efficiency, the dead space by the light introduction part can be reduced, and the ratio of the light emission area can be increased. In addition, light leakage from the light introducing portion can be reduced to prevent the light introducing portion or the vicinity thereof from shining.

本発明にかかる面光源装置のさらに別な実施態様は、前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内にある指向性変換パターンは円弧状に形成されており、前記指向性変換パターンは、当該指向性変換パターンに内接する円が前記点光源の光出射窓の両端を通過するように形成され、導光板内に入射した光が到達する領域内にある前記単位パターンはそれぞれの長軸が前記点光源の中心線と前記内接円との交点を通過するように配置されていることを特徴としている。かかる実施態様によれば、光入射面から導光板内に入射した光が到達する領域内にあるすべての単位パターンにおいて、点光源から単位パターンに入射する光の広がりが単位パターンの長軸に関してほぼ等しくなるので、特許文献4に開示された面光源装置よりもより一層光の利用効率が向上する。よって、同じ効率の光導入部であれば、光導入部によるデッドスペースを小さくでき、発光面積の比率を大きくできる。また、光導入部からの光の漏れを小さくして光導入部又はその近傍が光るのを防止することができる。   Still another embodiment of the surface light source device according to the present invention is directed to directivity conversion in a region where light incident on the light guide plate from the light incident surface reaches when viewed from a direction perpendicular to the light emitting surface. The pattern is formed in an arc shape, and the directivity conversion pattern is formed so that a circle inscribed in the directivity conversion pattern passes through both ends of the light emission window of the point light source and enters the light guide plate. The unit patterns in the region where the light reaches are arranged such that each major axis passes through the intersection of the center line of the point light source and the inscribed circle. According to such an embodiment, in all the unit patterns in the region where the light incident on the light guide plate from the light incident surface reaches, the spread of the light incident on the unit pattern from the point light source is approximately the long axis of the unit pattern. Therefore, the light use efficiency is further improved as compared with the surface light source device disclosed in Patent Document 4. Therefore, if the light introduction part has the same efficiency, the dead space by the light introduction part can be reduced, and the ratio of the light emission area can be increased. In addition, light leakage from the light introducing portion can be reduced to prevent the light introducing portion or the vicinity thereof from shining.

なお、本発明における前記課題を解決するための手段は、以上説明した構成要素を適宜組み合せた特徴を有するものであり、本発明はかかる構成要素の組合せによる多くのバリエーションを可能とするものである。   The means for solving the above-described problems in the present invention has a feature in which the above-described constituent elements are appropriately combined, and the present invention enables many variations by combining such constituent elements. .

図1は、特許文献4に開示されている面光源装置を示す斜視図である。FIG. 1 is a perspective view showing a surface light source device disclosed in Patent Document 4. As shown in FIG. 図2は、図1の面光源装置における光の挙動を表した図である。FIG. 2 is a diagram showing the behavior of light in the surface light source device of FIG. 図3(a)、(b)は、指向性変換パターンの内周の中央から点光源の光出射窓を見込んだ角度と指向性変換パターンの大きさとの関係を表した図である。FIGS. 3A and 3B are diagrams showing the relationship between the angle at which the light emission window of the point light source is viewed from the center of the inner periphery of the directivity conversion pattern and the size of the directivity conversion pattern. 図4は、図1の面光源装置において光導入部の縁に輝度の高い発光領域が発生している様子を表した概略図である。FIG. 4 is a schematic view showing a state in which a light emitting region with high luminance is generated at the edge of the light introducing portion in the surface light source device of FIG. 図5は、本発明の実施形態1による面光源装置を示す斜視図である。FIG. 5 is a perspective view showing the surface light source device according to Embodiment 1 of the present invention. 図6は、実施形態1の面光源装置を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing the surface light source device of the first embodiment. 図7は、実施形態1の面光源装置において、光導入部を光出射面に垂直な方向から見た平面図である。FIG. 7 is a plan view of the light introduction unit viewed from a direction perpendicular to the light emitting surface in the surface light source device of the first embodiment. 図8は、図7の光導入部の働きを説明するための概略図である。FIG. 8 is a schematic diagram for explaining the function of the light introducing portion of FIG. 図9は、比較例(特許文献4で説明したもの)における光導入部の構造を示す平面図である。FIG. 9 is a plan view showing the structure of the light introducing portion in the comparative example (explained in Patent Document 4). 図10は、V溝構造に右側から入射する光と左側から入射する光との差が面光源装置の効率にもたらす影響をシミュレーションにより検証した結果を表した図である。FIG. 10 is a diagram showing a result of verifying by simulation the influence of the difference between the light incident from the right side and the light incident from the left side on the V-groove structure on the efficiency of the surface light source device. 図11は、図10のデータを得るためのモデルを説明する図である。FIG. 11 is a diagram illustrating a model for obtaining the data of FIG. 図12は、比較例の面光源装置と本実施形態の面光源装置において、片側見込み角を変化させた場合の最大漏れ光の比率を求めた結果を表した図である。FIG. 12 is a diagram illustrating a result of obtaining a ratio of maximum leakage light when the one-side expected angle is changed in the surface light source device of the comparative example and the surface light source device of the present embodiment. 図13は、実施形態1の光導入部において、片側見込み角を60°とした場合を示す平面図である。FIG. 13 is a plan view showing a case where the one-side prospective angle is set to 60 ° in the light introducing portion of the first embodiment. 図14は、実施形態1の光導入部において、片側見込み角を30°とした場合を示す平面図である。FIG. 14 is a plan view showing a case where the one-side prospective angle is set to 30 ° in the light introducing portion of the first embodiment. 図15は、図14の光導入部を変形させた場合を説明する平面図である。FIG. 15 is a plan view for explaining a case where the light introducing portion of FIG. 14 is deformed. 図16は、実施形態1の第1の変形例を示す平面図である。FIG. 16 is a plan view illustrating a first modification of the first embodiment. 図17は、単位パターンのそれぞれの長軸を平均化した直線の定義を説明するための図である。FIG. 17 is a diagram for explaining the definition of a straight line obtained by averaging the long axes of the unit patterns. 図18は、実施形態1の第2の変形例を示す平面図である。FIG. 18 is a plan view illustrating a second modification of the first embodiment. 図19は、本発明の実施形態2による面光源装置の光導入部を示す平面図である。FIG. 19 is a plan view showing a light introducing portion of the surface light source device according to Embodiment 2 of the present invention. 図20は、実施形態2の光導入部の作用説明図である。FIG. 20 is a diagram for explaining the operation of the light introducing unit according to the second embodiment. 図21は、中心線から微小距離Δずれた位置にあるV溝構造の長軸と中心線の交点を表した図である。FIG. 21 is a diagram showing the intersection of the long axis and the center line of the V-groove structure at a position shifted by a minute distance Δ from the center line. 図22は、最大距離係数αと片側見込み角ωとの関係を表した図である。FIG. 22 is a diagram showing the relationship between the maximum distance coefficient α and the one-sided prospective angle ω. 図23は、集束点Fと光源中心Cとの距離Dと光の漏れ量との関係を表した図である。FIG. 23 is a diagram illustrating the relationship between the distance D between the focusing point F and the light source center C and the amount of light leakage. 図24は、実施形態2の第1の変形例を示す平面図である。FIG. 24 is a plan view showing a first modification of the second embodiment. 図25は、実施形態2の第2の変形例を示す平面図である。FIG. 25 is a plan view illustrating a second modification of the second embodiment. 図26は、本発明の実施形態3による面光源装置の光導入部を示す斜視図である。FIG. 26 is a perspective view showing a light introducing portion of the surface light source device according to Embodiment 3 of the present invention. 図27は、実施形態3の他例による面光源装置の光導入部を示す斜視図である。FIG. 27 is a perspective view illustrating a light introducing portion of a surface light source device according to another example of the third embodiment. 図28は、本発明の実施形態4による面光源装置を示す斜視図である。FIG. 28 is a perspective view showing a surface light source device according to Embodiment 4 of the present invention. 図29は、本発明の実施形態4による面光源装置の光導入部の一部を示す拡大斜視図である。FIG. 29 is an enlarged perspective view showing a part of the light introducing portion of the surface light source device according to Embodiment 4 of the present invention. 図30は、実施形態4の他例による面光源装置を示す斜視図である。FIG. 30 is a perspective view showing a surface light source device according to another example of the fourth embodiment. 図31は、実施形態4の他例による面光源装置の光導入部の一部を示す斜視図である。FIG. 31 is a perspective view illustrating a part of a light introducing portion of a surface light source device according to another example of the fourth embodiment. 図32(a)は本発明の実施形態5における導光板の概略平面図、図32(b)はその指向性変換パターンの拡大断面図である。FIG. 32A is a schematic plan view of a light guide plate in Embodiment 5 of the present invention, and FIG. 32B is an enlarged cross-sectional view of the directivity conversion pattern. 図33(a)は実施形態5において異なる指向性変換パターンを備えた導光板の概略平面図、図33(b)はその指向性変換パターンの拡大断面図である。FIG. 33A is a schematic plan view of a light guide plate having a different directivity conversion pattern in the fifth embodiment, and FIG. 33B is an enlarged cross-sectional view of the directivity conversion pattern. 図34(a)は実施形態5においてさらに別な指向性変換パターンを備えた導光板の概略平面図、図34(b)はその指向性変換パターンの拡大断面図である。FIG. 34A is a schematic plan view of a light guide plate having another directivity conversion pattern in the fifth embodiment, and FIG. 34B is an enlarged cross-sectional view of the directivity conversion pattern. 図35(a)は実施形態5においてさらに別な指向性変換パターンを備えた導光板の概略平面図、図35(b)はその指向性変換パターンの拡大断面図である。FIG. 35A is a schematic plan view of a light guide plate provided with still another directivity conversion pattern in the fifth embodiment, and FIG. 35B is an enlarged cross-sectional view of the directivity conversion pattern. 図36は実施形態5においてさらに別な指向性変換パターンを備えた導光板の概略平面図である。FIG. 36 is a schematic plan view of a light guide plate having still another directivity conversion pattern in the fifth embodiment.

以下、添付図面を参照しながら本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

(第1の実施形態)
本発明の実施形態1による面光源装置を説明する。図5は本発明の実施形態1による面光源装置61を示す斜視図、図6はその概略断面図である。面光源装置61は、点光源62と導光板63とからなる。点光源62は、1個又は複数個のLED62bを内蔵したものであって白色発光するものである。LED62bは透明封止樹脂62c内に封止され、さらに透明封止樹脂62cは正面を除いて白色樹脂62dによって覆われており、透明封止樹脂62cの白色樹脂62dから露出している正面が光出射窓62aとなっている。この点光源62は、導光板63の幅(図6の紙面奥行き方向の寸法)に比べて小さなものであり、冷陰極管が線状光源と呼ばれるのに対して点光源と称するものである。
(First embodiment)
A surface light source device according to Embodiment 1 of the present invention will be described. FIG. 5 is a perspective view showing the surface light source device 61 according to Embodiment 1 of the present invention, and FIG. 6 is a schematic sectional view thereof. The surface light source device 61 includes a point light source 62 and a light guide plate 63. The point light source 62 incorporates one or a plurality of LEDs 62b and emits white light. The LED 62b is sealed in a transparent sealing resin 62c, and the transparent sealing resin 62c is covered with a white resin 62d except for the front surface, and the front surface exposed from the white resin 62d of the transparent sealing resin 62c is light. An emission window 62a is formed. The point light source 62 is smaller than the width of the light guide plate 63 (the dimension in the depth direction of the paper in FIG. 6), and the cold cathode tube is called a point light source while the cold cathode tube is called a linear light source.

なお、点光源とは厳密な意味での点光源ではない。点光源も有限の幅を持つが、冷陰極管のように発光面の全面が連続的に発光するようなものではない。例えば、点光源としては、サイドビュー型のLEDなどがある。1パッケージ内に1つ以上のLEDチップが入っており、複数個のLEDチップが同時に封止されていてもよい。複数個のチップが同時に入ったものは、幅方向の開口サイズが5mm程度になるものがあるが、導光板の発光面サイズが2インチ程度であるのと比べれば十分に小さいので、点光源とみなすことができる。また、別の例としてLEDパッケージサイズ自体は大きいものの、1つのパッケージ内で複数のLEDチップが局所的かつ離散的に配置されたもの(例えばLEDの1パッケージの発光面幅は40mm程度で、そのパッケージ内にLEDチップが5mm間隔ごとに離散的に配置されていた場合も点光源とみなす。また、半導体レーザー素子などのような平行光が発せられるものでもよい。また、光ファイバを用いて導いた光を導光板に導入するようにしてもよい。その場合には、光ファイバの光出射端面を点光源とみなすことができる。 Note that the point light source is not a point light source in a strict sense. Although the point light source has a finite width, the entire light emitting surface does not emit light continuously like a cold cathode tube. For example, as a point light source, there is a side view type LED. One package may contain one or more LED chips, and a plurality of LED chips may be sealed simultaneously. In the case where a plurality of chips are included at the same time, the width direction opening size is about 5 mm, but the light emitting plate has a light emitting surface size of about 2 inches. Can be considered. As another example, although the LED package size itself is large, a plurality of LED chips are locally and discretely arranged in one package (for example, the light emitting surface width of one LED package is about 40 mm, If the LED chip has been discretely arranged every 5mm interval in a package) it is also regarded as a point light source. Moreover, what emits parallel light like a semiconductor laser element etc. may be used. Further, light guided using an optical fiber may be introduced into the light guide plate. In that case, the light emitting end face of the optical fiber can be regarded as a point light source.

導光板63は、導光板本体64の端部に光導入部65を設けたものであって、アクリル樹脂、ポリカーボネイト樹脂(PC)、シクロオレフィン系材料、ポリメチルメタクリレート(PMMA)などの高屈折率の透明樹脂によって成形されている。以下においては、導光板63はポリカーボネイト樹脂製であるとする。   The light guide plate 63 is provided with a light introducing portion 65 at the end of the light guide plate main body 64, and has a high refractive index such as acrylic resin, polycarbonate resin (PC), cycloolefin-based material, polymethyl methacrylate (PMMA) or the like. It is molded with transparent resin. In the following, it is assumed that the light guide plate 63 is made of polycarbonate resin.

光導入部65は、導光板63のうちで厚みの厚い部分であって、その端面は光入射端面66となっていて点光源62が対向配置されている。また、光導入部65の光入射端面66の厚みTは光出射窓62aの高さHと等しいか、それよりも厚くなっており(T≧H)、そのため点光源62から出射された光は効率よく光入射端面66から光導入部65内に入射し、面光源装置61の光利用効率が高くなる。   The light introducing portion 65 is a thick portion of the light guide plate 63, and its end surface is a light incident end surface 66, and the point light source 62 is disposed facing the light introducing portion 65. Further, the thickness T of the light incident end face 66 of the light introducing portion 65 is equal to or greater than the height H of the light exit window 62a (T ≧ H), so that the light emitted from the point light source 62 is The light is efficiently incident from the light incident end surface 66 into the light introducing portion 65, and the light use efficiency of the surface light source device 61 is increased.

光導入部65においては、導光板本体64の光出射面69と同じ側の面に、円錐台形状のほぼ半分の形状をした突部が突出して光導入部65の厚みを大きくしており、当該突部の湾曲した外周面が傾斜面67となり、この傾斜面67には指向性変換パターン68が形成されている。傾斜面67は、光導入部65の突部全周にわたって一定の傾斜角θを有している。傾斜面67の内周側に位置する光導入部65の上面72は、水平面すなわち光出射面69と平行な平面となっている。なお、指向性変換パターン68を形成された傾斜面67の傾斜角θを再定義すれば、指向性変換パターン68の包絡面の傾斜角ということができる。指向性変換パターン68は、光出射面69に垂直な方向から見ると、円弧状をした帯状領域となっており、そこには単位パターンとしてV溝状をしたV溝構造71(あるいは、断面逆V形の山形構造)が放射状に並んでいる。   In the light introducing portion 65, a projection having a shape that is substantially half of a truncated cone shape is projected on the same side as the light emitting surface 69 of the light guide plate main body 64 to increase the thickness of the light introducing portion 65. The curved outer peripheral surface of the protrusion becomes an inclined surface 67, and a directivity conversion pattern 68 is formed on the inclined surface 67. The inclined surface 67 has a constant inclination angle θ over the entire circumference of the protrusion of the light introducing portion 65. An upper surface 72 of the light introducing portion 65 located on the inner peripheral side of the inclined surface 67 is a horizontal plane, that is, a plane parallel to the light emitting surface 69. Note that if the inclination angle θ of the inclined surface 67 on which the directivity conversion pattern 68 is formed is redefined, the inclination angle of the envelope surface of the directivity conversion pattern 68 can be said. The directivity conversion pattern 68 is a belt-like region having an arc shape when viewed from the direction perpendicular to the light exit surface 69, and there is a V-groove structure 71 having a V-groove shape as a unit pattern (or an inverted cross section). V-shaped chevron structures) are arranged radially.

導光板本体64は導光板63の大部分の面積を占めており、その厚みtは光導入部65の厚みTよりも薄くなっており(t<T)、それによって導光板63の薄型化が図られる。導光板本体64の光出射面69と反対側に位置する裏面には、光出射手段70を有している。図5、図6では光出射手段70として同心円状に配列された三角溝状のパターンを示しているが、サンドブラスト加工、拡散インクを写真印刷したもの、回折格子パターン、任意の凹凸パターン、導光板本体64の光出射面69と反対側の面を傾斜させたもの(くさび状の導光板本体)などでもよく、また、光出射手段70を光出射面69、あるいは光出射面69とその反対面の双方に設けていても差し支えない。光出射手段70は、点光源62の近傍では分布密度が比較的小さく、点光源62からの距離が大きくなるに従って次第に分布密度が大きくなっている。   The light guide plate main body 64 occupies most of the area of the light guide plate 63, and its thickness t is thinner than the thickness T of the light introducing portion 65 (t <T), thereby reducing the thickness of the light guide plate 63. Figured. A light emitting means 70 is provided on the back surface of the light guide plate body 64 located on the opposite side of the light emitting surface 69. 5 and 6 show triangular groove-like patterns arranged concentrically as the light emitting means 70, but sandblasting, photo-printed diffusion ink, diffraction grating pattern, arbitrary uneven pattern, light guide plate The surface of the main body 64 opposite to the light output surface 69 may be inclined (wedge-shaped light guide plate main body) or the like, and the light output means 70 may be the light output surface 69 or the light output surface 69 and its opposite surface. It does not matter if it is provided on both sides. The light emitting means 70 has a relatively small distribution density in the vicinity of the point light source 62, and the distribution density gradually increases as the distance from the point light source 62 increases.

しかして、この面光源装置61にあっては、図6に示すように、点光源62から出射された光Lは、光入射端面66から光導入部65内に入射する。厚みの厚い光導入部65の表面と厚みの薄い導光板本体64の表面は傾斜面67によってつながれているので、光導入部65に入射した点光源62の光は、傾斜面67とその対向面との間で全反射されながら導光板本体64へ導光され、あるいは光導入部65を通過して厚みの薄い導光板本体64へ導光される。そのとき、傾斜面67に入射する光は、指向性変換パターン68で反射されることにより、傾斜面67からの漏れが小さくなり、効率よく導光板本体64へ導光される。導光板本体64へ導光された光Lは、光出射手段70によって全反射または拡散されて光出射面69の全体からほぼ均一に出射される。   In the surface light source device 61, as shown in FIG. 6, the light L emitted from the point light source 62 enters the light introducing portion 65 from the light incident end surface 66. Since the surface of the thick light introducing portion 65 and the surface of the thin light guide plate main body 64 are connected by the inclined surface 67, the light of the point light source 62 incident on the light introducing portion 65 is incident on the inclined surface 67 and its opposing surface. The light is guided to the light guide plate main body 64 while being totally reflected between them, or is guided to the light guide plate main body 64 having a small thickness through the light introducing portion 65. At this time, the light incident on the inclined surface 67 is reflected by the directivity conversion pattern 68, thereby reducing leakage from the inclined surface 67 and being efficiently guided to the light guide plate body 64. The light L guided to the light guide plate main body 64 is totally reflected or diffused by the light emitting means 70 and emitted almost uniformly from the entire light emitting surface 69.

つぎに、実施形態1における指向性変換パターン68の構造を詳細に説明する。光導入部65の傾斜面67に沿って配列された各V溝構造71の長軸(V溝構造71の谷線又は稜線の長さ方向を延長した直線)は、光導入部65の上面72よりも高い位置において1点Fで交差している。   Next, the structure of the directivity conversion pattern 68 in the first embodiment will be described in detail. The major axis of each V groove structure 71 arranged along the inclined surface 67 of the light introducing portion 65 (a straight line extending the length direction of the valley line or the ridge line of the V groove structure 71) is the upper surface 72 of the light introducing portion 65. It intersects at 1 point F at a higher position.

図7は、この光導入部65を光出射面69に垂直な方向から見た平面図である。光出射面69に垂直な方向から見たとき、指向性変換パターン68に内接する円74は、点光源62の光出射窓62aの両端A、Bを通過する。さらに、V溝構造71の長軸73が集束する点Fは、内接円74と点光源62の中心線75(光出射窓62aの中央Cを通過し、両端ABを結ぶ方向に垂直な直線)との交点Gに一致している。   FIG. 7 is a plan view of the light introducing portion 65 viewed from a direction perpendicular to the light emitting surface 69. When viewed from a direction perpendicular to the light exit surface 69, the circle 74 inscribed in the directivity conversion pattern 68 passes through both ends A and B of the light exit window 62 a of the point light source 62. Further, the point F at which the long axis 73 of the V-groove structure 71 converges is a straight line perpendicular to the inscribed circle 74 and the center line 75 of the point light source 62 (which passes through the center C of the light exit window 62a and connects both ends AB). ) And the intersection point G.

図8は、図7のような構造を有する光導入部65の働きを説明するための概略図である。上記のように、光出射窓62aの両端A、Bが内接円74上の任意の位置にあり、いずれのV溝構造71の長軸73も内接円74と中心線75の交点G(=F)を通過していると、これらの位置関係は図8のようになる。ここで、各V溝構造71の内周側の端をP、Q1、Q2、Q3、…とすると、直線PF、Q1F、Q2F、Q3F、…が各V溝構造71の長軸73となる。ただし、P、Q1、Q2、Q3、…は点光源62の前方における内接円74上の点であって、Pは中心線75上の点、Q1、Q2、Q3、…は内接円74上の任意の点である。なお、点Oは内接円74の中心である。   FIG. 8 is a schematic view for explaining the function of the light introducing portion 65 having the structure as shown in FIG. As described above, both ends A and B of the light exit window 62 a are at arbitrary positions on the inscribed circle 74, and the major axis 73 of any V groove structure 71 is the intersection G ( = F), the positional relationship is as shown in FIG. Here, if the inner peripheral end of each V-groove structure 71 is P, Q1, Q2, Q3,..., Straight lines PF, Q1F, Q2F, Q3F,. Where P, Q1, Q2, Q3,... Are points on the inscribed circle 74 in front of the point light source 62, P is a point on the center line 75, and Q1, Q2, Q3,. Any point above. Note that the point O is the center of the inscribed circle 74.

図8から分かるように、角度∠APF、∠AQ1F、∠AQ2F、∠AQ3F、…はいずれも同一円弧AGの円周角となるので、これらの角度はいずれも等しくなる。すなわち、
∠APF=∠AQ1F=∠AQ2F=∠AQ3F=… (数式1)
同様に、角度∠BPF、∠BQ1F、∠BQ2F、∠BQ3F、…はいずれも同一円弧BGに対する円周角となるので、これらの角度も互いに等しくなる。すなわち、
∠BPF=∠BQ1F=∠BQ2F=∠BQ3F=… (数式2)
また、点Pは中心線75上の点であるから、
∠APF=∠BPF (数式3)
となる。よって、数式1〜3より、
∠AQ1F=∠BQ1F
∠AQ2F=∠BQ2F
∠AQ3F=∠BQ3F
……… (数式4)
という結果が得られる。
As can be seen from FIG. 8, the angles ∠APF, ∠AQ1F, ∠AQ2F, ∠AQ3F,... Are all equal to the circumference angle of the same arc AG, and therefore these angles are all equal. That is,
∠APF = ∠AQ1F = ∠AQ2F = ∠AQ3F = ... (Formula 1)
Similarly, since the angles ∠BPF, ∠BQ1F, ∠BQ2F, ∠BQ3F,... Are all circumferential angles with respect to the same arc BG, these angles are also equal to each other. That is,
∠BPF = ∠BQ1F = ∠BQ2F = ∠BQ3F = ... (Formula 2)
Since the point P is a point on the center line 75,
∠APF = ∠BPF (Formula 3)
It becomes. Therefore, from Formulas 1-3,
∠AQ1F = ∠BQ1F
∠AQ2F = ∠BQ2F
∠AQ3F = ∠BQ3F
……… (Formula 4)
The result is obtained.

上記数式4の意味するところは、いずれのV溝構造71においても、点光源62からV溝構造71に入射する光の広がりが、V溝構造71の長軸73に関して右側と左側とで等しい、ということである。すなわち、Qm(m=1、2、…)の位置にあるV溝構造71に入射する光の広がり∠AQmBは、長軸QmFに関して、右側における広がり∠AQmFと左側における広がり∠BQmFとが等しくなっている。   The expression 4 means that in any V-groove structure 71, the spread of light incident on the V-groove structure 71 from the point light source 62 is equal on the right side and the left side with respect to the major axis 73 of the V-groove structure 71. That's what it means. That is, the spread ∠AQmB of light incident on the V-groove structure 71 at the position of Qm (m = 1, 2,...) Is equal to the spread に お け る AQmF on the right side and the spread ∠BQmF on the left side with respect to the long axis QmF. ing.

図9は、比較例(特許文献4で説明したもの)における光導入部35の構造を示す図であって、光出射面に垂直な方向から見た平面図である。この比較例では、指向性変換パターン38の内接円74の中心Oは、光出射窓32aの中央C(光源中心)と一致しており、各V溝構造41の長軸73は内接円74の中心Oを通過している。このような比較例では、中心線75上の点PにあるV溝構造41については、長軸73に関して右側における入射光の広がり∠APOと左側における入射光の広がり∠BPOとが等しくなっているが、中心線75から外れた任意の位置QにあるV溝構造41については、長軸73に関して右側における入射光の広がり∠AQOと左側における入射光の広がり∠BQOとが異なっている。このため、比較例のような光導入部35では、大部分のV溝構造41に偏った方向から光が入射し、光導入部35からの光の漏れが大きくなる。   FIG. 9 is a view showing the structure of the light introducing portion 35 in the comparative example (explained in Patent Document 4), and is a plan view seen from a direction perpendicular to the light emitting surface. In this comparative example, the center O of the inscribed circle 74 of the directivity conversion pattern 38 coincides with the center C (light source center) of the light exit window 32a, and the major axis 73 of each V-groove structure 41 is inscribed in the circle. The center O of 74 is passed. In such a comparative example, with respect to the V-groove structure 41 at the point P on the center line 75, the incident light spread ∠APO on the right side and the incident light spread ∠BPO on the left side are equal with respect to the long axis 73. However, for the V-groove structure 41 at an arbitrary position Q off the center line 75, the incident light spread ∠AQO on the right side and the incident light spread ∠BQO on the left side are different with respect to the long axis 73. For this reason, in the light introducing part 35 as in the comparative example, light is incident on the most V-groove structures 41 from a biased direction, and light leakage from the light introducing part 35 increases.

これに対し、図7に示した光導入部65では、V溝構造71の位置によらず、その長軸73に関して右側における入射光の広がりと左側における入射光の広がりとが等しくなるので、光導入部65における光の漏れが小さくなり、面光源装置61の光利用効率が向上する。   On the other hand, in the light introducing portion 65 shown in FIG. 7, the spread of the incident light on the right side and the spread of the incident light on the left side are equal with respect to the major axis 73 regardless of the position of the V-groove structure 71. Light leakage at the introduction portion 65 is reduced, and the light use efficiency of the surface light source device 61 is improved.

図10は、V溝構造71に入射する光の偏り、すなわちV溝構造71に右側から入射する光と左側から入射する光との差が面光源装置61の効率にもたらす影響をシミュレーションにより検証した結果を表した図である。また、図11は、図10のデータを得るためのモデルを説明する図である。このシミュレーション実験(シミュレーションは、特許文献4の段落0167に記載されている条件と同じ条件で行った。)では、図11に示すように、試験用の導光板63の上面において点光源62の中心線75上にV溝構造71を形成し、V溝構造71の長軸73と中心線75のなす角度νを変化させ、そのとき効率改善効果を計算した。効率改善効果とは、光導入部65から導光板本体64へどれだけの割合の光が漏れなく伝わるかという効率であり、V溝構造71が無い場合の効率をゼロとし、光漏れ防止の効率改善効果がある(光漏れが減少する)場合をプラス、光漏れ防止の効率を逆に低下させる(光漏れが増加する)場合をマイナスとしている。具体的には、V溝構造71の長軸73が中心線75となす角度をνとしたときに導光板本体64に伝わる光量をIν、パターン無しで導光板本体64に伝わる光量をIoとすれば、効率改善効果は(Iν−Io)/Io で表される。また、図10で表した効率改善効果は、最も効率改善効果が高くなる角度で1に規格化している。   10 verified by simulation the influence of the deviation of the light incident on the V-groove structure 71, that is, the difference between the light incident on the V-groove structure 71 from the right side and the light incident on the left side on the efficiency of the surface light source device 61. It is a figure showing a result. FIG. 11 is a diagram for explaining a model for obtaining the data of FIG. In this simulation experiment (simulation was performed under the same conditions as described in paragraph 0167 of Patent Document 4), as shown in FIG. 11, the center of the point light source 62 is formed on the upper surface of the test light guide plate 63. The V-groove structure 71 was formed on the line 75, the angle ν formed by the long axis 73 of the V-groove structure 71 and the center line 75 was changed, and the efficiency improvement effect was calculated at that time. The efficiency improvement effect is an efficiency of how much light is transmitted from the light introducing portion 65 to the light guide plate body 64 without leakage. The efficiency without the V-groove structure 71 is zero, and the efficiency of preventing light leakage. The case where there is an improvement effect (light leakage is reduced) is positive, and the case where the light leakage prevention efficiency is reduced (light leakage is increased) is negative. Specifically, when the angle formed by the long axis 73 of the V-groove structure 71 and the center line 75 is ν, the amount of light transmitted to the light guide plate body 64 is Iν, and the amount of light transmitted to the light guide plate body 64 without a pattern is Io. For example, the efficiency improvement effect is expressed by (Iν−Io) / Io. Further, the efficiency improvement effect shown in FIG. 10 is normalized to 1 at an angle at which the efficiency improvement effect becomes the highest.

図10から分かるように、長軸73の角度νが大きくなるほど面光源装置61の効率改善効果が低下する。したがって、V溝構造71はその長軸73に対して右側からの入射光の広がりと左側からの入射光の広がりとが等しくなるときに最も効率がよいことが確認できる。すなわち、図9のように各V溝構造41の長軸73が光源中心Cで集束するようにV溝構造41を配列するよりも、図7に示したように各V溝構造71の長軸73が内接円74上の点Gで集束するようにV溝構造71を配列する方が、面光源装置61の効率が良くなる。よって、本実施形態のような構成によれば、光導入部65における漏れ光を少なくできて面光源装置61の効率を向上させることができ、そのためデッドスペースを小さくすることも可能になる。   As can be seen from FIG. 10, the efficiency improvement effect of the surface light source device 61 decreases as the angle ν of the long axis 73 increases. Therefore, it can be confirmed that the V-groove structure 71 is most efficient when the spread of incident light from the right side and the spread of incident light from the left side are equal to the long axis 73. That is, rather than arranging the V-groove structure 41 so that the long axis 73 of each V-groove structure 41 converges at the light source center C as shown in FIG. 9, the long axis of each V-groove structure 71 as shown in FIG. The efficiency of the surface light source device 61 is improved by arranging the V-groove structure 71 so that 73 is focused at the point G on the inscribed circle 74. Therefore, according to the configuration of the present embodiment, it is possible to reduce the leakage light in the light introducing portion 65 and improve the efficiency of the surface light source device 61, and therefore it is possible to reduce the dead space.

具体的に説明すると、以下のとおりである。図7の光導入部35では、内接円74の中心Oが光源中心Cに一致しており、片側見込み角が∠APC=∠BPC=45°、長軸73の集束点Fと光源中心Cとの距離がRとなっている。この場合には、光出射窓62aの幅を2R、V溝構造71の長さをδとすれば、光導入部65によるデッドスペースはR+δとなり、最大漏れ光の比率は約4.0%であった。一方、図9の比較例において、片側見込み角が∠APC=∠BPC=30°の場合には、デッドスペースは(√3)R+δ≒1.73R+δとなり、最大漏れ光の比率は前記のように15%である。よって、図7に示す実施形態1の光導入部35によれば、図9の比較例と比較して、最大漏れ光の比率を比較例よりも小さくでき、しかも、デッドスペースも比較例より小さくできる。   Specifically, it is as follows. 7, the center O of the inscribed circle 74 coincides with the light source center C, the one-side expected angle is ∠APC = ∠BPC = 45 °, the converging point F of the long axis 73 and the light source center C. The distance to is R. In this case, if the width of the light exit window 62a is 2R and the length of the V-groove structure 71 is δ, the dead space by the light introducing portion 65 is R + δ, and the ratio of the maximum leakage light is about 4.0%. there were. On the other hand, in the comparative example of FIG. 9, when the one-side prospective angle is ∠APC = ∠BPC = 30 °, the dead space is (√3) R + δ≈1.73R + δ, and the ratio of the maximum leakage light is as described above. 15%. Therefore, according to the light introduction part 35 of Embodiment 1 shown in FIG. 7, compared with the comparative example of FIG. 9, the ratio of the maximum leakage light can be made smaller than the comparative example, and the dead space is also smaller than the comparative example. it can.

また、本実施形態の面光源装置61では、内接円74の中心Oは必ずしも光源中心Cに一致している必要はない。したがって、図8のように内接円74の中心Oを中心線75に沿って移動させることにより、片側見込み角∠APC=∠BPCを変化させることができる。   In the surface light source device 61 of the present embodiment, the center O of the inscribed circle 74 does not necessarily need to coincide with the light source center C. Therefore, by moving the center O of the inscribed circle 74 along the center line 75 as shown in FIG. 8, the one-side prospective angle ∠APC = ∠BPC can be changed.

図12は、比較例の面光源装置と本実施形態の面光源装置61において、片側見込み角を変化させた場合の最大漏れ光の比率を求めた結果を表している。ここで用いたモデルのパラメータは、それぞれ、
導光板の屈折率 n=1.59
指向性変換パターンの山部の頂角 φ=120°
光導入部の端面の厚み T=0.31mm
導光板本体の厚み t=0.18mm
光導入部の上面の長さ s1=2.50mm
光導入部の長さ s2=3.19mm
傾斜面37の傾斜角 θ=15.3°
である(図2、図6参照)。図12によれば、片側見込み角が同じであれば、本実施形態の面光源装置61の方が最大漏れ光の比率が小さくなっている。
FIG. 12 shows the result of obtaining the ratio of the maximum leakage light when the one-side prospective angle is changed in the surface light source device of the comparative example and the surface light source device 61 of the present embodiment. The model parameters used here are
Refractive index of light guide plate n = 1.59
Peak angle of directivity conversion pattern crest φ = 120 °
Thickness of end face of light introducing part T = 0.31mm
Light guide plate body thickness t = 0.18mm
Length of top surface of light introduction part s1 = 2.50mm
Length of light introducing part s2 = 3.19mm
Inclination angle of inclined surface 37 θ = 15.3 °
(See FIGS. 2 and 6). According to FIG. 12, if the one-side prospective angle is the same, the surface light source device 61 of the present embodiment has a smaller ratio of maximum leakage light.

面光源装置の漏れ光が15%程度に達すると、面光源装置の光利用効率が低下して発光面の輝度低下をもたらし、指向性変換パターンから漏れた光によって光導入部の縁に輝度の高い発光領域が発生するので、実用的には最大漏れ光の比率は15%程度が限度である。そこで、最大漏れ光の比率が15%以下となる片側見込み角を図12で見ると、比較例では約30°以下でなければならないのに対し、本実施形態では、片側見込み角が90°に近くなっても最大漏れ光の比率は15%よりもかなり小さくなっている。あるいは、片側見込み角によらず、最大漏れ光の比率は15%以下となる。   When the leakage light of the surface light source device reaches about 15%, the light use efficiency of the surface light source device is reduced to reduce the luminance of the light emitting surface, and the luminance leaks from the directivity conversion pattern to the edge of the light introducing portion. Since a high light emitting region is generated, the maximum leaked light ratio is practically about 15%. Therefore, when the one-side expected angle at which the ratio of the maximum leakage light is 15% or less is seen in FIG. 12, the comparative example must be about 30 ° or less, whereas in this embodiment, the one-side expected angle is 90 °. The ratio of the maximum leaked light is considerably smaller than 15% even if it is close. Or the ratio of the maximum leaked light is 15% or less regardless of the one-sided prospective angle.

また、本実施形態の場合には、片側見込み角∠APC=∠BPC=ωとしたとき、集束点Fと光源中心Cとの距離Dは、光出射窓62aの幅を2Rとして、
D=R×tanω …(数式5)
となる。デッドスペースは、V溝構造71の長さをδとし、
(R/tanω)+δ …(数式6)
となる。
In the case of this embodiment, when the one-side prospective angle ∠APC = ∠BPC = ω, the distance D between the converging point F and the light source center C is set such that the width of the light exit window 62a is 2R.
D = R × tanω (Formula 5)
It becomes. In the dead space, the length of the V groove structure 71 is δ,
(R / tanω) + δ (Formula 6)
It becomes.

例えば、本実施形態の光導入部35において、片側見込み角が∠APC=∠BPC=60°である場合を図13に示す。この場合には、最大漏れ光の比率は、図12によれば、約6.5%であって、片側見込み角30°である図9の比較例よりも最大漏れ光の比率がかなり小さくなっている。さらに、この場合には、デッドスペースは、数式6より、R/(√3)+δ≒0.58R+δとなり、図9の比較例よりデッドスペースもかなり小さくなる。さらに、集束点Fと光源中心Cとの距離は、数式5より、(√3)R≒1.73Rである。   For example, in the light introduction part 35 of this embodiment, the case where the one-sided prospective angle is ∠APC = ∠BPC = 60 ° is shown in FIG. In this case, the ratio of the maximum leakage light is about 6.5% according to FIG. 12, and the ratio of the maximum leakage light is considerably smaller than that of the comparative example of FIG. ing. Further, in this case, the dead space is R / (√3) + δ≈0.58R + δ from Equation 6, and the dead space is considerably smaller than that of the comparative example of FIG. Further, the distance between the focal point F and the light source center C is (√3) R≈1.73R from Equation 5.

また、本実施形態の光導入部35において、片側見込み角が∠APC=∠BPC=30°である場合を図14に示す。これは図9の比較例と片側見込み角の大きさが同じ場合である。この場合には、最大漏れ光の比率はさらに低減して約2.5%(図12による)となる。また、デッドスペースは(√3)R+δ≒1.73R+δとなり、図9の比較例のデッドスペースに等しくなる。さらに、集束点Fと光源中心Cとの距離はR/(√3)≒0.58Rとなる。   Moreover, in the light introduction part 35 of this embodiment, the case where the one-side prospective angle is ∠APC = ∠BPC = 30 ° is shown in FIG. This is the case where the magnitude of the one-side prospective angle is the same as that of the comparative example of FIG. In this case, the ratio of the maximum leakage light is further reduced to about 2.5% (according to FIG. 12). The dead space is (√3) R + δ≈1.73R + δ, which is equal to the dead space of the comparative example of FIG. Further, the distance between the focusing point F and the light source center C is R / (√3) ≈0.58R.

よって、本実施形態の面光源装置によれば、特許文献4に開示した面光源装置よりも漏れ光を低減し、光利用効率を向上させることができる。すなわち、片側見込み角が同じであれば、図9の比較例に比べて、デッドスペースは同じままで漏れ光が少なくなり、光の利用効率が向上する。また、最大漏れ光の比率が同じであれば、図9の比較例に比べてデッドスペースが小さくなる。   Therefore, according to the surface light source device of the present embodiment, leakage light can be reduced and light utilization efficiency can be improved as compared with the surface light source device disclosed in Patent Document 4. That is, if the one-sided prospective angle is the same, the dead space remains the same and the leakage light is reduced as compared with the comparative example of FIG. 9, and the light utilization efficiency is improved. Further, if the ratio of the maximum leakage light is the same, the dead space is reduced as compared with the comparative example of FIG.

なお、点光源62から出射された光の広がりが平面視で180°であったとしても、光入射端面66から光導入部65内に入射した光は、屈折のために広がりは180°よりも狭くなる。例えば、導光板63の屈折率が1.59であったとすると、光導入部65内における光の広がりは、2×arcsin(1/1.59)≒78°(=全反射の臨界角の2倍)となる。この場合でいえば、図15に示す光出射窓62aの端Aから39°以上の方向、すなわち直線AA´よりも外側や、光出射窓62aの端Bから39°以上の方向、すなわち直線BB´よりも外側には光は届かない。よって、これらの光の届かない領域には、図15に示したように、V溝構造71を設けていなくてもよい。あるいは、図15に破線で示したように、これらの領域には、任意の形状のパターンを設けてもよい。これは、任意の実施形態について当てはまることである。特に、図14のように指向性変換パターン38の点光源62側の端部間が狭くなる場合には、図15のように広げることができる。   Even if the spread of the light emitted from the point light source 62 is 180 ° in a plan view, the light that has entered the light introducing portion 65 from the light incident end face 66 has a spread of more than 180 ° due to refraction. Narrow. For example, if the refractive index of the light guide plate 63 is 1.59, the spread of light in the light introducing portion 65 is 2 × arcsin (1 / 1.59) ≈78 ° (= 2 of the critical angle of total reflection). Times). In this case, the direction of 39 ° or more from the end A of the light exit window 62a shown in FIG. 15, that is, the outside of the straight line AA ′, or the direction of 39 ° or more from the end B of the light exit window 62a, that is, the straight line BB. Light does not reach outside of ´. Therefore, as shown in FIG. 15, the V-groove structure 71 does not have to be provided in these regions where the light does not reach. Alternatively, as shown by a broken line in FIG. 15, a pattern having an arbitrary shape may be provided in these regions. This is true for any embodiment. In particular, when the distance between the end portions on the point light source 62 side of the directivity conversion pattern 38 is narrow as shown in FIG. 14, it can be widened as shown in FIG.

(第1の実施形態の変形例)
実施形態1では、各V溝構造71の長軸73が内接円74と中心線75の交点Gに集まるようにすることで、点光源62の光が各V溝構造71に均等に入射するようにしているが、図10を見ると分かるように、V溝構造71の長軸73の方向が多少異なっても急激に効率が低下する訳ではない。また、本発明は、特許文献4で開示した面光源装置よりも効率を向上させることを目的としているので、その限度内で条件を緩やかにすることができる。すなわち、すべてのV溝構造71が上記のような条件を厳密に満たしていなければならない訳ではない。
(Modification of the first embodiment)
In the first embodiment, the long axis 73 of each V-groove structure 71 is gathered at the intersection G of the inscribed circle 74 and the center line 75 so that the light from the point light source 62 is uniformly incident on each V-groove structure 71. However, as can be seen from FIG. 10, even if the direction of the long axis 73 of the V-groove structure 71 is slightly different, the efficiency does not rapidly decrease. Further, the present invention aims to improve the efficiency as compared with the surface light source device disclosed in Patent Document 4, so that the conditions can be relaxed within the limits. That is, not all V-groove structures 71 must strictly satisfy the above conditions.

したがって、実施形態1の変形例による面光源装置では、光導入部65の構造を以下のように特徴づけることができる。   Therefore, in the surface light source device according to the modification of the first embodiment, the structure of the light introducing portion 65 can be characterized as follows.

図16は実施形態1の第1の変形例を示す平面図である。この変形例では、導光板63を光出射面69に垂直な方向から見たとき、光入射端面66から光導入部65内に入射した光が到達する領域内にあり、かつ点光源62の中心線75を挟んで一方の側に位置するそれぞれのV溝構造71(すなわち、図16で中心線75と直線AA´との間にあるV溝構造71)の長軸73を平均化した第1の直線73Aが中心線75と交差する第1交点と、光入射端面66から光導入部65内に入射した光が到達する領域内にあり、かつ点光源62の中心線75を挟んで他方の側に位置するそれぞれのV溝構造71(すなわち、図16で中心線75と直線BB´との間にあるV溝構造71)の長軸73を平均化した第2の直線73Bが中心線75と交差する第2交点とが、中心線75上の一点Fで一致している。この交点Fは、光源中心Cよりも後方の点であって、光源中心Cを除き、かつ、光源中心Cからの距離Dが光出射窓62aの幅の6倍の距離12R以下となる点である。さらに、この交点Fは、指向性変換パターン68の内接円74と中心線75との交点Gの近傍であることが望ましい。なお、光源中心Cからの距離Dが、光出射窓の幅の6倍以下という点については、後ほど説明する。   FIG. 16 is a plan view showing a first modification of the first embodiment. In this modification, when the light guide plate 63 is viewed from a direction perpendicular to the light exit surface 69, the light guide plate 63 is in a region where light incident from the light incident end surface 66 into the light introducing portion 65 reaches and the center of the point light source 62. A first average of the long axes 73 of the V-groove structures 71 located on one side across the line 75 (that is, the V-groove structure 71 between the center line 75 and the straight line AA ′ in FIG. 16). The first straight line 73A intersects the center line 75 and a region where the light incident from the light incident end face 66 reaches the light introducing portion 65, and the other side of the center line 75 of the point light source 62 A second straight line 73B obtained by averaging the long axes 73 of the respective V-groove structures 71 located on the side (that is, the V-groove structure 71 between the center line 75 and the straight line BB ′ in FIG. 16) is the center line 75. And the second intersection that intersects with each other coincides at a point F on the center line 75. This intersection F is a point behind the light source center C, except that the light source center C is excluded and the distance D from the light source center C is equal to or less than the distance 12R, which is six times the width of the light exit window 62a. is there. Further, it is desirable that the intersection point F is in the vicinity of the intersection point G between the inscribed circle 74 and the center line 75 of the directivity conversion pattern 68. The point that the distance D from the light source center C is not more than 6 times the width of the light exit window will be described later.

上に述べた「それぞれのV溝構造71の長軸73を平均化した直線」(73A又は73B)は、以下のように定義する。図17に示すように、導光板63の光出射面69に垂直な方向から見て、光源中心Cを座標原点とし、点光源62の前面(光出射窓62a)に平行な方向にX座標軸を定め、点光源62の前面に垂直な方向にY座標軸を定める。そして、対象とするV溝構造71の数をN個とするとき、このN個のV溝構造71をひとつづつ指標n=1、2、…、Nで区別する。XY座標系において、n番目のV溝構造71の長軸73の傾きをそれぞれanとし、長軸73のX切片をbnとすれば、各V溝構造71の長軸73は、つぎのように表される。
X=an・Y+bn
これらのN本の長軸73を平均化した直線(第1の直線73A、または第2の直線73B)は、つぎの数式7で定義する。

Figure 0004894955
The above-described “straight line obtained by averaging the long axes 73 of the respective V-groove structures 71” (73A or 73B) is defined as follows. As shown in FIG. 17, when viewed from the direction perpendicular to the light exit surface 69 of the light guide plate 63, the light source center C is taken as the coordinate origin, and the X coordinate axis is set in a direction parallel to the front surface of the point light source 62 (light exit window 62a). The Y coordinate axis is determined in a direction perpendicular to the front surface of the point light source 62. When the number of target V-groove structures 71 is N, the N V-groove structures 71 are distinguished by indices n = 1, 2,. In the XY coordinate system, if the inclination of the major axis 73 of the n-th V-groove structure 71 is an and the X-intercept of the major axis 73 is bn, the major axis 73 of each V-groove structure 71 is as follows: expressed.
X = an · Y + bn
A straight line (first straight line 73A or second straight line 73B) obtained by averaging these N major axes 73 is defined by the following Expression 7 .
Figure 0004894955

また、上記数式1より、N本の長軸73を平均化した直線が中心線75と公差する交点(第1の交点、または第2の交点)のY座標Yiは、つぎの数式8で表される。

Figure 0004894955
Further, from the above Equation 1, the Y coordinate Yi of the intersection (first intersection or second intersection) where the straight line obtained by averaging the N major axes 73 has a tolerance with the center line 75 is expressed by the following Equation 8 . Is done.
Figure 0004894955

第1の変形例では、交点Fは、光源中心Cよりも後方の点であって、光源中心Cを除き、かつ、光源中心Cからの距離Dが光出射窓62aの幅の6倍の距離12R以下となる点であるから、
−12R≦Yi<0
となる。
In the first modification, the intersection point F is a point behind the light source center C, excludes the light source center C, and the distance D from the light source center C is a distance that is six times the width of the light exit window 62a. Because it is 12R or less,
-12R ≦ Yi <0
It becomes.

また、図18は実施形態1の第2の変形例を示す平面図である。この変形例では、導光板63を光出射面69に垂直な方向から見たとき、光入射端面66から光導入部65内に入射した光が到達する領域内にあり、かつ点光源62の中心線75を挟んで一方の側に位置するそれぞれのV溝構造71の長軸73を平均化した第1の直線73Aが中心線75と交差する第1交点Faと、光入射端面66から光導入部65内に入射した光が到達する領域内にあり、かつ点光源62の中心線75を挟んで他方の側に位置するそれぞれのV溝構造71の長軸73を平均化した第2の直線73Bが中心線75と交差する第2交点Fbとが異なる点となっている。この交点Fa、Fbはいずれも、光源中心Cよりも後方の点であって、光源中心Cを除き、かつ、光源中心Cからの距離Dが光出射窓62aの幅の6倍の距離12R以下の点である。さらに、この交点Fa、Fbは、指向性変換パターン68の内接円74と中心線75との交点Gの近傍であることが望ましい。なお、図18では、第1交点Faよりも第2交点Fbの方が光源中心Cに近いが、第2交点Fbの方が光源中心Cから遠くにあってもよい。   FIG. 18 is a plan view showing a second modification of the first embodiment. In this modification, when the light guide plate 63 is viewed from a direction perpendicular to the light exit surface 69, the light guide plate 63 is in a region where light incident from the light incident end surface 66 into the light introducing portion 65 reaches and the center of the point light source 62. Light is introduced from the first intersection point Fa where the first straight line 73A obtained by averaging the long axes 73 of the respective V-groove structures 71 located on one side across the line 75 intersects the center line 75 and the light incident end face 66. A second straight line obtained by averaging the major axes 73 of the respective V-groove structures 71 located on the other side of the center line 75 of the point light source 62 within the region where the light incident on the portion 65 reaches. The second intersection point Fb at which 73B intersects the center line 75 is different. The intersections Fa and Fb are both points behind the light source center C, excluding the light source center C, and the distance D from the light source center C is a distance 12R or less which is six times the width of the light exit window 62a. This is the point. Furthermore, the intersections Fa and Fb are preferably near the intersection G between the inscribed circle 74 and the center line 75 of the directivity conversion pattern 68. In FIG. 18, the second intersection point Fb is closer to the light source center C than the first intersection point Fa, but the second intersection point Fb may be farther from the light source center C.

(第2の実施形態)
図19は、本発明の実施形態2による面光源装置の光導入部65を示す平面図である。図20は実施形態2の説明図である。図19に示すように、実施形態2においては、内接円74の中心Oが光源中心Cと一致するようにして指向性変換パターン68が形成されている。各V溝構造71の内周側の端を、中心線75に近いV溝構造71から順にそれぞれQ1、Q2、Q3、…とし、各V溝構造71の長軸73が中心線75と交差する点をそれぞれF1、F2、F3、…とすれば、光出射窓62aの一方の端AとV溝構造71の内側の端Qm(m=1、2、…)とを結ぶ直線AQmがその長軸73となす角度∠AQmFmと、光出射窓62aの他方の端BとV溝構造71の内側の端Qmとを結ぶ直線BQmがその長軸73となす角度∠BQmFmとが等しくなるように、それぞれの長軸73の向きを定めている。
(Second Embodiment)
FIG. 19 is a plan view showing the light introducing portion 65 of the surface light source device according to Embodiment 2 of the present invention. FIG. 20 is an explanatory diagram of the second embodiment. As shown in FIG. 19, in the second embodiment, the directivity conversion pattern 68 is formed such that the center O of the inscribed circle 74 coincides with the light source center C. The inner circumferential end of each V-groove structure 71 is designated as Q1, Q2, Q3,... Sequentially from the V-groove structure 71 close to the center line 75, and the major axis 73 of each V-groove structure 71 intersects the center line 75. If the points are F1, F2, F3,..., The straight line AQm connecting one end A of the light exit window 62a and the inner end Qm (m = 1, 2,...) Of the V-groove structure 71 is its length. The angle ∠AQmFm formed with the axis 73 and the angle ∠BQmFm formed with the long axis 73 of the straight line BQm connecting the other end B of the light exit window 62a and the inner end Qm of the V-groove structure 71 are equal. The direction of each major axis 73 is determined.

図20に示すように、各V溝構造71の長軸73が光源中心Cで交差するようになっている場合(すなわち、図9の比較例の場合)には、長軸73の両側での入射角∠AQmCと∠BQmCとは等しくならず、効率が低下したり、光漏れが発生したりしやすい。これに対し、長軸73の向きを変化させて長軸73が中心線75と交差する点Fmを光源中心Cよりも後方へ移動させれば、長軸73の両側での入射角∠AQmFmと∠BQmFmとを等しくすることができ、光利用効率をより向上させることができ、また光導入部65からの光漏れを低減することができる。この結果、V溝構造71の長軸73が中心線75と交差する点Fmは、図19に示すように、そのV溝構造71が中心線75から離れるほど、光源中心Cに近づく。   As shown in FIG. 20, when the long axis 73 of each V-groove structure 71 intersects at the light source center C (that is, in the case of the comparative example of FIG. 9), The incident angles ∠AQmC and ∠BQmC are not equal, and the efficiency tends to decrease and light leakage tends to occur. On the other hand, if the direction of the long axis 73 is changed and the point Fm where the long axis 73 intersects the center line 75 is moved backward from the light source center C, the incident angles ∠AQmFm on both sides of the long axis 73 ∠BQmFm can be made equal, light utilization efficiency can be further improved, and light leakage from the light introducing section 65 can be reduced. As a result, the point Fm at which the long axis 73 of the V-groove structure 71 intersects the center line 75 is closer to the light source center C as the V-groove structure 71 is further away from the center line 75 as shown in FIG.

なお、図20の円76は、点Fmを中心とする円を表している。すなわち、図20は、この実施形態のように各V溝構造71の長軸73の向きを変化させることは、V溝構造71の内接円の中心を円76のように光出射窓62aよりも後方へ移動させることとの類似性を表している。   A circle 76 in FIG. 20 represents a circle centered on the point Fm. That is, FIG. 20 shows that changing the direction of the long axis 73 of each V-groove structure 71 as in this embodiment is that the center of the inscribed circle of the V-groove structure 71 is made from the light exit window 62a like a circle 76. Represents the similarity to moving backward.

図21及び図22は、実施形態2における長軸73の集束点Fと光源中心Cの距離Dと、片側見込み角ωとの関係を説明するための図である。図21に示すように、片側見込み角がωとなる中心線75上の点Pを考え、この点Pから微小距離Δだけずれた点Qmを考える。このとき点Qmに入射する光の広がりは∠AQmBとなるが、点QmにあるV溝構造71の長軸73の方向が角度∠AQmBの二等分線と一致するように定めたとすると、この長軸73と中心線75との交点Fmと光源中心Cとの距離D(=FmC)は、微小距離Δがゼロに近づくにしたがって大きくなり、Δ→0の極限として距離Dの最大値Dmaxを決めることができる。この最大値Dmaxは片側見込み角ωの関数となるので、
最大距離係数α=Dmax/(2R)
と定義すれば、最大距離係数αも片側見込み角ωの関数となる。
21 and 22 are diagrams for explaining the relationship between the converging point F of the long axis 73 and the distance D between the light source centers C and the one-side prospective angle ω in the second embodiment. As shown in FIG. 21, a point P on the center line 75 where the one-side prospective angle is ω is considered, and a point Qm deviated from this point P by a minute distance Δ is considered. At this time, the spread of the light incident on the point Qm is ∠AQmB. If the direction of the long axis 73 of the V groove structure 71 at the point Qm is determined to coincide with the bisector of the angle ∠AQmB, The distance D (= FmC) between the intersection Fm of the long axis 73 and the center line 75 and the light source center C increases as the minute distance Δ approaches zero, and the maximum value Dmax of the distance D is set as the limit of Δ → 0. I can decide. Since this maximum value Dmax is a function of the one-sided prospective angle ω,
Maximum distance coefficient α = Dmax / (2R)
The maximum distance coefficient α is also a function of the one-sided prospective angle ω.

図22は、横軸を片側見込み角ωとし、縦軸を最大距離係数αとして、片側見込み角ωと最大距離係数αとの関係を表した図である。図22によれば、片側見込み角ωが大きくなるに従って最大距離係数αも単調に増大している。最大距離係数αは、片側見込み角ωが80°を超えると急速に増大するが、この片側見込み角ω>80°もしくは最大距離係数α>6の領域は特異的である。図12によれば片側見込み角ωが90°以下で最大漏れ光の比率は15%となっていたが、このような特異性を考慮すれば、片側見込み角ωが80°以下もしくは最大距離係数αが6倍以下で最大漏れ光の比率を最適かつ15%以下にできることが分かっている。よって、最適なV溝構造71の長軸73は、光源中心Cから測って光出射窓62aの幅2Rの6倍以下の範囲内で中心線75と交差することになる。なお、現状では10mm以上の幅を持つLEDは無いので、長軸73と中心線75との交点Fmは光源中心Cから60mm以内にあることになる。   FIG. 22 is a diagram showing the relationship between the one-side prospective angle ω and the maximum distance coefficient α, where the horizontal axis is the one-side prospective angle ω and the vertical axis is the maximum distance coefficient α. According to FIG. 22, as the one-side prospective angle ω increases, the maximum distance coefficient α also monotonously increases. The maximum distance coefficient α increases rapidly when the one-sided prospective angle ω exceeds 80 °, but the region where the one-sided expected angle ω> 80 ° or the maximum distance factor α> 6 is unique. According to FIG. 12, the ratio of the maximum leaked light was 15% when the one-sided prospective angle ω was 90 ° or less. However, considering such singularity, the one-sided prospective angle ω was 80 ° or less or the maximum distance coefficient. It has been found that when α is 6 times or less, the ratio of maximum leakage light can be optimized and 15% or less. Therefore, the major axis 73 of the optimum V-groove structure 71 intersects the center line 75 within a range of 6 times or less the width 2R of the light exit window 62a as measured from the light source center C. Since there is no LED having a width of 10 mm or more at present, the intersection Fm between the long axis 73 and the center line 75 is within 60 mm from the light source center C.

例えば、片側見込み角ωが30°である場合には、図22より最大距離係数α=0.29となるので、光出射窓62aの幅2R=2mmとすれば、すべての交点もしくはほとんどの交点Fを光源中心Cからの距離が0.29×2mm=0.58mm以下となるようにすればよい。
なお、図22による説明は、第1の実施形態などにも当てはまるものである。
For example, when the one-side prospective angle ω is 30 °, the maximum distance coefficient α = 0.29 from FIG. 22, and therefore, if the width 2R = 2 mm of the light exit window 62a, all intersections or most intersections. F may be set so that the distance from the light source center C is 0.29 × 2 mm = 0.58 mm or less.
The description with reference to FIG. 22 also applies to the first embodiment.

図23は、集束点Fと光源中心Cとの距離Dと光の漏れ量との関係を表した図である。図23の横軸は集束点Fと光源中心Cとの距離Dを最大距離Dmax=(2R×α)で割って正規化した値を示し、縦軸は光の漏れ量の比率を示す。図23によれば、D/Dmax が0.2〜2.4の範囲では、各V溝構造71の長軸73が光源中心Cに集まっている場合(すなわち、D/Dmax=0の場合)の2/3以下に漏れ量が減少するので十分効果があると言える。例えば、片側見込み角ωが30°である場合には、図22より最大距離係数α=0.29となり、光出射窓62aの幅2R=2mmとすれば、長軸のすべての交点もしくはほとんどの交点Fを光源中心Cからの距離が少なくとも0.29×2mm×0.2=0.116mm以上となるようにすれば十分な効果を得られる。
なお、最大距離係数αは片側見込み角ωが80°を超えると急速に増大するが、この片側見込み角ω>80°の領域は特異的であり、αが6以下の値で図23のような傾向を示すことがわかっている。
FIG. 23 is a diagram illustrating the relationship between the distance D between the focusing point F and the light source center C and the amount of light leakage. In FIG. 23, the horizontal axis indicates a value obtained by dividing the distance D between the focusing point F and the light source center C by the maximum distance Dmax = (2R × α), and the vertical axis indicates the ratio of light leakage. According to FIG. 23, when D / Dmax is in the range of 0.2 to 2.4, the long axis 73 of each V-groove structure 71 is gathered at the light source center C (that is, when D / Dmax = 0). Since the leakage amount is reduced to 2/3 or less, it can be said that there is a sufficient effect. For example, when the one-side prospective angle ω is 30 °, the maximum distance coefficient α = 0.29 from FIG. 22, and if the width 2R = 2 mm of the light exit window 62a, all intersections of the major axes or most of A sufficient effect can be obtained if the distance from the light source center C to the intersection F is at least 0.29 × 2 mm × 0.2 = 0.116 mm.
The maximum distance coefficient α increases rapidly when the one-sided prospective angle ω exceeds 80 °, but this one-sided prospective angle ω> 80 ° is specific, and α is a value of 6 or less as shown in FIG. It is known to show a tendency.

(第2の実施形態の変形例)
図24は実施形態2の第1の変形例を示す平面図である。実施形態2においては、各V溝構造71の長軸73が中心線75と交差する交点F1、F2、…は次第に位置がずれていたが、実施形態2の第1の変形例においては、実施形態2の交点F1、F2、…のほぼ平均的な位置Fにおいて各V溝構造71の長軸73が一点で交差するようにしたものである。なお、交点Fは、光源中心Cからの距離がD=12Rの範囲内に位置している。
(Modification of the second embodiment)
FIG. 24 is a plan view showing a first modification of the second embodiment. In the second embodiment, the intersections F1, F2,... At which the major axis 73 of each V-groove structure 71 intersects the center line 75 are gradually shifted in position, but in the first modification of the second embodiment, the implementation is performed. The major axis 73 of each V-groove structure 71 intersects at one point at a substantially average position F of the intersection points F1, F2,. Note that the intersection point F is located within the range of D = 12R from the light source center C.

このような変形例でも、各V溝構造71において、長軸73の両側での入射角∠AQmCと∠BQmCとをほぼ等しくすることができ、光利用効率を向上させ、また光漏れを低減することができる。   Even in such a modified example, in each V-groove structure 71, the incident angles ∠AQmC and ∠BQmC on both sides of the long axis 73 can be made substantially equal to improve light utilization efficiency and reduce light leakage. be able to.

また、図25は実施形態2の第2の変形例を示す平面図である。第2の変形例においては、内接円74の中心Oが光源中心Cよりも点光源62の後方に位置するようにして指向性変換パターン68が形成されている。また、各V溝構造71は、長軸73が内接円74の中心Oに集束し、交点Fが中心Oと一致するように形成されている。すなわち、図25の光導入部65は、図9に示した比較例のような光導入部35の全体を後方へ移動させた構造となっている。   FIG. 25 is a plan view showing a second modification of the second embodiment. In the second modified example, the directivity conversion pattern 68 is formed such that the center O of the inscribed circle 74 is located behind the point light source 62 with respect to the light source center C. Each V-groove structure 71 is formed such that the long axis 73 converges to the center O of the inscribed circle 74 and the intersection point F coincides with the center O. That is, the light introduction part 65 in FIG. 25 has a structure in which the entire light introduction part 35 as in the comparative example shown in FIG. 9 is moved backward.

なお、図19〜図25に示した実施形態2、その第1及び第2の変形例においても、光の到達しない直線AA´の外側の領域や直線BB´の外側の領域では、V溝構造71は無くてもよく、また任意の形状に形成することもできる。また、これらも、光出射面69に垂直な方向から見たとき、光入射端面66から光導入部65内に入射した光が到達する領域内にあり、かつ点光源62の中心線75を挟んで一方の側に位置するV溝構造71の長軸73を平均した直線と、光入射端面66から光導入部65内に入射した光が到達する領域内にあり、かつ点光源62の中心線75を挟んで他方の側に位置するV溝構造71の長軸を平均した直線とが、中心線75上の一点で交差している。   In the second embodiment shown in FIGS. 19 to 25 and the first and second modifications thereof, in the region outside the straight line AA ′ where the light does not reach and the region outside the straight line BB ′, the V-groove structure is used. 71 may be omitted and can be formed in an arbitrary shape. These are also in a region where the light incident from the light incident end surface 66 into the light introducing portion 65 reaches when viewed from the direction perpendicular to the light emitting surface 69 and sandwich the center line 75 of the point light source 62. And a straight line obtained by averaging the major axes 73 of the V-groove structure 71 located on one side, and a region where light incident from the light incident end face 66 into the light introducing portion 65 reaches, and the center line of the point light source 62 A straight line obtained by averaging the long axes of the V-groove structures 71 located on the other side across 75 intersects at one point on the center line 75.

(第3の実施形態)
図26は本発明の実施形態3による面光源装置の光導入部65を表した斜視図である。この面光源装置は、複数個の点光源62を並べて用いることができるようにしたものであって、各点光源62の前方に略円弧状の指向性変換パターン68を設けている。光導入部65の光入射端面から入射した光は、円錐状の指向特性を有しているので、光出射面に垂直な方向から見たとき、光入射端面から入射した光の光導入部65内における広がりは180°よりも小さくなっている(前記のように、導光板の屈折率が1.59である場合には、光の広がりは78°となる。)。よって、円弧状の指向性変換パターン68を隣合わせて配列する場合にも、光の届かない指向性変換パターン68どうしの間の領域Eのパターン形状やパターンの向きなどは自由に形成することができる。ただし、隣接する領域の指向性変換パターン68の光が到達する領域どうしは、互いに重なり合わないようにしている。あるいは、光の届かない指向性変換パターン68どうしの間の領域Eには、指向性変換パターン68は無くてもよい。また、光の入射面が平坦面ではなく入射光の広がりを変化させるパターンが付加されている場合はその広がりも考慮するものとする。
(Third embodiment)
FIG. 26 is a perspective view showing the light introducing portion 65 of the surface light source device according to Embodiment 3 of the present invention. This surface light source device is configured so that a plurality of point light sources 62 can be used side by side, and a substantially arc-shaped directivity conversion pattern 68 is provided in front of each point light source 62. Since the light incident from the light incident end face of the light introducing portion 65 has a conical directional characteristic, the light introducing portion 65 of the light incident from the light incident end face when viewed from the direction perpendicular to the light emitting surface. The inner spread is smaller than 180 ° (as described above, when the refractive index of the light guide plate is 1.59, the spread of light is 78 °). Therefore, even when the arc-shaped directivity conversion patterns 68 are arranged next to each other, the pattern shape and pattern direction of the region E between the directivity conversion patterns 68 that do not reach light can be freely formed. . However, the areas where the light beams of the directivity conversion patterns 68 of the adjacent areas reach are not overlapped with each other. Alternatively, the directivity conversion pattern 68 may not be present in the region E between the directivity conversion patterns 68 where the light does not reach. Further, when the light incident surface is not a flat surface but a pattern for changing the spread of the incident light is added, the spread is also considered.

図27は実施形態3の変形例であって、隣接する指向性変換パターン68どうしが滑らかに接続されるようにしたものである。   FIG. 27 shows a modified example of the third embodiment in which adjacent directivity conversion patterns 68 are smoothly connected.

(第4の実施形態)
図28は本発明の実施形態4による面光源装置77を表した斜視図である。図29は、一つの指向性変換パターン68を拡大して示す斜視図である。この面光源装置77は、複数個の点光源62を並べて用いることができるようにしたものであって、各点光源62の前方に光導入部65を設けている。導光板63の端部には、その端面と平行に幅の狭い平坦な上面72を設けてあり、当該上面から導光板本体64に向けて傾斜面67を導光板63の幅方向に沿って直線状に設けている。各点光源62の前方においては、互いに重なり合わないようにして、傾斜面に沿って台形状の領域に指向性変換パターン68が設けられている。指向性変換パターン68の点光源62の縁と、点光源62から遠い側の縁はいずれも直線状となっており、片側見込み角が90°となっている。指向性変換パターン68は、放射状に配列された複数のV溝構造71によって構成されており、各V溝構造71の長軸は、点光源62の光出射窓の中央よりも後方において集束または交差している。
(Fourth embodiment)
FIG. 28 is a perspective view showing a surface light source device 77 according to Embodiment 4 of the present invention. FIG. 29 is an enlarged perspective view showing one directivity conversion pattern 68. The surface light source device 77 is configured so that a plurality of point light sources 62 can be used side by side, and a light introducing portion 65 is provided in front of each point light source 62. A flat upper surface 72 having a narrow width is provided at the end of the light guide plate 63 in parallel with the end surface, and the inclined surface 67 is linearly extended along the width direction of the light guide plate 63 from the upper surface toward the light guide plate body 64. It is provided in the shape. In front of each point light source 62, a directivity conversion pattern 68 is provided in a trapezoidal region along the inclined surface so as not to overlap each other. Both the edge of the point light source 62 of the directivity conversion pattern 68 and the edge far from the point light source 62 are linear, and the one-side prospective angle is 90 °. The directivity conversion pattern 68 is composed of a plurality of V-groove structures 71 arranged radially, and the long axis of each V-groove structure 71 converges or intersects behind the center of the light exit window of the point light source 62. is doing.

このような実施態様によれば、単純な傾斜面67に指向性変換パターン68を形成することができるので、指向性変換パターン68の作製を容易にすることができる。   According to such an embodiment, since the directivity conversion pattern 68 can be formed on the simple inclined surface 67, the directivity conversion pattern 68 can be easily manufactured.

図30は実施形態4の変形例を示す斜視図、図31はその一つの指向性変換パターン68を拡大して示す斜視図である。この変形例では、傾斜面67の端の平坦な上面72を無くして指向性変換パターン68(又はV溝構造71)の端が導光板63の端に達するようにしたものである。 FIG. 30 is a perspective view showing a modification of the fourth embodiment, and FIG. 31 is an enlarged perspective view showing one directivity conversion pattern 68 thereof. In this modification, the flat upper surface 72 at the end of the inclined surface 67 is eliminated so that the end of the directivity conversion pattern 68 (or the V-groove structure 71) reaches the end of the light guide plate 63.

(第5の実施形態)
ここまでに説明した実施形態では、V溝構造の単位パターンを用いて導光板からの光の漏れをなくす方法を考えてきたが、以下においてはより一般化した構造について説明する。すなわち、必ずしもこれまでに説明したようなV溝構造の単位パターンによらなくとも、前記点光源の光源中心よりも後方に位置する或る点の付近を中心として放射状方向に延びた単位パターン(凹又は凸の凹凸構造)からなる指向性変換パターンにより、指向性変換パターンで反射された光の指向性を光源方向(光反射点と点光源の光源中心とを結ぶ方向)に対してほぼ直交する方向に広げれば、光導入部に入射した光の前記導光板の厚み方向における指向性広がりを導光板の面方向と平行な方向に向けて傾いた指向特性に変換させることができ、光導入部65における光の漏れを小さくできる。
(Fifth embodiment)
In the embodiments described so far, the method of eliminating the light leakage from the light guide plate using the unit pattern of the V-groove structure has been considered, but a more generalized structure will be described below. That is, the unit pattern (recessed) extending radially around a certain point located behind the light source center of the point light source is not necessarily a unit pattern having a V-groove structure as described above. (Or a convex-concave structure), the directivity of light reflected by the directivity conversion pattern is substantially orthogonal to the light source direction (the direction connecting the light reflection point and the light source center of the point light source). If spread in the direction, the directivity spread in the thickness direction of the light guide plate of the light incident on the light introduction portion can be converted into a directional characteristic inclined toward the direction parallel to the surface direction of the light guide plate. Light leakage at 65 can be reduced.

この理由については、特許文献4(特に、段落0138−0141、図55−57など)において詳細に説明しているので、ここでは特許文献4における説明を援用することとし、詳細は省略する。   The reason for this is described in detail in Patent Document 4 (particularly, paragraphs 0138-0141, FIGS. 55-57, etc.), so the description in Patent Document 4 is used here, and details thereof are omitted.

このような実施形態としては、例えば図32(a)、(b)〜図36に示すようなものがある。図32(a)、(b)は、シリンドリカルレンズ状ないし楕円溝状(楕円球面状)をした凹凸構造78(単位パターン)を点光源62の光源中心よりも後方に位置する或る点を中心として各凹凸構造78の長手方向が光源方向とほぼ平行となるように放射状に配列して指向性変換パターン68を構成したものである。図33(a)、(b)は、V溝状をした凹凸構造78を点光源62の光源中心よりも後方に位置する或る点を中心として各凹凸構造78の長手方向が光源方向とほぼ平行となるように放射状に配列して指向性変換パターン68を構成したものである。図34(a)、(b)は、U溝状をした凹凸構造78を点光源62の光源中心よりも後方に位置する或る点を中心として各凹凸構造78の長手方向が光源方向とほぼ平行となるように放射状に配列して指向性変換パターン68を構成したものである。図35(a)、(b)は、回折格子状をした凹凸構造78を点光源62の光源中心よりも後方に位置する或る点を中心として各凹凸構造78の長手方向が光源方向とほぼ平行となるように放射状に配列して指向性変換パターン68を構成したものである。図36は、光出射面に垂直な方向から見て蛇行するようにうねった凹凸構造78を点光源62の光源中心よりも後方に位置する或る点を中心として各凹凸構造78の長手方向が光源方向とほぼ平行となるように放射状に配列して指向性変換パターン68を構成したものである。   Examples of such an embodiment include those shown in FIGS. 32A and 32B to FIG. 32 (a) and 32 (b), a concavo-convex structure 78 (unit pattern) having a cylindrical lens shape or an elliptical groove shape (elliptical spherical shape) is centered on a certain point located behind the light source center of the point light source 62. The directivity conversion pattern 68 is configured by arranging the concavo-convex structures 78 radially so that the longitudinal direction thereof is substantially parallel to the light source direction. 33 (a) and 33 (b), the longitudinal direction of each concavo-convex structure 78 is substantially the same as the light source direction around a certain point located behind the light source center of the point light source 62. The directivity conversion pattern 68 is configured by arranging radially so as to be parallel. 34 (a) and 34 (b), the longitudinal direction of each concavo-convex structure 78 is substantially the same as the light source direction around a certain point located behind the light source center of the point light source 62 in the concavo-convex structure 78 having a U groove shape. The directivity conversion pattern 68 is configured by arranging radially so as to be parallel. In FIGS. 35A and 35B, the longitudinal direction of each concavo-convex structure 78 is substantially the same as the light source direction with a certain point located behind the light source center of the point light source 62 in the concavo-convex structure 78 having a diffraction grating shape. The directivity conversion pattern 68 is configured by arranging radially so as to be parallel. In FIG. 36, the concavo-convex structure 78 that undulates when viewed from the direction perpendicular to the light emitting surface is centered on a certain point located behind the light source center of the point light source 62, and the longitudinal direction of each concavo-convex structure 78 is as follows. The directivity conversion pattern 68 is configured by arranging radially so as to be substantially parallel to the light source direction.

別な実施形態としては、例えば図32(a)、(b)〜図36に示したような凹凸構造78を用いて、図19に示した第2の実施形態のように構成してもよい。すなわち、光出射面69に垂直な方向から見て、光入射端面66から導光板63内に入射した光が到達する領域内にある指向性変換パターン68が円弧状に形成されて、指向性変換パターン68に内接する円の中心が、光源中心Cと一致している。そして、この指向性変換パターン68内の凹凸構造78の長軸73が中心線75と交差する点が、中心線75から離れた凹凸構造78ほど点光源62の光源中心Cに近くなるようにしてもよい。   As another embodiment, for example, a concavo-convex structure 78 as shown in FIGS. 32A and 32B to FIG. 36 may be used as in the second embodiment shown in FIG. . That is, when viewed from the direction perpendicular to the light exit surface 69, the directivity conversion pattern 68 in the region where the light incident from the light incident end surface 66 into the light guide plate 63 reaches is formed in an arc shape, and the directivity conversion is performed. The center of the circle inscribed in the pattern 68 coincides with the light source center C. The point where the long axis 73 of the concavo-convex structure 78 in the directivity conversion pattern 68 intersects the center line 75 is such that the concavo-convex structure 78 far from the center line 75 is closer to the light source center C of the point light source 62. Also good.

また、V溝構造や凹凸構造などの単位パターンは、図32や図36の実施形態に示されているように、その形状や大きさが不揃い、あるいはランダムであってもよく、あるいは、複数種類の単位パターンが混在していてもよい。   Further, the unit patterns such as the V-groove structure and the concavo-convex structure may have irregular shapes and sizes, or may be random, as shown in the embodiments of FIGS. These unit patterns may be mixed.

なお、図示しないが、特許文献4の図44〜図50に示すように、指向性変換パターンは、導光板の光出射面と反対側の面に形成していてもよい。また、傾斜面も、導光板の光出射面と反対側の面に形成していてもよい。また、特許文献4の図53(d)に示すように、傾斜面及び指向性変換パターンを導光板の光出射面と同じ側の面と反対側の面との両方に設けていてもよい。   Although not shown, as shown in FIGS. 44 to 50 of Patent Document 4, the directivity conversion pattern may be formed on the surface opposite to the light exit surface of the light guide plate. The inclined surface may also be formed on the surface opposite to the light emitting surface of the light guide plate. Further, as shown in FIG. 53D of Patent Document 4, the inclined surface and the directivity conversion pattern may be provided on both the same side surface and the opposite side surface of the light guide plate.

61 面光源装置
62 点光源
62a 光出射窓
62b LED
63 導光板
64 導光板本体
65 光導入部
66 光入射端面
67 傾斜面
68 指向性変換パターン
69 光出射面
70 光出射手段
71 V溝構造
73 長軸
74 内接円
75 中心線
61 surface light source device 62 point light source 62a light exit window 62b LED
63 Light guide plate 64 Light guide plate main body 65 Light introducing portion 66 Light incident end face 67 Inclined surface 68 Directivity conversion pattern 69 Light exit surface 70 Light exit means 71 V groove structure 73 Long axis 74 Inscribed circle 75 Center line

Claims (10)

点光源と、前記点光源の光を光入射面から導入し光出射面から外部へ出射させる導光板とを備えた面光源装置であって、
前記点光源は、前記導光板の光入射面と対向する位置に設けられ、
前記導光板は、光入射面から入射した点光源からの光を閉じ込めるための光導入部と、前記光導入部の最大の厚みよりも小さな厚みで、前記光導入部と連続するように設けられていて閉じ込めた光を光出射手段によって光出射面から外部へ出射させるようにした導光板本体とを備え、
前記光導入部は、前記導光板本体よりも厚みの大きな部分の表面から前記導光板本体の表面の端に向けて傾斜した傾斜面を、前記導光板の光出射側の面またはその反対面に有し、
前記導光板は、前記光導入部に入射した光の前記導光板の厚み方向における指向性広がりを導光板の面方向と平行な方向に向けて傾いた指向特性に変換させるための指向性変換パターンを、前記光出射側の面またはその反対面に有し、
前記指向性変換パターンは、それぞれ一方向に延びた凹又は凸の単位パターンが複数配列したものであり、
前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内にあり、かつ前記点光源の中心線を挟んで一方の側に位置する前記単位パターンのそれぞれの長軸を平均化した第1の直線が前記中心線と交差する第1交点と、前記光入射面から導光板内に入射した光が到達する領域内にあり、かつ前記点光源の中心線を挟んで他方の側に位置する前記単位パターンのそれぞれの長軸を平均化した第2の直線が前記中心線と交差する第2交点とは、いずれも前記点光源の光源中心よりも後方に位置していることを特徴とする面光源装置。
A surface light source device comprising a point light source and a light guide plate that introduces light of the point light source from a light incident surface and emits the light from the light emission surface to the outside,
The point light source is provided at a position facing the light incident surface of the light guide plate,
The light guide plate is provided so as to be continuous with the light introducing portion with a light introducing portion for confining light from a point light source incident from a light incident surface and a thickness smaller than the maximum thickness of the light introducing portion. A light guide plate main body configured to emit the confined light from the light emitting surface to the outside by the light emitting means,
The light introducing portion has an inclined surface inclined from the surface of a portion thicker than the light guide plate main body toward the end of the surface of the light guide plate main body on the light emitting side surface of the light guide plate or the opposite surface thereof. Have
The light guide plate has a directivity conversion pattern for converting the directivity spread in the thickness direction of the light guide plate of light incident on the light introducing portion into a directivity characteristic inclined toward a direction parallel to the surface direction of the light guide plate. On the surface of the light emitting side or the opposite surface,
The directivity conversion pattern is a plurality of concave or convex unit patterns each extending in one direction,
When the light guide plate is viewed from the direction perpendicular to the light exit surface, the light guide plate is in a region where light incident on the light guide plate from the light incident surface reaches and on one side of the center line of the point light source A first straight line obtained by averaging the major axes of the unit patterns located at a first intersection point intersecting the center line, and a region where light incident on the light guide plate from the light incident surface reaches. And a second straight line where a second straight line obtained by averaging the major axes of the unit patterns located on the other side across the center line of the point light source intersects the center line is the point A surface light source device, which is located behind a light source center of a light source.
前記第1交点と前記光源中心との間の距離は、前記点光源の光出射窓の幅の6倍以下であり、
前記第2交点と前記光源中心との間の距離は、前記点光源の光出射窓の幅の6倍以下であることを特徴とする、請求項1に記載の面光源装置。
The distance between the first intersection and the light source center is not more than 6 times the width of the light exit window of the point light source,
2. The surface light source device according to claim 1, wherein a distance between the second intersection and the light source center is 6 times or less of a width of a light emission window of the point light source.
前記第1交点と前記第2交点とが一致していることを特徴とする、請求項1に記載の面光源装置。  The surface light source device according to claim 1, wherein the first intersection point and the second intersection point coincide with each other. 前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置するそれぞれの前記単位パターンの長軸は、前記点光源の光源中心よりも後方に位置する或る一点の付近に集束することを特徴とする、請求項1に記載の面光源装置。  When the light guide plate is viewed from a direction perpendicular to the light emitting surface, the long axis of each unit pattern located in a region where light incident on the light guide plate from the light incident surface reaches the point light source 2. The surface light source device according to claim 1, wherein the surface light source device is focused in the vicinity of a certain point located behind the light source center. 前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置する前記単位パターンの長軸が前記点光源の中心線と交差する点は、いずれも前記点光源の光源中心よりも後方に位置していることを特徴とする、請求項1に記載の面光源装置。  When the light guide plate is viewed from a direction perpendicular to the light emitting surface, the long axis of the unit pattern located in the region where the light incident on the light guide plate from the light incident surface reaches the center line of the point light source 2. The surface light source device according to claim 1, wherein the points intersecting each other are located behind a light source center of the point light source. 前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置するそれぞれの前記単位パターンの長軸が前記中心線と交差する点と光源中心との間の距離が、前記点光源の光出射窓の幅の6倍以下であることを特徴とする、請求項1に記載の面光源装置。  When the light guide plate is viewed from a direction perpendicular to the light exit surface, the long axis of each unit pattern located in a region where light incident from the light incident surface into the light guide plate reaches the center line. 2. The surface light source device according to claim 1, wherein the distance between the intersecting point and the light source center is not more than 6 times the width of the light exit window of the point light source. 前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置する前記単位パターンの長軸が前記中心線と交差する点は、前記中心線から離れた単位パターンほど前記点光源の光源中心に近くなることを特徴とする、請求項1に記載の面光源装置。  When the light guide plate is viewed from a direction perpendicular to the light exit surface, the major axis of the unit pattern located in a region where light incident on the light guide plate from the light incident surface intersects the center line. 2. The surface light source device according to claim 1, wherein the point is closer to the light source center of the point light source as the unit pattern is farther from the center line. 前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内にある指向性変換パターンは円弧状に形成されており、円弧状に形成された前記指向性変換パターンに内接する円の中心が、前記点光源の光源中心と一致していることを特徴とする、請求項7に記載の面光源装置。  When viewed from a direction perpendicular to the light emitting surface, the directivity conversion pattern in the region where the light incident on the light guide plate from the light incident surface reaches is formed in an arc shape and is formed in an arc shape. The surface light source device according to claim 7, wherein a center of a circle inscribed in the directivity conversion pattern coincides with a light source center of the point light source. 前記導光板を前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内に位置するそれぞれの前記単位パターンの長軸は、前記点光源の光源中心よりも背後において、前記中心線上の或る一点を通過することを特徴とする、請求項1に記載の面光源装置。  When the light guide plate is viewed from a direction perpendicular to the light emitting surface, the long axis of each unit pattern located in a region where light incident on the light guide plate from the light incident surface reaches the point light source 2. The surface light source device according to claim 1, wherein a certain point on the center line passes behind the center of the light source. 前記光出射面に垂直な方向から見たとき、前記光入射面から導光板内に入射した光が到達する領域内にある指向性変換パターンは円弧状に形成されており、前記指向性変換パターンは、当該指向性変換パターンに内接する円が前記点光源の光出射窓の両端を通過するように形成され、導光板内に入射した光が到達する領域内にある前記単位パターンはそれぞれの長軸が前記点光源の中心線と前記内接円との交点を通過するように配置されていることを特徴とする、請求項1に記載の面光源装置。  When viewed from a direction perpendicular to the light exit surface, the directivity conversion pattern in the region where the light incident on the light guide plate from the light incident surface reaches is formed in an arc shape, and the directivity conversion pattern Is formed so that a circle inscribed in the directivity conversion pattern passes through both ends of the light exit window of the point light source, and the unit patterns in the region where the light incident on the light guide plate reaches each of the unit patterns The surface light source device according to claim 1, wherein an axis is disposed so as to pass through an intersection of a center line of the point light source and the inscribed circle.
JP2010542827A 2008-12-17 2009-11-30 Surface light source device Active JP4894955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542827A JP4894955B2 (en) 2008-12-17 2009-11-30 Surface light source device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008320480 2008-12-17
JP2008320480 2008-12-17
PCT/JP2009/006468 WO2010070823A1 (en) 2008-12-17 2009-11-30 Planar light source device
JP2010542827A JP4894955B2 (en) 2008-12-17 2009-11-30 Surface light source device

Publications (2)

Publication Number Publication Date
JP4894955B2 true JP4894955B2 (en) 2012-03-14
JPWO2010070823A1 JPWO2010070823A1 (en) 2012-05-24

Family

ID=42268506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010542827A Active JP4894955B2 (en) 2008-12-17 2009-11-30 Surface light source device

Country Status (5)

Country Link
US (1) US8210730B2 (en)
JP (1) JP4894955B2 (en)
KR (1) KR101201573B1 (en)
CN (1) CN102257312B (en)
WO (1) WO2010070823A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302048B1 (en) * 2013-02-01 2013-09-05 이동현 LED lighting advertising panel using engraved acrylic light guide plate

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI350360B (en) * 2007-06-12 2011-10-11 Omron Tateisi Electronics Co Surface light source device
KR101201573B1 (en) 2008-12-17 2012-11-14 오므론 가부시키가이샤 Planar light source device
WO2013005542A1 (en) * 2011-07-06 2013-01-10 シャープ株式会社 Illumination device and display device
US8529113B2 (en) * 2011-08-05 2013-09-10 Richard Brown Thin edge-lit LED backlight panel and light guide
CN103080995B (en) * 2011-08-12 2015-11-25 株式会社藤仓 Light-emitting device
JP6056767B2 (en) * 2011-12-12 2017-01-11 コニカミノルタ株式会社 Lighting device and light guide
US8894266B2 (en) * 2012-02-14 2014-11-25 Dongguan Masstop Liquid Crystal Display Co., Ltd. Light guide device
JP5553077B2 (en) * 2012-03-15 2014-07-16 オムロン株式会社 Surface light source device
TWI481915B (en) 2013-08-20 2015-04-21 Radiant Opto Electronics Corp Light guide plate with multidirectional structures
US9442240B2 (en) * 2012-03-16 2016-09-13 Radiant Opto-Electronics Corporation Light guide plate and light source module
US9557469B2 (en) * 2012-03-16 2017-01-31 Radiant Opto-Electronics Corporation Light guide plate, backlight module and display device
CN102621623B (en) * 2012-04-06 2017-02-08 深圳市华星光电技术有限公司 Light guide plate and backlight module group
KR101281199B1 (en) 2012-06-08 2013-07-03 삼성전자주식회사 Light duide panel and liquid crystal display apparatus
JP5878239B2 (en) * 2012-09-13 2016-03-08 三菱電機株式会社 Surface light source device and display device using the same
JP5862557B2 (en) * 2012-12-26 2016-02-16 オムロン株式会社 Light guide plate and surface light source device
TW201445197A (en) * 2013-05-20 2014-12-01 Hon Hai Prec Ind Co Ltd Light guide element and blacklight module
US9588272B2 (en) * 2013-05-24 2017-03-07 Sharp Kabushiki Kaisha Lighting device and display device
CN104749818A (en) * 2013-12-26 2015-07-01 富泰华精密电子(郑州)有限公司 Sidelight backlight module and LGP (Light Guide Plate) thereof
KR102137968B1 (en) * 2014-02-03 2020-07-29 삼성디스플레이 주식회사 Light guide panel, backlight unit, display devece and method for manufacturing light guide panel
JP5959575B2 (en) * 2014-06-30 2016-08-02 ミネベア株式会社 Planar illumination device and manufacturing method thereof
US9851488B2 (en) * 2014-08-18 2017-12-26 New Optics, Ltd Light guide plate and backlight unit including the same
CN206002713U (en) * 2016-07-29 2017-03-08 京东方科技集团股份有限公司 Light guide plate, backlight module and display device
KR102626224B1 (en) * 2016-08-31 2024-01-17 삼성디스플레이 주식회사 Light emitting module and display device having the same
JP7109956B2 (en) 2018-03-27 2022-08-01 株式会社ジャパンディスプレイ Display device
CN114509843B (en) * 2021-12-30 2023-08-01 苏州天禄光科技股份有限公司 Side-entry light guide plate and side-entry backlight module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272428A (en) * 2002-03-19 2003-09-26 Matsushita Electric Ind Co Ltd Light guide plate, surface lighting system, and display device
JP2004069751A (en) * 2002-08-01 2004-03-04 Citizen Electronics Co Ltd Light guide sheet and key switch with the same assembled therein
JP2008015467A (en) * 2006-01-31 2008-01-24 Konica Minolta Opto Inc Light guide plate and backlight apparatus
WO2008153024A1 (en) * 2007-06-12 2008-12-18 Omron Corporation Surface light source apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333803A (en) * 1991-05-10 1992-11-20 Sumitomo Chem Co Ltd Photoconductor for plane illumination device
JPH0553111A (en) 1991-08-23 1993-03-05 Rohm Co Ltd Light guiding plate structure of thin edge light type liquid crystal display device
JP2001043717A (en) * 1999-07-28 2001-02-16 Citizen Electronics Co Ltd Surface light source unit and liquid crystal display device using the same
KR100756368B1 (en) * 2002-12-05 2007-09-10 삼성전자주식회사 Back light assembly and liquid crystal display having the same
KR100519238B1 (en) * 2003-02-04 2005-10-07 화우테크놀러지 주식회사 A Light Guide Panel With Guided-light Parts
KR100970720B1 (en) * 2003-04-15 2010-07-16 삼성전자주식회사 Projection display
JP2005285389A (en) 2004-03-29 2005-10-13 Seiko Instruments Inc Lighting device and display device using the same
JP4473035B2 (en) * 2004-04-22 2010-06-02 セイコーインスツル株式会社 Illumination device and display device including the same
TW200722850A (en) * 2005-12-02 2007-06-16 Innolux Display Corp Backlight module and liquid crystal display device
TWI330240B (en) * 2006-11-03 2010-09-11 Chimei Innolux Corp Light emitting diode and backlight module using the same
CN201035175Y (en) * 2007-01-19 2008-03-12 台湾奈普光电科技股份有限公司 Improvement of light conducting plate structure of thin type backlight module
JP2009058846A (en) * 2007-09-03 2009-03-19 Hitachi Displays Ltd Liquid crystal display device
WO2009116011A1 (en) * 2008-03-19 2009-09-24 I2Ic Corporation Apparatus for efficiently coupling light from a light source into a thin object
KR101201573B1 (en) 2008-12-17 2012-11-14 오므론 가부시키가이샤 Planar light source device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272428A (en) * 2002-03-19 2003-09-26 Matsushita Electric Ind Co Ltd Light guide plate, surface lighting system, and display device
JP2004069751A (en) * 2002-08-01 2004-03-04 Citizen Electronics Co Ltd Light guide sheet and key switch with the same assembled therein
JP2008015467A (en) * 2006-01-31 2008-01-24 Konica Minolta Opto Inc Light guide plate and backlight apparatus
WO2008153024A1 (en) * 2007-06-12 2008-12-18 Omron Corporation Surface light source apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302048B1 (en) * 2013-02-01 2013-09-05 이동현 LED lighting advertising panel using engraved acrylic light guide plate

Also Published As

Publication number Publication date
US8210730B2 (en) 2012-07-03
KR101201573B1 (en) 2012-11-14
US20110286238A1 (en) 2011-11-24
CN102257312B (en) 2013-10-30
JPWO2010070823A1 (en) 2012-05-24
KR20110086612A (en) 2011-07-28
CN102257312A (en) 2011-11-23
WO2010070823A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP4894955B2 (en) Surface light source device
TWI428541B (en) Surface light source device and liquid crystal display device
US7507011B2 (en) Surface light source equipment and apparatus using the same
TWI468800B (en) Planar light source device
JP6285783B2 (en) Light capture structure for light emitting applications
JP5018692B2 (en) Surface light source device
TWI446066B (en) Surface light source device and liquid crystal display device
KR101058298B1 (en) Light guide plate and backlight
WO2000049432A1 (en) Optical waveguide sheet, surface illuminant device and liquid crystal display
JP2008103110A (en) Light guide plate and flat lighting device
JP2011187230A (en) Surface light source device and liquid crystal display device
JP2012164511A (en) Light guide plate and planar light source device
US9671547B2 (en) Illumination device and display device
JP4324133B2 (en) Light guide plate and flat illumination device
JP2007066865A (en) Light guide plate
JP4170320B2 (en) Light guide plate and flat illumination device
JP2011258362A (en) Surface light source device
JP4413668B2 (en) Light guide plate, light source device and flat light emitting device
JP4400867B2 (en) Light deflection element and light source device
JP2009158468A (en) Backlight
JP2007066620A (en) Light guide plate and flat lighting system
JP2013105596A (en) Light guide plate, surface light source device, and transmission image display device
JP2009158467A (en) Light guide plate and backlight
JP5243590B2 (en) Flat lighting unit
JP2013105597A (en) Light guide plate, surface light source device, and transmission image display device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250